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Abstract

This article concerns the attraction domain analysis for steady states in Markovian open quantum systems, which are math-
ematically described by Lindblad master equations. The central question is proposed as: given a steady state, which part of
the state space of density operators does it attract and which part does it not attract? We answer this question by present-
ing necessary and sufficient conditions that determine, for any steady state and initial state, whether the latter belongs to
the attraction domain of the former. Furthermore, it is found that the attraction domain of a steady state is the intersection
between the set of density operators and an affine space which contains that steady state. Moreover, we show that steady
states without uniqueness in the set of density operators have attraction domains with measure zero under some translation
invariant and locally finite measures. Finally, an example regarding an open Heisenberg XXZ spin chain is presented. We pick
two of the system’s steady states with different magnetization profiles and analyse their attraction domains.

Key words: open quantum systems; Lindblad master equations; steady state; attraction domain.

1 Introduction

Open quantum systems underpin the study of dissipative
quantum information processing [Leghtas et al., 2015],
where engineered interactions between the system and
its environment facilitate various tasks including quan-
tum metrology [Zhang and Gong, 2020], state stabiliza-
tion [Ma et al., 2019,Kraus et al., 2008,Kimchi-Schwartz
et al., 2016] and autonomous error correction [F. Reiter
and Muschik, 2017, Pan and Nguyen, 2017]. It is thus
of both theoretical and practical significance to analyse
the dynamical properties of these systems.

Under the Markov assumption, open quantum systems
are mathematically described by Lindblad master equa-
tions [Breuer and Petruccione, 2001] which induce com-
pletely positive and trace preserving dynamics on the set
of density matrices. In terms of Lindblad master equa-
tions, it has been shown in [Schirmer and Wang, 2010]
that the uniqueness of a steady state is equivalent to its

⋆ This paper was not presented at any IFAC meeting. Cor-
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Zhang), guofeng.zhang@polyu.edu.hk (Guofeng Zhang).

global attractivity, i.e., all system trajectories with ini-
tial states as density matrices converge to this state fol-
lowing Lindblad evolution. This important theoretical
result lays the foundation for tasks related to quantum
state stabilization [Kraus et al., 2008,Ticozzi and Viola,
2009,Sauer et al., 2014].

However, if more than one steady states are present in
an open quantum system, then apparently none of them
are globally attractive. It is then natural to further in-
vestigate what kind of initial states will be attracted to
them and what will not, i.e., to characterize their do-
main of attraction. We believe that the understanding of
such locally attractive dynamics may expand our knowl-
edge on many-body quantum systems and potentially
breed new mechanisms of dissipative quantum informa-
tion processing.

Characterization of attraction domains has been a topic
of intensive research in classical control theory. Since ex-
act solutions are unattainable in many cases, Lyapunov
techniques are often adopted to estimate the domain
of attraction [Tang and Daoutidis, 2019, Zarei et al.,
2018, Bobiti and Lazar, 2018]. Such methods yield in-
herently sufficient conditions on whether a given state
belongs to the attractive region and thus result in find-
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ing subsets of exact attraction domains. In this article,
however, we seek to pin down the attraction domains of
steady states in open quantum systems in their entirety.
To achieve this, a necessary and sufficient condition is
presented to verify whether a given initial density ma-
trix is contained in the attraction domain of a given sta-
tionary state. Apart from pointwise verification, we also
characterize the global structure of attraction domains.

Attraction domains of steady states without uniqueness
are clearly proper subsets of the entire state space. Then
we ask: how much “room” in the latter does the former
occupy? Measure theory is a suitable tool for answering
this question. We prove that the attraction domains of
nonunique steady states have measure zero under some
translation invariant and locally finite measures, while
there exists such a measure under which the entire state
space has a positive finite measure. This sheds light on
the “almost impossibility” of stabilizing certain quan-
tum states with Lindblad dynamics when nonlocal re-
sources are not adequate to make them globally attrac-
tive.

2 Preliminaries

Let H be a finite dimensional Hilbert space isomorphic
to CN , and B(H) be the set of linear operators on H.
Following Dirac’s notation in quantum mechanics, the
orthonormal basis of H is written as {|ϵi⟩}Ni=1. The set
of density operators D(H) ⊂ B(H) includes all positive
semidefinite, trace-one operators on H, which consti-
tutes the entire state space for finite dimensional open
quantum systems. Let ρ ∈ D(H) denote a quantum
state. Its evolution according to Lindblad master equa-
tion is expressed as:

ρ̇ = −i[H, ρ] +

M∑
k=1

(LkρL
†
k − 1

2
L†
kLkρ−

1

2
ρL†

kLk), (1)

where Hermitian operator H ∈ B(H) stands for sys-
tem Hamiltonian, and Lk ∈ B(H), k = 1, 2, ...,M rep-
resent coupling operators between the system and its
environment. Eq. (1) can be concisely expressed in su-
peroperator form: ρ̇ = L[H;L1,...,LM ](ρ), where super-
operator L[H;L1,...,LM ] is a linear operator from B(H)
to B(H). ∀A1, A2 ∈ B(H), their inner product is de-

fined as ⟨A1, A2⟩ ≜ tr(A†
1A2). Consequently, the norm of

∀σ ∈ B(H) is defined as ∥σ∥ ≜
√
⟨σ, σ⟩. Let the adjoint

of superoperators be understood with respect to such in-

ner product. Then, the superoperator L†
[H;L1,...,LM ] sat-

isfies:

L†
[H;L1,...,LM ]

(
·
)

= i[H, ·] +
M∑
k=1

L†
k(·)Lk − 1

2
L†
kLk(·)−

1

2
(·)L†

kLk.
(2)

We now give the definition of steady states.

