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Data-driven verification and synthesis of stochastic systems via

barrier certificates

Ali Salamati, Abolfazl Lavaei, Sadegh Soudjani, and Majid Zamani

Abstract In this work, we study verification and synthesis problems for safety specifications over unknown discrete-

time stochastic systems. When a model of the system is available, barrier certificates have been successfully applied

for ensuring the satisfaction of safety specifications. In this work, we formulate the computation of barrier certificates

as a robust convex program (RCP). Solving the acquired RCP is hard in general because the model of the system

that appears in one of the constraints of the RCP is unknown. We propose a data-driven approach that replaces the

uncountable number of constraints in the RCP with a finite number of constraints by taking finitely many random

samples from the trajectories of the system. We thus replace the original RCP with a scenario convex program (SCP)

and show how to relate their optimizers. We guarantee that the solution of the SCP is a solution of the RCP with a priori

guaranteed confidence when the number of samples is larger than a specific value. This provides a lower bound on the

safety probability of the original unknown system together with a controller in the case of synthesis. We also discuss

an extension of our verification approach to a case where the associated robust program is non-convex and show how

a similar methodology can be applied. Finally, the applicability of our proposed approach is illustrated through three

case studies.
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1 Introduction

Ensuring safety and temporal requirements on cyber-physical systems is becoming more important in many applications

including self-driving cars, power grids, traffic networks, and integrated medical devices. Complex requirements for

such real-life practical systems can be expressed as linear temporal logic formulae [23]. Model-based approaches for

satisfying such requirements have been studied extensively in the literature [14, 4, 44, 5]. In the setting of formal

approaches for stochastic systems, a number of abstraction-based methods has been developed for the verification

and synthesis of dynamical systems in order to either verify the desired specifications or synthesize controllers

enforcing these systems to satisfy such specifications [25, 26, 42, 52]. In order to improve scalability of abstraction-

based methods, some other techniques such as sequential gridding [38, 40], discretization-free abstraction [53], and

compositional abstraction-based techniques [39] have been introduced in the literature in order to efficiently deal with

the verification and synthesis problems.

An approach for formal verification and synthesis with respect to safety specifications in dynamical systems is to use

a notion of barrier certificates [31]. Barrier certificates have been the focus of the recent literature as an abstraction-free

technique that is scalable with the dimension of the system, i.e., they do not require construction of an abstraction

of the system and can provide directly the controller together with the guarantee on the satisfaction of the safety

specification [54], [50], [7]. A barrier-based methodology is introduced in [31] in order to verify safety in deterministic

hybrid systems. In [32], a framework is proposed for safety verification of stochastic systems using barrier certificates

which is extended to stochastic hybrid systems. The authors in [46] present barrier certificates that ensure collision-free

behaviors in multi-robot systems by minimizing the difference between the actual and the nominal controllers subject

to safety constraints. In [37], a compositional analysis is proposed for verifying the safety of an interconnection of

subsystems using barrier certificates. The results in [20] uses barrier certificates for the synthesis of controllers against

complex requirements expressed as co-safe linear temporal logic formulas.

The common requirement of the approaches mentioned above is the fact that they need a mathematical model of

the system. However, a precise model of dynamical systems is either not available in many application scenarios or

too complex to be of any use. Therefore, there is a need to develop approaches which are capable of verifying or

synthesizing controllers against safety specifications only based on collected data from the system.

Related Literature. Data-driven methods have gained significant attentions recently for formally verifying some

desired specifications. A data-enabled predictive control is introduced in [10] that utilizes noisy data of the system

and produces optimal control inputs ensuring the satisfaction of desired chance constraints with high probability. A

data-driven model predictive control scheme is proposed in [6] which only requires initially measured input-output

trajectories together with an upper bound on the dimension of the unknown system. In [45], a methodology is developed

in order to make a single-input single-output system stable only based on data. The stability problem of black-box linear
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switching systems with desired confidences is investigated in [22] based on collected data. This approach is extended in

[47] by providing a methodology for computing the invariant sets of discrete-time black-box systems. A novel Bayes-

adaptive planning algorithm for data-efficient verification of uncertain Markov decision processes is introduced in

[48]. A framework is proposed in [35] to provide a formal guarantee on data-driven model identification and controller

synthesis. In [36], a methodology is developed for providing a probabilistic confidence over the verification of signal

temporal logic properties for partially unknown stochastic systems based on collected data. The authors in [30] propose

a framework to learn a decision tree as a model for a black box continuous system.

The work in [11] develops a method to synthesize robust feedback controllers with safety and stability guarantees. In

[34], a data-driven approach is proposed in order to synthesize controllers for deterministic hybrid systems using barrier

certificates while providing a correctness guarantee on the obtained barrier certificate. A data-driven, model-based

approach is developed in [1] to provide stability guarantees using Satisfiability Modulo Theories (SMT). The authors

in [29] developed a data-driven technique to synthesize controllers for unknown deterministic systems. The framework

developed in [9] computes barrier certificates for complete- and incomplete-information systems affected by Gaussian

process and measurement noises under unbounded inputs.

An optimization-based approach is proposed in [33] to learn a control barrier certificate through safe trajectories

under suitable Lipschitz smoothness assumption on the dynamical system. A sub-linear algorithm is developed in [17]

for the barrier-based data-driven model validation of dynamical systems which computes the barrier function using

a large dataset of trajectories. In [19], a two-step procedure is proposed to synthesize a controller for an unknown

nonlinear system, where the first step is to learn a Gaussian process as a replacement of the unknown dynamics, and

the second step is to construct the control barrier function for the learned dynamics.

A data-driven optimization called scenario convex program (SCP) is introduced in [8] to solve robust convex

optimizations. This approach replaces the infinite number of constraints in the robust optimization with a finite number

of constrained by sampling the uncertain variables from their distributions. The approach relates the feasibility of the

SCP to that of the robust optimization while providing bounds on the probability of violating the constraints. The

results in [21] studies the same approach and relates worst-case violation of the constraints to the probability of their

violation. While [8, 21] focus on feasibility, the authors in [13] establish a quantitative relation between the optimal

value of the robust optimization and its associated SCP.

The results of [13] are employed in [28] for data-driven verification of dynamical systems using some inequalities

characterizing barrier certificates. Our results presented here differ from the ones in [28] in three main directions.

First, our approach is developed for stochastic dynamical systems subject to random disturbances with unknown

distributions, while the work in [28] is restricted to deterministic systems. Second, our approach also tackles controller

synthesis problems, while [28] only deals with the verification ones. Last but not least, we study a class of non-convex
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optimization problems that makes our approach applicable to larger classes of systems, while the result in [28] is

restricted to only convex problems.

Contributions. Here, we propose formal verification and synthesis procedures for unknown stochastic systems with

respect to safety specifications based on collected data. We first cast a barrier-based safety problem as a robust convex

program (RCP). Solving the obtained RCP is hard in general because the unknown model of the system appears in the

constraints. To tackle this issue, we resort to a scenario-driven approach by collecting samples from the system. Using

the results in [13], we connect the optimal solution of the acquired scenario convex program (SCP) with that of the

original RCP. We provide a lower bound on the safety probability of the unknown stochastic system using a certain

number of data which is related to the desired confidence. We extend this result to provide a new confidence bound

for a class of non-convex barrier-based safety problems. We conclude the paper by three case studies to illustrate the

applicability of our approach.

Outline. The structure of this paper is as follows. Section 2 gives the system definition and the problemstatement, and

presents the safety verification of stochastic systems using barrier certificates. In Section 3, we introduce the scenario

convex program for the barrier-based safety problem and we connect its optimizer to that of the original optimization.

Our approach for the safety verification of the unknown stochastic system is presented in Section 4. In Section 5,

we explain our data-driven synthesis approach which enforces the safety specification with a certain confidence. An

extension of the verification problem for a class of non-convex safety problems is discussed in Section 6. To illustrate

the effectiveness of our approach, three case studies are presented in Section 7. Finally, Section 8 concludes the paper.

2 Preliminaries and Problem Statement

2.1 Notations and Preliminaries

The set of positive integers, non-negative integers, real numbers, non-negative real numbers, and positive real numbers

are denoted by N := {1, 2, 3, . . .}, N0 := {0, 1, 2, . . .}, R, R+
0
, and R+, respectively. We denote the indicator function

of a set A ⊆ - by 1A : - → {0, 1}, where 1A (G) is 1 if G ∈ A , and 0 otherwise. Notation 1< is used to indicate

a column vector of ones in R<×1. We denote by ‖G‖ the Euclidean norm of any G ∈ R=. We also denote the induced

norm of any matrix � ∈ R<×= by ‖�‖ = supG≠0 ‖�G‖/‖G‖. Given # vectors G8 ∈ R=8 , =8 ∈ N, and 8 ∈ {1, . . . , #}, we

use [G1; . . . ; G# ] and [G1, . . . , G# ] to denote the corresponding column and row vectors, respectively, with dimension

∑
8 =8 . The absolute value of a real number G is denoted by |G |. For a function 5 : - → . , we denote its inverse

by 5 −1 : . → - , whenever exists. A regularized incomplete beta function for parameters (I; 0, 1) is defined as
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I(I; 0, 1) =
∫ I

0
D0−1 (1−D)1−13D

∫ 1

0
D0−1 (1−D)1−13D

. If a system, denoted by S, satisfies a property Ψ during a time horizon H , it is denoted

by S |=H Ψ. We also use |= in this paper to show the feasibility of a solution for an optimization problem.

The sample space of random variables is denoted by Ω. The Borel f-algebras on a set - is denoted by B(-).

The measurable space on - is denoted by (-,B(-)). We have two probability spaces in this work. The first one

is represented by (-,B(-),P) which is the probability space defined over the state set - with P as a probability

measure. The second one, (+|,B(+|),P|), defines the probability space over +| for the random variable | affecting

the stochastic system with P| as its probability measure. With a slight abuse of the notation, we use the same P and P|

when the product measures are needed in the formulations. Considering a random variable I, Var(I) := E(I2)− (E(I))2

denotes its variance with E being the expectation operator.

2.2 System Definition

In this work, we first deal with (potentially) unknown discrete-time continuous-space stochastic dynamical systems as

formalized next.

