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Abstract

In this paper, a delay compensation design method based on PDE backstepping is developed for a two-dimensional reaction-
diffusion partial differential equation (PDE) with bilateral input delays. The PDE is defined in a rectangular domain, and the
bilateral control is imposed on a pair of opposite sides of the rectangle. To represent the delayed bilateral inputs, we introduce
two 2-D transport PDEs that form a cascade system with the original PDE. A novel set of backstepping transformations
is proposed for delay compensator design, including one Volterra integral transformation and two affine Volterra integral
transformations. Unlike the kernel equation for 1-D PDE systems with delayed boundary input, the resulting kernel equations
for the 2-D system have singular initial conditions governed by the Dirac Delta function. Consequently, the kernel solutions
are written as a double trigonometric series with singularities. To address the challenge of stability analysis posed by the
singularities, we prove a set of inequalities by using the Cauchy-Schwarz inequality, the 2-D Fourier series, and the Parseval’s
theorem. A numerical simulation illustrates the effectiveness of the proposed delay-compensation method.
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1 Introduction

Reaction-diffusion equations are usually used to de-
scribe the density concentration of a substance, a popu-
lation change in time and space, governed by Fick’s law
and reaction factors, such as chemical reaction, birth,
and death. Many of these processes are unstable due
to the reaction terms, naturally applied in chemical re-
actions [1], thermal fluids [2], population dynamics [3],
etc., which gives rise to various challenges for control de-
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1 Corresponding author

sign, especially for the problem with delay which would
greatly increase the difficulty of stabilizing the unstable
system [4].
In past decades, the delay-compensated control for

the reaction-diffusion equation has been well developed.
An early work is [5], which considers the stabilization
of a reaction-diffusion PDE with arbitrary long input
delay by the PDE backstepping boundary controller.
[6,7,8,9,10,11] extend the method of [5] to solve differ-
ent delay-compensated control problems for reaction-
diffusion systems, in which, [6] studies the problem of
prescribed–time stabilization for a reaction-diffusion
PDE with constant input delay. In [8], a delay compen-
sator is designed for distributed in-domain control. A
state delay problem is considered in [10], and solved by
a backstepping controller. The spatially-varying delay
compensator is designed in [9], while an unknown input
delayed control problem is solved by a delay-adaptive
predictor controller in [7]. The output regulator delay is
worked out in [11]. By a similar approach, [12] presents
the control design for the Stefan problem under actua-
tor delay. Different from the above papers, [13] applies
Lyapunov-Krasovskii functional methods and a linear
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operator inequality to solve the delay compensation
problem and achieve the exponential stability of the
system with time-varying delays. Another paper us-
ing Lyapunov-Krasovskii functional methods is [14], in
which the authors design a new sub-predictor-based T-
S fuzzy control law that can achieve compensation for
large delay via using the proposed observer. Besides,
[15] designs a stabilizing feedback boundary control
for a reaction-diffusion PDE with input delay by using
the spectral decomposition method and Artstein trans-
formation, whereas [16] applies a similar method to
design PI regulation of a reaction-diffusion PDE with
delay. Another way to compensate for the input delay
is predictor feedback control which stabilizes systems
via predicting the future value of the state [17,18]. [17]
proposes a global stabilization strategy for the nonlin-
ear system with delayed input, and [18] handles the
reaction-diffusion PDE with delay and data sampling
based on observer. A similar study is reported in [19],
the Lyapunov functions and Halanays inequality are
applied for finite-dimensional observer-based control of
a reaction-diffusion PDE with fast-varying unknown
input and known output delays.
The bilateral control can reduce control efforts com-

pared to the unilateral control, especially for the system
with large unstable coefficients [20], so more attention
has been paid to bilateral control, such as [21,22,23].
In [23], the authors employ the PDE backstepping
method to design a nonlinear bilateral full-state feed-
back controller for a class of viscous Hamilton-Jacobi
PDEs. Another important result is reported in [21], bi-
lateral backstepping boundary controller is developed
for a reaction-diffusion PDE in n-D domain symmetric
about the x-axis. Based on state feedback and state
estimation, [22] uses the backstepping method and fold
approach to construct the bilateral output-feedback
controller for an unstable 1-D reaction-diffusion system
with spatially-varying reaction. In addition, bilateral
control has also been applied into practice, for example,
traffic flow control [24], the tracking adaptive control
issue of the master-slave flexible system [25].
Although high-dimensional models have more ap-

plications, such as current reaction in tokamak device
[26] and temperature control of screw extruders [27],
fewer research work addresses delayed PDEs in the
high-dimensional domain. An example is [28], which
proposes a H∞ robust controller for 2-D diffusion sys-
tems with small delayed pointlike measurements and
small delayed input by using the Lyapunov-Krasovskii
functional approach. For a particular cylindrical sur-
face, [29] stabilizes an unstable 2-D reaction-diffusion
equation with input delay by the PDE backstepping. In
the paper, we consider a bilateral input delay problem
of a reaction-diffusion system in a rectangular domain.
An example application of the considered model is ex-
truder temperature control by heating/cooling cylindri-
cal barrels. Since the temperature is symmetrical with
the central axis of the cylinder, the temperature distri-
bution is the same for each section crossing the central

axis. Hence, the PDE domain defined in the cylinder
can be simplified to a 2-D rectangle. Owing to two actu-
ators being subject to delays, the classical backstepping
transformation [5] is no longer applicable. We propose a
novel set of backstepping transformations containing a
Volterra transformation [20,21] and two affine Volterra
transformations. Since the 4-D kernel functions in the
affine Volterra transformations depend on the 2-D ker-
nel function in the Volterra transformation at one of
their boundaries, a Dirac Delta function is employed
to build this relationship by reducing one dimension.
Thus, the resulting kernel equations involve Dirac delta
function as their initial conditions. We solve the kernel
equations, express the solution as double series, and
prove the series converges, including the convergence
of the series at singularity s = 0, x = θ to the initial
conditions governed by Dirac delta function. The singu-
larity in 2-D domain poses more challenges for the proof
of the operator boundedness than that in 1-D because it
needs to compute the H1 norm of the delayed actuator
state in 2-D domain, rather than the L2 norm in 1-D
domain. We solve the difficulty by proving a group of
inequalities containing integration of kernel functions
by using 2-D Fourier series [30], Cauchy-Schwarz in-
equality and Parseval’s theorem, and then obtain the
exponential stability of the closed-loop system in terms
of L2 norm for the state and H1 norm for the actuator
states. Finally, the theoretical results are demonstrated
on a 2-D square domain by simulation.
The contribution of this paper is summarized as:

• First, we propose a novel set of backstepping transfor-
mations to solve the bilateral control problem of a 2-D
reaction-diffusion system in presence of input delays
for both actuators.