Definition 1. ρss ∈ D(H) is a steady state of system (1)
if L[H;L1,...,LM ](ρss) = 0.

A steady state ρss induces a bipartition of D(H). Choos-
ing any ρ0 ∈ D(H) as the initial state, its time evolved
state eL[H;L1,...,LM ]tρ0 either converges to ρss in the long
time limit or it does not. This is formalised by the fol-
lowing definition of attraction domains.

Definition 2. The attraction domain of steady state
ρss ∈ D(H) w.r.t. system dynamics (1), denoted by
DoA[ρss], is defined as:

DoA[ρss] = {ρ ∈ D(H)| lim
t→+∞

eL[H;L1,...,LM ]tρ = ρss}.
(3)

It is clear from this definition that the attraction domain
of any steady state is nonempty, for it includes the steady
state itself at least.

For a steady state ρss, it has been shown in [Schirmer
and Wang, 2010] that DoA[ρss] = D(H) if and only if
there are no other steady states in D(H). That is, the
uniqueness of ρss

(
in D(H)

)
is equivalent to its global

attractivity
(
in D(H)

)
.

However, if there is another steady state ρ′ss ∈ D(H),
then ρss is not globally attractive since at least ρ′ss does
not belong to DoA[ρss] according to Definition 1. More-
over, any convex combination of ρss and ρ′ss is also a
steady state. As a matter of fact, all steady states of
Lindblad master equations in D(H) form convex sets,
which may contain an uncountably infinite number of
elements. In light of this, the exact characterization of
attraction domains of an arbitrary steady state is a non-
trivial task.

It is worthwhile comparing Lindblad master equations
with Markov chains. A continuous-time homogeneous
Markov chain with finite state spaces must always admit
stationary distributions. This is in analogy with the fact
that finite-dimensional Lindblad master equations must
always admit steady states. An irreducible continuous-
time homogeneous Markov chain must admit a unique
stationary distribution which attracts all initial distri-
butions [Norris, 1997]. Irreducibility of Markov chains
means that all states are accessible from one another.
Consider a generalization to quantum systems, where
classical state i corresponds to quantum state |i⟩⟨i|. Ir-
reducibility for quantum systems can be defined as: for
any initial state |i⟩⟨i|, and any state |j⟩⟨j|, there exists a
finite time at which the time-evolved state has a nonzero
overlap with |j⟩⟨j| (The overlap between two quantum
states ρ and σ means tr(ρσ) [Cincio et al., 2018]. In the
case where ρ = |i⟩⟨i| and σ = |j⟩⟨j| are pure quan-
tum states, the overlap between ρ and σ is expressed as:
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tr(ρσ) = |⟨i|j⟩|2.), which can be achieved by designing
suitable Hamiltonian(s) and coupling operator(s). How-
ever, it is possible that the resulting Lindblad master
equation admits more than one steady states, in which
case the attraction domain of each steady state can be
described by the results in our paper.

3 Main Results

In this section, we answer the central question of this
article: if system (1) does not admit a unique steady
state inD(H), then which part ofD(H) does each steady
state attract?

Mathematically, depicting the attraction domain of a
steady state ρss is equivalent to proposing a necessary
and sufficient condition that is able to verify whether
any given state in D(H) belongs to DoA[ρss] or not. We
thus present such a condition as one of the theoretical
results of this article.

Theorem 1 Let {ωk}Jk=1 be a complete set of eigen-

operator(s) of L†
[H;L1,...,LM ] corresponding to eigen-

value(s) with zero real part(s). Let ρss be an arbitrary
steady state of system (1). Then, for ρ0 ∈ D(H),

ρ0 ∈ DoA[ρss] if and only if tr(ω†
l ρ0) = tr(ω†

l ρss),
1 ≤ l ≤ J .

PROOF. Let us denote the eigen-operator(s) of

L†
[H;L1,...,LM ] (2) with zero eigenvalue(s) by ω1, ..., ωJ0

and that with purely imaginary but nonzero eigenval-
ues, should they exist, by ωJ0+1, ..., ωJ .

Superoperator L[H;L1,...,LM ] admits no eigenvalues with
positive real parts and no generalized eigen-operators
corresponding to eigenvalues with zero real parts (oth-
erwise leading to unbounded state trajectory), and the

same goes for L†
[H;L1,...,LM ]. Therefore, there exist gen-

eralized eigen-operators of L†
[H;L1,...,LM ], denoted as

ωJ+1, ..., ωN2 , such that ω1, ..., ωN2 form a complete
basis of B(H).

