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Abstract

This paper investigates two related optimal input selection problems for fixed (non-switched) and switched structured
systems. More precisely, we consider selecting the minimum cost of inputs from a prior set of inputs, and selecting the
inputs of the smallest possible cost with a bound on their cardinality, all to ensure system structural controllability.
Those problems have attracted much attention recently; unfortunately, they are NP-hard in general. In this paper, it is
found that, if the input structure satisfies certain ‘regularizations’, which are characterized by the proposed restricted
total unimodulairty notion, those problems can be solvable in polynomial time via linear programming (LP) relaxations.
Particularly, the obtained characterizations depend only on the incidence matrix relating the inputs and the source
strongly connected components (SCC) of the system structure, irrespective of how the inputs actuate states within the
same SCC. They cover all the currently known polynomially solvable cases (such as the dedicated input case), and contain
many new cases unexploited in the past, among which the source-SCC separated input (SSSI) constraint is highlighted.
Further, for switched systems, the obtained polynomially solvable condition (namely the joint SSSI constraint) does not
require each of the subsystems to satisfy the SSSI constraint. We achieve these by first formulating those problems as
equivalent integer linear programmings (ILPs), and then proving total unimodularity of the corresponding constraint
matrices. This property allows us to solve those ILPs efficiently via LP-relaxation. We also discuss solutions obtained
via LP-relaxation and LP-rounding in the general case. Several examples are given to illustrate the obtained theoretical
results.

Keywords: Structural controllability, input selection, switched system, linear programming, total unimodularity

1. Introduction

Over the past decade, input/output (I/O) selections
for a large-scale dynamic system to achieve certain per-
formances have received considerable attention [1, 2, 3,
4]. Examples include estimation error minimization of
the Kalman filter by sensor placement [5], stabilization by
joint I/O selection and feedback design [6], achieving var-
ious performances related to controllability/observability
[2, 3, 4, 7], etc. This paper is about I/O selections for
controllability.

Broadly speaking, problems concerning I/O selections
for controllability can be divided into two categories. The
first one is selecting inputs to optimize some control energy-
related metrics, such as the trace, determinant, or inverse
of the minimum eigenvalue of the controllability Gramian
[3, 4, 8]. One typical approach to some of those problems
is exploiting the modular, submodular, or weak submodu-
lar structure of the corresponding optimization problems,

1This work was supported in part by the National Natural Science
Foundation of China under Grant 62003042.

which often leads to greedy algorithms with provable ap-
proximation guarantees [3]. The second one is to design
certain ‘sparse’ inputs for ensuring controllability in the
qualitative sense. Depending on what qualitative notion
is adopted, this category can also be divided into two
subclasses. When the purpose is to ensure controllabil-
ity in the numerical sense, the minimum number of inputs
needed has an analytical expression (i.e., being the maxi-
mum geometric multiplicity of the system state transition
matrix) [9]. However, if the available input vectors are
given a priori, this problem turns out to be NP-hard [2].
The other subclass is about structural controllability, an
alternative notion of controllability in the generic sense
[10], detailed as follows.

The problems of optimally selecting inputs to achieve
structural controllability can be roughly classified into two
classes, depending on the objectives. The first class of
problems aims at determining the minimum number/cost
of input links (typically, the sparsest input matrices) for
structural controllability. When there is no constraint on
the structure of the input configuration or all the available
inputs are dedicated (i.e., each input can actuate at most
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one state variable), it has been shown that these problems
can be solved in polynomial time by transforming them
to some maximum matching problems [11, 12]. Recently,
[13] extends the dedicated input constraint to the so-called
source strongly-connected component (SCC) grouped con-
straint and shows that if the available inputs satisfy this
constraint, then the aforementioned problems are polyno-
mially solvable. Further, [14] shows that finding the spars-
est interconnection structure (both among states and be-
tween inputs and states) for a system to be structurally
controllable is NP-hard, if the available interconnections
among states are given a priori.

The second class of problems intends to find the mini-
mum number/cost of inputs (typically, the input matrices
with the smallest number of columns) to achieve struc-
tural controllability. Note that compared to the first class
of problems, selecting an input indicates all the input links
incident to this input are selected simultaneously. It has
been shown this problem has an analytical solution if there
is no constraint on the input structure [1]. However, if the
available inputs are given a priori (called the constrained
input selection problem in this case), this problem is gen-
erally NP-hard [15]. Due to the NP-hardness, only very
limited scenarios are known for this problem to be polyno-
mially solvable, such as the dedicated input case in [11, 12].
For approximation, [15] reduces this problem to the set-
cover problem for a special case, and [16] gives a flow-
network based approximation algorithm.

In this paper, we advance the state of the art in search-
ing polynomially solvable conditions for constrained input
selection problems. More precisely, in addition to consid-
ering the problem of selecting the minimum cost of inputs
from a given set to achieve system structural controlla-
bility, we also reinvestigate this problem by imposing an
upper bound on the number of selected inputs. To our
knowledge, no polynomial-time algorithms have been re-
ported for these problems in the non-dedicated input case,
except for some trivial cases (c.f., the system structure
is strongly-connected). The initial idea of our study is
that, since the addressed problems are NP-hard due to
the fact that determining the minimum number of inputs
to achieve input-reachability is NP-hard [15] (see also Sec-
tion 3) , what happens for the class of systems where the
latter problem is no longer intractable?

Main contributions: Starting from this point, we
reveal if the input structure satisfies the so-called source-
SCC separated input constraint (SSSI constraint), i.e.,
no inputs can actuate two different source-SCCs simul-
taneously, the addressed input selection problems can be
solved in polynomial time. We further generalize this re-
sult, showing that if the input structure satisfies certain
‘regularizations’, which are characterized by the restricted
total unimodularity (TU) notion introduced in this paper,
those problems are polynomially solvable. The obtained
conditions largely extend the currently known polynomi-

ally solvable ones, as they depend only on the connec-
tions between the inputs and the source-SCCs of the sys-
tem structure, but irrespective of how each input actuates
states within the same SCC. Those results are further ex-
tended to the switched systems for similar input selection
problems. Particularly, a joint SSSI constraint is proposed,
which does not require each subsystem to meet the SSSI
constraint but preserves the polynomial solvability. Key
to our results is first formulating the constrained input se-
lection problems as equivalent integer linear programming
(ILP) problems, and then proving that the correspond-
ing constraint matrices are TU under the addressed con-
ditions. This allows us to solve those ILPs efficiently by
simply solving their linear programming (LP) relaxations.
In this way, we provide an LP-based method for these
problems with polynomial time complexity, conceptually
different from the graph-theoretic ones. For the general
case, we study solutions obtained via LP-relaxation and
LP-rounding, resulting in some lower and upper bounds
for the minimum cost input selection problem. In partic-
ular, the lower bound is tighter than the one obtained via
the graph-theoretic method, while the upper bound has
a provable approximation factor for a special case. We
remark that the LP-based method has also been used in
[13] for solving a different input selection problem from
this paper. Relative to [13], the considered problems here
are essentially NP-hard and more intricate as the set cover
problem is embedded. The obtained polynomial solvability
conditions are also wider than that in [13]. Partial results
of this paper are scheduled to appear in [17]. While [17]
only covers the SSSI constraint without proofs, this pa-
per generalizes it to the restricted TU condition, provides
the full proofs, and presents extensions to the switched
systems as well as solutions in the general case.

The rest of this paper is organized as follows. Section
2 gives the problem formulations, and Section 3 provides
some preliminaries in graph theory and structured sys-
tems. Section 4 gives the ILP formulations of the consid-
ered problems, while Section 5 presents the polynomially
solvable conditions for the fixed (non-switched) systems.
Solutions in the general case via LP-relaxation and LP-
rounding are discussed in Section 6. Extensions to the
switched systems are given in Section 7. Section 8 provides
two illustrative examples. The last section concludes this
paper.

Throughout this paper, for two vectors a and b, a ≤
b means ai ≤ bi entry-wisely. A vector a is integral if
every element is an integer. For an optimization problem
min{ϕ(x) : x ∈ Λ}, Λ is called the feasible region, x ∈ Λ
is called a feasible solution, the minimum of the objective
ϕ(x) on x ∈ Λ is called the optimal (objective) value, or
optimum, while the x for which the optimum is attained
is an optimal solution. 1n×m (0n×m) denotes the n × m

matrix with all entries 1 (0). The set of positive integers
is denoted as N+.
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2. Problem formulations

Consider a linear-time invariant system as

ẋ(t) = Ãx(t) + B̃u(t), (1)

in which x(t) ∈ R
n, u(t) ∈ R

m are the state variables and
inputs, and Ã ∈ R

n×n, B̃ ∈ R
n×m.

A structured matrix is a matrix with entries being ei-
ther fixed zero or a free parameter. Denote the set of
n1×n2 structured matrices by {0, ∗}n1×n2 , where ∗ repre-
sents the free parameters. Let A and B be two structured
matrices specifying the sparsity patterns of Ã and B̃, i.e.,
Aij = 0 implies Ãij = 0, and Bij = 0 implies B̃ij = 0. In
this way, (Ã, B̃) is called a realization of (A,B).

Definition 1. [18] (A,B) is said to be structurally con-
trollable, if there is a realization of it that is controllable.

