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Abstract

Through one decade’s development, the kernel-based regularization method (KRM) has become a complement to the classical
maximum likelihood/prediction error method and an emerging new system identification paradigm. One recent example is its
application in the non-causal system identification, and the key issue lies in the design and analysis of kernels for non-causal
systems. In this paper, we develop systematic ways to deal with this issue. In particular, we first introduce the guidelines for
kernel design and then extend the system theoretic framework to design the so-called non-causal simulation-induced (NCSI)
kernel, and we also study its structural properties, including stability and semiseparability. Finally, we consider some special
cases of the NCSI kernel and show their advantage over the existing kernels through numerical simulations.
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1 Introduction

In the control community, system identification is the
term for the area of building up mathematical models
of dynamical systems based on the measured input and
output data, and has a history of nearly 60 years [1].
In the first 50 years, the major advance of system iden-
tification is on the maximum likelihood/prediction er-
ror method (ML/PEM) (and its asymptotic analysis),
which is often called the classical system identification,
e.g., [2,3,4,5]. In the last decade, the major advance is on
the kernel-based regularizationmethod (KRM), e.g., the
survey papers [6,7,8] and the book [9]. In contrast with
ML/PEM, KRM has the feature that it finds a system-
atic way to engage the prior knowledge of the underlying
system to be identified in the system identification loop,
in particular in the selection of both the model structure
and themodel complexity. The carrier of the prior knowl-
edge is the so-called kernel, which determines the model
structure, and its parameter (called hyper-parameters)
determines the model complexity, which can often be
tuned in a continuous way, e.g., [6,7,8,10]. Hence, the
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kernel plays a fundamental role and its design is a key is-
sue. A couple of kernel design methods and many kernels
have been proposed, e.g., [11,10,12,13]. Now KRM has
become not only a complement to the classicalML/PEM
[2,14], but also an emerging new system identification
paradigm, which is often called the regularized system
identification [8,9].

One recent example is the application of KRM in the
non-causal system identification [15], where the causal
tuned-correlated (TC) kernel proposed in [14] was first
extended to the non-causal case, and then KRM was
used to identify the non-causal impulse response and
achieved satisfying results. The success of KRM in [15] is
mainly because KRM can engage, through the designed
kernel, the prior knowledge on the non-causal system to
be identified, e.g., the stability and smoothness of the
non-causal impulse response. This success confirms the
efficacy and also motivates us to further explore the po-
tential of KRM in the non-causal system identification.
Then, it is worth noting that all kernels, except the non-
causal TC kernel proposed in [15], are causal kernels de-
signed for causal systems, and the design and analysis of
non-causal kernels for non-causal systems has not been
studied in a systematic way before.

In this paper, we focus on this problem. First, we intro-
duce the guidelines for the non-causal kernel design and
then extend the system theoretic framework proposed
in [10] to design the so-called non-causal simulation-
induced (NCSI) kernel. In particular, the NCSI kernel
employs the multiplicative uncertainty configuration in
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robust control, e.g., [16], where the nominal model is
used to embed the prior knowledge, the uncertainty is
modelled by a Gaussian process, and the overall model
is simulated with an impulsive input to get the NCSI
kernel. Then, we study the structural properties of the
NCSI kernel, including stability and semiseparability.
Finally, we consider some special parameterizations of
the NCSI kernel and show that they give better model
estimates/tracking performance than the ones proposed
in [15] through numerical simulations. In contrast with
[15], this paper has the following contributions:

(i) we develop a systematic framework to design NCSI
kernels for non-causal systems, and moreover, the
prior knowledge embedded in NCSI kernels has
clear physical interpretation;

(ii) we study the structural properties of NCSI kernels,
including stability and semiseparability;

(iii) we test the designed NCSI kernels by Monte Carlo
simulations with randomly generated systems and
moreover, the simulation results show that the de-
signed NCSI kernels perform (in terms of average
accuracy and robustness) significantly better.

The remaining part of this paper is organized as follows.
In Section 2, we first introduce some background mate-
rials and then the problem statement. In Section 3.1, we
introduce the guidelines for non-causal kernel design. In
Section 3, we design the NCSI kernel followed by some
analysis and examples. In Section 4, we run numerical
simulations to illustrate the efficacy of the designed ker-
nels. Finally, we conclude in Section 5. The proofs of
theoretical results are deferred to the appendix.

2 Background and Problem Statement

In this section, we first introduce some background ma-
terials and then the problem statement.

2.1 Non-Causal System Identification

We consider linear time-invariant (LTI), discrete-time,
non-causal and bounded-input-bounded-output (BIBO)
stable systems described by

y(t) = G(q)u(t) + v(t), t = 1, 2, · · · , N, (1)

where t is the time instant, u(t), y(t) ∈ R are the input
and output of the system, respectively, v(t) is the mea-
surement noise and assumed to be a white noise with
mean 0 and variance σ2, q is the forward-shift operator,
i.e., qu(t) = u(t+ 1), and G(q) the transfer function of
the system. Moreover, G(q) can be represented as

G(q) =

∞
∑

k=−∞

g0(k)q−k, (2)

where {g0(k)}k∈Z is called the non-causal impulse re-
sponse of G(q), and clearly, G(q) is BIBO stable if its
non-causal impulse response is absolutely summable.
The non-causal system identification problem is to esti-
mate {g0(k)}k∈Z or simply g0 below as well as possible
based on the input-output data {u(t), y(t)}Nt=1.

It is worth to stress that the non-causal system (1) nat-
urally arises from the inverse model control, where the
true system is unknown, stable, non-minimum phase and
has no zeros on the unit circle, e.g., [15] for more details.
Besides, the non-causal systems also arise from other
contexts, e.g., the continuous-time system identification
[17], and unstable system identification [18].

2.2 Kernel-Based Regularization Method

The non-causal system identification problem of (1) can
be handled by the kernel-based regularization method
(KRM), which relies on a positive semidefinite kernel
k(t, s; η) : Z×Z → R with η ∈ Ω ⊂ Rp being the hyper-
parameter and p ∈ N being its dimension. In particular,
KRM searches for a regularized least squares (RLS) es-
timate ĝR of g0 in the reproducing kernel Hilbert space
(RKHS) Hk associated with k(t, s; η):

ĝR = argmin
g∈Hk

N
∑

t=1

(y(t)−
∞
∑

k=−∞

g(k)u(t− k))2 + γ||g||2Hk
,

(3)
where || · ||Hk

is the norm of Hk, and γ > 0 is the regu-
larization parameter.

The design of kernels is a core issue for KRM and is re-
ferred to as the parameterization of the kernel k(t, s; η)
through the hyper-parameter η by encoding the prior
knowledge of the underlying system to be identified.
The design of causal kernels, i.e., k(t, s; η) : N×N → R,
for causal impulse responses has been well studied,
e.g., [10], and many causal kernels have been intro-
duced, e.g., the diagonal-correlated (DC) kernel and the
tuned/correlated (TC) kernel [14]:

kDC(t, s; η) = cλ(t+s)/2ρ|t−s|, (4a)

η = [c, λ, ρ], c ≥ 0, 0 ≤ λ < 1, |ρ| ≤ 1,

kTC(t, s; η) = cmin{λt, λs}, (4b)

η = [c, λ], c ≥ 0, 0 ≤ λ < 1.