Meanwhile, there exist σ1, ..., σN2 ∈ B(H), where

{σk}J0

k=1 corresponds to eigen-operator(s) ofL[H;L1,...,LM ]

with eigenvalue 0, and {σk}Jk=J0+1 corresponds to
eigen-operators of L[H;L1,...,LM ] with purely imaginary

but nonzero eigenvalues, and {σk}N
2

k=J+1 corresponds
to eigen-operators and generalized eigen-operators of
L[H;L1,...,LM ] associated with eigenvalues on the open
left complex plane. The operators σ1, ..., σN2 consti-
tute a complete basis of B(H) and satisfy the following
relations:

tr(ω†
jσj) = δij , 1 ≤ i, j ≤ N2. (4)

As a result, any ρ0 ∈ D(H) admits the following expan-
sion:

ρ0 =

N2∑
j=1

tr(ω†
jρ0)σj . (5)

In terms of steady state ρss, since L[H;L1,...,LM ](ρss) = 0,
it must hold that

tr(ω†
i ρss) = 0, J0 + 1 ≤ i ≤ N2. (6)

Next, we further endow {σi}N
2

i=J+1 and {ωi}N
2

i=J+1with
the following order:

σλ1
1 , ..., σλ1

n1
; · · · ;σλm

1 , ..., σλm
nm

ωλ̄1
1 , ..., ωλ̄1

n1
; · · · ;ωλ̄m

1 , ..., ωλ̄m
nm

,
(7)

where σ
λj

1 and ω
λ̄j

1 , 1 ≤ j ≤ m, are eigen-operators of

L[H;L1,...,LM ] and L†
[H;L1,...,LM ] with eigenvalues λj and

λ̄j , respectively; σ
λj

i and ω
λ̄j

i ,1 < i ≤ nj , 1 ≤ j ≤
m are generalized eigen-operators of L[H;L1,...,LM ] and

L†
[H;L1,...,LM ] corresponding to eigenvalues λj and λ̄j ,

respectively. Also,
∑m

k=1 = N2 − J .

Based on (5) and (7), the state trajectory starting from
ρ0 with t ≥ 0 is expressed as:

eL[H;L1,...,LM ]tρ0

=

J0∑
i=1

tr(ω†
i ρ0)σi +

J∑
i=J0+1

eiβittr(ω†
i ρ0)σi

+

m∑
k=1

[
(x1,λk

ρ0
+x2,λk

ρ0
t+

1

2!
x3,λk
ρ0

t2+· · ·+ 1

(nk−1)!
xnk,λk
ρ0

tnk−1)σλk
1

+ (x2,λk
ρ0

+ x3,λk
ρ0

t+ · · ·+ 1

(nk − 2)!
xnk,λk
ρ0

tnk−2)σλk
2

+ · · ·

+ (xnk,λk
ρ0

)σλk
nk

]
eλkt,

(8)
where

L[H;L1,...,LM ]σi = iβiσi, βi ∈ R, J0+1 ≤ i ≤ J, (9)

and for 1 ≤ j ≤ nk, 1 ≤ k ≤ m,

xj,λk
ρ0

= tr
(
(ωλ̄k

j )†ρ0
)
. (10)

Suppose that ρ0 ∈ DoA[ρss]. Since Re(λk) < 0, 1 ≤ k ≤
m, it should hold that

tr(ω†
i ρss) = tr(ω†

i ρ0) = 0, J0 + 1 ≤ i ≤ J.

3



Otherwise, eL[H;L1,...,LM ]tρ0 does not have a limit as t
tends to infinity. It thus follows that

lim
t→+∞

eL[H;L1,...,LM ]tρ0 =

J0∑
i=1

tr(ω†
i ρ0)σi = ρss.

The linear independence of σ1, ..., σJ0 indicates that

tr(ω†
i ρss) = tr(ω†

i ρ0) = 0, 1 ≤ i ≤ J0.

Necessity is thus proved.

Next, suppose that

tr(ω†
i ρss) = tr(ω†

i ρ0) = 0, 1 ≤ i ≤ J.

It is clear from (6) and (8) that

lim
t→+∞

eL[H;L1,...,LM ]tρ0 = ρss,

which completes the proof of sufficiency. □

We then present a physical interpretation of Theorem 1.
In fact, based on Theorem 1, it is even possible to show
that ρ0 ∈ ρss if and only if there exists a linearly inde-
pendent set, denoted as {ω̃k}Jk=1, of Hermitian opera-
tor(s), such that tr(ω̃kρ0) = tr(ω̃kρss), 1 ≤ k ≤ J . The
proof is omitted for the sake of brevity. On one hand,
the operator(s) in {ω̃k}Jk=1 are Hermitian, and are thus
viewed as “observables” in quantum mechanics. On the
other hand, it is clear that each observable in {ω̃k}Jk=1

belongs to the sum of eigenspace(s) of L†
[H;L1,...,LM ] cor-

responding to eigenvalue(s) with zero real part(s).