• To address the stability analysis challenge posed
by the singularity, we prove a group of inequalities
containing integration of kernel functions by using
Cauchy-Schwarz inequality, 2-D Fourier series, and
Parseval’s theorem.
This paper is organized as follows. Section 2 presents

the control design for the system with input delay. The
stability analysis is shown in Section 3 and supportive
simulation results are provided in Section 4. The pa-
per ends with concluding remarks and future works pre-
sented in Section 5.
Notation 1 In this paper, the following notations are
used to define the domains:

D1 = {(x, y)| − L ≤ x ≤ L,−l ≤ y ≤ l},

D2 = {(x, s)| − L ≤ x ≤ L, 0 ≤ s ≤ τ},

Γ1 = {(y, ξ)| − l ≤ y ≤ l,−y ≤ ξ ≤ y},

Γ2 = {(x, θ, s, ξ)| − L ≤ x, θ ≤ L, 0 ≤ s ≤ τ,−y ≤ ξ ≤ y}.

We also define the norms for f(x, y) ∈ L2(D1),

‖f‖2L2 =

∫ L

−L

∫ l

−l

f2(x, y)dydx,

‖f‖2H1 = ‖f‖2L2 + ‖fx‖
2
L2 + ‖fy‖

2
L2 ,
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and for g(x, s) ∈ L2(D2),

‖g‖2L2 =

∫ L

−L

∫ τ

0

g2(x, s)dsdx,

‖g‖2H1 = ‖g‖2L2 + ‖gx‖
2
L2 + ‖gs‖

2
L2 .

2 Controller design

2.1 Problem description

Consider the following unstable 2-D reaction-diffusion
system with input delay τ > 0 on opposite boundaries
y = l and y = −l,

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + λu(x, y, t),
(1)

u(L, y, t) = u(−L, y, t) = 0, (2)

u(x, l, t) = U1(x, t− τ), (3)

u(x,−l, t) = U2(x, t− τ), (4)

u(x, y, 0) = u0(x, y), (5)

where (x, y) ∈ D1, t > 0. The reaction coefficient λ > 0.
U1(x, t− τ) and U2(x, t− τ) are the control inputs that
will be determined later.
Introduce two 2-D transport PDEs representation of

the delay on the distributed inputs, which results in the
following equivalent cascade system:

ut(x, y, t) = uxx(x, y, t) + uyy(x, y, t) + λu(x, y, t),
(6)

u(−L, y, t) = u(L, y, t) = 0, (7)

u(x, l, t) = v1(x, 0, t), (8)

u(x,−l, t) = v2(x, 0, t), (9)

u(x, y, 0) = u0(x, y), (10)

∂tv1(x, s, t) = ∂sv1(x, s, t), (11)

∂tv2(x, s, t) = ∂sv2(x, s, t), (12)

v1(x, τ, t) = U1(x, t), (13)

v2(x, τ, t) = U2(x, t), (14)

v1(x, s, 0) = v10(x, s), (15)

v2(x, s, 0) = v20(x, s), (16)

where (x, s) ∈ D2 for states v1(·, ·, t) and v2(·, ·, t).

2.2 The backstepping transformation

Apply the PDE backstepping method for control de-
sign. First, introduce a stable target system:

wt(x, y, t) = wxx(x, y, t) + wyy(x, y, t), (17)

w(−L, y, t) = w(L, y, t) = 0, (18)

w(x, l, t) = z1(x, 0, t), (19)

w(x,−l, t) = z2(x, 0, t), (20)

w(x, y, 0) = w0(x, y), (21)

∂tz1(x, s, t) = ∂sz1(x, s, t), (22)

∂tz2(x, s, t) = ∂sz2(x, s, t), (23)

z1(x, τ, t) = 0, (24)

z2(x, τ, t) = 0, (25)

z1(x, s, 0) = z10(x, s), (26)

z2(x, s, 0) = z20(x, s), (27)

where the transport systems z1 and z2 have mild solu-
tions:

zi(x, s, t) =

{

zi0(x, s+ t), 0 < s+ t ≤ τ

0, τ < s+ t
, i = 1, 2 ,

(28)

which implies zi(x, s, t) is stable in finite time. To trans-
form the original cascade system (6)-(16) into (17)-(27),
we propose a set of backstepping integral transforma-
tions as follows:

w(x, y, t) = u(x, y, t)−

∫ y

−y

p(y, ξ)u(x, ξ, t)dξ, (29)

z1(x, s, t) = v1(x, s, t)

−

∫ L

−L

∫ l

−l

γ1(x, θ, s, ξ)u(θ, ξ, t)dξdθ

−

∫ L

−L

∫ s

0

∂ξγ1(x, θ, s− r, l)v1(θ, r, t)drdθ

+

∫ L

−L

∫ s

0

∂ξγ1(x, θ, s− r,−l)v2(θ, r, t)drdθ, (30)

z2(x, s, t) = v2(x, s, t)

−

∫ L

−L

∫ l

−l

γ2(x, θ, s, ξ)u(θ, ξ, t)dξdθ

−

∫ L

−L

∫ s

0

∂ξγ2(x, θ, s− r, l)v1(θ, r, t)drdθ

+

∫ L

−L

∫ s

0

∂ξγ2(x, θ, s− r,−l)v2(θ, r, t)drdθ, (31)

where ∂ξγi(·, ·, ·, l) =
∂γi(·,·,·,ξ)