Controllability of system (1) is a generic property in
the sense that, if (A,B) is structurally controllable, then
almost all of its realizations are controllable; otherwise,
none is controllable [19]. Given B ∈ {0, ∗}n×m and J ⊆
{1, ...,m}, let B(J ) be the sub-matrix of B consisting of
columns indexed by J . Assign a non-negative rational
cost ci to each column of B, representing the cost of acti-
vating the ith input. We say B is dedicated , if each column
of B has at most one nonzero entry. With the notations
above, we first consider the following optimal input selec-
tion problem:

Problem P1: minimum cost input selection

min
J⊆{1,...,m}

∑

i∈J ci

s.t. (A,B(J )) structurally controllable
(P1)

That is, P1 seeks to select the inputs from the prior
input matrix B with the minimum total cost to achieve
structural controllability. Next, we consider the following
problem by adding a cardinality upper bound k ∈ N+ to
the number of inputs:

Problem P2: cardinality-constrained minimum cost in-
put selection

min
J⊆{1,...,m}

∑

i∈J ci

s.t. (A,B(J )) structurally controllable
|J | ≤ k

(P2)

In other words, P2 intends to select the inputs with a
bound on their cardinality and with the total cost as small
as possible to ensure structural controllability. It may hap-
pen that the optimal solution to P1, denoted by J ∗, has a
much larger cardinality |J ∗| than that to P2. Therefore,
P2 may be desirable, for example, when the activation of
new inputs may be more expensive compared to increas-
ing the input costs. Throughout this paper, without losing
any generality, the following assumption is adopted, which
is necessary for the feasibility of P1 and P2.

Assumption 1. (A,B) is structurally controllable.

Remark 1. A related problem to P2 is selecting the set of
inputs to achieve structural controllability with the small-
est possible cost, meanwhile the cardinality is no more than
any number of inputs ensuring system structural control-
lability, i.e., k in P2 equals the optimum of P1 with unit
input cost (i.e, ci = 1, ∀i; denote this value by N∗

P1
). This

problem is equivalent to the following one

min
J⊆{1,...,m}

∑

i∈J (ci + γ)

s.t. (A,B(J )) structurally controllable
(P3)

where γ
.
= mcmax, with cmax

.
= max1≤i≤m ci > 0. Here, γ

is the regularization parameter to penalize the cardinality
of the solution, such that for any feasible solution with the
cardinality larger than N∗

P1
, its decrease in the cost (less

than mcmax) will not exceed the increase (at least γ) caused
by the cardinality penalty. Hence, P3 is indeed a special
case of P1.

Next, consider the following switched linear system

ẋ(t) = Ãσ(t)x(t) + B̃σ(t)u(t), (2)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the piecewise
continuous input, σ(t) : [0,∞) → {1, ..., p} is the switch-
ing signal, p is the number of the switching modes, and
(Ãi, B̃i) is called a subsystem (mode) of system (2). σ(t) =
i implies the subsystem (Ãi, B̃i) is activated as the system
realization at time instant t, i = 1, 2, ..., p. We denote sys-
tem (2) as the pair (Ãσ(·), B̃σ(·)). System (2) is said to be
controllable, if for any two states x0, xf ∈ R

n, there exists
a finite tf , a switching signal σ(t) : [0, tf ) → {1, ..., p} and
an input u(t) : [0, tf) → R

m, such that x(0) = x0 and
x(tf ) = xf [20].

Similar to the above, let Ai and Bi be structured ma-
trices specifying the sparsity patterns of Ãi and B̃i, i =
1, ..., p, and we obtain a structured switched system cor-
responding to (2), denoted by (Aσ(·), Bσ(·)). In this way,

(Ãσ(·), B̃σ(·)) is called a realization of (Aσ(·), Bσ(·)). We
call the nonzero columns of Bi the effective input vectors,
and suppose there are mi effective input vectors in Bi,
i = 1, ..., p. Without loss of generality, assume those ef-
fective input vectors locate at the first mi columns of Bi.
Then, we also use (A1, · · · , Ap, B

′
1, · · · , B

′
p) to denote sys-

tem (Aσ(·), Bσ(·)), where B′
i consists of the effective input

vectors of Bi.

Definition 2. [21] The pair (Aσ(·), Bσ(·)) is said to be
structurally controllable, if there exists a realization that
is controllable.

Controllability of the switched system (2) is again a
generic property, characterized by structural controllabil-
ity of (Aσ(·), Bσ(·)). Similar to the non-switched case, as-
sign a non-negative rational cost cij to the jth column of
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Bi, representing the cost of using the jth input of the ith
mode, i = 1, ..., p, j = 1, ...,mi. Corresponding to P1 and
P2, we consider the following two input selection problems
for the switched system (2) to achieve structural control-
lability:

Problem P4: minimum cost switched input selection

min
Ji⊆{1,...,mi},i=1,...,p

∑p

i=1

∑

j∈Ji
cij

s.t. (A1, · · · , Ap, B1(J1), · · · , Bp(Jp))
structurally controllable

(P4)

Problem P5: cardinality-constrained minimum cost
switched input selection (k given)

min
Ji⊆{1,...,mi},i=1,...,p

∑p

i=1

∑

j∈Ji
cij

s.t. (A1, · · · , Ap, B1(J1), · · · , Bp(Jp))
structurally controllable

∑p
i=1 |Ji| ≤ k.

(P5)

It is known that P1 is NP-hard in general [15]. Hence,
P2 is NP-hard (by setting k = m, P2 reduces to P1), and
so are with P4 and P5 (by setting p = 1, P4 and P5 reduce
to P1 and P2, respectively). Problems P4 and P5 differ
from the input selection problem in [22], which imposes no
cost, no prior constraint, and no cardinality upper bound
on the available inputs. To our knowledge, except for some
special cases (such as the dedicated input case), no poly-
nomially solvable conditions for those problems have been
reported.

Though the NP-hardness, in this paper we reveal that
if the input structure satisfies certain ‘regularizations’, all
the above-mentioned problems are polynomially solvable.
Particularly, the obtained results are state-of-the-art, in
the sense that they cover all the currently known poly-
nomially solvable cases for those problems, including the
dedicated input case, and contain many new cases unex-
ploited in the past. Our main tool is the LP-relaxation,
which also provides an alternative method for those prob-
lems apart from the traditional graph-theoretic one. We
will also discuss the solutions obtained by LP-relaxation
and LP-rounding in the general case.

3. Preliminaries

Some preliminaries in graph theory and structured sys-
tems are introduced for the subsequent derivations. These
results are quite standard, and readers can refer to [18].

A directed graph (digraph) is denoted by G = (V,E),
in which V is the vertex set and E ⊆ V × V is the edge
set. A path in a digraph is a sequence of edges, in which
the terminal vertex of the preceding edge is the starting
vertex of the successive edge. If there is a path from vertex
vj to vertex vi, we say vi is reachable from vj . A digraph
is said to be strongly connected if any pair of its vertices
are reachable from each other. An SCC of a digraph is

its subgraph that is strongly connected, and no edges or
vertices can be included in this subgraph without breaking
the property of being strongly connected. We say a vertex
connects with a subgraph, if there is an edge from this
vertex to a vertex of this subgraph. A bipartite graph,
denoted by G = (VL, VR, ERL), is a graph whose vertices
can be partitioned into two disjoint parts VL and VR, such
that no edges of ERL have two end vertices within the
same part. A matching of a bipartite graph is a set of
edges, among which any two do not share a common end
vertex. A vertex is matched w.r.t. a matching, if it is an
end vertex of an edge in this matching. The maximum
matching is the matching with as many edges as possible.
A perfect matching of G is a matching that matches every
vertex of G (implying |VL| = |VR|).

For A ∈ {0, ∗}n×n, B ∈ {0, ∗}n×m, the state digraph is
G(A) = (X,EA), withX = {x1, ..., xn} the set of state ver-
tices, and EA = {(xj , xi) : Aij 6= 0} the set of state edges.
The system digraph is G(A,B) = (X ∪ U,EA ∪ EB) with
the input vertices U = {u1, ..., um} and the input links
(edges) EB = {(ui, xj) : Bji 6= 0}. Moreover, the bipar-
tite graph associated with (A,B) is defined as B(A,B) =
(XL, U ∪ XR, EXX ∪ EUX), in which XL = {xL

1 , ..., x
L
n},

XR = {xR
1 , ..., x

R
n } are copies of X , U = {u1, ..., um},

EXX = {(xR
j , x

L
i ) : Aij 6= 0}, and EUX = {(uj, x

L
i ) :

Bij 6= 0}. Define B(A) as B(A)
.
= (XL, XR, EXX).

Decompose G(A) into SCCs, and suppose the ith SCC
has a vertex set Xi ⊆ X (1 ≤ i ≤ nc, with nc being
the number of SCCs). An SCC is called a source-SCC ,
if in G(A), there is no incoming edge to vertices of this
SCC from other SCCs; otherwise, it is called a non-source-
SCC . Suppose there are r source-SCCs in G(A), with the
set of their indices being I

.
= {1, ..., r}, 1 ≤ r ≤ nc. A

state vertex xi ∈ X is said to be input-reachable, if it is
reachable from an input vertex u ∈ U in G(A,B). With
those notions, the following lemma characterizes structural
controllability.

Lemma 1 ([18]). (A,B) is structurally controllable, if and
only if the following two conditions hold simultaneously:

i) every state vertex xi ∈ X is input-reachable;
ii) there is a maximum matching in B(A,B) so that

every xL
i ∈ XL is matched.

4. ILP formulations of P1 and P2

In this section, we formulate problems P1 and P2 as
equivalent ILPs.