Definition 1 A discrete-time stochastic system (dt-SS) is a tuple S = (-,+|, |, 5 ), where the Borel set - ⊂ R= is

the state set of the system, the Borel set +| is the uncertainty space, | := {|(C) : Ω → +|, C ∈ N0} is a sequence

of independent and identically distributed (i.i.d.) random variables on the Borel space +| with some distribution P|,

and the map 5 : - × +| → - is a measurable function that characterizes the state evolution of the system. The state

trajectory of the system is constructed according to

S : G(C + 1) = 5 (G(C), |(C)), C ∈ N0. (1)

We denote a finite trajectory of the system by b (C) := G(0)G(1) . . . G(C), C ∈ N0.

In this work, we assume that the map 5 and the distribution of the uncertainty P| are unknown. Instead, we

assume we can collect # independent and identically distributed state pairs (G8 , G+8 ) by initializing the system at G8 and

observing its next state as G+8 = 5 (G8 , |8) for some random sample |8 . The collected dataset is denoted by

D :=
{
(G8 , G+8 )

}
⊂ -2, 8 ∈ {1, · · · , #}. (2)
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2.3 Problem Statement

Definition 2 Given a set of initial states -8= ⊂ - , a set of unsafe states -D ⊂ - , and a finite time horizon H ∈ N0,

the system S is called safe if all trajectories of S that start from -8= never reach -D within horizon H . We denote this

safety property by Ψ and its satisfaction by S is written as S |=H Ψ. A state set - containing the initial and unsafe sets

is illustrated in Fig. 1.

XuXin

X

Fig. 1 A set - containing initial and unsafe sets -8= and -D. The blue dashed line illustrates a safe trajectory of the system, whereas the

yellow one demonstrates an unsafe trajectory.

Since the system is stochastic and we do not know the distribution of | and the map 5 , we are interested in

establishing a lower bound on the probability that the safety property Ψ is satisfied by the trajectories of S while using

only a dataset of the form (2). Now, we state the main problem we are interested to solve here.

Problem 1 Consider an unknown dt-SS S as in Definition 1. Provide a lower bound (1− d) ∈ [0, 1] on the probability

of satisfying Ψ, i.e.,

P|

(
S |=H Ψ

)
≥ 1 − d,

together with a confidence (1 − V) ∈ [0, 1] using only a dataset D of the form (2). Moreover, establish a connection

between the required size of dataset D and the desired confidence 1 − V.

Therefore, we are interested in finding a potentially tight lower bound. The confidence 1 − V in the statement of the

problem is with respect to the probability distribution of the dataset D and is seen from the frequentist interpretation

of probability: any algorithm that solves this problem collects dataset D using a probability distribution; while running

the algorithm multiple times with different datasets D, the algorithm gives wrong results (incorrect lower bound on

the safety probability) in at most V portion of the algorithm runs.
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Fig. 2 shows an overview of our approach. The block on the left represents a stochastic safety problem. The RCP

block reformulates the safety problem as a robust optimization problem. Blocks SCP# and SCP#,#̂ solve the optimization

problem introduced by the RCP block using finite number of samples. Finally, Theorem 5 connects SCP’s solutions to

the original safety problem.

RCP SCPN SCPN,N̂

Probabilistic Confidence

Eq. (III.1) Eq. (III.3) Eq. (III.4)

Theorem 4.2

Safety Problem

Theorem (2.5)

Fig. 2 This figure shows an overview of the proposed scenario approach for verification of the safety specification.

2.4 Safety Verification via Barrier Certificates

Definition 3 Given a dt-SS S = (-,+|, |, 5 ), a nonnegative function B : - → R+
0

is called a barrier certificate (BC)

for S if there exist constants _ > 1 and 2 ∈ R+
0

such that

B(G) ≤ 1, ∀G ∈ -8=, (3)

B(G) ≥ _, ∀G ∈ -D, (4)

E

[
B( 5 (G, |)) | G

]
≤ B(G) + 2, ∀G ∈ -, (5)

where -8= ⊂ - and -D ⊂ - are initial and unsafe sets corresponding to a given safety specification Ψ, respectively.

Next theorem, borrowed from [20], provides a lower bound on the probability of satisfaction of the safety specification

for a dt-SS.

Theorem 1 Consider a dt-SS S and a safety specification Ψ. Assume there exists a non-negative barrier certificate

B(G) which satisfies conditions (3)-(5) with constants _ and 2. Then

P|

(
S |=H Ψ

)
≥ 1 − 1 + 2 H

_
, (6)
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with H ∈ N0 being the finite time horizon associated with Ψ.

In this work, we consider polynomial-type barrier certificates denoted by B(1, G), where 1 is the vector containing

the coefficients of the polynomial. Such a polynomial with degree : ∈ N0 has the form

B(1, G) =
:∑

]1=0

. . .

:∑

]==0

1 ]1,..., ]= (G ]11
. . . G ]== ), (7)

with 1 ]1,..., ]= = 0 for ]1 + . . . + ]= > :. Hence, finding a polynomial barrier certificate reduces to determining the

coefficients of the polynomial, namely 1 ]1 ,..., ]= . In the next section, we provide our data-driven approach for the

construction of polynomial-type barrier certificates.

3 Data-driven Safety Verification

We first cast the barrier-based safety problem in Theorem 1 as a robust convex programming (RCP). We then provide

a scenario-based approach in order to solve the obtained RCP using data collected from the system.

Satisfying the conditions of Theorem 1 is equivalent to having a non-positive value for the optimal solution of the

following RCP (i.e., K ≤ 0):

RCP :




min
3

K

s.t. maxI
(
6I (G, 3)

)
≤0, I∈ {1, . . . , 5},∀G ∈ -,

3 = [K;_; 2; 1 ]1 ,..., ]= ],

K ∈ R, _ > 1, 2 ≥ 0,

(8)

in which,

61 (G, 3) = −B(1, G) − K,

62 (G, 3) = (B(1, G) − 1 − K)1-8=
(G),

63 (G, 3) = (−B(1, G) + _ − K)1-D
(G),

64 (G, 3) =
1 + 2 H

d
− _ − K,

65 (G, 3) = E

[
B(1, 5 (G, |)) | G

]
− B(1, G) − 2 − K, (9)

where (1 − d) is a given lower bound for the safety probability.



Data-driven verification and synthesis of stochastic systems via barrier certificates 9

Remark 1 The RCP (8) is in fact a robust convex optimization. It is a convex optimization since the constraints are

convex with respect to decision variables in 3 and objective function. It is a robust optimization since the constraints

have to hold for all G ∈ - .

Remark 2 The RCP (8) always has a feasible solution. For instance, by choosing coefficients of B(1, G) equal to zero,

_ = 2, 2 = 0, and K ≥ 1
d
− 2, we get a feasible solution for the RCP. Moreover, the barrier certificate obtained from

this RCP satisfies conditions (3)-(5) as long as K ≤ 0.

Finding an optimal solution for the RCP in (8) is hard in general because the map 5 is unknown, the probability

measure P| is also unknown (thus the expectation in 65 cannot be computed analytically), and there are infinitely

many constraints in the robust optimization since G ∈ - , where - is a continuous set. To tackle this, we first assign

a probability distribution to the state set, take # i.i.d. samples {G1, G2, . . . , G# } from this distribution, and replace

the robust quantifier ∀G ∈ - with ∀G8 ∈ - , 8 ∈ {1, 2, . . . , #}. This results in the following scenario convex program

denoted by SCP# :

SCP#
:




min
3

K

s.t. maxI 6I (G8 , 3) ≤0, ∀8 ∈ {1, . . . , #},

I∈ {1, . . . , 5},

3 = [K;_; 2; 1 ]1 ,..., ]= ],

K ∈ R, _ > 1, 2 ≥ 0.

(10)

To tackle the issue of unknown P|, we replace the expectation in 65 with its empirical approximation by sampling

#̂ i.i.d. values | 9 , 9 ∈ {1, . . . , #̂}, from P| for each G8 , which gives the following scenario convex program denoted

by SCP#,#̂ :

SCP#,#̂
:




min
3

K

s.t. maxI 6̄I (G8 , 3) ≤0, ∀8 ∈ {1, . . . , #},

I∈ {1, . . . , 5},

3 = [K;_; 2; 1 ]1 ,..., ]= ],

K ∈ R, _ > 1, 2 ≥ 0,

(11)

where 6̄I := 6I for all I ∈ {1, 2, 3, 4} and

6̄5(G8 , 3) :=
1

#̂

#̂∑

9=1

B(1, 5 (G8 , | 9 )) − B(1, G8) − 2 + X − K . (12)
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In SCP#,#̂ , 5 (G8 , | 9 ) is the next state of the system from the current state G8 with the noise realization | 9 . Therefore,

the solution of the SCP#,#̂ can be obtained using only the dataset D without the knowledge of 5 and P|. The optimal

value for the objective function of SCP#,#̂ is denoted by K∗ (D). We also denote by B̂(1, G | D) the barrier function

constructed based on the solution of SCP#,#̂ in (11).

Note that 6̄5(G8 , 3) in (12) has an additional parameter X > 0 compared to 65. This parameter is added to make the

last inequality more conservative in order to capture the error coming from replacing the expectation with the empirical

mean. We use Chebyshev’s inequality [18] to quantify such an error with the associated confidence. Let us define the

variance of the empirical approximation as

f2 := Var
( 1

#̂

#̂∑

9=1

B(1, 5 (G, | 9 ))
)
, (13)

where the variance is taken with respect to | 9 . We assume that there is a bound "̂ such that

Var
(
B(1, 5 (G, |)

)
≤ "̂, ∀G ∈ -. (14)

This assumption gives us a bound for f2 in (13) as f2 ≤ "̂

#̂
due to | 9 being independent. The idea of replacing

the expectation by the empirical mean in an optimization problem and relating the associated solutions based on

Chebyshev’s inequality is also used in [41]. Next theorem shows that the barrier certificate computed using the optimal

solution of the SCP#,#̂ is a feasible barrier certificate for SCP# in (10) with a certain confidence.

Theorem 2 Let B̂(1, G | D) be a feasible solution of the SCP#,#̂ for some X > 0, and assume the inequality (14) holds

with a given "̂ . Then for any VB ∈ (0, 1], we get

P|

(
B̂(1, G | D) |= SCP#

)
≥ 1 − VB, (15)

provided that the number of samples in the empirical mean satisfies #̂ ≥ "̂
X2VB

.