We note that the adjoint equation of (1):

Ẋ = L†
[H;L1,...,LM ](X), (11)

describes the evolution of observables in the Heisen-
berg picture. Therefore, the Heisenberg evolution of ω̃k0

,
k0 ∈ {1, ..., J}, either remains constant (in this case, ω̃k0

is called a “conserved quantity” in [Albert and Jiang,
2014]) or oscillates, both displaying a non-decaying pat-
tern in the long time limit. The J non-decaying ob-
servable(s) pin down an “identification vector” for each
ρ ∈ D(H), which contains the expectation value(s) of the
observables under state ρ. Theorem 1 and Proposition 1
indicate that the attraction domain of a steady state ρss
is formed by the density operator(s) equipped with the
same “identification vector” as that equipped by ρss.

We then present another result based on Theorem 1,
which captures the global structure of attraction do-
mains.

Proposition 1 Consider σ1, ..., σN2 ∈ B(H), where
{σk}Jk=1 corresponds to eigen-operator(s) ofL[H;L1,...,LM ]

with eigenvalue(s) admitting zero real part(s), and

{σk}N
2

k=J+1 corresponds to eigen-operator(s) and gener-
alized eigen-operator(s) of L[H;L1,...,LM ] associated with
eigenvalues admitting negative real parts. Let ρss be a
density operator which satisfies L[H;L1,...,LM ](ρss) = 0.
Denote the following set:

{σ ∈ B(H)|σ = ρss+

N2∑
k=J+1

gkσk, gk ∈ C, J+1 ≤ k ≤ N2}

(12)
as Aρss

, which is an affine space over the subspace of
B(H) spanned by σJ+1, ..., σN2 . Then,

DoA[ρss] = Aρss
∩ D(H). (13)

PROOF. We first prove that DoA[ρss] ⊂ Aρss
∩D(H).

It suffices to prove that ∀ρ0 ∈ DoA[ρss], ρ0 ∈ Aρss
.

Let {ηj}N
2

j=1 be a complete set of eigen-operators and

generalized eigen-operators of L†
[H;L1,...,LM ] satisfy-

ing tr(η†iσj) = δij , 1 ≤ i, j ≤ N2. An arbitrary
ρ0 ∈ DoA[ρss] can be expanded as:

ρ0 =

J∑
j=1

tr(η†jρ0)σj +

N2∑
j=J+1

tr(η†jρ0)σj . (14)

Since ρ0 ∈ DoA[ρss], according to Theorem 1, tr(η†jρ0) =

tr(η†jρss), 1 ≤ j ≤ J . Moreover, because

ρss =

J∑
j=1

tr(η†jρss)σj ,

we have

ρ0 = ρss +

N2∑
j=J+1

tr(η†jρ0)σj . (15)

which implies that ρ0 ∈ Aρss .

Then, it shall be proved that Aρss
∩ D(H) ⊂ DoA[ρss].

∀ρ0 ∈ Aρss ∩ D(H), we have

ρ0 = ρss +

N2∑
j=J+1

gjρ0
σj , g

j
ρ0

∈ C, J + 1 ≤ j ≤ N2. (16)

Following (8), it holds that

lim
t→+∞

eL[H;L1,...,LM ]t(

N2∑
j=J+1

gjρ0
σj) = 0. (17)
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Because ρss is a steady state, we have limt→+∞ eLtρ0 =
ρss, which says that ρ0 ∈ DoA[ρss]. □

If a steady state of system (1) is not unique in D(H),
its attraction domain is a strict subset of D(H). Then,
how much “volume” does this attraction domain occupy
in the set of all density operators? We show that the
answer is 0 under certain measures in this section. Also
presented is an implication in the context of quantum
state stabilization.

Before presenting the main results of this section, we
make a few notations and definitions. Let us denote the
set of Hermitian and trace-one operators in B(H) as
D1(H). A subset S of D1(H) is defined as an open set
of D1(H) if ∀x ∈ S, there exists ϵ > 0, such that any
y ∈ D1(H) which satisfies ∥x− y∥ < ϵ belongs to S. Let
us denote the set of all open sets of D1(H) as T . Also, let
us denote the set of steady states of system (1) as Ξss.

We are now in the position to present the following re-
sult.

Theorem 2 Suppose that system (1) admits non-
unique steady states. For any measure space of the
form (D1(H),Σ,M), with T ⊆ Σ, M being translation
invariant on D1(H) and locally finite with respect to
(D1(H), T ), and DoA[ρss] being measurable ∀ρss ∈ Ξss,
it must hold that M(DoA[ρss]) = 0, ∀ρss ∈ Ξss.

PROOF. We shall prove Theorem 2 by contradic-
tion. Suppose that there exists ρ0ss ∈ Ξss, such that
M
(
DoA[ρ0ss]

)
̸= 0.

It is clear that D(H) is a bounded set since ∀ρ ∈ D(H)
satisfies tr(ρ2) ≤ 1. Also, D(H) is closed under topol-
ogy T . Based on eqs. (12) and (13), it also holds that
DoA[ρ0ss] is bounded and closed under topology T .