In contrast, the design of non-causal kernels, i.e.,
k(t, s; η) : Z× Z → R, for non-causal impulse responses
has not been studied before until recently in [15].
Therein, a so-called non-causal TC (NCTC) kernel was
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introduced and takes the following form

kNC-TC(t, s; η) = cmin{b(t), b(s))}, (5)

b(t) =

{

λt
c, t ≥ 0,

λ−t
a , t < 0,

η = [c, λc, λa], c ≥ 0, 0 ≤ λc < 1, 0 ≤ λa < 1,

where c is a scale factor, λc, λa describe the decay rates
for the causal part, i.e., t ≥ 0 and the anti-causal part,
i.e., t < 0, respectively.

2.3 Problem Statement

As shown in [15], KRM with the proposed kernels, e.g.,
(5), can achieve satisfying results for the non-causal sys-
tem identification, which motivates us to further explore
the potential of KRM. In particular, we aim to address
the following questions in relation to the kernel design:

1) what guidelines should be followed when design-
ing non-causal kernels for non-causal impulse re-
sponses;

2) how to design non-causal kernels in a systematic
way following those guidelines;

3) is it possible to design non-causal kernels that give
even better performance than the ones proposed in
[15], e.g., (5).

3 Non-Causal Kernel Design

The idea is to extend the results for causal kernels to
non-causal kernels.

3.1 Guidelines for Non-Causal Kernel Design

Following this idea, we first derive the optimal kernel in
the non-causal context and then introduce the guidelines
for non-causal kernel design.

Proposition 3.1 (Optimal Kernel, [14,6]) Let ḡ0

and ¯̂g denote any finite dimensional vector obtained by
sampling g0(t) and its estimate ĝ(t) at the same but ar-
bitrary sampling time instants in Z. The optimal kernel
is defined as

kopt(t, s) = g0(t)g0(s), t, s ∈ Z, (6)

which minimizes the MSE matrix

MSE(k(t, s)) = E[(¯̂g − ḡ0)(¯̂g − ḡ0)T ], (7)

in the sense that MSE(k(t, s)) − MSE(kopt(t, s)) is
positive semidefinite for any positive semidefinite kernel
k(t, s), where E denotes the mathematical expectation.

Similar to the causal case, we have the following guide-
lines for non-causal kernel design: first, let the kernel
mimic the behavior of (6), and moreover, the prior
knowledge of g0 should be used in the kernel design
[14,10]; second, let the kernel have some special struc-
ture that can ease the computation of KRM [19,20]. For
non-causal systems, the most common prior knowledge
is the BIBO stability, and besides, some other common
prior knowledge will be introduced later in Section 3.5.

3.2 Non-Causal Simulation-Induced Kernel

Following the guidelines mentioned above, we propose
to design kernels for non-causal impulse responses from
a system theory perspective. As will be seen shortly, al-
though the same idea has been used in [10] to design ker-
nels for causal impulse responses, some challenges arise
due to the non-causal nature of the problem.

Before proceeding to the details, it is worth sketching
the idea of our kernel design method first. Following the
first guideline for kernel design, i.e., to mimic the optimal
kernel (6), it is natural to embed the prior knowledge of
G(q) from a system theoretic perspective, e.g., proper-
ness, stability, dominant dynamics, into a stochastic pro-
cess g(t), t ∈ Z, and then design the kernel as follows

k(t, s) = Cov(g(t), g(s)), t, s ∈ Z, (8)

where Cov(·, ·) denotes the covariance between two ran-
dom variables. Following this idea, the question now be-
comes “how to embed the prior knowledge of G(q) into
a stochastic process g(t)”?

One way is to employ the multiplicative uncertainty
framework in robust control, e.g., [16], as follows:

G(q) = G0(q)(1 +G∆(q)) (9)

where G0(q) and G∆(q) are called the nominal model
and uncertainty, respectively. For the nominal model
G0(q), we often postulate a classical parameterization
G0(q, θ) in terms of θ to embed the prior knowledge of
G(q). For example, if the prior knowledge is that G(q)
is proper, BIBO stable and its dominant dynamics is
over-damped, then we can simply choose G0(q, θ) to be
a first order system and constrain the values of θ such
that the pole of G0(q, θ) is within the unit circle. For
the uncertaintyG∆(q), we have to suppose as little prior
knowledge as possible, and for stable system identifica-
tion, the only prior knowledge imposed onG∆(q) should
be the stability, and in this case, we should design a zero
mean Gaussian process to embed such prior knowledge
and model the impulse response of G∆(q), then the task
of kernel design would be done. To be more specific, we
draw the block diagram of (9) in Fig. 1, where δ(t) is a
unit impulsive input signal, ū(t), g(t) are the input and
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G∆(q) + G0(q)
δ(t) h(t) ū(t) g(t)

Fig. 1. The block diagram for the multiplicative uncertainty.

output of G0(q), respectively. Then clearly, if it is possi-
ble to construct a zero mean Gaussian process to model
the impulse response h(t) of G∆(q) in Fig. 1, then ū(t)
and in turn g(t) would be both Gaussian processes. In
this way, we finish the design of the kernel (8), and call
(8) the non-causal simulation-induced (NCSI) kernel.

3.2.1 The Nominal Model

We will show how to postulate a classical parameteriza-
tion G0(q, θ) of G0(q) in terms of θ to embed the prior
knowledge of G(q), e.g., properness, stability, dominant
dynamics. In this section, we will only consider the most
fundamental prior knowledge that G(q) is proper and
BIBO stable, and later in Section 3.5, we will consider
some more specific prior knowledge.

As well known from e.g., [21,22], proper and BIBO stable
G0(q) has the following state-space model realization:

xc(t+ 1) = Acxc(t) +Bcū(t), (10a)

G0(q, θ) : xa(t+ 1) = Aaxa(t) +Baū(t), (10b)

g(t) = Ccxc(t) + Caxa(t) +Dū(t), (10c)

where Ac, Bc, Cc, Aa, Ba, Ca, D have compatible dimen-
sions, t ∈ Z is the time index, xc(t) and xa(t) are the
states for the causal part and anti-causal part, respec-
tively, such that all stable poles are contained in Ac

and all unstable poles are contained in Aa. Let θ =
{Ac, Bc, Cc, Aa, Ba, Ca, D}. Then the state-space model
(10) is a classical parameterization G0(q, θ) of G0(q).

3.2.2 The Uncertainty

Noting that for stable system identification, the only
prior knowledge imposed on G∆(q) should be its sta-
bility, we will show how to design a zero mean Gaus-
sian process (or equivalently a kernel) to embed such
prior knowledge and model the impulse response h(t) of
G∆(q). To this goal, since there is no prior knowledge
about the smoothness of h(t), it is natural to model h(t)
by the following Gaussian process:

G∆(q) : h(t) = b(t)w(t), t ∈ Z, (11)

where w(t) is a white Gaussian noise with zero mean
and unit variance, and {b(t)}t∈Z ∈ ℓ1(Z). Clearly, h(t) is
a zero mean Gaussian process with a non-causal kernel
(covariance function) b(t)b(s)δt,s with t, s ∈ Z, where
δt,s is the Kronecker delta function, and which is an
extension of the causal kernel [10, eq. (21)].