Proof By the statement of the theorem, we have B̂(1, G | D) |= SCP#,#̂ . The difference between the empirical mean in

(12) and the expected value in (10) can be quantified by invoking the Chebyshev’s inequality as:

P|

(
������
E
[
B(1, 5 (G, |)) | G

]
− 1

#̂

#̂∑

9=1

B(1, 5 (G, | 9 ))

������
≤ X

)
≥1−f2

X2
, (16)

where X ∈ R+, and f2 is defined in (13) [18]. Since all the first four feasibility conditions are the same as in (10) and

(11), B̂(1, G | D) is a feasible solution for those conditions of SCP# with probability one. The only remaining concern
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is the last feasibility condition. According to (16), one can deduce that B̂(1, G | D) is a feasible solution for SCP# with

a confidence of at least 1 − f2

X2 . Furthermore, we have f2 ≤ "̂

#̂
by having Var(B(1, 5 (G, |))) ≤ "̂ , and hence

P|

(
B̂(1, G | D) |= SCP#

)
≥1− "̂

X2#̂
.

By the above inequality, we get VB ≥ "̂

X2 #̂
and consequently #̂ ≥ "̂

X2VB
. This completes the proof. �

Remark 3 When the system has additive noise, i.e.,

G(C + 1) = 50 (G(C)) + |(C),

the condition (14) can be established by having a bound on 50 (·) and bounds on moments of the noise |. For instance,

in the case of one-dimensional systems (i.e., = = 1), we have B(1, G) =
∑:

]=0 1 ]G
] and the variance of B(·) can be

expanded as follows:

Var(B(1, 5 (G, |))) = Var
( :∑

]=0

1 ] 5 (G, |) ]
)

=Var
( :∑

]=0

1 ] ( 50 (G) + |) ]
)
=Var

( :∑

]

]∑

9=0

1 ]

(
]

9

)
50 (G) ]− 9| 9

)

=Var
( :∑

9=1

g 9 (G)| 9
)

with g 9 (G) :=

:∑

]= 9

1 ]

(
]

9

)
50 (G) ]− 9

=

:∑

9=1

:∑

I=1

g 9 (G)gI (G) (E[| 9+I] − E[| 9 ]E[|I]).

This means the variance can be bounded using upper bounds of 50 (·) and moments of |.

As it can be seen from Theorem 2, higher number of samples #̂ is needed in order to have a smaller empirical

approximation error X, and to provide a better confidence bound. In fact, #̂ and X are required to solve the SCP#,#̂ in

(11). Later in the next section, we show how the value of VB affects the total confidence concerning the safety of the

stochastic system.

Remark 4 Note that our results presented in this paper are valid for any choice of the probability distribution P with its

support being the state set - that satisfies a regularity assumption formulated in the next section (cf. Assumption 4). This

assumption holds for a wide range of distributions including uniform, truncated normal, and exponential distributions.

From the algorithmic perspective, this distribution affects the collected data points G8 and the optimal solution of the

SCP# . The confidence formulated in our paper is also with respect to this distribution. We choose P to be a uniform

distribution in the case study section.
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4 Safety Guarantee over Unknown Stochastic Systems

In the previous section, we established the connection between the two optimizations SCP# and SCP#,#̂ , and showed

that the solution of SCP#,#̂ is a feasible solution for SCP# with a certain confidence if the number of samples #̂ is

chosen appropriately (cf. Theorem 2). In this section, we focus on the relation between the original RCP and the SCP#

utilizing the fundamental result of [13] and provide an end-to-end safety guarantee over the unknown stochastic system

with a priori guaranteed confidence. To do so, we need to raise the following regularity assumptions on the functions

and the chosen probability measure P.

Assumption Functions 61, 62, 63, and 65 are all Lipschitz continuous with respect to G with Lipschitz constants LG1
,

LG2
, LG3

, and LG5
, respectively. Therefore, the Lipschitz constant LG := LG1

+ LG2
+ LG3

+ LG5
is a Lipschitz constant

for maxI 6I (G, 3), I ∈ {1, . . . , 5} \ {4}. In addition, if 61, 62, 63, and 65 are analytic over a compact domain - , the

Lipschitz constant of maxI 6I (G, 3) is LG := max
{
LG1

, LG2
, LG3

,LG5

}
. �

Assumption There is a strictly increasing function � : R+
0
→ [0, 1], where � (0) = 0 such that

P[b(G, A)] ≥ � (A) ∀G ∈ -, (17)

where b(G, A) ⊂ - is an open ball centered at point G with radius A. �

Note that any probability distribution, for which the above lower bound function � (A) can be computed, can be used

in our approach for sampling.

Remark 5 The probability distribution from which G8 is sampled must satisfy Assumption 4. This assumption requires

having a strictly increasing function � : R+
0
→ [0, 1] that satisfies

P[b(G, A)] ≥ � (A), ∀G ∈ -.

Then, the probability distribution P should assign positive probability to any ball with positive radius. This means no

ball b(G, A) ⊂ - could be excluded from sampling in the approach with some non-trivial probability.

Next, we introduce the main result which connects the safety of an unknown stochastic system directly to data collected

from the system.

Theorem 5 Consider an unknown dt-SS, as in (1), and safety specification Ψ. Let Assumptions 3 and 4 hold with

Lipschitz constant LG and function � (A), respectively. Assume #̂ is selected for the SCP#,#̂ as in Theorem 2 in order to
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provide confidence 1 − VB. Denote by K∗ (D) the optimal value of the optimization problem in (11) using # samples

and parameter d ∈ (0, 1]. For any V ∈ [0, 1], the following statement holds with a confidence of at least (1− 3V− VB):

P|

(
S |=H Ψ

)
≥ 1 − d,

if

K∗ (D) + LG �−1 (n) ≤ 0, (18)

where function � defined in (17), and n = I−1(1 − V;Q + 3, # − Q − 2).

Proof Denote the optimal values of the RCP and the SCP# by K∗ and K∗
m (D), respectively. According to [13,

Theorem 3.6], one has

P
(
K∗

m (D) ≤ K∗ ≤ K∗
m (D) + LB?� (n)

)
≥ 1 − V,

for a chosen n and any # ≥ # (n, V) as in [13, Theorem 2.2]. Equivalently, the above inequality holds for a given

# and n ≤ I−1 (1 − V; d, # − d + 1). In this expression, d is the number of decision variables, and � (·) is a uniform

level-set bound as defied in [13, Definition 3.1]. Constant LB? is a Slater constant as defined in [13, equation (5)].

Since the original RCP in (8) is a min-max optimization problem, the constant LB? can be selected as one according

to [13, Remark 3.5]. By choosing d := Q + 3, one obtains the parameters of the incomplete beta function in the

theorem statement. Based on [13, Proposition 3.8], � (n) = LG�
−1 (n), where LG is the Lipschitz constant of RCP as

in Assumption 3, and � (·) as in (17). Now, one can readily deduce that

P
(
K∗ ≤ K∗

m (D) + LG�
−1 (n)

)
≥ 1 − 3V. (19)

Confidence V is multiplied by 3 since the Lipschitz continuity is needed in (8) in three different regions and, hence,

we leverage the results in [27] to deal with this issue by multiplying V by three. On the other hand, due to the particular

selection of #̂ and VB according to Theorem 2, we know that (15) holds. Therefore,

P
(
K∗

m (D) ≤ K∗ (D)
)
≥ 1 − VB . (20)

Define the events A := {D | K∗ ≤ K∗
m (D) + LG�

−1 (n)}, B := {D | K∗
m (D) ≤ K∗ (D)}, and C := {D | K∗ (D) +

LG�
−1 (n) ≤ 0}, where P(A) ≥ 1 − 3V and P(B) ≥ 1 − VB. The inequalities in A and B satisfy
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K∗ ≤ K∗
m (D) + LG�

−1 (n) ≤ K∗ (D) + LG�
−1 (n). (21)

Note that any element D that belongs to C will make the right-hand side of (21) non-positive. In addition, if this

element also belongs to A ∩ B, the two inequalities in (21) will also hold, and we get K∗ ≤ 0.

P(K∗ ≤ 0) ≥ P(A ∩ B) ≥ 1 −P(A2) −P(B2) ≥ 1 − 3V − VB .

This completes the proof since non-positiveness of K∗ ensures a safety lower bound (1− d) with confidence of at least

1 − 3V − VB. �

Corollary 1 If samples are collected uniformly from a hyper rectangular state set with edges of length [G (8) in each

dimension 8, then one can compute � (n) as 0n =
∏=

8=1 [G (8) , where 0 =
1

2=
c

=
2

Γ ( =
2
+1) with the Gamma function defined as

Γ(:) = 1 × 2 × 3 . . . × (: − 1) and Γ(: + 1
2
) = 1

2
× 3

2
× . . . (: − 3

2
) (: − 1

2
)c 1

2 for all positive integers.

Corollary 2 If the state set is an n-dimensional hypersphere with radius Ã and the data is sampled uniformly, then one

has

� (n) = 1

2

[
I(1 −

22
1

Ã2
;
= + 1

2
,
1

2
) + n=

Ã=
I(1 −

22
2

n2
;
= + 1

2
,
1

2

]
,

where 21 =
2Ã2−n 2

2Ã
, and 22 =

n 2

2Ã
.

Remark 6 For uniform sampling, the function � (A) is proportional to A=. Therefore, the sample complexity of the

proposed approach is in the order of ( {LG

n
)=, where { is the volume of state set and = is the dimension of the state set.

Remark 7 The barrier function constructed based on the finite number of samples according to the above theorem

together with the obtained parameters 2 and _ satisfies the conditions (3)-(5) in Definition 3 with a confidence of at

least 1 − 3V − VB.

Remark 8 Note that the constraint 64 in (8) enforces the constraint P(S |=H Ψ) ≥ 1 − d for a given d. When d is not

fixed, one can eliminate this constraint from the optimization and guarantee directly the following inequality

P|(S |=H Ψ) ≥ 1 − 1 + 2∗H
_∗

,
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where 2∗ and _∗ are the optimal values of the SCP#,#̂ . This increases the likelihood of getting a feasible optimization

and gives the best possible lower bound on the safety probability.

For the sake of clarity, we present the steps required for applying Theorem 5 in Algorithm 1.

Algorithm 1: Safety verification of an unknown dt-SS S = (-,+|, |, 5 ) using collected data.