Since system (1) admits non-unique steady states, there
exists ρ1ss ∈ Ξss which is linearly independent with ρ0ss.
Consider the following set:

Stra ≜
⋃

p∈[0,1]

(
DoA[ρ0ss] + p{ρ1ss − ρ0ss}

)
. (18)

That is, x ∈ Stra if and only if there exists x0 ∈ DoA[ρ0ss]
and p ∈ [0, 1], such that

x = x0 + p(ρ1ss − ρ0ss). (19)

From (19), it is clear that Stra is bounded. We then show
that Stra is also closed. Consider an arbitrary sequence

{xn}+∞
n=1 ⊂ Stra with limn→+∞ xn = x̃. Each xn in the

sequence is decomposed as:

xn = ρ0ss +

N2∑
r=J+1

(gnr )σr + p̃n(ρ
1
ss − ρ0ss), (20)

where n ≥ 1, {gnr }+∞
n=1 ⊂ C (J+1 ≤ r ≤ N2), p̃n ∈ [0, 1],

and {σr}N
2

r=J+1 is defined in Proposition 1. Since the

sequence {xn}+∞
n=1 is convergent, it must be a Cauchy

sequence. Therefore, it holds that, for k > m

lim
m,k→+∞

N2∑
r=J+1

(gkr − gmr )σr + (p̃k − p̃m)(ρ1ss − ρ0ss) = 0.

(21)
Because σJ+1, ..., σN2 and ρ1ss − ρ0ss are linearly inde-
pendent, it follows that {gnr }+∞

n=1 (J + 1 ≤ r ≤ N2)
and {p̃n}+∞

n=1 are all Cauchy sequences and are therefore
convergent. Consequently, on one hand, the sequence

{ρ0ss+
∑N2

r=J+1(g
n
r )σr}+∞

n=1 converges, and since each ele-

ment in the sequence belongs to the closed set DoA[ρ0ss],
its limit also belongs to DoA[ρ0ss]. On the other hand, the
sequence {p̃n}+∞

n=1 converges to a limit in [0, 1], since [0, 1]
is a closed set. Therefore, we have shown that x̃ ∈ Stra,
which says that Stra is closed.

Since Stra (18) is bounded and closed, it is a compact
set. The fact that M is locally finite indicates that 0 ≤
M(Stra) < +∞. Consider a infinite sequence {pn}+∞

n=1 ⊂
[0, 1] with pi ̸= pj , i, j ≥ 1. Because theM is translation
invariant, it holds that

M(DoA[ρ0ss]) = M
(
DoA[ρ0ss] + pn{ρ1ss − ρ0ss}

)
,

where n ≥ 1. Based on Proposition 1, the sets DoA[ρ0ss]+

pn{ρ1ss − ρ0ss} ≜ Sn (n ≥ 1) are mutually disjoint. The
countable additivity and monotonicity of measure M
say that

M(

+∞⋃
n=1

Sn)=

+∞∑
n=1

M(Sn)=

+∞∑
n=1

M(DoA[ρ0ss])≤M(Stra).

(22)
If M(DoA[ρ0ss]) ̸= 0, then M(Stra) cannot be fi-
nite, which leads to a contradiction. Therefore,
M(DoA[ρ0ss]) = 0. □

Next, we show in the following theorem that it is pos-
sible to construct a translation invariant and locally fi-
nite measure, under which D(H) has a finite positive
measure, while attraction domains of non-unique steady
states have measure zero.

Theorem 3 There exists ameasure space
(
D1(H),Σ0,M0

)
,

where T ⊆ Σ0, and M0 is translation invariant on

5



D1(H) and locally finite with respect to (D1(H), T ).
With this measure space, D(H) is measurable and
0 < M0

(
D(H)

)
< +∞. Also, DoA[ρss] is measurable

∀ρss ∈ Ξss, and M0(DoA[ρss]) = 0 if ρss is not the
unique steady state in Ξss.

PROOF. ∀A ∈ D1(H), there exist a1, ..., aN2−1 ∈ R,
such that

A =
1

N
IN +

N2−1∑
k=1

ak√
2
Bk, (23)

whereB1, ..., BN2−1 are generalized Gell-Mann matrices
[Duffaut Espinosa et al., 2013]. Therefore, there exists

a bijection f between D1(H) and RN2−1 mapping A to
(a1, ..., aN2−1). Consequently, there is also a bijection F
between 2D1(H) and 2R

N2−1

which satisfies

F(Ω) = {y ∈ RN2−1|∃x ∈ Ω, f(x) = y},∀Ω ∈ 2D1(H).

Denote the set of all Lebesgue measurable sets in 2R
N2−1

as ΣL. Next, we define the set of all measurable sets
in 2D1(H) as F−1(ΣL) ≜ Σ0. Then, the measure M0 is
defined by

M0(Ω) ≜ m
(
F(Ω)

)
, Ω ∈ Σ0, (24)

where m is the Lebesgue measure on RN2−1.