∂ξ
|ξ=l, i = 1, 2, transforma-

tion (29) is the Volterra transformation, transformations
(30) and (31) are the affine Volterra transformations.
The kernel function p(y, ξ) is defined in domain Γ1, and
γ1 and γ2 are both defined in Γ2.
According to [20,21], the kernel function p(y, ξ) satis-

fies the following PDE:

pyy(y, ξ)− pξξ(y, ξ) = λp(y, ξ), (32)

p(y, y) = −
λ

2
y, (33)

p(y,−y) = 0, (34)

whose solution is written as:

p(y, ξ) = −
sgn(y)

2

√

λ
y + ξ

y − ξ
I1

(

√

λ(y2 − ξ2)
)

, (35)

where I1(·) is the first-order modified Bessel function
of the first kind. The approach to solving the equation
(32)-(34) can be found in [20,31] .
After a lengthy computation based on the equivalent

relation between system (6)-(16) and system (17)-(27),
one can get the equations of kernels γi, i = 1, 2:

∂sγ1(x, θ, s, ξ) =∂ξξγ1(x, θ, s, ξ) + ∂θθγ1(x, θ, s, ξ)

+ λγ1(x, θ, s, ξ), (36)

γ1(x, L, s, ξ) =γ1(x,−L, s, ξ) = 0, (37)

γ1(x, θ, s, l) =γ1(x, θ, s,−l) = 0, (38)

3



γ1(x, θ, 0, ξ) =p(l, ξ)δ(x− θ), (39)

∂sγ2(x, θ, s, ξ) =∂ξξγ2(x, θ, s, ξ) + ∂θθγ2(x, θ, s, ξ)

+ λγ2(x, θ, s, ξ), (40)

γ2(x, L, s, ξ) =γ2(x,−L, s, ξ) = 0, (41)

γ2(x, θ, s, l) =γ2(x, θ, s,−l) = 0, (42)

γ2(x, θ, 0, ξ) =− p(−l, ξ)δ(x− θ), (43)

where δ(·) is the Dirac delta function.
Applying the method of separation of variables, one

gets the solutions of kernel functions γ1 and γ2:

γ1(x, θ, s, ξ) =
1

L

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2
+λ

)

s

· p1mϕn(x)ϕn(θ)φm(ξ), (44)

γ2(x, θ, s, ξ) =−
1

L

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2
+λ

)

s

· p2mϕn(x)ϕn(θ)φm(ξ), (45)

where

for n = 1, 2, · · · , ϕn(·) = sin
(nπ

2L
(·+ L)

)

, (46)

for m = 1, 2, · · · , φm(ξ) = sin
(mπ

2l
(ξ + l)

)

, (47)

pim =
1

l

∫ l

−l

φm(ξ)p((−1)i−1l, ξ)dξ, i = 1, 2. (48)

Remark 1 It is easy to prove that kernels γ1 and γ2 are
convergent as s > 0. As s = 0, take γ1 as an example,

γ1(x, θ, 0, ξ) =
1

L

∞
∑

n=1

∞
∑

m=1

p1mϕn(x)ϕn(θ)φm(ξ)

=p(l, ξ)

∞
∑

n=1

1

L
ϕn(x)ϕn(θ).

It is well known [32] that the Dirac Delta function can
be expressed by δ(x − θ) =

∑

∞

n=1
1
L
ϕn(x)ϕn(θ), which

gives the initial condition (39). Consequently, kernels γ1
and γ2 have singularities at s = 0 and x = θ which are
governed by the Delta function.
Combining the boundary conditions (13), (14) and

(24), (25), substituting s = τ into transformations (30)
and (31), we can get the delay-compensated actuators
as follows:

U1(x, t) =

∫ L

−L

∫ l

−l

γ1(x, θ, τ, ξ)u(θ, ξ, t)dξdθ

+

∫ L

−L

∫ t

t−τ

∂ξγ1(x, θ, t− r, l)U1(θ, r)drdθ

−

∫ L

−L

∫ t

t−τ

∂ξγ1(x, θ, t− r,−l)U2(θ, r)drdθ, (49)

U2(x, t) =

∫ L

−L

∫ l

−l

γ2(x, θ, τ, ξ)u(θ, ξ, t)dξdθ

+

∫ L

−L

∫ t

t−τ

∂ξγ2(x, θ, t− r, l)U1(θ, r)drdθ

−

∫ L

−L

∫ t

t−τ

∂ξγ2(x, θ, t− r,−l)U2(θ, r)drdθ. (50)

It shows that control U1 and U2 are coupled by both
historical inputs as feedback in each controller.

2.3 Inverse transformation

A direct way to show the invertibility of the transfor-
mation (29)-(31) is to derive its inverse. First, define the
inverse transformation as follows,

u(x, y, t) = w(x, y, t) +

∫ y

−y

q(y, ξ)w(x, ξ, t)dξ, (51)

v1(x, s, t) = z1(x, s, t)

+

∫ L

−L

∫ l

−l

η1(x, θ, s, ξ)w(θ, ξ, t)dξdθ

+

∫ L

−L

∫ s

0

∂ξη1(x, θ, s− r, l)z1(θ, r, t)drdθ

−

∫ L

−L

∫ s

0

∂ξη1(x, θ, s− r,−l)z2(θ, r, t)drdθ, (52)

v2(x, s, t) = z2(x, s, t)

+

∫ L

−L

∫ l

−l

η2(x, θ, s, ξ)w(θ, ξ, t)dξdθ

+

∫ L

−L

∫ s

0

∂ξη2(x, θ, s− r, l)z1(θ, r, t)drdθ

−

∫ L

−L

∫ s

0

∂ξη2(x, θ, s− r,−l)z2(θ, r, t)drdθ, (53)

the kernels q, η1, and η2 are expressed as

q(y, ξ) =−
sgn(y)

2

√

λ
y + ξ

y − ξ
J1

(

√

λ(y2 − ξ2)
)

,

(54)

η1(x, θ, s, ξ) =
1

L

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2

)

s

· q1mϕn(x)ϕn(θ)φm(ξ), (55)