Input: Confidence parameters V ∈ [0, 1] and VB ∈ [0, 1), parameters d ∈ (0, 1], X ∈ R+, "̂ ∈ R+, LG ∈ R+,

and the degree of barrier certificate Q
1: Compute the number of samples #̂ ≥ "̂/(X2VB) to be used for the empirical average (Theorem 2)

2: Choose the number of samples #

3: Compute n = I−1 (1 − V;Q + 3, # − Q − 2)
4: Select a probability measure P for the state set -

5: Collect ##̂ state pairs from the system

D = {(G8 , G+8 9 ) ∈ -2, G+8 9 = 5 (G8 , |8 9 )}8, 9

6: Solve SCP#,#̂ in (11) with D and obtain the optimal solution K∗ (D)
Output: If K∗ (D) + LG�

−1 (n) ≤ 0, then P|(S |=H Ψ) ≥ 1 − d with a confidence of at least 1 − 3V − VB.

Both Theorem 5 and Algorithm 1 require knowing an upper bound for Lipschitz constant LG . The following lemma

shows how to get this constant for quadratic barrier certificates and systems with additive noises. A similar reasoning

can be used for other polynomial-type barrier certificates by casting them as quadratic functions of monomials.

Lemma 1 Consider a nonlinear system with additive noise

G(C + 1) = 50 (G(C)) + |(C), C ∈ N0, (22)

and a bounded state set - such that | |G | | ≤ L for all G ∈ - . Without loss of generality, we assume that the mean of

noise is zero. Let | | 50 (G) | | ≤ !1 | |G | | + !2 and | |JG | | ≤ !̂ for some !1, !2, !̂ ≥ 0,∀G ∈ - , where JG is the Jacobian

matrix of 50 (G). Given a quadratic barrier function G)PG with a symmetric positive definite matrix P, the Lipschitz

constant LG can be upper-bounded by

2‖P‖(!1L !̂ + !2 !̂ + L).

Proof We first compute the Lipschitz constant of 65 in (5) as

!G5
= max

{




m65(G)
mG





 , G ∈ -, ‖G‖ ≤ L
}
,

where
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65(G)=E
[
( 5 ) (G(C)) + |) (C))P( 5 (G(C)) + |(C))

]

− G) (C)PG(C) − 2

= 5 ) (G(C))P 5 (G(C))−G) (C)PG(C)+E
[
|) (C)P|(C)

]
−2.

By considering JG = [ m 5

mG1
, . . . ,

m 5

mG=
], one has

!G5
= max

G
‖2( 5 (G(C)))P JG − G) (C)P)‖

≤ max
G

2‖ 5 (G(C))) ‖‖P‖‖JG ‖ + 2‖G) (C)‖‖P‖

≤ 2(!1L + !2)‖P‖ !̂ + 2L‖P‖

= 2‖P‖(!1L !̂ + !2 !̂ + L).

Similarly, one can readily deduce that LG1
= LG2

= LG3
= 2L‖P‖, and LG4

= 0. Then LG = max(LG1
,LG2

, LG3
, LG4

,LG5
) =

2‖P‖(!1L !̂ + !2 !̂ + L), which completes the proof. �

Remark 9 Note that according to the above lemma, computing the upper bound for Lipschitz constant LG depends on

‖P‖. On the other hand, computing the entries of P depends on Lipschitz constant LG . In order to tackle this circulatory

issue, we consider an upper bound for ‖P‖ and enforce it as an additional constraint while solving the SCP in (11). If

there is no solution with the selected upper bound, we iteratively increase the upper bound until we find a solution or a

predefined maximum number of iterations is reached.

Remark 10 If the underlying dynamics is affine in the form of G(C +1) = �G(C) +�+|(C) with � ∈ R=×= and � ∈ R=×1,

we can set !1 = !̂ as an upper bound on | |�| | and !2 as an upper bound on ‖�‖.

Remark 11 The Lipschitz constant in Assumption 3 can also be estimated directly from the data using Extreme Value

Theory with the estimation approach described in [49]. For instance, to estimate the Lipschitz constant of 65 in (9), we

gather data
{
(G81, G82) | 81, 82 = 1, . . . , #̃

}
and compute

L̂ = max



65 (G81 ) − 65(G82 )






G81 − G82


 , 81, 82 ∈ {1, . . . , #̃}. (23)

The Lipschitz constant of 65 is computed by fitting a Reverse Weibull distribution to the samples of the random variable

L̂, and then computing the location parameter of that distribution.
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5 Data-Driven Controller Synthesis

In this section, we study the problem of synthesizing a controller for an unknown stochastic control system using data

to satisfy safety specifications. Our approach is to use control barrier certificates, fix a parameterized set of controllers,

and design the parameters using an SCP. The stochastic control system is defined next.

Definition 4 A discrete-time stochastic control system (dt-SCS) is a tuple S = (-,*,+|, |, 5 ), where -,+|, | are as

in Definition 1, * ⊂ R< is the input set, and 5 : - ×* ×+| → - is the state transition map. The evolution of the state

is according to equation

S : G(C + 1) = 5 (G(C), D(C), |(C)), C ∈ N0. (24)

We assume that the map 5 and distribution of | is unknown but we can gather data (G8 , D8, G+8 ) by initializing the

system at G8 , applying the input D8, and observing the next state of the system G+8 = G8 (C + 1). The collected dataset is

D :=
{
(G8 , D8, 5 (G8 , D8, | 9 ))

}

8, 9
⊂ - ×* × -. (25)

Now, we state the main problem we are interested to solve here.

Problem 2 Consider an unknown dt-SCS S as in Definition 4, with a safety specification Ψ specified by the initial set

-8=, unsafe set -D, and time horizon H . Using a dataset D of the form (25), find a controller k : - → * together with

a constant d ∈ [0, 1) and confidence (1 − V) ∈ [0, 1] such that S under this controller satisfies Ψ with a probability of

at least (1 − d), i.e.,

P
k
|

(
S |=H Ψ

)
≥ 1 − d, ∀G(0) ∈ -8=,

with a confidence 1 − V. Moreover, establish a connection between the required size of D and the confidence 1 − V.

Similar to the verification problem discussed in the previous sections, we use the notion of control barrier certificates

with a parameterized set of controllers [20] to get a characterization of the controller together with the lower bound on

the safety probability.

Definition 5 Given a dt-SCS S = (-,*,+|, |, 5 ) with* ⊂ R<, initial set -8= ⊂ - , and unsafe set -D ⊂ - , a function

B : - → R
+
0

is called a control barrier certificate (CBC) for S if there exist constants _ > 1, 2 ≥ 0, and functions

Pℓ (G) : - → R+
0
, ℓ ∈ {1, 2, . . . , <}, such that constraints in (3) and (4) hold, and
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E

[
B( 5 (G, D, |)) | G, D

]
+

<∑

ℓ=1

(Dℓ − Pℓ (G)) ≤ B(G) + 2

∀G ∈ -, ∀D = [D1; . . . ; D<] ∈ *. (26)

Theorem 6 A CBC B(G) as in Definition 5 guarantees that

P
k
|

(
S |=H Ψ

)
≥ 1 − d, ∀G(0) ∈ -8=,

under the controller k(G) = [P1 (G); P2(G); . . . ; P<(G)], where d = (1 + 2H)/_ with H being the time horizon of

the safety specification.

Let us consider polynomial-type CBC and controllers. The number of CBC coefficients is denoted by Q. Polynomial

Pℓ has the following form for some :′ ∈ N0:

Pℓ (?ℓ , G) =
:′∑

]1=0

. . .

:′∑

]==0

?ℓ]1 ,..., ]= (G
]1
1
. . . G ]== ), (27)

with ?ℓ]1 ,..., ]= = 0 for ]1 + . . . + ]= > :′.

The overall number of all coefficients of < polynomials Pℓ (?ℓ , G) is denoted by P. We also assume that the input

set * is a polytope of the form

* =
{
D ∈ R< | AD ≤ b

}
, (28)

for some A ∈ R@×< and b ∈ R@×1.

Under these assumptions, the inequalities in Definition 5 and Theorem 6 can be written as an RCP:

RCP :




min
3

K

s.t. maxI 6I (G, D, 3) ≤ 0,

I ∈ {1, 2, . . . , 5 + @},∀G ∈ -,∀D ∈ *,

3 = [K;_; 2; 1 ]1 ,..., ]= ; ?ℓ]1 ,..., ]= ],

K ∈ R, _ > 1, 2 ≥ 0,

(29)

where 6I (G, 3), I ∈ {1, . . . , 4}, are the same as (9), and
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65(G, D, 3) = E
[
B(1, 5 (G, D, |)) | G, D

]
+

<∑

ℓ=1

(Dℓ − Pℓ (?ℓ , G))

− B(1, G) − 2 − K,

[66(G, 3); . . . ; 65+@ (G, 3)]= A [P1 (?1, G); . . . ;P<(?<, G)] −

b − K1@×1. (30)

Note that the last inequality in (30) encodes the fact that the control input should be inside the set * specified by the

polytope (28).

The constraints in the RCP is always feasible. A solution can be constructed as follows. Set the coefficients of B(1, G)

and Pℓ (?ℓ , G) equal to zero, 2 = 0, _ = 2, and Dℓ = Pℓ (?ℓ , G) ∀ℓ ∈ {1, . . . , <}. Also select K large enough such that

K ≥ 1
d
− 2 together with K 1<×1 ≥ −b.

The RCP in (29) is in general hard to solve since the map 5 and the probability measure P| are unknown. Hence,

similar to the verification approach discussed in Section 3, we assign a probability distribution to both state and input

sets, and collect # i.i.d pairs (G8 , D8) from this assigned distribution, and replace the robust quantifiers ∀G ∈ - and

∀D ∈ * with ∀G8 ∈ - and ∀D8 ∈ *, 8 ∈ {1, . . . , #}, respectively. This results in a scenario convex program called

SCP# , which is not presented here for the sake of brevity.