Consider a translation σtra on D1(H), i.e., ∀ρ ∈ D1(H),
ρ + σtra ∈ D1(H). Then, there exists a unique

(σ1
tra, ..., σ

N2−1
tra ) ≜ σvec

tra ∈ RN2−1, such that if

ρ =
1

N
IN +

N2−1∑
k=1

bk√
2
Bk,

then

ρ+ σtra =
1

N
IN +

N2−1∑
k=1

bk + σk
tra√

2
Bk,

∀ρ ∈ D1(H). As a result, ∀Ω ∈ Σ0,

F(Ω + {σtra}) = F(Ω) + {σvec
tra }. (25)

The Lebesgue measure m is translation invariant, and
the set F(Ω)+ {σvec

tra } is Lebesgue measurable. We have
the following equations:

M0

(
Ω+ {σtra}

)
= m

(
F(Ω + {σtra})

)
= m

(
F(Ω) + {σvec

tra }
)
= m

(
F(Ω)

)
= M0(Ω),

(26)

which says that M0 (24) is translation invariant.

Let us denote the collection of all open sets of RN2−1

induced by Euclidean distance as T1 (i.e., T ⊆ RN2−1

is an open set iff ∀x ∈ T , ∃ϵx > 0, the open ball
B(x, ϵx) ⊆ T ). Then, the mapping F establishes a one-
to-one correspondence between T and T1. Since m is lo-
cally finite, T1 ⊆ ΣL. Therefore, it is true that T ⊆ Σ0,
and that M0 is locally finite.

It is clear that D(H) is a convex subset of D1(H), which

implies that F
(
D(H)

)
⊆ RN2−1 is also convex. As a

result, F
(
D(H)

)
is Lebesgue measurable [Lang, 1986],

and thus D(H) is measurable.

Next, since 1
N IN ∈ D(H) is positive definite, there exists

ϵ > 0, such that the set:

S(ϵ) ≜ {ρ|ρ =
1

N
IN+

N2−1∑
k=1

akBk, |ak| <ϵ, 1 ≤ k ≤N2−1}

(27)
is a subset of D(H). The set F

(
S(ϵ)

)
is a N2− 1 dimen-

sional hypercube in RN2−1 and is thus Lebesgue mea-
surable. Therefore, S(ϵ) is measurable and it holds that

M0

(
S(ϵ)

)
= m

(
F
(
S(ϵ)

))
= ϵN

2−1 > 0. (28)

It follows that 0 < M0

(
D(H)

)
< +∞ since it is compact

and it contains a subset with positive measure.

Let us now consider steady state ρss which is not
the unique steady state in D(H). Since DoA[ρss]
and F

(
DoA[ρss]

)
are both convex, DoA[ρss] is mea-

surable. As a consequence of Theorem 4, we have
M0

(
DoA[ρss]

)
= 0. □

4 Example

In this section, we show an application of our work in
physics. Condensed matter physics [Marder, 2010] has
been an integral part of physical sciences. With the ad-
vent of quantum mechanics, quantum many-body sys-
tems [Tasaki, 2020], not surprisingly, has been inten-
sively studied by condensed matter physicists. Acknowl-
edging that quantum systems may interact with their
environment, it is then difficult to ignore open quantum
many-body systems, which certainly include those de-
scribed by Lindblad master equations (1). In fact, of par-
ticular interests to physicists are steady states of these
open many-body systems with different kinds of physi-
cal properties, e.g., [Budich et al., 2015,Labouvie et al.,
2016]. It is beyond the scope of this paper to investigate
in detail the steady states’ physical properties. What
we hope, from the perspective of Systems and Control
science, is to provide a generic theoretical tool, with
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which physicists may know what are the initial condi-
tions needed to witness the steady states that interest
them.

As an example, we analyse the attraction domain of
steady states of a Heisenberg XXZ spin chain [Bonechi
et al., 1992] with different spin currents. Spin currents
(as will be clarified later) of steady states have been con-
sidered in, e.g., [Žnidarič, 2011,Buča and Prosen, 2012].

In quantum mechanics, the Hilbert space for a two-level
system is Hs ≜ C2. For composite systems with multi-
ple two-level systems, the underlying Hilbert spaces are
tensor products of single qubit Hilbert spaces. The fol-
lowing notations are made:

|1⟩ ≜

(
1

0

)
, |0⟩ ≜

(
0

1

)
, (29)

σ− ≜ |1⟩⟨0|, σ+ ≜ |0⟩⟨1|, σz ≜ |1⟩⟨1| − |0⟩⟨0|. (30)

An open Heisenberg XXZ spin chain with a finite
length Nc is a one-dimensional chain of Nc two-level
systems. The Hilbert space for the chain is expressed

as Hc ≜
⊗Nc

n=1 Hs, where “
⊗

” denotes tensor product.
The Hamiltonian reads:

H =

Nc−1∑
j=1

2(σ−
j σ

+
j+1 + σ+

j σ
−
j+1) + σz

jσ
z
j+1. (31)

We note that σ−
j , σ

+
j and σz

j , 1 ≤ j ≤ Nc, are short-

hand notations for operators acting as σ−, σ+ and σz

(30) on qubit j, respectively, and as the identity oper-

ator on other qubits. For example, σ−
1 ≜ σ− ⊗ I2Nc−1 .