η2(x, θ, s, ξ) =−
1

L

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2

)

s

· q2mϕn(x)ϕn(θ)φm(ξ), (56)

where J1(·) is the first-order Bessel function, and qim =
1
l

∫ l

−l
sin
(

mπ
2l (ξ + l)

)

q((−1)i−1l, ξ)dξ, i = 1, 2.
It is worth discussing the difference in control design

between identical delay values and distinct delay values.
In the following remark, we give some hints for control
design when the input delays are different.
Remark 2 Let τ1 and τ2 denote distinct delay values
for boundary control U1 and U2, respectively. Without
loss of generality, assume that τ1 < τ2. The integral
transformations (29) and (30) can be kept unchanged,
but the integral interval and the integrated state of (31)
are modified as follows:

z2(x, s, t) = v2(x, s, t)

4



−

∫ L

−L

∫ l

−l

γ2(x, θ, s, ξ)u(θ, ξ, t)dξdθ

−

∫ L

−L

∫ φ(s)

0

∂ξγ2(x, θ, s − r, l)z1(θ, r, t)drdθ

+

∫ L

−L

∫ s

0

∂ξγ2(x, θ, s− r,−l)v2(θ, r, t)drdθ, (57)

with

φ(s) =

{

s, s ≤ τ1
τ1, τ1 < s

. (58)

Based on the transformation, one can obtain a set of
kernel equations in a similar method. Due to the space
constraints, we omit the details of the control design for
the different input delays.

3 Stability analysis

Theorem 1 For any initial conditions (u0, v10, v20) ∈
L2(D1)×H1(D2)×H1(D2) and the compatible condi-
tions holding

u0(L, y) = 0, u0(−L, y) = 0, (59)

u0(x, l) = v10(x, 0), u0(x,−l) = v20(x, 0), (60)

v10(x, τ) = U1(x, 0), v20(x, τ) = U2(x, 0), (61)

the closed-loop system (6)-(16) with the delay-
compensated actuators (49) and (50) admits a unique
solution that satisfies

‖u(t)‖2L2 + ‖v1(t)‖
2
H1 + ‖v2(t)‖

2
H1

≤α1e
−β1t(‖u0‖

2
L2 + ‖v10‖

2
H1 + ‖v20‖

2
H1), (62)

for constants α1, β1 > 0.
The theorem states that the closed-loop (6)-(16) is ex-
ponentially stable, so is the original system (1)-(5).
Before proving the stability, we first discuss the well-

posedness of PDE (6)-(16) with control (49) and (50).
The target system (17)-(27) is a standard 2-D heat equa-
tion with nonhomogeneous boundary conditions at y = l
and y = −l and the boundary conditions are given by
zi, i = 1, 2 which have been solved explicitly, so (17)-
(27) has a unique solution [33]. Since the transforma-
tions (29), (30) and (31) are invertible and bounded, the
original system (6)-(16) with control (49) and (50) has
a unique solution as well.
The proof of the stability includes two steps. First,

we prove the stability of the target system (17)-(27) by
introducing a change of variable. Second, we show the
norm equivalence between cascade system (u, v1, v2) and
the target system (w, z1, z2). Combining the above two
steps, we finally reach Theorem 1.
Introduce the change of variable as

m(x, y, t) = w(x, y, t)−
y + l

2l
z1(x, 0, t) +

y − l

2l
z2(x, 0, t),

(63)

which transforms the target system (17)-(27) into

mt = mxx +myy +
(y + l)

2l
∂xxz1(x, 0, t)

−
(y − l)

2l
∂xxz2(x, 0, t)−

(y + l)

2l
∂tz1(x, 0, t)

+
(y − l)

2l
∂tz2(x, 0, t), (64)

m(−L, y, t) = m(L, y, t) = 0, (65)

m(x,−l, t) = m(x, l, t) = 0, (66)

m(x, y, 0) = m0(x, y), (67)

∂tz1(x, s, t) = ∂sz1(x, s, t), (68)

∂tz2(x, s, t) = ∂sz2(x, s, t), (69)

z1(x, τ, t) = 0, (70)

z2(x, τ, t) = 0, (71)

z1(x, s, 0) = z10(x, s), (72)

z2(x, s, 0) = z20(x, s). (73)

Proposition 1 For any initial conditions (w0, z10, z20) ∈
L2(D1)×H1(D2)×H1(D2), and the compatible condi-
tions satisfying

w0(L, y) = 0, w0(−L, y) = 0, (74)

w0(x, l) = z10(x, 0), w0(x,−l) = z20(x, 0), (75)

z10(x, τ) = 0, z20(x, τ) = 0, (76)

the system (17)-(27) admits a unique solution and the
equilibrium (w, z1, z2) ≡ 0 is exponentially stable, in
particular, there exist constants α2, β2 > 0, such that

‖w(t)‖2L2 + ‖z1(t)‖
2
H1 + ‖z2(t)‖

2
H1

≤α2e
−β2t(‖w0‖

2
L2 + ‖z10‖

2
H1 + ‖z20‖

2
H1). (77)

Proof First, define a Lyapunov function as

V1(t) =

∫ L

−L

∫ l

−l

m2dydx+

∫ L

−L

∫ τ

0

ebs(z21 + (∂xz1)
2+

(∂sz1)
2)dsdx+

∫ L

−L

∫ τ

0

ebs(z22 + (∂xz2)
2 + (∂sz2)

2)dsdx,

with the constant b > 0.
Then, applying the integration by parts, combining

(64)-(73) and Cauchy-Schwarz inequality, we get

d

dt

∫ L

−L

∫ l

−l

m2dydx ≤ −(2− µ1 − µ2)

∫ L

−L

∫ l

−l

m2
xdydx

− 2

∫ L

−L

∫ l

−l

m2
ydydx+

8l

3µ1

∫ L

−L

(∂xz1(x, 0, t))
2dx

+
8l

3µ2

∫ L

−L

(∂xz2(x, 0, t))
2dx+

8l

3µ3

∫ L

−L

(∂tz1(x, 0, t))
2dx

+
8l

3µ4

∫ L

−L

(∂tz2(x, 0, t))
2dx+ (µ3 + µ4)