In our ILP formulations, we introduce two binary vari-
ables y = {yuv : (u, v) ∈ EXX ∪ EUX} and t = {ti :
i ∈ U}, where U

.
= {1, ...,m}. In a feasible solution (y, t)

to the corresponding ILPs, yuv = 1 indicates the edge
(u, v) ∈ EXX ∪EUX is in a particular maximum matching
of B(A,B), and yuv = 0 means the contrary. For i ∈ U ,
ti = 1 means input ui is selected for the corresponding
Pj (j = 1, 2), while ti = 0 the contrary. To present the
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ILP formulations, the source-SCC-input incidence matrix
w = [wij ] ∈ {0, 1}r×m is introduced as follows: wij = 1
if (uj , xl) ∈ EUX for some xl ∈ Xi, and wij = 0 if no
such xl exists. In other words, wij = 1 if and only if
input uj directly connects with the source-SCC Xi. Let
Euj

= {(uj, v) : (uj , v) ∈ EUX} be the set of input links
incident to uj, j ∈ U .

Proposition 1. Under Assumption 1, P1 is equivalent to
the following ILP P ILP

1 in the sense that, for an optimal
solution (y⋆, t⋆) to P ILP

1 , S⋆ = {ui : t
⋆
i = 1, i ∈ U} is an

optimal solution to P1.

min
y,t

∑m

i=1
citi (P ILP

1 )

s.t.
∑

u:(u,v)∈EXX∪EUX

yuv = 1, ∀v ∈ XL (3)

∑

v:(u,v)∈EXX∪EUX

yuv ≤ 1, ∀u ∈ XR ∪ U (4)

∑m

j=1
wijtj ≥ 1, ∀i ∈ I (5)

tj ≥
∑

(u,v)∈Euj

yuv, ∀j ∈ U (6)

yuv ∈ {0, 1}, ∀(u, v) ∈ EXX ∪ EUX (7)

tj ∈ {0, 1}, ∀j ∈ U . (8)

Proof: Let Es = {(u, v) ∈ EXX ∪ EUX : yuv =
1, y subject to (3), (4), (7)}. Constraint (3) means every
vertex of XL should be an end vertex of exactly one edge
in Es, and (4) means each vertex of XR∪U can be the end
vertex of at most one edge in Es. Therefore, constraints
(3), (4), and (7) make sure Es is a matching of B(A,B)
that matches XL. Moreover, constraint (5) means each
source-SCC Xi is input-reachable. Constraint (6) ensures
if an edge of Euj

is included in the maximum matching
Es, then this input uj is selected (i.e., tj ≥ 1). By Lemma
1, any feasible solution (y, t) subject to constraints (3)-(8)
corresponds to an input selection S = {ui : ti = 1, i ∈ U}
that makes the resulting system structurally controllable.
It then follows immediately that P1 and P ILP

1 are equiva-
lent. �

Proposition 2. Under Assumption 1, P2 is equivalent to
the following ILP P ILP

2 :

min
y,t

∑m

i=1
citi (P ILP

2 )

s.t.
∑m

i=1
ti ≤ k (9)

(3), (4), (5), (6), (7), and (8). (10)

Again, any optimal solution (y⋆, t⋆) to P ILP
2 yields an op-

timal solution S⋆ = {ui : t
⋆
i = 1, i ∈ U} to P2.

Proof: Note constraint (9) ensures the number of se-
lected inputs is no more than k. Following a similar man-
ner to the above analysis for P ILP

1 , the equivalence between
P2 and P ILP

2 is obtained. �

Remark 2. It is notable that constraint (4) ensures that
the right-hand side of (6) is at most 1, implying that con-
straints (6) and (8) are compatible. Constraint (6) bridges
conditions i) and ii) of Lemma 1.

Remark 3. From the proof of the equivalence between P1

and P ILP
1 , constraint (10) characterizes structural control-

lability. Hence, for a given k ∈ N, P2 is feasible, if and
only if P ILP

2 is.

5. Polynomially Solvable P1 and P2

This section provides conditions under which P1 and
P2 are polynomially solvable. Our results show that, if the
input structure satisfies certain ‘regularizations’, which are
characterized by the source-SCC-input incidence matrix
w, irrespective of how the inputs connect vertices within
each source-SCC or from the non-source-SCCs, then P1

and P2 can be solved in polynomial time via the corre-
sponding LP-relaxations.

5.1. A polynomially solvable condition

It has been shown in [15] P1 is NP-hard. This fact
is also reflected by constraint (5). Note provided that
B(A) = (XL, XR, EXX) has a perfect matching, the con-
straints of P ILP

1 reduce to constraints (5) and (8), which
is the ILP formulation of the NP-hard set cover problem
[23].2 A natural question is that, supposing for a certain
specific class of systems associated with which optimiz-
ing

∑m

i=1 citi subject to (5) and (8) can be implemented
in polynomial time, can P1 (as well as P2) be solved effi-
ciently? An already-known fact supporting the affirmative
answer is that, if each available input is dedicated, then
P1 is polynomially solvable. Can we broaden the class of
systems on which P1 is polynomially solvable?

To this end, we introduce the following constraint, named
source-SCC separated input constraint . We shall show,
this constraint defines a large class of systems with which
P1 and P2 are polynomially solvable.

Definition 3. (SSSI constraint) For (A,B) in (1), it sat-
isfies the SSSI constraint, if no input vertices can connect
with two different source-SCCs simultaneously in G(A,B).

Note the SSSI constraint only requires that two dif-
ferent source-SCCs do not receive input signals from the
same input. It does not impose any restrictions on how
the inputs connect state vertices within each SCC (includ-
ing the source-SCC and the non-source-SCC). Addition-
ally, an input can simultaneously connect with one source-
SCC and multiple non-source-SCCs. Hence, the SSSI con-
straint describes a wider class of input structures than the

2Given a finite set S and a collection of its subsets {S1, ...,Sp},
the set cover problem is to select the minimum number of elements
from {S1, ...,Sp} such that their union is exactly S.
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Figure 1: Examples of G(A,B) that satisfy the SSSI constraint: (a)
dedicated input; (b) strongly connected case; (c) other case. Sub-
graphs in the boxes are the source-SCCs of G(A).

source-SCC grouped input constraint introduced in [13]
(the latter does not allow the existence of an input that
simultaneously actuates a source-SCC and a non-source
SCC). Particularly, the dedicated input structure is a spe-
cial case of the SSSI constraint. A system that contains
only one source-SCC automatically satisfies this constraint
(a special case is that G(A) is strongly connected). See
Fig. 1 for illustration of examples that satisfy the SSSI
constraint.

Our first main results are as follows. The proofs are
postponed to the next subsection.

Theorem 1. Suppose (A,B) satisfies Assumption 1 and
the SSSI constraint. Then, the following LP-relaxation
PLP
1 of P ILP

1 always has an integral optimal solution cor-
responding to the optimal solution of P1:

min
y,t

∑m

i=1
citi (PLP

1 )

s.t. (3), (4), (5), and (6) (11)

0 ≤ yuv ≤ 1, ∀(u, v) ∈ EXX ∪ EUX (12)

0 ≤ ti ≤ 1, ∀i ∈ U . (13)

Consequently, for (A,B) satisfying the SSSI constraint, P1

can be solved in polynomial time.

Theorem 2. Suppose (A,B) satisfies Assumption 1 and
the SSSI constraint. Then, the following LP-relaxation
PLP
2 of P ILP

2 always has an integral optimal solution cor-
responding to the optimal solution of P2, whenever P2 is
feasible.

min
y,t

∑m

i=1
citi (PLP

2 )

s.t. (3), (4), (5), (6), (9), (12), and (13). (14)

Again, for (A,B) satisfying the SSSI constraint, P2 can be
solved in polynomial time.

In light of Theorems 1 and 2, P1 and P2 can be solved
in polynomial time via solving the respective LP-relaxations
whenever the SSSI constraint is met. Using off-the-shelf
LP solvers, PLP

1 and PLP
2 can be solved in time O((|EXX ∪

EUX |+m)2.5L) [24], where |EXX∪EUX |+m is the number
of decision variables in those LPs, and L = log2(cmax) +
log2(k) + log2(n) is the number of input bits, with cmax

.
=

max1≤i≤m ci and {ci} being integral.3 On the other hand,
it seems unclear how to extend the graph-theoretic meth-
ods in [11, 12] to the non-dedicated input case even with
the SSSI constraint.

The SSSI constraint defines a class of input structures
where the source-SCCs may have certain autonomy (inde-
pendence) so that they do not receive control signals/commands
from the same input. In many practical network systems
with geographically distributed subsystems, such as the
power networks and ecological networks [4, 26], the dense
interactions within subsystems correspond to strongly con-
nected subgraphs. As subsystems are often geographically
isolated, they cannot be directly affected by the same in-
put. Hence, such network systems may satisfy the SSSI
constraint. Other systems that may exhibit such an input
structure may also be found in social networks, political
networks, influence networks, etc. For example, in po-
litical networks, the source-SCCs may correspond to dif-
ferent parties and the non-source-SCCs to voters without
explicit partisans (non-party members), while the inputs
correspond to the ideologies. It is often the case that dif-
ferent parties are influenced by distinct ideologies, leading
to polarization [27], while the non-party members are more
tolerant of different ideologies. In social networks, the
source-SCCs could represent groups that are separated by
genders, families, countries, or even ideologies, such that
different source-SCCs (serving as the decision groups) may
not be influenced by the same input [28, 1].