To address the issue of unknown 5 and P|, the expectation in 65 is replaced with its empirical approximation by

sampling #̂ i.i.d. values | 9 , 9 ∈ {1, . . . , #̂}, from P| for each pair of (G8 , D8), which results in the following scenario

convex program denoted by SCP#,#̂ :

SCP#,#̂
:




min
3

K

s.t. maxI 6̄I (G8 , D8, 3) ≤ 0,

I ∈ {1, 2, . . . , 5 + @},

∀G8 ∈ -, ∀D8 ∈ *,∀8 ∈ {1, . . . , #},

3 = [K;_; 2; 1 ]1 ,..., ]= ; ?ℓ]1 ,..., ]= ],

K ∈ R, _ > 1, 2 ≥ 0,

(31)

where 6̄I := 6I for all I ∈ {1, 2, . . . , 5 + @} \ {5}, and

ḡ5(G8 , D8, 3) =
1

#̂

#̂∑

9=1

B(1, 5 (G8 , D8, | 9 )) +

<∑

ℓ=1

(D8ℓ − Pℓ (?ℓ , G8)) − B(1, G8) − 2 + X − K . (32)
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Using empirical approximation introduces an error which is demonstrated by X in the above optimization problem. We

denote by B̂D (1, G | D) the constructed control barrier certificate with coefficients computed by solving the SCP#,#̂ .

Remark 12 Similar to Theorem 2, under the assumption

Var
(
B(1, 5 (G, D, |))

)
≤ "̂,

for some "̂ > 0, a desired confidence VB ∈ (0, 1], and an error X, one has

P
k
|

(
B̂D (1, G | D) |= SCP#

)
≥ 1 − VB, (33)

provided that #̂ ≥ "̂
X2VB

.

To provide the main results here, we need the following assumptions.

Assumption Function 65 is Lipschitz continuous with respect to (G, D) with Lipschitz constant L5. Functions

61, 62, 63, 66, . . . , 65+@ are also Lipschitz continuous with respect to G with Lipschitz constants L1,L2,L3, L6, . . . , L5+@,

respectively. Then, the Lipshitz constat of maximum of these function is L1 + L2 + L3 + L5 + L6 + . . . + L5+@ . Fur-

thermore, if all functions 6 are analytic over a compact domain - × *, the Lipschitz constant of their maximum is

max(L1, L2,L3,L5, L6, . . . ,L5+@), which we denote it by LG,D. �

Assumption There is a strictly increasing function � (A) : R+ → [0, 1] such that

P[b(G, D, A)] ≥ � (A) ∀(G, D) ∈ - ×*, (34)

where b(G, D, A) is an open ball in the product space - ×* centered at the point (G, D) with radius A. �

Now, we have all the ingredients to propose the main results here.

Theorem 9 Consider an unknown dt-SCS as in Definition 4 and a safety specification Ψ. Let Assumptions 7–8 hold

with constant LG,D and function � (A). Suppose that K∗ (D) is the optimal value of SCP#,#̂ in (31) with number of

samples # , a given d ∈ (0, 1], and for #̂ selected based on Remark (12) with confidence of 1 − VB. Suppose

K∗(D) + LG,D�
−1 (n) ≤ 0, (35)

where function � is defined in (34) and n = I−1(1− V;Q+ P +3, # −Q−P −2) with confidence parameter V ∈ [0, 1],

and Q and P being respectively the number of coefficients of the polynomial control barrier certificate and the overall
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number of coefficients of polynomials Pℓ (?ℓ , G) for < inputs. Then, the following statement is valid with a confidence

of at least 1 − 3V − VB: the system S together with the constructed control input

k(G) := [P1 (?1, G); . . . ; P<(?<, G)],

for which coefficients ?ℓ , ℓ ∈ {1, . . . , <}, are obtained from the solution of SCP#,#̂, is safe within the time horizon H

with a probability of at least 1 − d, i.e.,

P
k
|

(
S |=H Ψ

)
≥ 1 − d. (36)

Proof The proof is similar to the proof of Theorem 5 by replacing P| with P
k
| for the RCP (29) and its associated

SCPs. The function� (n) is defined as in (34). The number of coefficients is Q+P+3 where P is the overall number of

coefficients of < polynomials defining the controller, which results in the new arguments of the regularized incomplete

beta function I in the theorem statement. �

Corollary 3 If samples are collected uniformly from a hyper rectangular sets - and*, respectively, with edges of length

[G (8) and [D( 9) in each dimension 8 and 9 , then one can compute� (n) as 0n =+<
∏=

8=1 [G (8)
∏<

9=1 [D ( 9 )
, where 0 =

1
2=+<

c
=+<

2

Γ ( =+<
2

+1)

with Gamma function defined in Corollary 1.

Proof The proof is similar to the proof of Corollary 1 in 10 based on the new definition of � (A) in Assumption 8.

Remark 13 When d is not fixed, one can eliminate constraint 64 from (29) and directly provide the following inequality

P
k
|(S |=H Ψ) ≥ 1 − 1 + 2∗H

_∗
,

in which 2∗ and _∗ are the optimal solutions of SCP#,#̂ in (31). This increases the likelihood of getting a feasible

solution and gives the best possible lower bound on the safety probability for S. A schematic overview of our synthesis

approach is presented in Fig. 3. �

Next lemma provides an upper bound for Lipschitz constant LG,D, which is required in Theorem 9, in the case that

the system is affected by an additive noise.

Lemma 2 Consider a nonlinear dt-SCS as in Definition 4 which is affected by an additive noise as the following:

G(C + 1) = 50 (G(C), D(C)) + |(C), (37)
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Algorithm 2: Data-driven synthesis for safety specification on an unknown dt-SCS S = (-,*,+|, |, 5 ).
Input: Confidence parameters V ∈ [0, 1], VB ∈ (0, 1], parameters d ∈ (0, 1], X ∈ R+, "̂ ∈ R+, LG,D ∈ R+,

degree of the barrier certificate Q, and degree of the polynomial functions for the controller P
1: Compute the number of samples #̂ ≥ "̂/(X2VB) for the empirical average (Remark 12)

2: Choose the number of samples #

3: Compute n = I−1 (1 − V;Q + P + 3, # − Q − P − 2)
4: Select a probability measure P for the state-input set (-,*)
5: Collect ##̂ tuples from the system D := {(G8 , D8, G′8 9 ) ∈ - ×* × -, G′8 9 = 5 (G8 , D8, |8 9 )}8, 9
6: Solve SCP#,#̂ in (31) with D and obtain the optimal solution K∗ (D)
Output: If K∗ (D) + LG,D�

−1 (n) ≤ 0, then P
k
|(S |=H Ψ) ≥ 1 − d with a confidence of at least 1 − 3V − VB

and with the controller k(G) := [P1 (?1, G); . . . ; P< (?<, G)].

Black Box

Theorem 5.7

(xi, ui, wj) f(xi, ui, wj)

Data-driven Controller

Fig. 3 A schematic overview of the data-driven synthesis presented in Section 5.

and a bounded state set - and input set* such that ‖G‖ ≤ LG for all G ∈ - , and ‖D‖ ≤ LD for all D ∈ *. Without loss

of generality, we assume that the mean of the noise is zero. Let ‖ 50 (G, D)‖ ≤ !1‖G‖ + !2‖D‖ + !3, | |JG | | ≤ !̂G , and

| |JD | | ≤ !̂D, for some LG ,LD, !1, !2, !3, !̂G , !̂D ≥ 0, where JG and JD are Jacobian matrices of 50 (G, D) with respect to

G and D, respectively. Given a quadratic barrier function G)PG, and a set of quadratic functions G)PℓG, ℓ ∈ {1, . . . , <},

representing each of Pℓ (?ℓ , G) with symmetric matrices P and Pℓ , the Lipschitz constant LG,D can be upper-bounded

by
√

L 2
G + L 2

D , where

LG = 2LG!1 !̂G ‖P‖ + 2LD!2 !̂G ‖P‖ + 2!3!̂G ‖P‖

+ LG ‖P‖ + LG

<∑

ℓ=1

‖Pℓ ‖, (38)

LD = 2LG!1 !̂D ‖P‖ + 2LD!2 !̂D ‖P‖ + 2!3 !̂D ‖P‖ +
√
<.

�

Proof We first compute the Lipschitz constant regarding g5 (G, D, 3) in (30), where
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g5 (G, D, 3) = E
[
( 5 ) (G(C), D(C)) + |) (C))P( 5 (G(C), D(C))+

|(C))
]
+

<∑

ℓ=1

(Dℓ − Pℓ (?ℓ , G)) − G) (C)PG(C) − 2.

Considering E[|(C)] = 0, we compute the upper bounds for Lipschitz constant with respect to G and D separately

denoted by L5G
and L5D , respectively. We define JG = [ m 5

mG1
, . . . ,

m 5

mG=
] and JD = [ m 5

mD1
, . . . ,

m 5

mD<
] as Jacobian matrices

with respect to G and D, respectively.

L5G
=max

G,D
‖ mg5 (G, D, 3)

mG
‖ = max

G,D
‖2( 5 (G(C), D(C)))P JG

− G) (C)P − G) (C)
<∑

ℓ=1

Pℓ ‖

≤2LG!1 !̂G ‖P‖ + 2LD!2 !̂G ‖P‖ + 2!3 !̂G ‖P‖+

LG ‖P‖ + LG

<∑

ℓ=1

‖Pℓ ‖,

and accordingly,

L5D = max
G,D

‖ mg5(G, D, 3)
mD

‖

= ‖2( 5 (G(C), D(C)))PJD + 1<‖

≤ 2LG!1 !̂D ‖P‖ + 2LD!2 !̂D ‖P‖ + 2!3 !̂D ‖P‖ +
√
<.

Now it can be deduced that

L5 ≤
√

L2
5G

+ L2
5D
.

Similar to the proof of Lemma 1, it is straightforward to compute the upper bounds of Lipschitz constants for other

constraints in (30) and show that the computed upper bound is greater than all of them. We ignore this part for the sake

of brevity. Then, LG,D ≤ max
(
L8, 8 ∈ {1, 2, . . . , 5 + @} \ {4}

)
=

√
L2

5G
+ L2

5D
which is equivalent to

√
L 2

G + L 2
D with

LG and LD as in (38). �

Note that one can use similar results as in Remark 11 to estimate the Lipschitz constant via data.

6 Data-driven Barrier Certificates for Non-convex Setting

In this section, we extend the proposed result in Section 4 to a case of having non-convex constraints. We modify the

constraint (5) in Definition 3 as follows:
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E

[
B( 5 (G, |)) | G

]
≤ ^ B(G) + 2, ∀G ∈ -, (39)

where ^ ∈ (0, 1).

According to the fundamental results in [24], choosing ^ in the interval (0, 1) provides a better lower bound for the

probability of safety satisfaction in (6), namely:

P|

(
S |=H Ψ

)
≥ 1 − d,

with

d =




1 − (1 − 1
_
) (1 − 2

_
) if _ ≥ 2

^

1
_
(1 − ^)H + 2

^_

(
1 − (1 − ^)H

)
if _ < 2

^
,

(40)

where parameters 2, _, and H are the same as in Definition (3). Another advantage of choosing ^ in the interval (0, 1)

is that this new formulation can be utilized in the context of compositionality and interconnected systems [51, 43].