∫ L

−L

∫ l

−l

m2dydx,

d

dt

∫ L

−L

∫ τ

0

ebs(z21 + (∂xz1)
2 + (∂sz1)

2)dsdx

+
d

dt

∫ L

−L

∫ τ

0

ebs(z22 + (∂xz2)
2 + (∂sz2)

2)dsdx

= −

∫ L

−L

(z21(x, 0, t) + (∂xz1(x, 0, t))
2 + (∂tz1(x, 0, t))

2)dx

− b

∫ L

−L

∫ τ

0

ebs(z21 + (∂xz1)
2 + (∂tz1)

2)dsdx
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−

∫ L

−L

(z22(x, 0, t) + (∂xz2(x, 0, t))
2 + (∂tz2(x, 0, t))

2)dx

− b

∫ L

−L

∫ τ

0

ebs(z22 + (∂xz2)
2 + (∂tz2)

2)dsdx.

Applying the Poincaré inequality, i.e.,

1

4L2

∫ L

−L

∫ l

−l

m2dydx ≤

∫ L

−L

∫ l

−l

m2
xdydx, (78)

1

4l2

∫ L

−L

∫ l

−l

m2dydx ≤

∫ L

−L

∫ l

−l

m2
ydydx, (79)

we infer that

V̇1(t) ≤ −b

∫ L

−L

∫ τ

0

ebs(z21 + (∂tz1)
2 + (∂xz1)

2)dsdx

− (
2− µ1 − µ2

4L2
+

1

2l2
− µ3 − µ4)

∫ L

−L

∫ l

−l

m2dydx

− b

∫ L

−L

∫ τ

0

ebs(z22 + (∂tz2)
2 + (∂xz2)

2)dsdx

−

(

1−
8l

3µ1

)
∫ L

−L

(∂xz1(x, 0, t))
2dx

−

(

1−
8l

3µ2

)
∫ L

−L

(∂xz2(x, 0, t))
2dx

−

(

1−
8l

3µ3

)
∫ L

−L

(∂tz1(x, 0, t))
2dx

−

(

1−
8l

3µ4

)
∫ L

−L

(∂tz2(x, 0, t))
2dx

−

∫ L

−L

z21(x, 0, t)dx −

∫ L

−L

z22(x, 0, t)dx, (80)

where 2−µ1−µ2

4L2 + 1
2l2 − µ3 − µ4 > 0, 1 − 8l

3µi

> 0, i =

1, 2, 3, 4. Then, there exist constants α3 > 0 and β3 > 0,
such that

V1 ≤ α3e
−β3tV1(0). (81)

To prove the stability of target system (17)-(27), we de-
fine

V2(t) =

∫ L

−L

∫ l

−l

w2dydx+

∫ L

−L

∫ τ

0

(z21 + (∂xz1)
2+

(∂sz1)
2)dsdx+

∫ L

−L

∫ τ

0

(z22 + (∂xz2)
2 + (∂sz2)

2)dsdx.

By a lengthy calculation, one can get that

α4V2 ≤ V1 ≤ β4V2, (82)

where α4 = 1
4 , β4 = 3 + ebτ , which gives the norm

equivalence between V1 and V2. Hence,

V2 ≤ α2e
−β2tV2(0). (83)

This proposition has been proved.
Before proceeding, we present the following definition

of the Fourier series.
Definition 1 According to [30], (P296), it is known
that {ϕn(x)|n ∈ N+} and {φm(y)|m ∈ N+} de-
fined in (46) and (47) are orthogonal eigenfunc-

tions, respectively. For functions h(y) ∈ L2([−l, l]),
f(x, y) ∈ L2(D1), and g(x, s) ∈ L2(D2), it holds [34]

h(y) =
∞
∑

m=1

hmφm(y), (84)

f(x, y) =

∞
∑

n=1

∞
∑

m=1

an,m(f)ϕn(x)φm(y), (85)

g(x, s) =

∞
∑

n=1

gn(s)ϕn(x), (86)

where the Fourier coefficients

hm =
1

l

∫ l

−l

h(ξ)φm(ξ)dξ, (87)

an,m(f) =
1

Ll

∫ L

−L

∫ l

−l

f(θ, ξ)ϕn(θ)φm(ξ)dξdθ, (88)

gn(s) =
1

L

∫ L

−L

g(θ, s)ϕn(θ)dθ. (89)

From the Parseval’s theorem, we know ‖h‖2
L2 =

l
∑

∞

m=1 h
2
m, ‖f‖2L2 = Ll

∑

∞

n=1

∑

∞

m=1 a
2
n,m(f), and

‖g(x, s)‖2
L2 = L

∑

∞

n=1

∫ τ

0
g2n(s)ds.

The following lemmas will be used in the proof of the
norm equivalence between the original system and the
target system.
Lemma 1 For function p(l, ξ), ξ ∈ [−l, l], there ex-
ist positive constants Mi, i = 1, 2, 3, 4, such that
‖p(l, ξ)‖2

L2 ≤ M1, ‖pξ(l, ξ)‖
2
L2 ≤ M2, ‖pξξ(l, ξ)‖

2
L2 ≤

M3, p
2
ξ(l, ξ)|ξ=l = M4.