This Hamiltonian models spin exchange and Z-Z type
interaction. The two coupling operators are expressed
as [Buča and Prosen, 2012]:

L1 = 2σ−
1 σ

+
Nc

, L2 = σ+
1 σ

−
Nc

, (32)

which model nonlocal source-and-sink effect on both
ends of the chain. Moreover, the spin current operator
on site i, 2 ≤ i ≤ Nc − 1 is defined as

Ji ≜ σx
i σ

y
i+1 − σy

i σ
x
i+1. (33)

The spin current on site i with state ρ, 2 ≤ i ≤ Nc − 1,
is defined as tr(ρJi) [Buča and Prosen, 2012], which can
be viewed as an indicator of how fast magnetization is
transported in the system.

We fix Nc = 4. In this case, the kernel of L[H,L1,L2]

is a 10-dimensional subspace of B(Hc), and the system
admits an uncountably infinite number of steady states.
In this example, we focus on two of the set of all steady
states. The first one, ρss,1, reads

ρss,1 ≜ |Ψ⟩⟨Ψ|, |Ψ⟩ = 1√
2
(|0110⟩ − |1001⟩). (34)

The second one, ρss,2, admits no simple expression. We
present an approximate expression, keeping only 5 digits
for real and imaginary parts of coefficients:

0.3401E44 + 0.2770E33 + 0.2308E22 + 0.1521E11+{
(0.0833+0.0671i)E43+

(
(0.0370+0.0463i)E42+0.0370iE41

+ (0.0347 + 0.0671i)E32 + (−0.0093 + 0.0463i)E31

+ (−0.0208 + 0.0671i)E21 +H.c.
}
, (35)

where Eij ≜ |ei⟩⟨ej |, 1 ≤ i, j ≤ 4, and |e1⟩ = |0111⟩,
|e2⟩ = |1011⟩, |e3⟩ = |1101⟩, |e4⟩ = |1110⟩. Also, H.c.
means Hermitian conjugate.

It is checked that tr(ρss,1Ji) = 0, while tr(ρss,2Ji) ≈
0.2684, i = 2, 3, which signifies different physical prop-
erties. The nonexistence of spin currents regarding ρss,1
is associated with the concept of insulators [Žnidarič,
2011], while ρss,2 supports spin currents. Spin currents
may, for example, find application in probing quantum
spin liquids [Han et al., 2020].

We then proceed to analyse the attraction domains of
these two steady states. In this example, 14 linearly inde-

pendent eigenoperators of L†
[H,L1,L2]

with zero real parts

are found, which leads to the following 14 linearly inde-
pendent non-decaying observables ω1—ω14.

ω1 = Π4, ω2 = Π2, ω3 = Π0,

ω4 = Π−2, ω5 = Π−4,
(36)

where Πk denotes the orthogonal projection onto the
following subspaces Sk, k = 4, 2, 0,−2,−4:

S4 ≜ span{|1111⟩}
S2 ≜ span{|1110⟩, |1101⟩, |1011⟩, |0111⟩}
S0 ≜ span{|1100⟩, |1010⟩, |0110⟩, |1001⟩, |0101⟩, |0011⟩}
S−2 ≜ span{|1000⟩, |0100⟩, |0010⟩, |0001⟩}
S−4 ≜ span{|0000⟩}.

(37)

ω6 = |1111⟩⟨0000|+ |0000⟩⟨1111|
ω7 = i(|1111⟩⟨0000| − |0000⟩⟨1111|), (38)

7



ω8 = |1110⟩⟨1000|+ |1000⟩⟨1110|+ |1101⟩⟨0100|
+ |0100⟩⟨1101|+ |1011⟩⟨0010|+ |0010⟩⟨1101|

+ |0111⟩⟨0001|+ |0001⟩⟨0111|, (39)

ω9 = i(|1110⟩⟨1000| − |1000⟩⟨1110|) + i(|1101⟩⟨0100|
− |0100⟩⟨1101|) + i(|1011⟩⟨0010| − |0010⟩⟨1101|)

+ i(|0111⟩⟨0001| − |0001⟩⟨0111|), (40)

ω10 = (|0110⟩ − |1001⟩)(⟨0110| − ⟨1001|), (41)

ω11 = |1111⟩(⟨0110| − ⟨1001|) + (|0110⟩ − |1001⟩)⟨1111|
ω12 = i(|1111⟩(⟨0110|−⟨1001|)−(|0110⟩−|1001⟩)⟨1111|),

(42)

ω13 = |0000⟩(⟨0110| − ⟨1001|) + (|0110⟩ − |1001⟩)⟨0000|
ω14 = i(|0000⟩(⟨0110|−⟨1001|)−(|0110⟩−|1001⟩)⟨0000|).