Replacing the last condition of RCP in (9) with the modified constraint in (39) leads to the following optimization

problem which is not convex anymore:

RP :




min
3

K

s.t. maxI
(
6I (G, 3)

)
≤0, I∈ {1, . . . , 4},∀G ∈ -,

3 = [K;_; 2; 1 ]1 ,..., ]= ; ^],

K ∈ R, _ > 1, 2 ≥ 0, ^ ∈ (0, 1),

(41)

in which 6I (G, 3), I ∈ {1, 2, 3}, are the same as in (9), and

64 (G, 3) = E

[
B( 5 (G, |)) | G

]
≤ ^ B(G) + 2, ∀G ∈ -. (42)

The non-convexity comes from the multiplication of ^ and coefficients of barrier function B(1, G8) in (39). With the

same reasoning in Section (3), solving the above RP is not straightforward generally. Therefore, we construct an SP

by taking samples and then connect the solution of the obtained scenario programming to the safety of the stochastic

system in (1). By collecting i.i.d. samples G8 , 8 ∈ {1, . . . , #}, from an assigned probability distribution over the state

set, and approximating the expectation term in (39) results in a non-convex programming as the following:
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SP#,#̂
:




min
3

K

s.t. maxI 6̄I (G8 , 3) ≤0, ∀8 ∈ {1, . . . , #},

I∈ {1, . . . , 4},

3 = [K;_; 2; 1 ]1 ,..., ]= ; ^],

K ∈ R, _ > 1, 2 ≥ 0, ^ ∈ (0, 1),

(43)

where 6̄I := 6I for all I ∈ {1, 2, 3} and

6̄4(G8 , 3) =
1

#̂

#̂∑

9=1

B(1, 5 (G8 , | 9 )) − ^ B(1, G8) − 2 + X − K . (44)

Note that in this new scenario programming, we eliminated the constraint that forces a fixed probability lower bound

1−d on the safety of the stochastic system, namely, 64 in (9). Instead, we are interested in providing the tightest possible

lower bound of the safety probability according to Remark 8. The main issue underlying here is that by considering

^ ∈ (0, 1), the obtained scenario program is not convex anymore, and accordingly, one cannot naively utilize the

results proposed in Theorems 5. Hence, one cannot solve the SP in (43) by simply applying bisection over ^, while still

utilizing the proposed results in the previous sections.

Now we state the main problem we aim to address in this section.

Problem 3 Consider an unknown dt-SS S as in Definition 1. Compute the largest lower bound (1 − d) ∈ [0, 1] on the

probability of satisfying Ψ, i.e.,

P|

(
S |=H Ψ

)
≥ 1 − d,

according to (40) together with a confidence (1 − V) ∈ [0, 1] using a dataset D of the form (2). Moreover, establish a

connection between the required size of dataset D, the cardinality of the set from which the parameter ^ is selected,

and the desired confidence 1 − V. �

In the next theorem, we present our solution to Problem 3 by proposing a new confidence bound which is always

valid even for the non-convex scenario program in (43).

Theorem 10 Consider an unknown dt-SS as in (1) together with the safety specification Ψ. Let M be the cardinality

of a finite set from which ^ takes value in (0,1). Suppose that Assumptions 3-4 hold for the RP in (41) with function

� (·) and LG := max
(
LG1

, LG2
, LG3

,LG4

)
, where LG8 , 8 ∈ {1, . . . , 4}, is an upper bound on the Lipschitz constant of

the 8Cℎ constraint in (41). Assume #̂ is selected for the SP#,#̂ similar to Theorem 2 in order to provide confidence

1 − VB. Suppose K∗ (D) is the optimal value of the optimization problem in (43) using #̂ and # . Furthermore,

n = I−1 (1−MV;Q + 3, # − Q − 2) for V ∈ [0, 1], where Q is the number of coefficients of the barrier certificate. Then

the following statement holds with a confidence of at least 1 − 3V − VB: if K∗ (D) + LG�
−1 (n) ≤ 0, then
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P|(S |=H Ψ) ≥ 1 − d∗, (45)

where d∗ is computed as in (40) using optimal solutions of SP#,#̂, namely, 2∗, _∗, and ^∗. More importantly, with a

confidence of at least 1 − 3V − VB, B(1∗, G) is a barrier certificate for (, satisfying (3), (4), and (39), where 1∗ is the

optimal solution of SP#,#̂. �

Proof Denote the optimal values of the RP and its equivalent scenario programmingbefore the empirical approximation

of the expectation term in 64, namely, SP# , by K∗ and K∗
m (D), respectively. Similar to (19), one has

P
(
K∗ ≤ K∗

m (D) + LG�
−1 (n)

)
≥ 1 − 3V,

for any # ≥ #̃
(
n1, . . . , nM, V

)
, where

#̃
(
n1, . . . , nM, V

)
:=

min
{
# ∈ N |

M∑

I=1

d−1∑

8=0

(
#

8

)
n 8
I (1 − nI)#−8 ≤ V

}
.

Alternatively, one can set n := n1 = n2 = . . . = nM in the above expression to get the inequality n ≤ I−1(1 − MV; d, # −

d + 1), where M is the cardinality of the set from which ^ is selected, and d is the number of decision variables. By

choosing d := Q + 3, one gets the parameters of the incomplete beta function in the theorem statement. On the other

hand, due to the particular selection of #̂ and VB similar to Theorem 2, it can be deduced that

P|

(
B̂(1, G | D) |= SP#

)
≥ 1 − VB,

where B̂(1, G | D) is the barrier function whose coefficients are the optimal solution of SP# . Therefore, we have

P
(
K∗

m (D) ≤ K∗ (D)
)
≥ 1 − VB . (46)

By defining events A := {D | K∗ ≤ K∗
m (D) + LG�

−1 (n)}, B := {D | K∗
m (D) ≤ K∗ (D)}, and C := {D | K∗ (D) +

LG�
−1 (n) ≤ 0}, where P(A) ≥ 1 − 3V and P(B) ≥ 1 − VB, it is easy to conclude using the same reasoning as in the

second part of proof of Theorem (5) that

P(K ≤ 0) ≥ 1 − 3V − VB,

which ensures safety of the stochastic system with a lower bound 1 − d and a confidence of at least 1 − 3V − VB. �
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7 Numerical Examples

The simulations of this section are performed on an iMac 3.5 GHz Quad-Core Intel Core i7. The optimizations are

solved by CVX Toolbox [16] with Mosek [3] as the solver.

7.1 Temperature verification for three rooms

Consider a temperature regulation problem for three rooms characterized by the following discrete-time stochastic

system:

T1(C + 1) =
(
1 − gB (U + U4)

)
T1(C) + gBUT2(C)+

gBU4)4 + |1(C)

T2(C + 1) =
(
1 − gB (2U + U4)

)
T2(C) + gBU(T1(C) + T3(C))+

gBU4)4 + |2(C)

T3(C + 1) =
(
1 − gB (U + U4)

)
T3(C) + gBUT2(C)+

gBU4)4 + |3(C), (47)

where T1(C), T2 (C), and T3(C) are temperatures of three rooms, respectively. Terms |1(C), |2(C), and |3(C) are

additive zero-mean Gaussian noises with standard deviations of 0.01, which model the environmental uncertainties.

Parameter )4 = 10°� is the ambient temperature. Constants U4 = 8 × 10−3 and U = 6.2 × 10−3 are heat exchange

coefficients between rooms and the ambient, and individual rooms, respectively. The model for each room is adapted

from [15] discretized by gB = 5 minutes. Let us consider the regions of interest for each room as -8= = [17°�, 18°�],

-D = [29°�, 30°�], and - = [17°�, 30°�]. We assume the model of the system and the distribution of the noise are

unknown. The main goal is to verify whether the temperature of each room remains in the comfort zone [17, 29] for

the time horizon H = 3 which is equivalent to 15 minutes, with a priori confidence of 99%.

Let us consider a barrier certificate with degree : = 2 in the polynomial form as [)1;)2;)3])P[)1;)2;)3] =

10)
2
1
+ 11)

2
2
+ 12)

2
3
+ 13)1)2 + 14)1)3 + 15)2)3 + 16)1 + 17)2 + 18)3 + 19, where

P =



10
13

2
14

2
16

2

13

2
11

15

2
17

2

14

2
15

2
12

18

2

16

2
17

2
18

2
19



. (48)
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According to Algorithm 1, we first choose the desired confidence parameters V and VB as 0.005
3

and 0.005, respectively.

The value of empirical approximation error is selected as X = 0.05. We choose d = 0.2. The Lipschitz constant

is computed as 1.5 according to Remark 11. By enforcing "̂ = 0.005, the required number of samples for the

approximation of the expected value in (11) is #̂ = 400. Now, we solve the scenario problem SCP#,#̂ with the number

of samples # = 6 × 106 and the computed #̂ = 400, which gives us the optimal objective value K∗ (D) = −0.46. The

computation time is about 5 minutes. For # = 6 × 106 and V =
0.005

3
, n is computed as 4.36 × 10−6. Function �−1 (n)

is also computed as 16.09n
1
3 according to Corollary 1.

Since K∗ (D) + LG�
−1 (n) = −0.066 ≤ 0, according to Theorem 5, one can conclude:

P|(S |=3 Ψ) ≥ 1 − d = 0.80,

with a confidence of at least 1 − 3V − VB = 0.99. The barrier certificate constructed from solving SCP#,#̂ is as follows:

B̂(1,)1, )2, )3 |D) = 0.112)2
1 + 0.112)2

2 + 0.112)2
3

− 0.004)1)2 − 0.005)1)3 − 0.002)2)3

− 3.761)1 − 3.815)2 − 3.803)3 + 99.93. (49)

The computed optimal values for 2 and _ are 0.627 and 14.872, respectively. The scatter plot of the obtained barrier

certificate is illustrated in Fig. 4. As can be seen in this figure, the barrier certificate has less values in the initial set

while it has larger values in the unsafe region.