One can use Parseval’s theorem and Fourier series to
prove lemma 1. Here the proof is omitted and we refer
the reader to [5].
Lemma 2 For variables (x, θ, s, ξ) ∈ Γ2, and functions
f ∈ L2(D1) and g ∈ L2(D2), there exist positive con-
stants Ai, Bi, i = 1, 2, such that
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

γi(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Ai‖f‖
2
L2, (90)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξγi(x, θ, s− r,±l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Bi‖g‖
2
L2. (91)

Proof According to Definition 1, we know that p1m de-
fined in (48) is the Fourier coefficient of p(l, ξ), i.e.,

p(l, ξ) =

∞
∑

m=1

p1mφm(ξ). (92)

As i = 1, applying the Cauchy-Schwarz inequality, then
combining (44), and Lemma 1, it gets

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

γ1(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx
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≤e2λτ l2
∫ L

−L

∫ τ

0

∞
∑

m=1

e
−m

2
π
2
s

2l2 p21m

∞
∑

m=1

(

∞
∑

n=1

e
−n

2
π
2
s

4L2

·ϕn(x)an,m(f))
2
dsdx

≤e2λτ l2L

∫ τ

0

∞
∑

m=1

p21m

∞
∑

m=1

∞
∑

n=1

a2n,m(f)ds

≤τe2λτ‖p(l, ξ)‖2L2‖f‖2L2 = A1‖f‖
2
L2.

Employing a similar approach, one can get the same
result as i = 2 for inequality (90).
Before proceeding, based on (92), the Parseval’s theo-

rem, and the definition of φm(ξ) which is shown in (47),
we can get

pξ(l, ξ) =

∞
∑

m=1

p1mφ′

m(ξ), ‖pξ(l, ξ)‖
2
L2 = l

∞
∑

m=1

m2π2

4l2
p21m.

For the inequality (91), since the proof process of four
different cases of inequality (91) is similar, we just show
the case as the kernel is ∂ξγ1(x, θ, s− r, l).
Based on (44), using the Cauchy-Schwarz inequality,

Definition 1 and Lemma 1, one gets
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξγ1(x, θ, s− r, l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

≤e2λτ
∫ τ

0

∫ s

0

∞
∑

m=1

e
−m

2
π
2(s−r)

2l2

∞
∑

m=1

m2π2

4l2
p21mdr

·

∫ L

−L

∫ s

0

(

∞
∑

n=1

e
−n

2
π
2(s−r)

2L2 ϕn(x)
1

L

∫ L

−L

ϕn(θ)

·g(θ, r)dθ)
2
drdxds

≤e2λτ
L

l
‖pξ(l, ξ)‖

2
L2

∞
∑

m=1

2l2

m2π2

∫ τ

0

∫ s

0

∞
∑

n=1

e
−n

2
π
2(s−r)

L2

· g2n(s)drds

≤e2λτLM2

∞
∑

m=1

2l

m2π2

∫ τ

0

∫ τ

0

∞
∑

n=1

g2n(r)drds

≤e2λτ τM2

∞
∑

m=1

2l

m2π2
‖g‖2L2 ≤ B1‖g‖

2
L2.

The inequality (91) gets proven, and the proof of this
lemma is completed.
Remark 3 Lemma 2 implies that the backstepping
transformations (30) and (31) are bounded, despite
there being singularities in the kernel functions.
To prove the norm equivalence between the input
vi(x, s, t), i = 1, 2 and zi(x, s, t), i = 1, 2, we propose
the following two lemmas.
Lemma 3 For variables (x, θ, s, ξ) ∈ Γ2 and function
f(x, y) ∈ L2(D1), g(x, s) ∈ L2(D2), there exist positive
constants Cij , Dij , i = 1, 2, j = 1, 2, such that
∫ L

−L

∫ τ

0

(

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(nπ)2

4L2

γi(x, θ, s, ξ)f(θ, ξ)dξdθ)
2
dsdx ≤ C1i‖fx‖

2
L2 , (93)

∫ L

−L

∫ τ

0

(

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(mπ)2

4l2

γi(x, θ, s, ξ)f(θ, ξ)dξdθ)
2
dsdx ≤ C2i‖fy‖

2
L2 , (94)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ s

0

(nπ)2

4L2
(95)

· ∂ξγi(x, θ, s − r,±l)g(θ, r)drdθ|
2
dsdx ≤ D1i‖gx‖

2
L2,

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ s

0

(mπ)2

4l2
(96)

· ∂ξγi(x, θ, s − r,±l)g(θ, r)drdθ|
2
dsdx ≤ D2i‖g‖

2
L2.

The proof of this lemma is shown in Appendix A.
Lemma 4 For any variables (x, θ, s, ξ) ∈ Γ2, and any
functions f ∈ L2(D1), g ∈ L2(D2), there exist positive
constants Ei, Fi, Gi, Hi, Ki, i = 1, 2, such that
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

∂sγi(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Ei(‖f‖
2
L2 + ‖fx‖

2
L2 + ‖fy‖

2
L2), (97)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξsγi(x, θ, s− r,±l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Fi(‖g‖
2
L2 + ‖gx‖

2
L2), (98)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∂ξγi(x, θ, 0,±l)g(θ, s)dθ

∣

∣

∣

∣

∣

2

dsdx

≤ Gi‖g‖
2
L2, (99)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

∂xγi(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Hi‖fx‖
2
L2, (100)

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξxγi(x, θ, s− r,±l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

≤ Ki‖gx‖
2
L2 . (101)

Proof For all inequalities, we just prove the case of i = 1
(ξ = l if it is in the inequality), the other cases can be
proved in the same way.
First, for the inequality (97), using (44), the funda-

mental inequality, (90) in Lemma 2 and (93), (94) in
Lemma 3, it gets
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

∂sγ1(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

≤3λ2

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

γ1(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

+ 3

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(nπ)2

4L2
γ1(x, θ, s, ξ)

· f(θ, ξ)dξdθ|
2
dsdx
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+ 3

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(mπ)2

4l2
γ1(x, θ, s, ξ)

· f(θ, ξ)dξdθ|
2
dsdx

≤ 3(λ2A1‖f‖
2
L2 + C11‖fx‖

2
L2 + C21‖fy‖

2
L2).

For the next inequality, employing (44), the funda-
mental inequality, (91) in Lemma 2 and (95), (96) in
Lemma 3, one gets
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξsγ1(x, θ, s− r, l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

≤ 3λ2

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξγ1(x, θ, s− r, l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

+ 3

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ s

0

(mπ)2

4l2
∂ξγ1(x, θ, s− r, l)