Remark 4. To our knowledge, P2 has seldom been con-
sidered before, and no prior work has reported polynomi-
ally solvable conditions for P1, except for the dedicated
input case and the case that G(A) is strongly connected
[29, 16]. As for approximation algorithms, [29] reduced P1

to the minimum set cover problem under the assumption
that B(A) has a perfect matching. A flow-network based
algorithm was proposed in [16] for P1, with the approxi-
mation factor equaling one plus the maximum number of
source-SCCs that an input connects with simultaneously.
When applied to systems satisfying the SSSI constraint,
this algorithm only achieves a 2-approximation factor with-
out optimality guarantee.

5.2. Analysis

This subsection gives the proofs of Theorems 1 and 2.
Our main idea is to prove that, the constraints matrices of
P ILP
1 and P ILP

2 under the SSSI constraint are both TU.

Definition 4 (TU [30]). A matrix M is TU if its every
square submatrix has determinant 0,+1, or −1.

3 When a non-integral optimal solution is found by an LP solver,
an integral optimal solution can always be determined from it by
computing the involved Hermite normal form in Õ(dw) time [25],
where d is the number of decision variables, w < 2.373 is the exponent
of matrix multiplication, and Õ(·) means logarithmic factors in the
O(·) are omitted; see [23, Coro 5.3b, Theo 16.2] for details.
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Figure 2: Illustration of M and M̂ in the proof of Proposition
3.

⊙

denotes a matrix block with entries from {0, 1}. XL, ..., α

(EUX , ..., tm) are the row (column) indices.

Lemma 2 ([31]). For a polyhedron P = {x ∈ R
q : Mx ≤

b}, if M is TU, then P is integral (i.e., every vertex or
extreme point of P is integral) for any integral b.

According to the fundamental theorem of LP, every
optimal solution of an LP (if exists) is either a vertex of
its feasible polyhedron (i.e., feasible region), or lies on a
face of optimal solutions (i.e., being a convex combina-
tion of its vertices that are the optimal solutions) [32].
From Lemma 2, for an LP min{c⊺x|Mx ≤ b, x ∈ R

q} with
M being TU, it always has integral optimal solutions for
any integral b and all rational c whenever the optimum
exists and is finite [31]. It immediately follows that the
ILP min{c⊺x|Mx ≤ b, x ∈ Z

q} with M being TU can be
solved efficiently by simply solving its corresponding LP-
relaxation min{c⊺x|Mx ≤ b, x ∈ R

q}. Particularly, this
implementation has polynomial time complexity for solv-
ing the original ILP (see [23, Theo 16.2] and footnote 3).

Given (A,B), let nE
.
= |EUX ∪ EXX |, nV

.
= |XL ∪

U ∪ XR| = 2n +m. Rewrite EXX ∪ EUX = {e1, ..., enE
}

and XL ∪ U ∪XR = {v1, ..., vnV
}. Associated with (A,B)

we construct two matrices M ∈ {0,±1}(2n+2m+r)×(nE+m)

and M̂ ∈ {0,±1}(2n+2m+r+1)×(nE+m) for P ILP
1 and P ILP

2 ,
respectively as follows:

Mij =































1, if vi ∈ ∂(ej), 1 ≤ i ≤ nV , 1 ≤ j ≤ nE

− wi−nV ,j−nE
, if nV + 1 ≤ i ≤ nV + r, nE + 1 ≤ j ≤ nE +m

1, if nV + r + 1 ≤ i ≤ nV + r +m, ej ∈ Eui−nV −r

− 1, if nV + r + 1 ≤ i ≤ nV + r +m, j = nE + i− nV − r

0, otherwise,
(15)

M̂ =

[
M

α

]

(16)

where ∂(ej) represents the vertices in edge ej , and α
.
=

[01×nE
, 11×m]. It is clear that, in constructing M , the first

item corresponds to constraints (3) and (4) of P ILP
1 , the

second item to constraint (5), while the third and fourth
items to constraint (6) (see (21) for the aggregated equa-
tion of those constraints). In addition, α of M̂ corresponds
to constraint (9).

The following proposition characterizes the TU prop-

erty ofM and M̂ with the SSSI constraint, which is crucial
to our results.

Proposition 3. Suppose (A,B) satisfies the SSSI con-
straint. Then, both matrices M and M̂ are TU.

There are many different characterizations for TU ma-
trices (see [23, Chap 19]). Our proof relies on the following
Ghouila-Houri’s characterization of TU.

Lemma 3. ([23, (iv) of Theorem 19.3]) A p × q inte-
gral matrix A = [aij ] is TU, if and only if each set R ⊆
{1, ..., p} can be divided into two disjoint subsets R1 and
R2 such that

∑

i∈R1

aij −
∑

i∈R2

aij ∈ {−1, 0, 1}, j = 1, ..., q. (17)

Proof of Proposition 3: We first prove the TU
of M . For the ease of description, suppose corresponding
to the respective constraints of P ILP

1 , the rows of M are
indexed by XL, U , XR, w, and u′

1, ..., u
′
m, and columns are

indexed by EUX , EXX , and t1, ..., tm; see Fig. 2 for illus-
tration. We shall prove that every square k × k (k ∈ N+)
submatrix M ′ of M is TU by induction. For the begin-
ning with k = 1, M ′ is certainly TU since each entry
of M is among {0,±1}. Suppose this claim is true for all
(k−1)×(k−1) submatrices (k ≥ 2). Consider an arbitrary
k × k submatrix M ′ of M . If M ′ contains a zero column,
then detM ′ = 0. If M ′ contains a column that has only
one nonzero entry, then detM ′ = ± detM ′′ ∈ {0,±1},
where M ′′ is the submatrix of M ′ after deleting the re-
spective row and column of that nonzero entry. Hence, we
only need to consider the case where each column of M ′

has at least two nonzero entries. This case will be divided
into two subcases, detailed as follows.

Subcase i: M ′ does not contain rows indexed by
u′
1, ..., u

′
m (corresponding to constraint (6)). Since every

column of w = [wij ] contains at most one nonzero entry
with the SSSI constraint, M ′ must consist of rows and
columns indexed by subsets of XL ∪ U ∪ XR and EUX ∪
EXX , respectively. Notice that (XL∪U∪XR, EUX∪EXX)
is bipartite with bipartitions XL and XR ∪ U , and every
column of M ′ contains exactly 2 nonzero entries. We can
always partition the rows of M ′ into two parts R1 and
R2, such that each Ri contains exactly one 1 in each of its
columns. Consequently,

∑

i∈R1
M ′

ij −
∑

i∈R2
M ′

ij = 0 for
each column of M ′. By Lemma 3, M ′ is TU.

Subcase ii: M ′ contains some rows indexed by sub-
sets of {u′

1, ..., u
′
m}. Without harming generality, assume

M ′ contains rows indexed by {u′
1, ..., u

′
q}, 1 ≤ q ≤ m.

Since each column indexed by t1, ..., tm contains at most
two nonzero entries, M ′ must contain rows indexed by
the first q rows of w and columns indexed by {t1, ..., tq}
(as otherwise there exists a column of M ′ that does not
have two nonzero entries). Let us partition rows of M ′

into disjoint sets R1, R2, ..., R5 from the top down, such
that R1 is a subset of XL, R2 is of {u1, ..., uq}, R3 is of
{uq+1, ..., um} ∪ XR, R4 is of the first q rows of w, and
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R5 = {u′
1, ..., u

′
q} (note some sets may be empty). Sup-

pose further in the rows of M ′ indexed by R5 and columns
indexed by EUX ∪EXX , the nonzero columns are indexed
by C5 (thus C5 ⊆ EUX). The remaining columns of M ′

are indexed by C̄5. With those partitions, it can be verified
that for each column j ∈ C5,

∑

i∈R1

M
′
ij +

∑

i∈R2

M
′
ij

︸ ︷︷ ︸

1 or 2

−
∑

i∈R3

M
′
ij

︸ ︷︷ ︸

0

+
∑

i∈R4

M
′
ij

︸ ︷︷ ︸

0

−
∑

i∈R5

M
′
ij

︸ ︷︷ ︸

1

= 0, 1,

(18)

which comes from the fact that M ′
ij = 0, ∀i ∈ R3 ∪ R4,

there is exactly one i ∈ R5 with M ′
ij = 1 (by the defi-

nition of R5 and recalling that each edge of EUX is in-
cident to exactly one vertex of XL and one vertex of U
(or {u′

1, ..., u
′
m})), and that each column of M ′ with rows

indexed by R1 ∪ R2 and column by j has at least one
1 and at most two 1’s. Similarly, for each column j ∈
C̄5 ∩ (EUX ∪ EXX),

∑

i∈R1

M
′
ij

︸ ︷︷ ︸

1

+
∑

i∈R2

M
′
ij

︸ ︷︷ ︸

0

−
∑

i∈R3

M
′
ij

︸ ︷︷ ︸

1

+
∑

i∈R4

M
′
ij

︸ ︷︷ ︸

0

−
∑

i∈R5

M
′
ij

︸ ︷︷ ︸

0

= 0,

(19)
which is due to the fact that, there are exactly two 1’s
in the column of M ′ indexed by j and rows indexed by
R1 ∪R3, and M ′

ij = 0 for i ∈ R2 ∪R4 ∪R5 (note the row
indexed by u′

i with columns indexed by EUX ∪EXX is the
same as the row indexed by ui with columns indexed by
EUX∪EXX , i = 1, ...,m, leading toM ′

ij = 0, ∀i ∈ R2∪R5).