We remark that the conservatism of our approach is originating from two sources. (a) The first one is that we are

using barrier certificates for computing the lower bound. A barrier certificate with a fixed template (polynomial of a

certain degree) gives a lower bound that could have a gap with the best lower bound on the safety probability. (b) Our

sampling approach requires making the optimization more conservative to account for going from robust programs

over continuous (uncountable) domains to a scenario program with finite number of samples. If one assumes that the

model is known in this case study, the synthesized barrier certificate has the parameters 2 = 0.9767 and _ = 31.51.

This gives the lower bound 0.875 on the safety probability. Therefore, our approach provides a more conservative lower

bound 0.80 since it assumes no knowledge of the model.
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Fig. 4 Scatter plotting of the barrier certificate indicating portions of the state set where the inequalities in (11) are enforced for 6 × 106

sampled data.

7.2 Lane keeping system

Lane keeping assist system is a future development of the modern lane departure warning system embedded in the

current vehicles. This system usually assists the driver through electronic assistance with the steering force. The

characteristics of this support depends on the distance of the vehicle from the edge of the lane among other factors

such as uncertainties[12]. One of the key challenges in such assisting systems is verifying the obtained performance

which can be defined as a safety problem.

In this subsection, it is supposed that the model of the vehicle and the distribution of noise are unknown, and

one only has access to a finite number of samples. This unknown system is characterized by a simplified kinematic

single-track model of BMW320i which is adapted from [2] by discretization of the model and adding noise to imitate

the uncertainties.

The nonlinear stochastic difference equation is as follows:

G(C + 1) = G(C) + gB{ cos(k(C) + b) + |1(C)

S : H(C + 1) = H(C) + gB{ sin(k(C) + b) + |2(C)

k(C + 1) = k(C) + gB{

;A
sin(b) + |3(C), (50)

where b =
;A

;A+; 5 tan−1 (X 5 ) with X 5 = 5 degrees as the steering angle. Parameters ;A = 1.384 and ; 5 = 1.384 are the

distances between the center of gravity of the vehicle to the rear and front axles, respectively. Variables G, H, and k

denote horizontal movement, vertical movement, and the heading angle, respectively. This system is considered to be

affected by zero-mean additive noises |1, |2, and |3 which are related to uncertainties of position G, position H, and
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the heading angle k with standard deviation of 0.01, 0.01, and 0.001 respectively. Other parameters are the sampling

time (gB = 0.1B), and the velocity ({ = 5</B).

The state set is considered as - = [1, 10] × [−7, 7] × [−0.05, 0.05]. The regions of interest are -8= = [1, 2] ×

[−0.5, 0.5] × [−0.005, 0.005], -D1
= [1, 10] × [−7,−6] × [−0.05, 0.05], and -D2

= [1, 10] × [6, 7] × [−0.05, 0.05].

Now, the goal is to verify if the vehicle does not enter the unsafe regions of the lane for the time horizon of H = 3 or

equivalently 0.3 B with a desired confidence of 90%.

We consider a barrier certificate of degree : = 2 in the polynomial form as [G; H;k])P[G; H;k] = 10G
2 + 11H

2 +

12k
2 + 13GH + 14Gk + 15Hk + 16G + 17H + 18k + 19, where the matrix P is as in (48).

We follow Algorithm 1 to find the barrier certificate and providing a probabilistic guaranteeon the safety of stochastic

system. First, the desired confidence parameters V and VB are chosen as .095
3

and 0.005, respectively. We also select the

empirical approximation error X = 0.02. The desired lower bound of safety probability is selected as 1− d = 0.80. The

Lipschitz constant is computed as LG = 10 according to Remark 11. By enforcing "̂ = 0.006, the required number

of samples for the approximation of the expected value in (11) is #̂ = 3000. Now, we solve the scenario problem

SCP#,#̂ with an arbitrary sample number # = 6 × 106 and #̂ which gives us the optimal value K∗ (D) = −0.4518.

The computation time is about 5 minutes. For those values of samples # and V, n is computed as 3.41 × 10−6. Using

Corollary 1, �−1 (n) is computed as 2.92n
1
3 .

Since K∗ (D) + 2.92 LGn
1
3 = −0.01 ≤ 0, according to Theorem 5, one can deduce that

P|(S |=3 Ψ) ≥ 1 − d = 0.80,

with a confidence of at least 1− 3V− VB = 90%. The barrier certificate constructed from solving SCP#,#̂ is represented

as:

B̂(1, G, H, k | D) =0.39H2 + 0.15k2 + 0.009Gk

− 0.007Hk − 0.015k + 0.452. (51)

The optimal values of 2 and _ are 0.57 and 14.04, respectively. The exact value of the coefficients are reported in the

appendix.

The surface plot of the barrier certificate B(G, H, k) = B̂(1, G, H, k | D) with respect to G and H for a fixed value

of k = 0 is depicted in Fig. 5. The blue transparent planes separate unsafe region on H, while the lower and upper

red transparent planes demonstrate the thresholds in constraints (3) and (4), respectively. Satisfaction of the first and

second condition of barrier certificate in Definition 3 can be observed in Fig. 5. The satisfaction of the third condition

is illustrated in Fig. 6.
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Fig. 5 Surface plot of the barrier certificate B(G, H, k) with respect to G and H for fixed k = 0.

7.3 Synthesizing a temperature controller

Consider a temperature regulation problem for a room using a heater characterized by

S : T(C + 1) =T(C) + gB
(
U4 ()4 − T(C))+

Uℎ ()ℎ − T)D(C)
)
+ |(C), (52)

where |(C) is a zero-mean Gaussian noise with standard deviation of 0.05. Parameters are )4 = 15, )ℎ = 45,

U4 = 8×10−3, Uℎ = 3.6×10−3, and gB = 5. Regions of interest are defined as -8= = [22°�, 23°�], -D1
= [27°�, 28°�],

Fig. 6 Satisfaction of the third condition in Definition 3 (for k = 0) B(G, H, k) based on collected data.
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-D2
= [16.5°�, 17.5°�], and - = [16.5°�, 28°�]. The input region is [0, 1]. We assume that the model of the system

and the distribution of the noise are unknown. The main goal is to design a controller that forces the temperature to

remain in the comfort zone [17.5, 27] for the time horizon H = 60, which is equivalent to 300 minutes, with a priori

confidence of 95%.

Let us fix a control barrier certificate with degree : = 4 in the polynomial form as ))P) = 10)
4 + 11)

3 + 12)
2 +

13) + 14 with 10, 11, 12, 13, 14 ∈ R. The structure of the controller is considered to be a polynomial of degree :′ = 4

as D(?1, )) = ))PD) = ?0)
4 + ?1)

3 + ?2)
2 + ?3) + ?4. Matrices P and PD can be represented as:

P =



10
11

2
12

3

11

2
12

3
13

2

12

3
13

2
14



, PD =



?0
?1

2

?2

3

?1

2

?2

3

?3

2

?2

3

?3

2
?4



. (53)

According to Algorithm 2, we first choose the desired confidences V and VB as 0.005
3

and 0.045 respectively. We also

select the approximation error X = 2. The Lipschitz constant LG,D is computed as 12 according to Remark 11. By

considering "̂ = 1.5 × 105, the required number of samples for the approximation of the expected value in (11) is

#̂ = 833330. Now, we solve the scenario problem SCP#,#̂ with the selected number of samples # = 1.5 × 106 and #̂

which gives us the optimal value K∗ (D) = −0.41. The computation time is about 2 minutes. For # = 1.5 × 106 and

V =
0.005

3
, value of n is computed as 1.7424 × 10−5. Using Corollary 3, �−1 (n) is computed as 4.91n

1
2 .

Since K∗ (D) + LG,D�
−1 (n) = −0.164 ≤ 0, one has

P
p
|(S |=60 Ψ) ≥ 1 − d = 0.80,

with a confidence of at least 1 − 3V − VB = 95%. The computed values for _ and 2 are 4817 and 16.04, respectively.

The control barrier certificate constructed from solving SCP#,#̂ is:

B̂(1, ) | D) = 11.89 )4 − 1.07 × 103 )3 + 3.61 × 104 )2

− 5.42 × 105 + 3.05 × 106.

The obtained controller is:

P1(?1, ) | D) = 1.45 × 10−5)3 + 0.012)2 + 0.355.

The temperature trajectories for 15 different realizations of noise from three different initial temperature in the range

[22°, 23°] is illustrated in Fig. 7. As can be seen, the temperature in the collected trajectories do not enter the unsafe
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set, which is in gray color. We also ran the system to get 104 trajectories, all of them remain safe. This confirms the

theoretical lower bound computed by our approach.

Fig. 7 The temperature trajectories of 15 different realizations of noise for three different initial temperature in the range [22°, 23°].

The conservativeness of our approach in terms of the safety bound (1 − d) and the number of samples is shown in

Table 1. The values are reported for increasing number of samples and two safety thresholds with d ∈ {0.1, 0.2}. As

can be seen from the table, increasing the number of samples makes n smaller and reduces the term LG,D�
−1 (n) used

in (35). In contrast, the values of K∗ (D) become larger. This creates a tradeoff between the two terms in (35). Note that

the condition of having a negative value for LG,D�
−1 (n) + K∗(D), thus guaranteeing safety with probability (1 − d),

is only satisfied in the last two row of the table for d = 0.2 (indicated in blue color). Also, notice that the satisfaction

of (35) for a higher desired safety probability requires larger number of samples.

Table 1 Conservativeness of the proposed approach

Number of samples Computed n LG,D�
−1 (n) K∗

d=0.2
(D) K∗

d=0.1
(D) K∗

d=0.2
(D) + LG,D�

−1 (n) K∗
d=0.1

(D) + LG,D�
−1 (n)

103 0.026 9.5 −0.48 −0.45 9.02 9.05

104 0.003 3 −0.42 0.09 2.58 3.09

105 2.61 × 10−4 0.952 −0.43 1.37 0.522 2.32

1.5 × 106 1.74 × 10−5 0.246 −0.41 2.08 −0.164 2.33

3 × 106 8.71 × 10−6 0.174 −0.35 2.09 −0.176 2.26
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8 Conclusion

We proposed a formal verification and synthesis procedure for discrete-time continuous-space stochastic systems with

unknown dynamics against safety specifications. Our approach is based on the notion of barrier certificate and uses

sampled trajectories of the unknown system. We first casted the computation of the barrier certificate as a robust

convex program (RCP) and approximated its solution with a scenario convex program (SCP) by replacing the unknown

dynamics with the sampled trajectories. We then established that the optimal solution of the SCP gives a feasible

solution for the RCP with a given confidence, and formulated a lower bound on the required number of samples. Our

approach provided a lower bound on the safety probability of the stochastic unknown system when the number of

sampled data is larger than a specific lower bound that depends on the desired confidence. We extended the results to a

class of non-convex barrier-based safety problems and showed the applicability of our proposed approach using three

case studies.
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6. Julian Berberich, Johannes Köhler, Matthias A Muller, and Frank Allgower. Data-driven model predictive control with stability and

robustness guarantees. IEEE Transactions on Automatic Control, 2020.