· g(θ, r)drdθ|
2
dsdx

≤ 3(λ2B1‖g‖
2
L2 +D11‖gx‖

2
L2 +D21‖g‖

2
L2).

For inequality (99), applying (44), the Cauchy-
Schwarz inequality, (39) and Lemma 1, one can infer
that

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∂ξγ1(x, θ, 0, l)g(θ, s)dθ

∣

∣

∣

∣

∣

2

dsdx

=p2ξ(l, ξ)|ξ=l

∫ L

−L

∫ τ

0

(

∞
∑

n=1

gn(s)ϕn(x)

)2

dsdx

=p2ξ(l, ξ)|ξ=l‖g‖
2
L2 ≤ M4‖g‖

2
L2 = G1‖g‖

2
L2.

Combining inequality (93), the equation
∫ L

−L
(ϕ′(x))2dx =

n2π2

4L2

∫ L

−L
ϕ2
n(x)dx = n2π2

4L2 L, and through the proof
process similar to the proof of Lemma 3, one gets
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ l

−l

∂xγ1(x, θ, s, ξ)f(θ, ξ)dξdθ

∣

∣

∣

∣

∣

2

dsdx

≤e2λτ l2
∫ L

−L

∫ τ

0

∞
∑

m=1

e
−m

2
π
2
s

2l2 p21m

∞
∑

m=1

(

∞
∑

n=1

e
−n

2
π
2
s

4L2

·ϕ′

n(x)an,m(f))
2
dsdx

≤e2λτ l2L

∫ τ

0

∞
∑

m=1

p21m

∞
∑

m=1

∞
∑

n=1

e
−n

2
π
2
s

2L2
n2π2

4L2
a2n,m(f)ds

≤H1‖fx‖
2
L2 .

For the inequality (101), applying (105) in Appendix A
and the approach similar to the proof of the inequality
(95), we can get

∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∫ L

−L

∫ s

0

∂ξxγ1(x, θ, s− r, l)g(θ, r)drdθ

∣

∣

∣

∣

∣

2

dsdx

=

∫ L

−L

∫ τ

0

(

∫ L

−L

∫ s

0

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2
+λ

)

(s−r)

· (−1)m
mπ

2l
p1m

1

L
ϕ′

n(x)ϕn(θ) g(θ, r)drdθ)
2
dsdx

=

∫ L

−L

∫ τ

0

(

∫ L

−L

∫ s

0

∞
∑

n=1

∞
∑

m=1

e

(

−
(nπ)2

4L2 −
(mπ)2

4l2
+λ

)

(s−r)

· (−1)m
mπ

2l
p1m

1

L

nπ

2L
ϕn(x)ϕn(θ) g(θ, r)drdθ)

2
dsdx

≤L

∫ τ

0

∞
∑

m=1

m2π2

4l2
p21m

∞
∑

m=1

∫ s

0

e
2(−m

2
π
2

4l2
+λ)(s−r)

·

∞
∑

n=1

∫ s

0

n2π2

4L2
g2n(r)dr

)2

ds

≤τe2λτ
L

l
‖pξ(l, ξ)‖

2
L2

∞
∑

m=1

2l2

m2π2

∞
∑

n=1

∫ τ

0

n2π2

4L2
g2n(r)dr

≤K1‖gx‖
2
L2.

This inequality gets proven.
So far, we have proved this lemma.
The following proposition states that the original sys-

tem (6)-(16) and the target system (17)-(27) are equiv-
alent in the sense of norm.
Proposition 2 There exist positive constants α5 and
β5, such that

α5(‖u‖
2
L2 + ‖v1‖

2
H1 + ‖v2‖

2
H1)

≤‖w‖2L2 + ‖z1‖
2
H1 + ‖z2‖

2
H1

≤β5(‖u‖
2
L2 + ‖v1‖

2
H1 + ‖v2‖

2
H1). (102)

According to the transformations (29)-(31), utilizing
fundamental inequality, Cauchy-Schwarz inequality,
and Lemma 1, 2, 4, we can prove this lemma. Here is
omitted.

4 Simulation

In this section, we provide an example to illustrate
the effectiveness of the proposed delay-compensated bi-
lateral control for the PDE system. In the numerical ex-
ample, the domain is defined as D1 = [−1, 1]× [−1, 1],
and choose time delay τ = 1s, initial condition u0 =
2(sin(πx) + 1)(cos(πy) + 1). We apply the finite differ-
ence method by discretizing the domain by step sizes
∆x = 0.02, ∆y = 0.02, ∆s = 0.01 and ∆t = 0.01.
The dynamics for both compensated and uncom-

pensated cases with λ = 7 are shown in Figure 1,
respectively. To observe the effectiveness of the delay-
compensated control actuators, the variation of norm
under three different parameters is demonstrated. The
norm of state diverges in the case without delay com-
pensated control in Figure 2 (a). Figure 2 (b) illustrates
the convergence rate of the state with delay compensa-
tion. The dynamics and norm of U1(x, t) are shown in
Figure 3 when λ = 7.

5 Conclusion

This paper presents bilateral actuators for reaction-
diffusion with arbitrarily large input delay in a rectangu-
lar domain. To design the bilateral delay-compensated
actuators, we propose a novel set of backstepping trans-
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(a) (b) (c) (d)

Fig. 1. The dynamics of the state with λ = 7. (a) u(x,−0.5, t) without delay compensation. (b) u(0.5, y, t) without delay
compensation. (c) u(x,−0.5, t) with delay compensation. (d) u(0.5, y, t) with delay compensation.
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Fig. 2. The norm ||u(x, y, t)||L2 . (a) Without delay compen-
sation. (b) With delay compensation.
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Fig. 3. The actuator U1(·, t) with λ = 7. (a) Dynamics. (b)
‖U1(·, t)‖L2 .

formations, which results in the kernel functions being
expressed by double trigonometric series with singular-
ities. The main difficulty is to prove the norm equiva-
lence in the sense ofH1 norm between the target system
and the cascade system based on the kernel functions
containing singularities in the rectangular domain. To
overcome this difficulty, the Cauchy-Schwarz inequality,
the 2-D Fourier series, and the Parseval’s theorem are
applied in the proving. Another difficulty is to prove the
exponential stability of the target which demands de-
signing a change of variables for target system. Finally,
we apply the Lyapunov function to prove the exponen-
tial stability of the closed-loop system. Future research
will consider control design problems with non-constant
input delays, such as delays varying with spatial param-
eters or varying with time.
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[16] H. Lhachemi, C. Prieur, E. Trélat, PI regulation of a reaction–
diffusion equation with delayed boundary control, IEEE
Transactions on Automatic Control 66 (4) (2021) 1573–1587.