3.2.3 The NCSI Kernel

Now we put (10) and (11) together and embed them in
(9) to get the NCSI kernel (8).

Lemma 3.1 Consider the following state-space model

xc(t+ 1) = Acxc(t) +Bcb(t)w(t), (12a)

xa(t+ 1) = Aaxa(t) +Bab(t)w(t), (12b)

g(t) = Ccxc(t) + Caxa(t) +Db(t)w(t), (12c)

t = −Mc,−Mc + 1, · · · , Ma, for Mc,Ma ∈ N, (12d)

where −Mc and Ma are the starting time for the causal
part and anti-causal part, respectively. Assume that the
initial states xc(−Mc) for the causal part and xa(Ma) for
the anti-causal part are such that [xc(−Mc)

T , xa(Ma)
T ]T

has zero mean and bounded covariance matrix. Then
for any finite number of sampling time instants
t1, t2, · · · , tm ∈ Z, limMc→∞ limMa→∞[g(t1), · · · , g(tm)]T

converges in distribution to a Gaussian random vector
with mean zero and covariance matrix, whose (t, s)th
element is defined through

kNCSI(t, s) =

∞
∑

k=−∞

b2(k)g0(t− k)g0(s− k), (13a)

t, s ∈ {t1, t2, · · · , tm},

where {g0(t)}t∈Z denotes the non-causal impulse re-
sponse of the nominal model (10),i.e.,

g0(t) =















CcA
t−1
c Bc, t ≥ 1

D − CaA
−1
a Ba, t = 0

−CaA
t−1
a Ba, t ≤ −1.

, (13b)

Remark 3.1 It is worth stressing that although the sys-
tem theoretic perspective for the design of causal kernels
proposed in [10] is extended for that of non-causal ones
here, due to the difference in the nature of causal and non-
causal systems, the design of non-causal kernel has the
combination of the following issues need to be addressed:

• the assumption on Mc and Ma: shall they be treated
as hyper-parameters or chosen to be such thatMc =
+∞ and Ma = +∞?

• the assumption on xc(−Mc) and xa(Ma): shall they
be assumed to be a Gaussian random variable with
zero mean and a parameterized covariance matrix?
and shall the mutual or partial independence be as-
sumed on xc(−Mc), xa(Ma) and w(t)?

• the assumption on the uncertainty: the general
guideline is that the assumption on the uncertainty
should be made as little as possible (because it is
uncertainty), but shall the uncertainty be assumed
to be causal and stable, or anti-causal and stable,
or non-causal and stable?

4



Fig. 2. Interpretation of the NCSI kernel (13) as the infinite
sum of rank-1 kernels, g0(t− k)g0(s− k), weighted by b2(k),
where we choose g0(t) = 10 exp(−|t|), and b(k) = exp(−|k|).

Based on some analysis and moreover, Monte Carlo sim-
ulations, we have solutions to the above issues, which are
summarized in Lemma 4.1.

Remark 3.2 Lemma 3.1 shows that as the starting
time Mc (actually −Mc) for the causal part and Ma for
the anti-causal part go to infinity, then the initial states
xc(−Mc) for the causal part and xa(Ma) for the anti-
causal part will asymptotically have no influence on the
NCSI kernel (13). This is different from the causal case,
where the initial state at starting time t = 0 has influence
on the SI kernel, e.g., [10, Eq. (22)-(23)]. On the other
hand, (13) shows that the NCSI kernel can be interpreted
as an infinite sum of rank-1 kernels, g0(t− k)g0(s− k),
weighted by b2(k), see Fig. 2.

3.3 Stability of NCSI Kernel

As can be seen in the following theorem, the NCSI ker-
nel (13) is stable in the sense that its associated RKHS
Hk ⊂ ℓ1(Z), see [23,6], where ℓ1(Z) is set of absolutely
summable sequences of real numbers, indexed by Z.

Theorem 3.1 If {g0(t)}t∈Z ∈ ℓ1(Z) and {b(t)}t∈Z ∈
ℓ1(Z), then the NCSI kernel (13) is stable.

Remark 3.3 The technique used in the proof of Theo-
rem 3.1 can be used to prove the stability of the causal
SI kernel proposed in [10], resulting that the sufficient
condition [10, eq. (29a)] can be replaced by a weaker one
{b(t)}t∈N ∈ ℓ1(N).

3.4 Semiseparability of NCSI Kernel

It was shown in [20] that, if the kernel for regularized im-
pulse response estimation has some special rank struc-
tures, e.g., semiseparability, [24], the computational

complexity of KRM can be reduced. For example, the
widely used DC and TC kernels (4) are both semisep-
arable, and the simulation-induced kernel for causal
impulse response estimation is also semiseparable [20].
Interestingly, we will show below that, the NCSI kernel
(13) also has some special rank structure and in fact, it
is semiseparable plus diagonal.

Definition 3.1 A positive semidefinite kernel k(t, s) :
X × X → R is said to be extended p-semiseparable plus
diagonal, if there exist µi, νi : Z → R, i = 1, · · · , p, such
that

k(t, s) =















∑p
i=1 µi(t)νi(s), t > s

d(t), t = s
∑p

i=1 νi(t)µi(s), t < s

(14)

where X represents either N or Z, p ∈ N, and d(t) ∈ R

with t ∈ X . Moreover, if d(t) further satisfies

d(t) =

p
∑

i=1

µi(t)νi(t), (15)

then k(t, s) is said to be extended p-semiseparable.

Then we show that the NCSI kernel (13) is extended p-
semiseparable plus diagonal.

Theorem 3.2 Consider the NCSI kernel (13) and as-
sume thatAc is non-singular. Then the NCSI kernel (13)
is extended p̄-semiseparable plus diagonal with p̄ ∈ N and
p̄ ≤ p, where p is the dimension of Ac in (12a) plus the
dimension of Aa in (12b).

Corollary 3.1 Consider the NCSI kernel (13) and as-
sume thatAc is non-singular. Then the NCSI kernel (13)
is extended p̄-semiseparable, if

D = 0, or D − CaA
−1
a Ba = CcA

−1
c Bc

Remark 3.4 One may wonder what would happen for
the case whenAc is singular. In this case, the NCSI kernel
(13) is not semiseparable any more, but its corresponding
kernel matrix may still have some rank-structure proper-
ties. Since this case is less interesting, the corresponding
details will not be given here.

As shown in [25], there are many efficient algorithms on
matrix computations for extended p-semiseparable plus
diagonal kernels. We will illustrate this with a concrete
example in the next section.