In addition, for each column j ∈ C̄5 ∩ {t1, ..., tp},

∑

i∈R1

M
′
ij

︸ ︷︷ ︸

0

+
∑

i∈R2

M
′
ij

︸ ︷︷ ︸

0

−
∑

i∈R3

M
′
ij

︸ ︷︷ ︸

0

+
∑

i∈R4

M
′
ij

︸ ︷︷ ︸

−1

−
∑

i∈R5

M
′
ij

︸ ︷︷ ︸

−1

= 0,

(20)

which is because in the column of M ′ indexed by j, there
are exactly two −1’s in the rows indexed by R4 ∪R5, and
all the other rows are zeros. By Lemma 3, M ′ is TU.

Hence, by induction, we conclude that M is TU.
We now prove the TU of M̂ . We still do this by

induction. For the beginning, every 1× 1 submatrix of M̂
is certainly TU. Assume that every (k − 1)× (k − 1) sub-
matrix of M̂ is TU (k ≥ 2). Let M̂ ′ be a k × k submatrix
of M̂ . Similar to the above analysis, we only need to show
M̂ ′ is TU subject to the constraint that each of its columns
has at least two nonzero entries. Since we have proven M

is TU, it suffices to show each M̂ ′ that contains elements
from the last row α of M̂ is TU. From the above analysis in
subcase ii, if every column of M̂ ′ indexed by EUX ∪EXX

contains at least two nonzero entries, then there is an as-
signment of signs for rows of M̂ ′ with columns indexed by
subsets of EUX ∪ EXX , such that their sum is a row vec-
tor with entries in {0, 1}, in which the rows indexed by the
subset of {u′

1, ..., u
′
m} (i.e., R5) have sign −1. Moreover,

for the columns of M̂ ′ indexed by a subset of {t1, ..., tm},
let us assign −1’s to the signs of rows corresponding to
subsets of {u′

1, ..., u
′
m} and w, as well as α. Then, the sum

of those signed rows is a vector with entries in {0, 1}. This
is because each entry is the sum of exactly one −1 and at
least one +1 (at most two +1’s). Hence, by Lemma 3, M̂ ′

is TU. By induction, we know M̂ is TU. �

We are now proving Theormes 1 and 2.
Proof of Theorem 1: As analyzed above, it suffices

to prove that the constraint matrix of PLP
1 is TU. To this

end, rewrite the constraints of PLP
1 as







M

−Meq

InE+m

−InE+m







︸ ︷︷ ︸

MLP

[
y

t

]

≤











1nV ×1

−1r×1

0m×1

−1n×1

1(nE+m)×1

0(nE+m)×1











, (21)

where Meq consists of rows of M corresponding to con-
straint (3). Since M is TU from Proposition 3, upon

defining M ′
LP

.
=

[
M

InE+m

]

, M ′
LP is also TU. This is be-

cause, any square submatrix M ′ that contains elements
from the last nE +m rows of M ′

LP must have a determi-
nant ± detM ′′ ∈ {0,±1}, where M ′′ is the submatrix of
M ′ after deleting the respective rows and columns of the
elements in the last nE + m rows of M ′

LP . As MLP is
obtained from M ′

LP by duplicating its rows (with negative
signs), MLP is certainly TU by definition. The required
statement follows directly from the TU of MLP . �

Proof of Theorem 2: Again, it suffices to show that
the constraint matrix of PLP

2 is TU. Since M̂ is TU, this
can be done similarly to the proof of Theorem 1. Details
are omitted due to their similarities. �

5.3. Generalization of SSSI constraint

In this subsection, we extend the SSSI constraint to a
general algebraic condition on the source-SCC-input inci-
dence matrix w, namely, the restricted TU introduced in
this paper, which allows each input to connect with multi-
ple source-SCCs while preserving the polynomial solvabil-
ity.

Definition 5. (Restricted TU) The matrix w ∈ {0, 1}r×m

is said to be restrictedly TU, if

[
w

11×m

]

is TU. Equiv-

alently, each set R ⊆ {1, ..., r} can be divided into two
disjoint subsets R1 and R2, such that

∑

i∈R1

wij −
∑

i∈R2

wij ∈ {0, 1}, j = 1, ...,m. (22)

Remark 5. The equivalence between the two conditions
in Definition 5 results from Lemma 3. Say, for w to be TU,
any sub-rows of w should satisfy (17). For [w⊺, 1m×1]

⊺ to
be TU, any sub-rows of w with the addition of 11×m should
also satisfy (17). This leads to that any sub-rows of w need
to satisfy (22).
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Theorem 3. Suppose (A,B) satisfies Assumption 1 and
the associated w is restrictedly TU. Then, the LP-relaxations
PLP
1 and PLP

2 both have integral optimal solutions. That
is, P1 and P2 then can be solved in polynomial time via
solving the respective PLP

1 and PLP
2 .

Proof: Similar to the proof of Theorems 1 and 2, it
suffices to show that M and M̂ defined in (15) and (16) are
both TU under the restricted TU of w. Again, we achieve
this by showing that every k×k submatrix of M is TU via
induction for k ∈ N+. The beginning case with k = 1 is
certainly true. Now assume the claim holds for some k− 1
(k ≥ 2). Let M ′ be a k × k submatrix of M . Based on
the proof of Proposition 3, it is enough to consider the case
where each column of M ′ contains at least two nonzero en-
tries. Following the analysis in subcase ii, let us change
R4 to the indices indexing the rows of w that are contained
in M ′, and definitions of the remaining R1, R2, R3, R5, C5

and C̄5 remain unchanged. For each column j of M ′ in-
dexed by an element of EUX ∪EXX , it is obvious that the
equalities (18) and (19) hold, since M ′

ij ≡ 0 ∀i ∈ R4. For
each column j ∈ C̄5 ∩ {t1, ..., tm} of M ′, by Definition 5,
R4 can be partitioned into R4 = R41 ∪R42, such that

∑

i∈R41

M ′
ij −

∑

i∈R42

M ′
ij ∈ {0,−1}. (23)

By changing
∑

i∈R4
M ′

ij in (20) to the left-hand side of
(23), we get that the right-hand side of (20) is in {±1, 0}
(−1 could appear because it may happen that M ′

ij = 0
∀i ∈ R5). Consequently, M ′ is TU by Lemma 3. This
leads to the TU of M .

We are to show M̂ is TU. We still resort to induction.
Suppose every (k− 1)× (k− 1) submatrix of M̂ is TU for
some k ≥ 2. To demonstrate the case with k, since M is
TU as proved above, it suffices to prove that every k × k

submatrix of M̂ that contains sub-columns of the last row
α is TU. Denote such a matrix by M̂ ′. Similarly, only the
case that each column of M̂ ′ contains at least two nonzero
entries needs to be considered. For the submatrix of M̂ ′

obtained by removing its last row, let R1, R2, ..., C5, C̄5 be
defined in the same way as in the proof for M under the
restricted TU condition. And by assumption, there is a
partition R4 = R41∪R42 such that (23) holds. We declare

that, for each column j of M̂ ′, it holds

∑

i∈R1

M̂ ′
ij +

∑

i∈R2

M̂ ′
ij −

∑

i∈R3

M̂ ′
ij −

(

∑

i∈R41

M̂ ′
ij −

∑

i∈R42

M̂ ′
ij

)

−
∑

i∈R5

M̂ ′
ij − αj ∈ {0,±1}

.

(24)

Indeed, for each column j of M̂ ′ indexed by an element
of EUX ∪ EXX , (24) holds because of the same reasoning
as (18) and (19), noting αj = 0. And for each column j

of M̂ ′ indexed by a subset of {t1, ..., tm}, due to (23) and
αj = 1, the left-hand side of (24) is the sum of exactly one

−1, and at most two 1’s. Hence, the k × k submatrix M̂ ′

is TU, which indicates M̂ is TU by induction. �

Theorem 3 reveals, although P1 and P2 are NP-hard in
general, provided that the source-SCC-input incidence ma-
trix satisfies certain ‘regularizations’, irrespective of how
each input connects vertices within the same source-SCC
or vertices belonging to (different) non-source SCCs, those
problems can be solved in polynomial time. According to
[23, Theo 20.3], the TU of a given m × n matrix can be
tested in time O((m + n)4m). This means the restricted
TU of w can be verified in time O((r +m)4r). Hence, in
practice, one could first check the restricted TU of w. If
the answer is yes, then the optimal solutions to the asso-
ciated P1 and P2 can be determined efficiently.

TU matrices can be fully characterized using the so-
called network matrices combined with some basic oper-
ations (see [23, Theo 19.6]), which is closely related to
certain graphical structures ([23, Page 276]). This means,
the restricted TU on w may correspond to some graphi-
cal characterizations of the input structure, which is left
for future work. In the following, in addition to the SSSI
constraint (which certainly satisfies the restricted TU con-
dition, since the sum of any sub-rows of w is a row vec-
tor with entries in {0, 1}), we provide some extra easily-
verified scenarios where the restricted TU condition is met
(see Example 1 for illustrations), whose proofs are post-
poned to the appendix:

• Extended SSSI constraint: The r source-SCCs could
be partitioned into l disjoint groups, with their in-
dices being {Ci|li=1}, Ci ⊆ I, and

⋃l

i=1 Ci = I. Each
member in the same group has the same ‘input con-
figuration’, that is, the inputs that connect with each
source-SCC in the same group are the same. Mathe-
matically, for the matrix w defined in Section 4, upon
letting Sik = {j ∈ U : wkj = 1} for each i ∈ {1, ..., l}
and k ∈ Ci, we have Sik1

= Sik2
for any k1, k2 ∈ Ci,

∀i. It is easy to see, the SSSI constraint corresponds
to that |Ci| = 1, i = 1, ..., l. Additionally, the case
that B is a full matrix with all entries being nonzero
also satisfies this constraint, with l = 1, C1 = I, and
S1k = U for each k ∈ I.