7. Urs Borrmann, Li Wang, Aaron D Ames, and Magnus Egerstedt. Control barrier certificates for safe swarm behavior. IFAC-

PapersOnLine, 48(27):68–73, 2015.

8. Giuseppe C Calafiore and Marco C Campi. The scenario approach to robust control design. IEEE Transactions on automatic control,

51(5):742–753, 2006.

9. Andrew Clark. Control barrier functions for stochastic systems. Automatica, 130:109688, 2021.

10. Jeremy Coulson, John Lygeros, and Florian Dörfler. Distributionally robust chance constrained data-enabled predictive control.

arXiv:2006.01702, 2020.

11. Charles Dawson, Zengyi Qin, Sicun Gao, and Chuchu Fan. Safe nonlinear control using robust neural lyapunov-barrier functions. In

Conference on Robot Learning, pages 1724–1735. PMLR, 2022.

12. Verband der Automobilindustrie. Lane keeping assist systems. https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-

2020.

https://www.vda.de/en/topics/safety-and-standards/lkas/lane-keeping-assist-systems.html


Data-driven verification and synthesis of stochastic systems via barrier certificates 35

13. Peyman Mohajerin Esfahani, Tobias Sutter, and John Lygeros. Performance bounds for the scenario approach and an extension to a

class of non-convex programs. IEEE Transactions on Automatic Control, 60(1):46–58, 2014.

14. Antoine Girard. Reachability of uncertain linear systems using zonotopes. In International Workshop on Hybrid Systems: Computation

and Control, pages 291–305. Springer, 2005.
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9 Lipschitz continuity of the max function

Lemma 3 The maximum of Lipschitz continuous functions 58 : - → R, 8 = 1, 2, . . . , <, is a Lipschitz continuous

function. The Lipschitz constant of the maximum is the sum of the Lipschitz constants of 58 .

Proof Suppose that two Lipschitz continuous functions 51 and 52 have Lipschitz constants !1 and !2, respectively.

One can rewrite 6 = max( 51, 52) as:

6 = max( 51, 52) =
51 + 52 + | 51 − 52 |

2
.

Then, we can use triangle inequality to show that

|6(G) − 6(H) | ≤ 1

2
[| 51 (G) − 51 (H) | + | 52(G) − 52(H) |+

��| 51(G) − 52 (G) | − | 51(H) − 52(H) |
��]

≤ 1

2
[!1‖G − H‖ + !2‖G − H‖ + | 51 (G) − 51(H) |+

| 52(G) − 52(H) |] ≤
1

2
[!1‖G − H‖ + !2‖G − H‖+

!1‖G − H‖ + !2‖G − H‖] = (!1 + !2)‖G − H‖.

Therefore, max( 51, 52) is also a Lipschitz continuous function with Lipschitz constant !1 + !2. This argument can be

extended inductively to the maximum of every number of functions. �

Lemma 4 For any two analytic functions 51 : - → R and 52 : - → R with a compact domain - , ! := max(!1, !2)

is a Lipschitz constant of max( 51, 52). �

Proof Note that

6(G) = max( 51(G), 52(G)) =




51(G) if 51 (G) − 52(G) ≥ 0

52(G) if 51 (G) − 52(G) ≤ 0.
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The function 51 − 52 is also analytic, thus has a finite number of zeros in a compact domain. Let us denote the finite

set of zeros as / . We first show this for one-dimensional compact domains - ⊂ R. Take two points G, H ∈ - such that

G < H, and define / ∩ [G, H] = {I1, I2, . . . , I<} such that I8 < I8+1 for any 8 = 1, 2, . . . , < − 1. Then we have

|6(H) − 6(G) | = | 58H (H) − 58< (I<) + 58< (I<) − 58<−1
(I<−1) + . . .

+ 582 (I2) − 581 (I1) + 581 (I1) − 58G (G) |,

for some appropriate choices of 8G , 8H , 81, . . . , 8< all from the set {1, 2}. Since 6(I 9 ) = 51(I 9 ) − 52(I 9 ) = 0, we can set

the index of 5 to symbol that belongs to the set {1, 2} when the function is evaluated at any I 9 . Then, we have

|6(H) − 6(G) |

= | 58H (H) − 58H (I<) + 58< (I<) − 58< (I<−1) + . . . +

582 (I2) − 582 (I1) + 58G (I1) − 58G (G) | ≤

| 58H (H) − 58H (I<) | + | 58< (I<) − 58< (I<−1) | + . . . +

| 582 (I2) − 582 (I1) | + | 58G (I1) − 58G (G) |

≤ !8H (H − I<) + !8< (I< − I<−1) + . . . +

!82 (I2 − I1) + !8G (I1 − G)

!(H − I<) + !(I< − I<−1) + . . . + !(I2 − I1) + !(I1 − G)

= !(H − G),

where ! = max(!1, !2) = max(!8H , !8G , !81 , . . . , !8< ). This concludes the proof for one-dimensional case.

We now prove the statement for multi-dimensional case. Take two points G, H ∈ - ⊂ R= with G = (G1, . . . , G=) and

H = (H1, . . . , H=). The functions 51, 52 have Lipschitz constants !1, !2, which means

| 58 (H1, . . . , H=) − 58 (G1, . . . , G=) | ≤ !8 ‖(H1 − G1, . . . , H= − G=)‖, 8 ∈ {1, 2}. (54)

Define the line segment that connects these two points as � := {_H + (1 − _)G | _ ∈ [0, 1]}. Let us know restrict the

domain of the function 6 to � and define:

ℎ : [0, 1] → R, ℎ(_) := 6(_H + (1 − _)G) =

max( 51(_H + (1 − _)G), 52 (_H + (1 − _)G)).
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We can now apply the first part of the proof to get:

|ℎ(1) − ℎ(0) | ≤ !′ |1 − 0|, (55)

where !′ is the maximum of the Lipschitz constants of 51(_H + (1 − _)G) and 52(_H + (1 − _)G) with respect to _. To

get these Lipschitz constants, we use (54):

| 58 (_1H + (1 − _1)G) − 58 (_2H + (1 − _2)G) | ≤

!8 ‖(_1 − _2) (H − G)‖ = !8 |_1 − _2 | ‖H − G‖

= (!8 ‖H − G‖) |_1 − _2 |

Therefore, the Lipschitz constants of 51(_H + (1 − _)G) for a given G, H with respect to _ is !8 ‖H − G‖. Replacing

definitions in (55), we have

|6(H) − 6(G) | ≤ !′
= max(!1‖H − G‖, !2‖H − G‖) = ‖H − G‖ max(!1, !2).

This completes the proof. �

10 Proof of Corollary 1

The probability distribution from which G8 is sampled must satisfy Assumption 4. This assumption requires having a

strictly increasing function � : R+
0
→ [0, 1] that satisfies

P[b(G, A)] ≥ � (A), ∀G ∈ -.

Since we assume that samples are collected uniformly, P[b(G, A)] for every small ball centered at every G ∈ - with

radius A = n can be computed by dividing the volume of this ball by the whole state set volume. Given that one needs

to find the maximum ball that is valid for ∀G ∈ - , and some points G lie on the border of the hyper-rectangular state set,

the maximum ball is a semi-hypersphere in general, whose volume can be computed as
1

2=
c

=
2

Γ ( =
2
+1) n

= with the Gamma

function defined as Γ(:) = 1× 2× 3 . . .× (: − 1) and Γ(: + 1
2
) = 1

2
× 3

2
× . . . (: − 3

2
) (: − 1

2
)c 1

2 for all positive integers.

Dividing this value by the whole state set volume, which is
∏=

8=1 [G (8) for [G (8) as the length of the edges in each

direction, gives us � (n).
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11 Proof of Corollary 2

The proof is similar to the proof of Corollary 1 in 10. Here, the centered ball with the maximum volume is the

intersection of the whole state set sphere and the small ball A = n centered at any point on the border of the state set

sphere. The volume of this intersection, which is the volume of two separate caps, can be computed as:

+
20?
= (Ã , c1) + V

cap
n (n, c2),

where

+
20?
= (Ã , c1) =

1

2

c
n
2

Γ( n
2
+ 1) r̃nI(1 −

c2
1

r̃2
;

n + 1

2
,
1

2
),

and

+
20?
= (n, c2) =

1

2

c
n
2

Γ( n
2
+ 1) n

nI(1 −
c2

2

n2
;

n + 1

2
,
1

2
),

for c1 =
2r̃2−n 2

2r̃
, and c2 =

n 2

2r̃
. By dividing the intersection volume by the volume of the whole hypersphere state set,

which is

+=(Ã) =
c

=
2

Γ( =
2
+ 1) Ã

=,

one can compute � (n) as in Corollary 2.
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12 Coefficients of the computed barrier certificates in floating point format with 16 digits.

Temperature Verification Lane Keeping Synthesizing a

for 3 Rooms System Controller

1.118824712343290× 10−1 2.200050812923097× 10−4 1.189325015407815× 10

1.121295401333170× 10−1 3.901846347425760× 10−1 −1.070392322770013× 103

1.122576531449860× 10−1 1.480240596483330× 10−1 3.612276124685787× 104

−3.751401155407000× 10−3 −2.825312554914731× 10−4 −5.417521260597183× 105

−4.728480781000000× 10−3 9.905388481691000× 10−3 3.046603167514221× 106

−2.284303936564000× 10−3 −6.672383448890000× 10−3 -

−3.761231117922648× 100 −6.918249590565419× 10−4 -

−3.815332731044874× 100 4.678025224577894× 10−4 -

−3.803570830339135× 100 −1.539512818952500× 10−2 -

9.993049903406006× 10 4.518033593474370× 10−1 -

In the above table, the values in first two columns from top to the bottom are {10, . . . , 19} in respective case studies.

The values in the the third column from top to the bottom are {10, . . . , 14} in the last case study.
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