(43)

Based on Theorem 1, an initial state ρ0 belongs to the
attraction domain of a steady state ρss in this example if

and only if tr(ω†
jρ0) = tr(ω†

jρss), 1 ≤ j ≤ 14. We present
an interpretation of these 14 equalities.

(i) 1 ≤ j ≤ 5: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of projection onto subspaces
S4, S2, S0, S−2 and S−4;

(ii) j = 6, 7: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of coherence between |1111⟩
and |0000⟩, i.e., ⟨1111|ρss|0000⟩ = ⟨1111|ρ0|0000⟩;

(iii) j = 8, 9: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of summed coherence be-
tween the following four pairs of states: (|1110⟩, |1000⟩),
(|1101⟩, |0100⟩), (|1011⟩, |0010⟩), (|0111⟩, |0001⟩);

(iv) j = 10: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of projection onto |0110⟩ −
|1001⟩;

(v) j = 11, 12: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of coherence between |1111⟩
and |0110⟩ − |1001⟩;

(vi) j = 13, 14: A steady state ρss and any ρ0 ∈ DoA[ρss]
must have the same amount of coherence between |0000⟩
and |0110⟩ − |1001⟩;

On one hand, it is at this point clear that the attraction
domain of ρss,1 in (34) is trivial, i.e.,

DoA[ρss,1] = {ρss,1}. (44)

This is because ρss,1 is the only state in D(Hc) which is
fully supported by span{|0110⟩ − |1001⟩}.

On the other hand, the attraction domain of ρss,2 with
approximate expression (35) is nontrivial. In fact, it is
possible to show that

DoA[ρss,2] = D(S2). (45)

Since tr(ω†
2ρss,2) = 1, any ρ0 ∈ DoA[ρss] must satisfy

tr(ω†
2ρ0) = 1, which says that ρ0 ∈ D(S2). Therefore,

DoA[ρss,2] ⊆ D(S2). Conversely, it is checked that

tr(ω†
jρss,2) = tr(ω†

jρ0) = 0, 1 ≤ j ≤ 14, j ̸= 2,

tr(ω†
2ρss,2) = tr(ω†

2ρ0) = 1.

for all ρ0 ∈ D(S2).We thus arrive atD(S2) ⊆ DoA[ρss,2].

Next, consider choosing the following three initial states
in D(S2), namely,

ρ0,1 = |1101⟩⟨1101|

ρ0,2 =
1

2
(|1110⟩+ |1011⟩)(⟨1110|+ ⟨1011|)

ρ0,3 =
1

2
|0111⟩⟨0111|+ 1

3
|1011⟩⟨1011|+ 1

6
|1110⟩⟨1110|.

(46)
Fig.1 shows the simulated variation of ∥eL[H,L1,L2]tρ0,j−
ρss,2∥2, 1 ≤ j ≤ 3, i.e., the distance between the time-
evoluted states with ρss,2 measured by 2-norm, with
state trajectories starting from these three initial states.
It is observed that the distances approach 0, which is in
accordance with the fact that these initial states belong
to DoA[ρss,2].

Finally, since the system admits more than one steady
states, following Theorem 3, DoA[ρss,1] and DoA[ρss,2]
have zero “volume” under some translation invariant
and locally finite measures.

5 Conclusion

We have presented an analysis on the attraction do-
main of steady states of finite-level quantum systems
described by Lindblad master equations. Necessary and
sufficient conditions are given for verification of whether
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Fig. 1. Simulated variation of distances between time-evo-
luted states with ρss,2.

an initial state belongs to the attraction domain of a
steady state. We have also shown that steady states that
are not unique have attraction domains with measure
zero under certain measures.

Acknowledgements

This research is partially supported by Hong Kong
Research Grant Council (Grants Nos. 15203619 and
15208418), Shenzhen Fundamental Research Fund,
China, under Grant No. JCYJ20190813165207290,
National Natural Science Foundation of China under
Grant No. 62173269, and the CAS AMSS-polyU Joint
Laboratory of Applied Mathematics.

References

[Albert and Jiang, 2014] Albert, V. V. and Jiang, L. (2014).
Symmetries and conserved quantities in Lindblad master
equations. Phys. Rev. A, 89:022118.

[Bobiti and Lazar, 2018] Bobiti, R. and Lazar, M. (2018).
Automated-sampling-based stability verification and DOA
estimation for nonlinear systems. IEEE Transactions on
Automatic Control, 63(11):3659–3674.

[Bonechi et al., 1992] Bonechi, F., Celeghini, E., Giachetti, R.,
Sorace, E., and Tarlini, M. (1992). Heisenberg xxz model and
quantum galilei group. Journal of Physics A: Mathematical
and General, 25(15):L939.

[Breuer and Petruccione, 2001] Breuer, H. P. and Petruccione,
F. (2001). The Theory of Open Quantum Systems. Oxford
University Press.

[Budich et al., 2015] Budich, J. C., Zoller, P., and Diehl, S.
(2015). Dissipative preparation of chern insulators. Phys. Rev.
A, 91:042117.
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