3.5 Embedding More Prior Knowledge

In this section, we try to embed some more specific prior
knowledge of G(q) into the NCSI kernel (13).
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3.5.1 Over-Damped Dominant Dynamics

First, we assume that the prior knowledge is that the
dominant dynamics of G(q) is over-damped and the
function b(t) in the model of the uncertainty G∆(q) in
(11) is an exponential decay one. Therefore, the state-
space model (10) of G0(q) is parameterized as follows:

Ac = Bc = ac, A−1
a = Ba = aa,

Cc = cc, −CaA
−2
a = ca, D − CaA

−1
a Ba = c0,

− 1 < ac, aa < 1, −∞ < cc, c0, ca < ∞,

such that

g0(t) =















cca
t
c, t > 0

c0, t = 0

caa
−t
a , t < 0

, (16a)

and moreover, b(t) is parameterized as follows:

b(t) =















σcλ
t/2
c , t > 0

σ0, t = 0

σaλ
−t/2
a , t < 0

, (16b)

0 < λc, λa < 1, σc, σa ≥ 0.

As a result, we obtain the following non-causal kernel

kNCSI-FO(t, s; η) = (13) with (16a) and (16b), (16c)

η = [ac, aa, cc, c0, ca, λc, λa, σc, σa, σ0].

Since the nominal model is a first order system for both
the causal and anti-causal part, the kernel (16) is called
the first order NCSI (NCSI-FO) kernel. The NCSI-FO
kernel (16) has a closed-form expression that can be
found in Appendix A.4. As shown in Remark A.1, one
of the scaling hyper-parameters cc, c0, ca, σc, σ0, σa is re-
dundant and thus, σ0 is fixed to be 1 and not treated as
a hyper-parameter hereafter.

Example 3.1 It follows from Theorem 3.2 that, the
NCSI-FO kernel (16) is an extended 2-semiseparable plus
diagonal kernel. Define the kernel matrix KNCSI-FO

ij =

kNCSI-FO(i, j; η0), i, j = −n/2, · · · , n/2, with n =
1000, · · · , 8000. Then Fig. 3 shows the time for com-
puting the Cholesky factor of KNCSI-FO by using chol
in MATLAB (in blue) and by exploiting its high-order
semiseparable structure with Algorithm 3 in [25] (in red).

3.5.2 Mirrored Poles

Second, we further assume that there is an extra prior
knowledge that the dominant dynamics of G(q) has a
pair of poles mirrored with respect to the unit circle. As
mentioned in [15, Sec. 4.3], mechanical structures may

1000 2000 3000 4000 5000 6000 7000 8000

n

0

0.2

0.4

0.6

0.8

1

1.2

1.4

tim
e

Fig. 3. The time cost for computing the Cholesky factor of
KNCSI-FO by using chol in MATLAB (in blue) and by ex-
ploiting its high-order semiseparable structure with Algo-
rithm 3 in [25] (in red).

have such prior knowledge. In this case, it is natural to
further let ac = aa in the NCSI-FO kernel (16), leading
to the following kernel

kNCSI-FOmp

(t, s; η) = (16) with ac = aa, (17)

η = [ac, cc, c0, ca, λc, λa, σc, σa, σ0].

3.6 Kernel Simplification

Since the NCSI-FO kernel (16) has 9 hyper-parameters,
its hyper-parameter estimation may have some difficul-
ties, e.g., its initialization is harder, its local minima is-
sues may be more severe, and it may take more time to
find the optimal solution. Hence, following the second
guideline for kernel design, i.e., to ease the computation
of KRM, we simplify the NCSI-FO kernel (16) below by
linking some hyper-parameters together.

There are many ways to link the hyper-parameters.
First, we can link the decay rate of the nominal model
with that of the uncertainty as follows:

kNCSI-DC(t, s; η) = kNCSI-FO(t, s; η) with:

ac = ρcλ
1/2
c , aa = ρaλ

1/2
a , −1 ≤ ρc, ρa ≤ 1,

σc =
√

1− ρ2c , σa =
√

1− ρ2a, (18)

η = [λc, λa, cc, c0, ca, ρc, ρa].

The kernel (18) is called the NCSI-DC kernel, because
it has a nice property similar to the DC kernel (4a),
that is, the kernel (18) reduces to a rank-1 kernel, i.e.,
k(t, s) = g0(t)g0(s), for ρc = ρa = 1, and a diagonal
kernel, i.e., k(t, s) = b(t)b(s)δt,s, for ρc = ρa = 0, which
shows different degrees of balance between the nominal
model G0(q) (described by g0(t)) and the uncertainty

6



G∆(q) (described by b(t)) by varying ρc and ρa. More-
over, similar to the relation between the TC kernel (4b)
and DC kernel (4a), we can obtain another special case
of the NSCI-DC kernel (18) as follows

kNCSI-TC(t, s; η) = kNCSI-DC(t, s; η) with:

ρc = λ1/2
c , ρa = λ1/2

a , (19)

η = [λc, λa, cc, c0, ca].

which is called the NCSI-TC kernel.

Remark 3.5 The NCSI-FOmp kernel (17) can also be
seen as being obtained from the NCSI-FO kernel (16) by
hyper-parameter simplification, i.e., by letting ac = aa.
The difference between the NCSI-FOmp kernel (17) and
theNSCI-DC kernel (18) (also theNSCI-TC kernel (19))
is that the extra prior knowledge embedded in the former
due to the hyper-parameter simplification ac = aa has a
clear physical interpretation, i.e., a pair of poles mirrored
with respect to the unit circle, but not in the latter.

Remark 3.6 Despite having the same suffix ’TC’, as
illustrated in Fig. 4, the NCSI-TC kernel (19) has very
different behavior from the NC-TC kernel (5) and its
block diagonal variant in [15],

kNCBD-TC(t, s; η) =















cmin{λt
c, λ

s
c}, if t ≥ 0, s ≥ 0

cmin{λ−t
a , λ−s

a }, if t < 0, s < 0

0, otherwise.

,

(20)

η = [c, λc, λa],

which is called the NCBD-TC kernel below. Similar to
the construction of the NCBD-TC kernel, we can also
construct the NCBD-DC kernel below

kNCBD-DC(t, s; η) =



























c2cλ
(t+s)/2
c ρ

|t−s|
c , if t ≥ 1, s ≥ 1

c20, if t = 0, s = 0

c2aλ
−(t+s)/2
a ρ

|t−s|
a , if t ≤ −1, s ≤ −1

0, otherwise

,

(21)

η = [λc, λa, cc, c0, ca, ρc, ρa].

4 Numerical Simulation

In this section, we run simulations to test the kernels
proposed in Sections 3.5 and 3.6, and the ones in [15].

4.1 Test Systems and Data-Bank

As mentioned in the last of Section 2.1, system (1) often
arises from the inverse model control, e.g., [15]. More

specifically, if the control plant in the feedforward control
is denoted by P (q) and assumed to be unknown, stable,
non-minimum phase and has no zeros on the unit circle,
then its non-causal inverseG(q) can be put in the form of
(1), e.g., [15, Theorem 1]. Moreover, it should be noted
that the input u(t) and output y(t) of G(q) correspond
to the output and input of P (q), respectively.

In what follows, we will generate four data banks D1-D4,
associated with different types of test systems. We first
introduce four types of test systems P (q), then generate
the input-output data for each test system P (q), and
finally the input-output data for the non-causal inverse
of P (q), i.e., G(q) in (1).

First, we generate the test systems in D1-D4.