[17] I. Karafyllis, Stabilization by means of approximate
predictors for systems with delayed input, SIAM Journal on
Control and Optimization 49 (3) (2011) 1100–1123.

[18] A. Selivanov, E. Fridman, Boundary observers for a reaction–
diffusion system under time-delayed and sampled-data
measurements, IEEE Transactions on Automatic Control
64 (8) (2019) 3385–3390.

[19] R. Katz, E. Fridman, Delayed finite-dimensional observer-
based control of 1-D parabolic PDEs, Automatica 123 (2021)
109364.

[20] R. Vazquez, M. Krstic, Bilateral boundary control of one-
dimensional first-and second-order PDEs using infinite-
dimensional backstepping, in: 2016 IEEE 55th Conference on
Decision and Control (CDC), IEEE, 2016, pp. 537–542.

[21] X. Liu, C. Xie, Boundary control of reaction–diffusion
equations on higher-dimensional symmetric domains,
Automatica 114 (2020) 108832.

[22] S. Chen, R. Vazquez, M. Krstic, Folding bilateral
backstepping output-feedback control design for an unstable
parabolic PDE, IEEE Transactions on Automatic Control
67 (5) (2022) 2389–2404.

[23] N. Bekiaris-Liberis, R. Vazquez, Nonlinear bilateral output-
feedback control for a class of viscous Hamilton–Jacobi PDEs,
Automatica 101 (2019) 223–231.

[24] H. Yu, L. Zhang, M. Diagne, M. Krstic, Bilateral boundary
control of moving traffic shockwave, IFAC-PapersOnLine
52 (16) (2019) 48–53.

[25] J. Wang, J. Liu, Bilateral coordination quantisation control
for master-slave flexible manipulators based on PDE dynamic
model, International Journal of Control 95 (8) (2022) 2279–
2292.

[26] B. Mavkov, E. Witrant, C. Prieur, E. Maljaars, F. Felici,
O. Sauter, et al., Experimental validation of a Lyapunov-
based controller for the plasma safety factor and plasma
pressure in the TCV tokamak, Nuclear Fusion 58 (5) (2018)
056011.

[27] S. Lipár, P. Noga, G. Hulkó, Extruder barrel temperature
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Appendix A The proof of Lemma 3

Proof Combining (44) and Definition 1, it infers that
∫ L

−L

∫ τ

0

(

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(nπ)2

4L2
γ1(x, θ, s, ξ)

· f(θ, ξ)dξdθ)
2
dsdx

≤e2λτ
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ l

−l

(nπ)2

4L2
e
−

(nπ)2s

4L2

· e
−(mπ)2s

4l2
1

L
p1mϕn(x) ϕn(θ)φm(ξ)f(θ, ξ)dξdθ|

2
dsdx

≤e2λτ l2
∫ L

−L

∫ τ

0

∞
∑

m=1

e
−

(mπ)2s

2l2 p21m

∞
∑

m=1

(

∞
∑

n=1

nπ

2L
e
−

(nπ)2s

4L2

· ϕn(x)
nπ

2L
an,m(f)

)2

dsdx

≤e2λτM1lL

∞
∑

m=1

∞
∑

n=1

n2π2

4L2

∫ τ

0

e−
(nπ)2s

2L2
n2π2

4L2
a2n,m(f)ds

≤e2λτM1lL

∞
∑

m=1

∞
∑

n=1

n2π2

4L2
a2n,m(f) ≤ C1‖fx‖

2
L2.

By a similar process, we can prove the inequality (94).
For (95), according to the Fourier series of g(x, s) and

p(l, ξ) defined in (86) and (92), we can get

gx(x, s) =

∞
∑

n=1

gn(s)ϕ
′

n(x), (103)

pξξ(l, ξ) = −

∞
∑

m=1

m2π2

4l2
p1mφm(x), (104)

then, combining the Parseval’s theorem, it gets

‖gx(x, s)‖
2
L2 = L

∞
∑

n=1

(nπ)2

4L2

∫ τ

0

g2n(s)ds, (105)

‖pξξ(l, ξ)‖
2
L2 = l

∞
∑

m=1

m4π4

16l4
p21m. (106)

Finally, utilizing the Cauchy-Schwarz inequality, Lemma
1, (105) and (106), we can infer that
∫ L

−L

∫ τ

0

∣

∣

∣

∣

∣

∞
∑

n=1

∞
∑

m=1

∫ L

−L

∫ s

0

n2π2

4L2

· ∂ξγ1(x, θ, s− r, l)g(θ, r)drdθ|
2
dsdx

≤

∫ L

−L

∫ τ

0

∞
∑

m=1

m4π4

16l4
p21m

∞
∑

m=1

4l2

m2π2

(

∞
∑

n=1

∫ s

0

n2π2

4L2
ϕn(x)

· e(
−m

2
π
2

4l2
+−n

2
π
2

4L2 +λ)(s−r)gn(r)dr

)2

dsdx
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≤e2λτLl

∞
∑

m=1

m4π4

16l4
p21m

∞
∑

m=1

4l

m2π2

∫ τ

0

∞
∑

n=1

∫ s

0

(nπ

2L
gn(r)

)2

dr

·

∫ s

0

n2π2

4L2
e−

n
2
π
2

2L2 (s−r)drds

≤e2λτLτ‖pξξ(l, ξ)‖
2
L2

∞
∑

n=1

∫ τ

0

(nπ

2L
gn(r)

)2

dr

≤e2λτ τM3‖gx‖
2
L2 .

This inequality gets proved. By a similar approach, we
can prove (96).
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