• Row-monotone (column-monotone) constraint: We
say a row (column) vector a = (a1, · · · , ap) is non-
decreasing, if a1 ≤ a2 ≤ · · · ≤ ap, and non-increasing
if a1 ≥ a2 ≥ · · · ≥ ap. The source-SCC-input inci-
dence matrix w is said to satisfy the row-monotone
(resp. column-monotone) constraint, if all of its rows
(resp. columns) are either non-increasing or non-
decreasing.

• Permutable row/column-monotone constraint: w is
said to satisfy the permutable row/column-monotone
constraint, if after some row and column permu-
tations, the obtained w satisfies the row/column-
monotone constraint.

Note all the above input constraints allow that, one in-
put can actuate multiple state vertices belonging to differ-
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Figure 3: System digraph G(A,B) (a) and the associated bipartite
graph B(A,B) (b) (borrowed from [16]). Bold blue edges in (b)
constitute a maximum matching of B(A,B).

ent source-SCCs. Further, if w is block-diagonal with each
diagonal block satisfying the (permutable) row/column-
monotone constraints, then w is restrictedly TU.

Example 1. We provide some examples of w that satisfy
the constraints mentioned above. Consider matrices

w1 =









1 1 0 0 0 0
1 1 0 0 0 0
0 0 1 1 1 0
0 0 1 1 1 0
0 0 0 0 0 1









, w2 =





1 1 1 0
1 0 1 0
1 0 0 0



 ,

w3 =





1 1 1 0
0 1 0 0
0 1 1 0



 , w4 =





1 0 0
0 1 0
1 0 1



 .

It is easy to see, w1, w2, and w3 respectively satisfy the ex-
tended SSSI constraint, the column-monotone constraint,
and the permutable column-monotone constraint. After
some row and column permutations, w4 is turned into a
block-diagonal matrix with each diagonal block being row-
monotone. Therefore, they are all restrictedly TU. �

Example 2. Consider the system (A,B) in [16], with the
associated G(A,B) and B(A,B) given respectively in Figs.
3(a) and (b). From Fig. 3(a), G(A,B) contains two source-
SCCs, with their vertex sets being X1 = {x2} and X2 =
{x4}. The corresponding source-SCC-input matrix w is

w =

[
0 1 1
0 0 1

]

.

Since w is row-monotone, it is certainly restrictedly TU.
Indeed, given any positive cost to each input, it turns out
that the PLP

1 and PLP
2 always have an integral optimal

solution t⋆ = [0, 0, 1], implying the optimal solutions to
P1 and P2 of this system are S⋆ = {u3}. �

6. Solutions via LP-relaxation and LP-rounding:
general case

In this section, we discuss solutions to P1 obtained via
the LP-relaxation and LP-rounding methods in the gen-
eral case, i.e., without any restriction on w. Particularly,

we show that LP-relaxation can provide a tighter lower
bound for P1 than the one obtained via the graph-theoretic
method. The LP-rounding method, on the other hand,
provides an upper bound for P1, which possesses provable
approximation guarantee for a special case.

Let c⋆mat be the minimum cost of input vertices that are
matched in a maximum matching of B(A,B). By Lemma
1, c⋆mat, which can be obtained via the weighted maximum
matching algorithms in polynomial time, is a lower bound
for P1. In the following, we show that LP-relaxation can
provide a tighter lower bound for P1 than c⋆mat.

Proposition 4. Suppose (A,B) satisfies Assumption 1.
Let c⋆LP be the optimal value of PLP

1 . Then c⋆LP is a lower
bound of the optimal value of P1 satisfying c⋆LP ≥ c⋆mat.

Proof: It is obvious that c⋆LP is a lower bound for P1

since the integer constraint in P ILP
1 is dropped. Next, it

is shown that c⋆mat is the optimal value of the following
problem

min
y,t

∑m

i=1
citi (PRMA

1 )

s.t. (3), (4), (6), (12), and (13). (25)

Indeed, to minimize
∑m

i=1 citi subject to (6), it must hold
tj =

∑

(u,v)∈Euj
yuv, ∀j ∈ U . Hence, PRMA

1 is equivalent

to

min
y

∑m

i=1
ci
∑

(u,v)∈Eui

yuv (PMAT
1 )

s.t. (3), (4), (12), and (13). (26)

Since the constraint matrix of PMAT
1 is TU (Proposition

3), PMAT
1 has an integral optimal solution which corre-

sponds to the maximum matching of B(A,B) with the
minimum cost for the inputs (notice an integral solution
means at most one edge from an input is involved). Note
the optimum of PRMA

1 is a lower bound for that of PLP
1 as

constraint (5) is removed, proving that c⋆LP ≥ c⋆mat. �

In what follows, we show a simple rounding technique
can find feasible solutions to P1. And, this gives a f -
approximation for P1 under the condition that B(A) has
a perfect matching, with f defined in the following:

f = max
i∈I

∑m

j=1
wij . (27)

In other words, f is the maximum number of inputs that
connect with a source-SCC simultaneously.

Proposition 5. Suppose (A,B) satisfies Assumption 1.
Let (y⋆, t⋆) be an optimal solution to PLP

1 . Then, Sint =
{ui : t

⋆
i > 0, i ∈ U} is a feasible solution to P1. Moreover,

if B(A) has a perfect matching, then Sint gives a factor
f -approximation for P1.

Proof: We first prove Sint is feasible for P1. Let t′

be obtained by setting t′i = 1 if t⋆i > 0 and otherwise
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t′i = 0. It is then obvious that constraint (5) is met for
t′. Moreover, y⋆ is a feasible point of the region subject
to the constraints (3), (4), (6), (12), and (13), where tj in
(6) should be replaced with t′j for each j ∈ U (denote this
region byR). According to Proposition 3, we know readily
that the constraint matrix of R is TU. Since R contains a
feasible point y⋆, it must contain integral extreme points
for the variable y, and denote one of them by y′. Then,
(y′, t′) is a feasible integral solution to PLP

1 . It yields that
Sint is feasible for P1.

We now prove the second claim using the primal-dual
argument. Since B(A) has a perfect matching, t⋆ must
also be the optimal solution to the following problem

min
t

∑m

i=1
citi (PLP′

1 )

s.t.
∑m

j=1
wijtj ≥ 1, ∀i ∈ I (28)

ti ≥ 0, ∀i ∈ U . (29)

Indeed, if this is not true, then one can always find an
optimal solution to PLP′

1 , which is feasible for PLP
1 as con-

straints (3), (4), and (6) are met with
∑

(u,v)∈Euj
yuv = 0,

∀j ∈ U , by the existence of a perfect matching of B(A).
On the other hand, any optimal solution to PLP′

1 gives a
lower bound for the objective value of PLP

1 .
Denote the optimal objective value of P1 by copt. Then

clearly
∑m

j=1 cjt
⋆
j ≤ copt. The dual LP of PLP′

1 is

max
z

∑r

i=1
zi (PLPD

1 )

s.t.
∑r

i=1
wijzi ≤ cj , ∀j ∈ U (30)

zi ≥ 0, ∀i ∈ I. (31)

Let z⋆ be an optimal solution to PLPD
1 . By the strong

duality of LP (see [32, Chap 5.2.3]), we have

∑m

j=1
cjt

⋆
j =

∑r

i=1
z⋆i .

The primal complementary slackness condition (see [32,
Chap 5.5]) yields

whenever t⋆j 6= 0 ⇒
∑r

i=1
wijz

⋆
i = cj .

Hence, we obtain

∑m

j=1
cjt

′
j =

∑

j:t⋆
j
6=0

cj =
∑

j:t⋆
j
6=0

(
∑r

i=1
wijz

⋆
i )

=
∑r

i=1

∑

j:t⋆
j
6=0

wijz
⋆
i ≤

∑r

i=1

∑m

j=1
wijz

⋆
i

≤
∑r

i=1
fz

⋆
i = f

∑m

j=1
cjt

⋆
j

≤ f ∗ copt,

where the last second inequality is due to (27), and the
last equality to the strong duality. This ends the proof. �

Remark 6. Proposition 5 indicates we can simply pick
all the nonzero entries in an optimal solution to PLP

1 to
get a feasible solution to P1. It is worth mentioning that
a feasible solution can also be obtained via some graph-
theoretic algorithms. Currently, we are not able to give an
approximation bound for this LP-rounding based algorithm
without the perfect matching condition. Combining Propo-
sitions 4 and 5 yields a lower and an upper bound for P1

(recalling the lower bound is exact if w is restrictedly TU).

7. Switched system case

In this section, we extend results in the previous sec-
tions to the switched systems, focusing on the polynomi-
ally solvable conditions of P4 and P5. First, ILP formu-
lations of P4 and P5 are given. Then, a joint SSSI con-
straint is proposed, under which it is shown P4 and P5

can be solved by the corresponding LP-relaxations. The
restricted TU condition is also extended. Problems of se-
lecting fixed inputs during the switching to achieve struc-
tural controllability are finally addressed and shown to be
polynomially sovlable under the restricted TU condition.