• Data-bank D1 contains a single non-minimum
phase system studied in [15]

P (q) = 1.550(q2−2.035q+1.052)(q2−1.844q+0.9391)
q2(q−0.9514)(q−0.9511) ,

(22)
with two stable zeros at 0.922 ± 0.298i and two
unstable zeros at 1.018± 0.126i.

• Data-bank D2 contains 1000 randomly generated
systems P (q). We generate each system as follows.
First, a 30th order continuous-time system is gener-
ated using function m=rss(30) in MATLAB. Then
system m is sampled at 100 times of its bandwidth
by function md=c2d(m,2pi/(100·bandwidth(m)))
in MATLAB. Finally, if the system md satisfies the
following two conditions:
(a) md is a stable, bi-proper and non-minimum

phase system,
(b) md has all poles and zeros within {z ∈ C : |z| <

0.96 or |z| > 1.04},
then md is saved as one of 1000 systems in D2.

• Data-bank D3 contains 1000 randomly generated
systems P (q). We generate each system as follows.
For each test system md in D2, we replace the two
zeros (can be two real zeros or a pair of complex con-
jugate zeros) having the smallest magnitude with
two new zeros sampled from the uniform distribu-
tions, U [0.9, 0.8] and U [1.1, 1.2], respectively. This
new system is then saved as one of 1000 test sys-
tems in D3 and has the feature that its non-causal
inverse G(q) has dominant over-damped dynamics.
Data-bank D4 contains 1000 randomly generated

systems. Each test system takes the form of

P (q) =
(q − z1)(q − 1/z1)(q − z2)(q − 1/z2)

(q − p1)(q − p2)(q − p3)(q − p4)
,

where z1 = 0.9, and z2, p1, p2, p3, p4 are all sampled
from the uniform distribution U [0, 0.9], and thus its
non-causal inverse G(q) has mirrored poles.

For illustration, some true non-causal impulse responses

7



Fig. 4. The illustrations of three TC-like non-causal kernels with λc = 0.9, λa = 0.8, c = 1 for the NC-TC kernel (5) and its
block diagonal variant, the NCBD-TC kernel (20), and λc = 0.9, λa = 0.8, cc = −1, c0 = ca = 1 for the NCSI-TC kernel (19).
One significant difference of the NCSI-TC kernel (19) is its flexibility of choosing negative off-diagonal blocks, which partially
accounts for its advantages over the NC-TC kernel (5) and the NCBD-TC kernel (20).

g0(t), t ∈ Z, of the non-causal inverse G(q) of P (q),
are shown in Fig. 5. The basic prior knowledge that the
test systems contain in each data banks of D2-D4 are
summarized below follows:

D2: BIBO stability and properness;
D3: BIBO stability, properness, and over-damped dom-

inant dynamics;
D4: BIBO stability, properness, and over-damped dom-

inant dynamics with mirrored poles.

Second, we generate the input-output data in D1-D4.
Each of D1-D4 contains 1000 data sets {u(t), y(t)}Nmax

t=1 ,
where Nmax is 2000 for D1 and 700 for D2-D4, re-
spectively. Moreover, we generate 1000 data sets for
the single test system (22) in D1, but one data set for
each test system in D2-D4. More specifically, the input
signal u(t) in (1) is simulated by MATLAB function:
u(t)=lsim(md,y0(t)) from t = −nc to t = Nmax + na,
where y0(t) is a white Gaussian noise with unit vari-
ance. Then the output signal y(t) in (1) is obtained by
perturbing y0(t) with an additive white Gaussian noise
v(t) with mean zero and the variance one tenth of the

variance of y0(t). Finally, {y(t), u(t)}
Nmax

t=1 is saved as
one test input-output data for the identification of (1).

4.2 Simulation Setup

We first truncate the non-causal impulse response (2) at
sufficiently large orders nc and na, and obtain the so-
called non-causal finite impulse response (FIR) model

y(t) =

nc
∑

τ=−na

g(τ)u(t− τ) + v(t), (23)

which can be rewritten into the matrix-vector form as

Y = Ψθ + V, (24)
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D4

Fig. 5. The illustrations of the true non-causal impulse re-
sponse g0: the single system (22) in D1, and five system ex-
amples in D2-D4.

where

Y = [y(nc + 1) y(nc + 2) · · · y(N − na)]
T,

V = [v(nc + 1) v(nc + 2) · · · v(N − na)]
T,

θ = [g(−na) g(−na + 1) · · · g(nc)]
T ,

Ψ =















u(1 + nc + na) u(nc + na) · · · u(1)

u(2 + nc + na) u(1 + nc + na) · · · u(2)
...

...
. . .

...

u(N) u(N − 1) · · · u(N − nc − na)















.
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Accordingly, the regularized least square (RLS) estimate
(3) can be rewritten as

θ̂R = argmin
θ∈Rn

||Y −Ψθ||22 + σ2θTK(η)−1θ, (25)

where θ̂R = [ĝR(−na) ĝ
R(−na + 1) · · · ĝR(nc)]

T , σ2 is
the noise variance of v(t), and K(η) ∈ Rn×n is a pos-
itive semidefinite matrix with its (i, j)th entry Ki,j(η)
corresponding to k(i, j; η) in (3).

The non-causal FIR model orders, nc and na, in (23)
are both chosen to be 150 for D1 and 50 for D2-D4,
respectively. For each data bank, we will use data sets
with the different sample size N with N ≤ Nmax, and
test the following kernels:

• the NC-TC kernel (5),
• the NCBD-TC kernel (20),
• the NCBD-DC kernel (21),
• the NCBD-TCmp kernel, (20) with λc = λa,
• the NCBD-DCmp kernel, (21) with λc = λa,
• the NCSI-TC kernel (19),
• the NCSI-DC kernel (18),
• the NCSI-FO kernel (16),
• the NCSI-FOmp kernel (17).

Remark 4.1 The NCBD-DC kernel (21) is proposed by
mimicking the structure of the NCBD-TC kernel (20). It
is worth noting that the NCBD-DC kernel (21) and the
NCSI-DC kernel (18) have the same number of hyper-
parameters.

The hyper-parameters are estimated using the empirical
Bayes (EB) method, i.e.,

η̂ = argmin
η∈Ωk

{Y (ΨK(η)ΨT + σ2IN−n)
−1Y+

log det(ΨK(η)ΨT + σ2IN−n)}, (26)

where σ2 is estimated from the sample variance of the
estimated non-causal FIR model (23) using the LS
method. The optimization (26) is implemented by the
MATLAB function MultiStart with fmincon and the
number of runs being ten times the number of hyper-
parameters. Substituting (26) and the estimate of σ2

into (25), we obtain the estimate θ̂R.

The performance of the estimate θ̂R is evaluated by the
model fit [2] and the tracking error [15].More specifically,
the model fit (FIT) is defined by

FIT = 100



1−

[

∑nc

k=−na
|g0(k)− ĝR(k)|2

∑nc

k=−na
|g0(k)− ḡ0|2

]
1
2



 ,

ḡ0 =
1

n

nc
∑

k=−na

g0(k),

where {g0(k)}k∈Z is the true non-causal impulse re-
sponse of P−1(q), and the tracking error (ERR) is
defined by

ERR =

√

√

√

√

L
∑

k=1

e(k)2/L,

e(t) = r(t) − P (q)

nc
∑

k=−na

ĝR(k)q−kr(t),

t = 1− 2nc, · · · , L+ na,

where the test length L = 1000, and the test reference
signal r(t) is a white Gaussian noise with unit variance.

4.3 Results, Observations and Take-home Messages

First, we consider the data-banks D1-D3. The box plots
of FITs and ERRs are shown in Fig. 6, and the average
FITs and ERRs and their standard deviations are shown
in Table 1. For illustration, the estimates θ̂R for one data
set in D1 with N = 600 are shown in Fig. 7. Based on
these results, we have the following observations:

• The kernels more to the left in general give better
(and thus the NCSI-FO kernel (16) in general gives
the best) performance in terms of the average FIT
and ERR, and robustness of the FITs and ERRs
through the distribution and also the standard de-
viation of the FITs and ERRs. In particular, for
data-banks D1-D2, the NCSI-DC kernel (18) and
NCSI-FO kernel (16) have very close performance

Second, we consider the data-bank D4. The box plots
of FITs and ERRs are shown in Fig. 8, and the average
FITs and ERRs and their standard deviations are shown
in Table 2. Then we have the following observations:

• in contrast with the NCBD-TC kernel (20) (resp.
the NCBD-DC kernel (21)), the NCBD-TCmp

kernel (resp. the NCBD-DCmp kernel) does not
give consistent improvement in the performance in
terms of the average FIT and ERR, and robustness
of the FITs and ERRs through the distribution and
also the standard deviation of the FITs and ERRs;
on the other hand, in contrast with the NCSI-FO
kernel (16), the NCSI-FOmp kernel (17) gives con-
sistent improvement in the performance in terms
of the average FIT and robustness of the FITs and
ERRs through the distribution of the FITs and
ERRs, but a bit worse standard deviation.
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Fig. 6. Box plots of FITs and ERRs for the data sets in D1-D3.

Table 1
Average FITs and ERRs, and standard deviation of FITs and ERRs for the data sets in D1-D3.

avg. FIT (standard deviation)

Data-bank N NC-TC NCBD-TC NCBD-DC NCSI-TC NCSI-DC NCSI-FO

D1 600 12.98( 7.62) 27.06(10.47) 30.51(11.98) 47.64( 8.98) 52.97( 7.77) 52.69( 8.03)

D1 2000 49.48(10.11) 60.41( 4.06) 62.78( 3.80) 76.02( 3.48) 76.96( 3.25) 76.85( 3.33)

D2 200 76.22(16.61) 77.49(16.50) 78.62(16.09) 78.78(15.15) 81.09(13.07) 81.18(13.14)

D2 700 88.54(10.87) 88.98(11.09) 89.46(11.06) 89.87(10.38) 91.16( 9.65) 91.28( 9.61)

D3 200 47.58(23.40) 55.39(23.65) 59.58(25.26) 63.37(20.25) 65.16(21.29) 67.20(21.45)

D3 700 74.76(16.61) 79.26(16.40) 81.73(16.54) 83.13(14.93) 84.45(15.17) 85.41(15.25)

avg. ERR (standard deviation)

Data-bank N NC-TC NCBD-TC NCBD-DC NCSI-TC NCSI-DC NCSI-FO

D1 600 0.329(0.030) 0.291(0.036) 0.287(0.042) 0.205(0.025) 0.189(0.031) 0.188(0.029)

D1 2000 0.165(0.020) 0.137(0.012) 0.134(0.011) 0.093(0.008) 0.087(0.007) 0.087(0.007)

D2 200 0.194(0.069) 0.181(0.067) 0.171(0.067) 0.175(0.062) 0.163(0.058) 0.165(0.057)

D2 700 0.083(0.027) 0.078(0.027) 0.073(0.027) 0.074(0.024) 0.068(0.022) 0.067(0.022)

D3 200 0.280(0.073) 0.240(0.062) 0.219(0.072) 0.211(0.053) 0.198(0.060) 0.189(0.063)

D3 700 0.124(0.025) 0.102(0.024) 0.091(0.025) 0.089(0.019) 0.081(0.020) 0.077(0.021)
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Table 2
Average FITs and ERRs and standard deviation of FITs and ERRs for the data sets in D4.

avg. FIT (standard deviation)

Data-bank N NCBD-TC NCBD-TCmp NCBD-DC NCBD-DCmp NCSI-FO NCSI-FOmp

D4 200 34.26(37.70) 32.00(39.83) 49.17(37.61) 51.86(33.74) 64.33(30.08) 69.31(27.35)

D4 700 61.80(27.65) 64.99(27.23) 78.15(20.33) 77.50(20.65) 83.84(16.88) 85.32(17.13)

avg. ERR (standard deviation)

Data-bank N NCBD-TC NCBD-TCmp NCBD-DC NCBD-DCmp NCSI-FO NCSI-FOmp

D4 200 0.208(0.065) 0.236(0.067) 0.178(0.063) 0.170(0.053) 0.140(0.053) 0.132(0.049)

D4 700 0.102(0.034) 0.106(0.032) 0.074(0.026) 0.0761(0.026) 0.060(0.023) 0.058(0.023)
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Fig. 7. Estimates θ̂R for one data set in D1 with N = 600,
and the true non-causal impulse response g̃0 (dot line). The

estimates θ̂R with the NCSI kernels (solid lines) show a better
model fit than the existing non-causal kernels (dash lines).
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Fig. 8. Box plots of FITs and ERRs for the data sets in D4.

Finally, we have the following take-home messages:

• in general, the NCSI-FO kernel (16) is recom-
mended to be used, and if computation issues are
concerned, then the NCSI-DC kernel (18) can be
tried as an alternative;

• if there is extra prior knowledge (e.g., mirrored
poles), then it is suggested to further explore the
structure of the NCSI-FO kernel (16) and design a
more specific kernel (e.g., the NCSI-FOmp kernel)
to embed such prior knowledge

5 Conclusion

In this paper, we studied the non-causal system identifi-
cation problem by using the kernel-based regularization
method. To tackle the key difficulty of non-causal ker-
nel design, we first introduced the guidelines, then ex-
tended the system theoretic framework to design the so-
called non-causal simulation-induced kernel and studied
its properties, including stability and semiseparability.
The numerical simulation results showed that the pro-
posed kernels can give better model estimates/tracking
performance than the state-of-art kernels. The impor-
tance of our obtained results lies in that we develop a
systematic framework to design kernels for non-causal
systems, the prior knowledge embedded in the designed
kernels have clear physical interpretation, and the de-
signed kernels are semiseparable and thus can be used
to develop efficient implementations.

Appendix

A.1 Proof of Lemma 3.1

We will prove Lemma 3.1 in two steps. First, it is
straightforward to show that, given xc(−Mc), xa(Ma),
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g(t) takes the form of

g(t) =

{

gini(t) + gimp(t), if t, s = −Mc, · · · ,Ma

0, otherwise
,

(A.1)

gini(t) = CcA
t+Mc

c xc(−Mc) + CaA
t−Ma

a xa(Ma),

gimp(t) =

Ma−1
∑

k=−Mc

g0(t− k)b(k)w(k),

where g0(t) is defined in (13b), andmoreover,{g0(t)}t∈Z ∈
ℓ1(Z).