For a structured matrix M1 ∈ {0, ∗}n1×n2 , its generic
rank, denoted as grank(M1), is defined to be the maxi-
mum rank it can achieve as a function of its free param-
eters. For two structured matrices M1,M2 ∈ {0, ∗}n1×n2 ,
M3 = M1 ∨ M2 is a n1 × n2 structured matrix satis-
fying M3,ij = ∗ if M1,ij = ∗ or M2,ij = ∗, otherwise

M3,ij = 0. Define Â = A1∨· · ·∨Ap, and B̂ = [B1, · · · , Bp].

Let G(Â) = (X,E
Â
) and G(Â, B̂) = (X ∪ Û , E

Â
∪ E

B̂
)

be defined in the same way as in Section 3, i.e., X =
{x1, ..., xn}, Û = {u11, ..., u1m1

, ..., up1, ..., upmp
}, E

Â
=

{(xj , xi) : Âij 6= 0}, and E
B̂

= {(uki, xj) : Bk,ji 6= 0}.
With these notations, the following lemma characterizes
the structural controllability of the switched system (2).

Lemma 4. [21] For system (2), (Aσ(·), Bσ(·)) is struc-
turally controllable, if and only if
i) grank([A1, · · · , Ap, B1, · · · , Bp]) = n, and ii) every state

vertex of X in G(Â, B̂) is input-reachable.

Decompose G(Â) into SCCs, and suppose there are r̂

source-SCCs, and let Î = {1, ..., r̂} be their indices. For
the kth mode, 1 ≤ k ≤ p, the source-SCC-input incidence
matrix wk ∈ {0, 1}r̂×mk is defined as wk

ij = 1 if ukj con-

nects with the ith source-SCC, otherwise wk
ij = 0. Fur-

thermore, let Â′ = [A1, ..., Ap]. Associated with [Â′, B̂],

define the bipartite graph B(Â′, B̂) = (X, X̂ ∪ Û , E
X̂X ∪

E
ÛX

), where the vertex set X̂ = {x11, ..., x1n, ..., xp1, ..., xpn},
E

X̂X
= {(xkj , xi) : Ak,ij 6= 0, k = 1, ..., p}, and E

ÛX
=

{(uki,xj
) : Bk,ji 6= 0, k = 1, ..., p}. Let Euki

⊆ E
ÛX be the

set of edges incident to uki in B(Â′, B̂). By the relation be-
tween generic rank and the bipartite matching ([33, Prop
2.1.12]), it is readily known that condition i) of Lemma
4 is satisfied, if and only if B(Â′, B̂) has a matching with
size n.
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Similar to Section 4, introduce binary variables t =
{tki : k = 1, ..., p, i = 1, ...,mk} and y = {yuv : (u, v) ∈
E

X̂X
∪ E

ÛX
}, and we can formulate P4 and P5 as equiv-

alent ILPs.

Proposition 6. Suppose (Aσ(·), Bσ(·)) is structurally con-
trollable. Problems P4 and P5 are equivalent to the follow-
ing ILPs P ILP

4 and P ILP
5 , respectively, in the sense that,

if (y⋆, t⋆) is an optimal solution to the corresponding ILP
P ILP
j (j = 4, 5), then S⋆ = {uki : t

⋆
ki = 1, 1 ≤ k ≤ p, 1 ≤

i ≤ mk} is the optimal solution to the corresponding Pj.

min
y,t

∑p

k=1

∑mk

i=1
ckitki (P ILP

4 )

s.t.
∑

u:(u,v)∈E
X̂X

∪E
ÛX

yuv = 1, ∀v ∈ X (32)

∑

v:(u,v)∈E
X̂X

∪E
ÛX

yuv ≤ 1, ∀u ∈ X̂ ∪ Û (33)

∑p

k=1

∑mk

j=1
wk

ijtkj ≥ 1, ∀i ∈ Î (34)

tki ≥
∑

(u,v)∈Euki

yuv, ∀k = 1, ..., p, i = 1, ...,mk

(35)

yuv ∈ {0, 1}, ∀(u, v) ∈ E
X̂X

∪E
ÛX

(36)

tki ∈ {0, 1}, ∀k = 1, ..., p, i = 1, ...,mk. (37)

min
y,t

∑p

k=1

∑mk

i=1
ckitki (P ILP

5 )

s.t. (32), (33), (34), (35), (36), and (37) (38)
∑p

i=1

∑mi

j=1
tij ≤ k (39)

Proof: Similar to the proof of Proposition 2, con-
straints (32), (33) and (36) ensure that there is a maxi-
mum matching that matches X in B(Â′, B̂). This means
condition i) of Lemma 4 is met. Constraints (34) and (37)
ensure that each source-SCC of G(Â) is input-reachable.
Furthermore, constraint (35) indicates that the input uki

is selected if any edge of Euki
is contained in the maximum

matching of B(Â′, B̂) associated with constraints (32), (33)
and (36). Hence, both conditions of Lemma 4 are satisfied
with the constraints (32)-(37). Additionally, constraint
(39) yields that the cardinality constraint is met. Opti-
mizing the objective functions of P ILP

4 and P ILP
5 certainly

leads to the optimal solutions to P4 and P5. �

It is easy to see that, upon letting k =
∑p

i=1 mi, con-
straint (39) will become redundant and P ILP

5 reduces to
P ILP
4 , indicating P4 is a special case of P5. As such, in

what follows, we will focus on P5, and the obtained re-
sults are directly applied to P4.

Definition 6 (Joint SSSI constraint). For (Aσ(·), Bσ(·))

in (2), it satisfies the joint SSSI constraint, if (Â, B̂) sat-
isfies the SSSI constraint.

Notably, the joint SSSI constraint does not require each
subsystem (Ai, Bi) (i = 1, ..., p) to satisfy the SSSI con-

straint (see Example 4). This is because two vertices be-
longing to the same source-SCC in G(Â) may come from
different source-SCCs in G(Ai). On the other hand, if each
subsystem (Ai, Bi) satisfies the SSSI constraint, (Â, B̂)
will automatically satisfy the joint SSSI constraint, since
the source-SCCs of G(Â) must consist of unions of source-
SCCs of G(Ai).

Theorem 4. Suppose (Aσ(·), Bσ(·)) is structurally control-
lable and satisfies the joint SSSI constraint. If P5 is feasi-
ble, then the following LP-relaxation PLP

5 of P ILP
5 always

has an integral optimal solution corresponding to the opti-
mal solution to P5.

min
y,t

∑p

k=1

∑mk

i=1
ckitki (PLP

5 )

s.t. (32), (33), (34), (35), and (39) (40)

0 ≤ yuv ≤ 1, ∀(u, v) ∈ E
X̂X

∪ E
ÛX

(41)

0 ≤ tki ≤ 1, ∀k = 1, ..., p, i = 1, ...,mk. (42)

Consequently, P5 (as well as P4) is polynomially solvable
with the joint SSSI constraint.

To prove Theorem 4, as we have argued in Section 5, it
suffices to demonstrate that the constraint matrix of PLP

5

is TU. To this end, associated with (Â′, B̂), let matrix
M̃ ∈ {0,±1}((p+1)n+2

∑p

i=1
mi+r̂+1)×(n

Ê
+
∑p

i=1
mi) be con-

structed in the same way as (16), in which EXX ∪EUX is
replaced with E

X̂X ∪E
ÛX , XL ∪U ∪XR with X ∪ X̂ ∪ Û ,

w with [w1, ..., wp], and α with [01×n
Ê
, 11×

∑p

i=1
mi

], where
n
Ê

= |E
X̂X

∪ E
ÛX

|. We have the following proposition,
which yields Theorem 4.

Proposition 7. If (Aσ(·), Bσ(·)) satisfies the joint SSSI

constraint, then the above constructed M̃ is TU.

Proof: Note that [w1, ..., wp] has the same structure
as w under the joint SSSI constraint (i.e., each column has
at most one nonzero entry 1). Hence, similar reasoning to
the proof of Proposition 3 yields that M̃ is TU. �

Following the spirit of Proposition 7 and Theorem 3,
we have the following corollary to generalize Theorem 4.

Corollary 1. If [w1, ..., wp] satisfies the restricted TU con-
dition, then both P4 and P5 can be solved in polynomial
time via solving the respective LP relaxations of P ILP

4 and
P ILP
5 .

Remark 7. Remarkably, the restricted TU of [w1, ..., wp]
does not imply that, for each mode, the source-SCC-input
incidence matrix associated with (Ai, Bi) is restrictedly TU
(although wi should be so for each i), nor the reverse, the
latter of which is distinct from the joint SSSI constraint.

Finally, consider a switched system where the input
structure is fixed during the switching, i.e., B̃σ(·) in (2) is

replaced with a time-invariant B̃. In other words, B̃1 =
· · · = B̃p = B̃, recalling p is the number of switching
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Figure 4: System digraph of (A,B) in Section 8. Dotted red edges
represent the input links, with the numbers in blue near each input
vertex being its cost.

modes. Such a scenario may occur, for example, in net-
worked systems with switching topologies but fixed inputs
[34]. Denote the associated structured system of (Ãσ(·), B̃)
by (Aσ(·), B). Corresponding to P4 and P5, we consider
two input selection problems for (Aσ(·), B), that is, select-
ing the minimum cost of inputs B(J ), and selecting the
minimum cost of inputs B(J ) with a cardinality upper
bound on |J |, both to achieve structural controllability
of (Aσ(·), B(J )), J ⊆ {1, ...,m}. Denote these problems
as Pfix

4 and Pfix
5 , respectively. The following corollary re-

veals, Pfix
4 and Pfix

5 can be solved in polynomial time pro-
vided the source-SCC-input incidence matrix of (Â, B) is
restrictedly TU, with Â defined above.