Second, we let Z = [g(t1), · · · , g(tm)]T and then decom-
pose Z as Z = Zimp + Zini, where

Zini = [gini(t1), · · · , gini(tm)]T,

Zimp = [gimp(t1), · · · , gimp(tm)]T,

−Mc ≤ t1, t2, · · · , tm ≤ Ma.

Then we show that asMc → ∞ and Ma → ∞, Zini con-
verges in probability to a zero vector and Zimp converges
in distribution to a Gaussian random vector.

On the one hand, for Zini and for any ǫ > 0, we have

P

(

‖Zini‖2 > mǫ

)

≤ P

(

|gini(t1)| > ǫ or · · · or |gini(tm)| > ǫ

)

≤
m
∑

i=1

P

(

|gini(ti)| > ǫ

)

≤
m
∑

i=1

Cov(gini(ti), gini(ti))

ǫ2

where ‖·‖2 is the Euclidean norm and the last inequality
is due to the Chebyshev’s inequality. Under the assump-
tion that xini(Mc,Ma) = [xc(−Mc)

T , xa(Ma)
T ]T has

zeromean and bounded covariancematrixΣini(Mc,Ma),
we have

Cov(gini(ti), gini(ti)) = [CcA
ti+Mc

c CaA
ti−Ma

a ] · · ·

Σini(Mc,Ma) [CcA
ti+Mc

c CaA
ti−Ma

a ]T → 0

as Mc,Ma → ∞, and moreover,

lim
Mc→∞

lim
Ma→∞

P

(

‖Zini‖2 > mǫ

)

≤ 0, (A.2)

implying that Zini converges in probability to a zero
vector.

On the other hand, for Zimp, we consider its character-

istic function given by

ϕ(v) = E[exp(jvTZimp)] = exp(−
1

2
vTΣ v) with

(Σ)i,j = Cov(gimp(ti), gimp(tj)), 1 ≤ i, j ≤ m,

=

Ma−1
∑

k=−Mc

b2(k)g0(ti − k)g0(tj − k).

Then we have

lim
Mc→∞

lim
Ma→∞

ϕ(v) = ϕ̃(v) = exp(−
1

2
vT Σ̃ v), (A.3)

with (Σ̃)i,j =
∞
∑

k=−∞

b2(k)g0(ti − k)g0(tj − k),

where (Σ̃)i,j exists for all i, j = 1, · · · ,m due to the
boundedness of b2(t) and {g0(t)}t∈Z ∈ ℓ1(Z). It then
follows from the Levy’s continuity theorem, e.g., [26, p.
204], that (A.3) leads to

Zimp
d

−→ N (0, Σ̃), as Mc,Ma → ∞, (A.4)

where
d

−→ denotes the convergence in distribution.

Finally, from the multivariate version of the Slutsky’s
theorem, e.g., [27, Thm. 3.4.3], (A.2) and (A.4), it holds
that limMc→∞ limMa→∞ Z converges in distribution to
a Gaussian vector with mean zero and covariance matrix
Σ̃. This completes the proof.

A.2 Proof of Theorem 3.1

Note that

∞
∑

s=−∞

∞
∑

t=−∞

|kNCSI(t, s)|

=

∞
∑

s=−∞

∞
∑

t=−∞

|
∞
∑

k=−∞

b2(k)g0(t− k)g0(s− k)|

≤
∞
∑

k=−∞

|b2(k)|
∞
∑

s=−∞

∞
∑

t=−∞

|g0(t− k)g0(s− k)|

=

∞
∑

k=−∞

b2(k)

∞
∑

s=−∞

∞
∑

t=−∞

|g0(t)g0(s)|

≤

(

∞
∑

k=−∞

b2(k)

)(

∞
∑

k=−∞

|g0(k)|

)2

< ∞,

where the last inequality is true for {g0(t)}t∈Z ∈ ℓ1(Z)
and {b(t)}t∈Z ∈ ℓ1(Z) ⊂ ℓ2(Z). Then by [28, Lemma 3]
we complete the proof.
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A.3 Proof of Theorem 3.2 and Corollary 3.1

Before proceeding to the details, we introduce a lemma.

Lemma A.1 Given three matrices A ∈ R
n×n, B ∈

Rn×1 and C ∈ R1×n with A being non-singular, there ex-
ist two real-valued functions hj(t), ~j(t), t ∈ Z such that

CAt−τB =

n
∑

j=1

hj(t)~j(τ), t, τ ∈ Z,

Proof : The proof can be found in that of [20, Theorem
1].

First, the non-causal impulse response of the nominal
model (10) takes the form of (13b). Then we have

g0(t− τ) =















CcA
t−τ−1
c Bc, t− τ ≥ 1

D − CaA
−1
a Ba, t− τ = 0

−CaA
t−τ−1
a Ba, t− τ ≤ −1

where both Ac and Aa are non-singular. By Lemma
A.1, there exist four real-valued functions hc,j(t), ~c,j(t),
ha,j(t), ~a,j(t), t ∈ Z such that

CcA
t−τ−1
c Bc =

nd,c
∑

j=1

hc,j(t)~c,j(τ), t, τ ∈ Z,

− CaA
t−τ−1
a Ba =

nd,a
∑

j=1

ha,j(t)~a,j(τ), t, τ ∈ Z,

where nd,c, nd,a ∈ N are the dimension of Ac and
Aa, respectively. Referring to Definition 3.1, we first
write down the generator functions of (13), denoted
by, µj(t), νj(s), t, s ∈ Z, j = 1, · · · , nd,c + nd,a. For
j = 1, · · · , nd,c, we have

µj(t) = hc,j(t),

νj(s) = M1,j(s) +M2,j(s) +M3,j(s),

M1,j(s) =

nd,c
∑

j′=1

hc,j′(s)
s−1
∑

i=−∞

b2(i)~c,j(i)~c,j′(i),

M2,j(s) = ~c,j(s)b
2(s)(D − CaA

−1
a Ba),

M3,j(s)=



























nd,a
∑

j′=1

ha,j′(s)
0
∑

i=s+1

b2(i)~c,j(i)~a,j′(i), if s ≤ −1

0, if s = 0

−
nd,a
∑

j′=1

ha,j′(s)
s
∑

i=1

b2(i)~c,j(i)~a,j′(i), if s ≥ 1

and for j = 1, · · · , nd,a, we have

µnd,c+j(t) = N1,j(t) +N2,j(t) +N3,j(t),

νnd,c+j(s) = ha,j(s),

N1,j(t) =

nd,a
∑

j′=1

ha,j′(t)
∞
∑

i=t+1

b2(i)~a,j(i)~a,j′(i),

N2,j(t) = ~a,j(t)b
2(t)(D − CaA

−1
a Ba),

N3,j(t)=



























nd,c
∑

j′=1

hc,j′(t)
t−1
∑

i=1

b2(i)~a,j(i)~c,j′(i), if t ≥ 2

0, if t = 1

−
nd,c
∑

j′=1

hc,j′(t)
0
∑

i=t

b2(i)~a,j(i)~c,j′(i), if t ≤ 0

To prove Theorem 3.2, we need to show kNCSI(t, s) =
∑nd,c+nd,a

j=1 µj(t)νj(s), for t > s. From (13), we have

kNCSI(t, s) =

s−1
∑

i=−∞

b2(i)g0(t− i)g0(s− i)

+

t
∑

i=s

b2(i)g0(t− i)g0(s− i) +

∞
∑

i=t+1

b2(i)g0(t− i)g0(s− i).

where

s−1
∑

i=−∞

b2(i)g0(t− i)g0(s− i)

=

nd,c
∑

j=1

hc,j(t)





nd,c
∑

j′=1

hc,j′(s)

s−1
∑

i=−∞

b2(i)~c,j(i)~c,j′(i)





=

nd,c
∑

j=1

µj(t)M1,j(s),

∞
∑

i=t+1

b2(i)g0(t− i)g0(s− i)

=

nd,a
∑

j=1

ha,j(s)





nd,a
∑

j′=1

ha,j′(t)

∞
∑

i=t+1

b2(i)~a,j(i)~a,j′(i)





=

nd,a
∑

j=1

N1,j(t)νnd,c+j(s),

13



t
∑

i=s

b2(i)g0(t− i)g0(s− i) = b2(s)g0(t− s)g0(0)

+

t−1
∑

i=s+1

b2(i)g0(t− i)g0(s− i) + b2(t)g0(0)g0(s− t)

=

nd,c
∑

j=1

µj(t)M2,j(s) +

nd,c
∑

j=1

µj(t)M3,j(s)

+

nd,a
∑

j=1

N3,j(t)νnd,c+j(s) +

nd,a
∑

j=1

N2,j(t)νnd,c+j(s).

Then note that, if any generator functions µj(t), νj(s),
j = 1, · · · , nd,c+nd,a vanish, the semiseparable rank will
be smaller than nd,c + nd,a. This completes the proof of
Theorem 3.2.

To prove Corollary 3.1, we need to show kNCSI(t, t) =
∑nd,c+nd,a

j=1 µj(t)νj(t). On one hand, we have from (13)

kNCSI(t, t) =

t−1
∑

i=−∞

b2(i)g0(t− i)g0(t− i)

+ b2(t)g0(0)g0(0) +

∞
∑

i=t+1

b2(i)g0(t− i)g0(t− i).

=

nd,c
∑

j=1

µj(t)M1,j(t) + b2(t)(D − CaA
−1
a Ba)

2

+

nd,a
∑

j=1

N1,j(t)νj+nd,c
(t) (A.7)

On the other hand, we have

nd,c+nd,a
∑

j=1

µj(t)νj(t) =

nd,c
∑

j=1

µj(t)M1,j(t) +

nd,c
∑

j=1

µj(t)M2,j(t)

+

nd,c
∑

j=1

µj(t)M3,j(t) +

nd,a
∑

j=1

N3,j(t)νj+nd,c
(t)

+

nd,a
∑

j=1

N2,j(t)νj+nd,c
(t) +

nd,a
∑

j=1

N1,j(t)νj+nd,c
(t)

=

nd,c
∑

j=1

µj(t)M1,j(t) + b2(t)(CcA
−1
c Bc)(D − CaA

−1
a Ba)

− b2(t)(CcA
−1
c Bc)(−CaA

−1
a Ba)

+ b2(t)(−CaA
−1
a Ba)(D − CaA

−1
a Ba)

+

nd,a
∑

j=1

N1,j(t)νj+nd,c
(t) (A.8)

Clearly, (A.7) and (A.8) are not equal in general unless

D(D − CcA
−1
c Bc − CaA

−1
a Ba) = 0.

This completes the proof of Corollary 3.1.

A.4 Closed Form of the NCSI-FO Kernel (16)

To avoid the abuse of notation, we let k(t, s; η) represent
kNCSI-FO(t, s; η) in this section. Note that the kernel is
symmetric, so we only consider k(t, s; η) with t ≥ s. It
follows from (13) that

k(t, s; η) = kc(t, s; η) + kδ(t, s; η) + ka(t, s; η),

kc(t, s; η) =

∞
∑

k=1

σ2
cλ

k
cg0(t− k; η)g0(s− k; η),

kδ(t, s; η) = σ2
0g0(t; η)g0(s; η),

ka(t, s; η) =

−1
∑

k=−∞

σ2
aλ

−k
a g0(t− k; η)g0(s− k; η).

Substituting (16a) into g0(·), we obtain the closed form
as follows.

kδ(t, s; η) =















































σ2
0c

2
ca

t+s
c , t ≥ s > 0

σ2
0ccc0a

t
c, t > s = 0

σ2
0cccaa

t
ca

−s
a , t > 0 > s

σ2
0c0caa

−s
a , t = 0 > s

σ2
0c

2
aa

−t−s
a , 0 > t ≥ s

σ2
0c

2
0, t = s = 0

,

kc(t, s; η) =



































































































5
∑

i=1

Ki(t, s), t > s > 1

4
∑

i=1

Ki(t, s), t > s = 1

3
∑

i=1

Ki(t, s), t > 1 > s

2
∑

i=1

Ki(t, s), t = 1 > s

1
∑

i=1

Ki(t, s), 1 > t > s

K1(t, t) +K5(t, t) +K6(t, t), t = s > 1

K1(t, t) +K6(t, t), t = s = 1

K1(t, t), 1 > t = s

,
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with

K1(t, s) = σ2
cc

2
aa

−t−s
a

(λca
2
a)

max{1,t+1}

1− λca2a
,

K2(t, s) = σ2
cc0caa

t−s
a λt

c,

K3(t, s) = σ2
ccccaa

t
ca

−s
a

(λcaaa
−1
c )max{s+1,1} − (λcaaa

−1
c )t

1− λcaaa
−1
c

,

K4(t, s) = σ2
cc0cca

t−s
c λs

c,

K5(t, s) = σ2
cc

2
ca

t+s
c

λca
−2
c − (λca

−2
c )s

1− λca
−2
c

,

K6(t, t) = σ2
cc

2
0λ

t
c.

Note that ka(t, s; η) can be obtained in the same way as
kc(t, s; η) because

ka(t, s; η) = kc(−t,−s; η∗),

η = [ac, aa, cc, c0, ca, λc, λa, σc, σa, σ0],

η∗ = [aa, ac, ca, c0, cc, λa, λc, σa, σc, σ0].

Remark A.1 It is shown that kc(t, s), kδ(t, s) and
ka(t, s) all have the product σ2

(·)c(·)c
′
(·) with σ(·) ∈

{σc, σa, σ0} and c(·), c
′
(·) ∈ {cc, ca, c0}. It follows that

kNCSI-FO(t, s; η1) = kNCSI-FO(t, s; η2),

η1 = [ac, aa, cc, c0, ca, λc, λa, σc, σa, σ0],

η2 = [ac, aa, cc ·σ0, c0 ·σ0, ca ·σ0, λc, λa,
σc

σ0
,
σa

σ0
, 1],

This leads to the identifiability issue in the hyper-
parameter estimation. Thus, σ0 is always fixed to be 1
and not treated as the hyper-parameter.
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