Corollary 2. If the source-SCC-input incidence matrix of
(Â, B) is restrictedly TU, then Pfix

4 and Pfix
5 can be solved

in polynomial time.

Proof: According to [20], (Ãσ(·), B̃σ(·)) is controllable,

if and only if the controllability matrix C(Ãσ(·), B̃σ(·)) de-
fined as follows has full row rank:

C(Ãσ(·), B̃σ(·)) = [B̃1, ..., B̃p, Ã1B̃1, ..., ÃpB̃1, ..., ÃpB̃p,

Ã2
1B̃1, ..., ÃpÃ1B̃1, ..., Ã

2
1B̃p, ..., ÃpÃ1B̃p, .., Ã

n−1
1 B̃1, ...,

ÃpÃ
n−2
1 B̃1, ..., Ã1Ã

n−2
p B̃p, ..., Ã

n−1
p B̃p].

Under the condition that B̃1 = · · · = B̃p = B̃, upon defin-
ing {B̃′

σ(·)} as B̃′
1 = B̃, B̃′

2 = · · · = B̃′
p = 0n×m, it is

easy to see that rankC(Ãσ(·), B̃σ(·)) = rankC(Ãσ(·), B̃
′
σ(·)).

Hence, Pfix
4 and Pfix

5 can reduce to P4 and P5 with the
newly defined {B̃′

σ(·)}. The proposed statement then fol-
lows directly from Corollary 1. �

8. Illustrative examples

We provide two examples here to illustrate the effec-
tiveness of the proposed methods.

Example 3. Consider system (A,B) with its system di-
graph G(A,B) given in Fig. 4, which has 6 inputs, 10
states, and 26 edges. The cost of inputs is c = [c1, ..., c6] =
[10, 1, 1, 10, 1, 1]. This system contains two source-SCCs,

Figure 5: System digraphs G(A1, B1) (a) and G(A2, B2) (b) of the
two subsystems of the switched system in Example 4.

with X1 = {x1, x2, x3} and X2 = {x4, x5, x6}. Hence,
r = 2,m = 6. As no inputs connect with X1 and X2 simul-
taneously, the SSSI constraint is met. The corresponding
matrix

w =

[
1 1 0 0 0 0
0 0 1 1 0 0

]

.

Construct LPs PLP
1 and PLP

2 with decision variables (y, t),
y ∈ R

26 and t ∈ R
6.

Using the Matlab LP solver linprog to solve the LP
PLP
1 associated with this system, we obtain t⋆ = [0, 1, 1, 0, 1, 1],

implying the optimum
∑6

i=1 cit
⋆
i = 4. This means the

optimal solution is S⋆ = {u2, u3, u5, u6}, and the corre-
sponding minimum cost is 4. Remarkably, this result is
consistent with the one obtained via the LP-rounding.

Next, we solve the LP PLP
2 with k = 3 to obtain the

integral optimal solution (see footnote 3 on how to obtain
the integral solution from a fractional one). And we ob-

tain t⋆ = [0, 1, 0, 1, 1, 0], with the optimum
∑6

i=1 cit
⋆
i = 12.

This means the optimal solution with a cardinality upper
bound 3 is S⋆ = {u2, u4, u5}, and the corresponding cost is
12. Finally, we set c = [1, 1, 1, 1, 1, 1] and then P1 reduces
to determining the minimum number of inputs to achieve
structural controllability. We obtain t⋆i = 1 for i = 1, 4
and t⋆i = 0 otherwise. Hence, the minimum number of
inputs for structural controllability is 2, with the optimal
solution S⋆ = {u1, u4}. If we consider the original input
cost c = [10, 1, 1, 10, 1, 1], this solution has cost 20, which
can also be obtained by setting k = 2 in P2. �

Example 4. Consider a switched system (Aσ(·), Bσ(·)) with
two switching modes. The system digraphs of subsystems
(A1, B1) and (A2, B2) are given in Figs. 5(a) and (b),
which implies m1 = m2 = 3. Let the cost of inputs be
c = [c1, ..., c6] = [10, 1, 1, 10, 1, 1] (i.e., the same as in Ex-
ample 3). On the one hand, for subsystem (A1, B1), u2

connects with the source-SCCs {x1, x2, x3} and {x9}, while
for subsystem (A2, B2), u4 connects with the source-SCCs
{x4, x5, x6} and {x10} simultaneously. This indicates each
subsystem does not satisfy the SSSI constraint. On the
other hand, it is easy to check that the system digraph
of the corresponding (Â, B̂) is exactly Fig. 4. Therefore,
the whole system (Aσ(·), Bσ(·)) satisfies the joint SSSI con-
straint. By Theorem 4, we could adopt the LP-relaxations

13



to solve P4 and P5 associated with this system.
To this end, let us build PLP

5 with k = 3. Solving
PLP
5 yields t⋆ = [0, 1, 1, 0, 1, 0] with the corresponding cost

∑6
i=1 cit

⋆
i = 3. Hence, this minimum cost switched in-

put selection with no more than 3 inputs is that, selecting
{u2, u3} for subsystem (A1, B1) and {u5} for subsystem
(A2, B2). If we set k = 2, then solving PLP

5 returns the

solution t⋆ = [0, 1, 0, 1, 0, 0], with the cost
∑6

i=1 cit
⋆
i = 11.

This implies, selecting {u2} for subsystem (A1, B1) and
{u4} for subsystem (A2, B2) incurs the minimum cost 11
with no more than 2 inputs. �

Comparing Examples 3 and 4, we find: 1) both for a
fixed (non-switched) and a switched system, with a bigger
cardinality upper bound, the cost of the obtained solution
tends to be smaller. This highlights the significance of the
cardinality-constrained minimum cost input selections P2

and P5; 2) even though the ‘union’ of subsystems (i.e.,
(Â, B̂)) of the switched system is the same as the fixed
system, the former tends to have smaller input costs for
achieving structural controllability under the same cardi-
nality constraint. This is consistent with the fact that
switched systems are often more efficient (in terms of the
number of inputs, control energy, etc.) to be controlled
than the non-switched ones [35].

9. Conclusions

In this paper, we explore polynomially solvable con-
ditions for the (cardinality-constrained) minimum cost in-
put selection problems both for non-switched and switched
structured systems. Though the NP-hardness in general,
we reveal that if the input structure satisfies certain reg-
ulations, characterized by the restricted TU of the input-
source-SCC incidence matrix, irrespective of the connec-
tions between each input and the states within the same
source-SCC or from the non-source-SCCs, those problems
are polynomially solvable via solving the corresponding
LP-relaxations. A particular case is the SSSI constraint,
which often emerges in some practical systems, and has
been extended to the switched systems, resulting in the
joint SSSI constraint. In the general case, we obtain some
lower and upper bounds for the considered problems via
LP-relaxation and LP-rounding. It is still unclear how to
solve those problems using graph-theoretic algorithms un-
der the addressed conditions, which could be the future
work, perhaps with the help of the LP primal-dual algo-
rithms [30].

Appendix: Proof of restricted TU

Proof of the extended SSSI constraint: Under
this constraint, w is a block-diagonal matrix. It suffices to
show that every nonzero diagonal block of w, which is a
matrix with all entries being 1, denoted as 1r′×m′ , is re-
strictedly TU. Since every square submatrix of 1(r′+1)×m′

has a determinant being either 0 (if the dimension is greater
than 1) or 1 (if the dimension is 1), 1r′×m′ is restrictedly
TU by definition.

Proof of the row-monotone and column-monotone
constraints: First, we show for any p ∈ N+, the following
matrix is restrictedly TU:

Wp =








1 1 · · · 1
0 1 · · · 1
...

...
. . .

...
0 0 · · · 1







∈ {0, 1}p×p.

Since Wp contains a row 11×p, it suffices to show Wp is
TU. Consider any square submatrix W ′ of Wp. As Wp is
row-monotone and column-monotone, so isW ′. Hence, W ′

either contains a zero column or two identical columns, or
is upper triangular with all diagonal entries being 1. This
means, detW ′ ∈ {0, 1}, proving that Wp is TU. Conse-
quently, any sub-matrix of Wp is restrictedly TU by def-
inition. Now consider a row-monotone w ∈ {0, 1}r×m. If
all rows of w are non-decreasing, then each row must be
a row of Wm. Remove all the repeated rows from w and
do some row permutations on the resulted matrix, and we
can obtain a matrix w′ that is a sub-matrix of Wm. Note
as proved, w′ is restrictedly TU. Since row (as well as col-
umn permutations) will not change the absolute value of
determinants, and removing repeated rows will not affect
the property of being restrictedly TU (by definition), it
turns out that w is restrictedly TU. The case that all rows
of w are non-increasing follows a similar way, and so does
the case that w is column-monotone.

Proof of the permutable row/column-monotone
constraint: Since row and column permutations will not
change the absolute value of determinants, the restricted
TU follows directly from the fact that row (column)-monotone
w is restrictedly TU.
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