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Abstract

Mean-field theory has been extensively explored in decision analysis of large-scale (LS) systems but traditionally in “pure”
cooperative or competitive settings. This leads to the so-called mean-field game (MG) or mean-field team (MT). This paper
introduces a new class of LS systems with cooperative inner layer and competitive outer layer, so a “mixed” mean-field analysis
is proposed for distributed game-team strategy. A novel asymptotic mixed-equilibrium-optima is also proposed and verified.
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1 Introduction

This paper is inspired by (dynamic) decision of large-
scale (LS) systems for which the most salient feature, in
linear-quadratic (LQ) setting, is existence of sufficiently
many negligible agents interacted among their states
or objectives via empirical state-average or control-
average. Weakly-coupled LS systems have been found
broad applications across economics, finance, biology
and engineering. Interested readers may refer [10], [12],
etc. For LS systems with highly complex interactions,
mean-field theory provides an effective scheme to study
its decision asymptotically as population size N → ∞.

In principle, decisions of LS systems can be classified
into non-cooperative game or cooperative team, relying
on coalition structure formalized by involved agents in
underlying population. Accordingly, mean-field game
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(MG) or mean-field team (MT) arise naturally when
studying LS asymptotically. Along game-line (MG), all
agents, {Ai}Ni=1, are non-cooperative with competitive
objectives {Ji}Ni=1 thus some Nash type equilibrium
should be analyzed. There have accumulated vast liter-
ature on MG study, see e.g. [2], [3], [5], [6], [8], [9], [10],
[12], [14], [15], [21]. Parallel to game, MT forms another
appealing line along which {Ai}Ni=1 are cooperative to

same team (social) objective J (N)
soc =

∑Ji. MT has
also been extensively explored from a wide range of per-
spectives, e.g., [11], [16], [17], [22]. All aforementioned
(MG, MT) attempts, albeit well explored, have only
been built on a “pure” basis whereby all LS agents are
purely cooperative or competitive. However, in reality,
LS system often displays some “mixed” behaviors in its
agents’ organization with combined game and team. To
be explained later, pure basis seems over idealized to
fit reality, so some expanded analysis on more realistic
mixed basis is strongly suggested.

On one hand, from a “practical” viewpoint, various real
environments suggest LS to display some “mix” decision
patterns. Indeed, mixed LS come often from economics,
engineering, or management, etc., when two or more
competitive networks co-exist, e.g., duopoly market with
distributed franchisees; adversarial networks with oper-
ation knots (e.g., [4], [7]). Specifically, a mixed basis is
well-posed whenever classical two-person game or gen-
eral multiple-person-game are framed with decentralized
decisions on their distributed sub-units. By this, original
two (multiple) persons or entities still play game, while
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all sub-units within each entity formalize two (multiple)
teams. So a “mixed” basis arises with tangled game and
team. On the other hand, from a “mathematical” view-
point: conceptually, any LS decision can be captured by
its underlying coalition matrix (to be introduced in
Section 2.3), an N × N matrix satisfying given block
structure properties. Exactly, MG and MT are captured
by its two extreme cases: identical and one matrix, re-
spectively (C1 and C2). However, besides them, there
exists other types coalition matrix which should fea-
ture other meaningful LS decision patterns. More gen-
eral mixed structure can be identified using other vari-
ants of coalition matrix.

Motivated by above discussions, this paper formulates
and analyzes a certain type ofmixed game-team problem
involving two levels of interactions: cooperative inner
layer for weakly-coupled agents and competitive outer
layer between sub-systems. This yields an adversarial LS
networks with complex interactions inside and outside.
Accordingly, our main contributions are as follows:

(1) A new Mix game-team is introduced and studied,
which offers a more general LS setting including
those classical ones on mean-field game and team.

(2) A coalition matrix representation is formulated to
characterize competitive and cooperative structure
among weakly-coupled decision makers. Specif-
ically, classical MG and MT correspond to two
extreme cases of such coalition structures.

(3) A bilateral person-by-person optimality condition
and bilateral variation decomposition are proposed
for the first time to design distributed strategy.
Wellposedness of associated consistency condition
(CC) is also discussed under mild conditions.

(4) A new notion of asymptotic mixed-equilibrium-
optima is proposed to mixed LS study, and verified
to the derived distributed mixed-game-team strat-
egy asymptotically.

The remainder of this paper is organized as follows. Sec-
tion 2 gives some preliminary notations and a general for-
mulation of mixed game-team via coalition matrix. Sec-
tion 3makes some synthesis analysis on variation decom-
position. Section 4 aims to some distributed mixed strat-
egy design via a bilateral auxiliary problem and result-
ing CC system. Asymptotic mixed-equilibrium-optima
is studied in Section 5. Section 6 concludes this work.

2 Problem formulation

2.1 Preliminary

Throughout this paper,
∏

denotes the Cartesian prod-
uct. Rn×m and Sn denote the sets of all (n×m) real ma-
trices and all (n × n) symmetric matrices respectively.
For a vector or matrix A, AT denotes transpose of A.
We denote ∥·∥ as the standard Euclidean norm and ⟨·, ·⟩
as the standard Euclidean inner product. For a vector
v and a symmetric matrix S, ∥v∥2S := ⟨Sv, v⟩= vTSv.
S > 0 (≥ 0) means that S is positive (semi-positive) def-
inite, and S ≫ 0 means that, S−εI ≥ 0, for some ε > 0.

Moreover, we suppose that (Ω,F ,P) is an com-
plete probability space, and W = (W1, · · · ,WN )
is a N -dimensional standard Brownian motion de-

fined on it. {F(t)}t≥0 is the natural filtration gener-
ated by Wi(s), 0 ≤ s ≤ t, 1 ≤ i ≤ N , augmented
by all the P−null sets of F , and F := {F(t)}t≥0.
{Fi(t)}t≥0 is the natural filtration generated by
Wi(s), 0 ≤ s ≤ t, augmented by all the P−null
sets of Fi, and Fi := {Fi(t)}t≥0, 1 ≤ i ≤ N .
For a generic Euclidean space E and filtration K,
we introduce the following spaces: L∞(0, T ; E) ={
x : [0, T ] → E

∣∣ x is bounded and deterministic
}
,

C([0, T ]; E) =
{
x : [0, T ] → E

∣∣ x is continuous
}
,

L2
K(0, T ; E) =

{
x : [0, T ]× Ω → E

∣∣ x is K-progressively

measurable, ∥x∥L2 :=
(
E
∫ T

0
∥x(t)∥2dt

) 1
2

< ∞
}
.

2.2 Large-scale system with weak-coupling

In this paper, on (Ω,F ,F,P) we consider an LS system
withN agents, denoted by {Ai}i∈I , and I = {1, · · · , N}
denotes the index set of the agents. The aggregation of
all agents is denoted byA := {Ai}i∈I . The state process
of the ith agentAi is modeled by a controlled linear SDE
on finite time horizon [0, T ]:

Si : dxi(t)=(Aixi(t)+Biui(t)+Fix
(N)(t))dt

+σidWi(t), xi(0)=ξi,
(1)

and for the sake of notation simplicity, we denote u :=
(u1, · · · , uN ) and x := (x1, · · · , xN ). Then S := {Si}i∈I
form a weakly coupled LS system, since each agent Ai

is coupled with the others via x(N), and Ai could only
provide weak influence to the others at O

(
1
N

)
order. To

evaluate each control law ui, we introduce the following
individual cost functional:

Ji(ξ0;u)=Ji(ξ0;ui,u−i)

=
1

2
E

{∫ T

0

[
∥xi(t)−Γix

(N)(t)∥2Qi
+∥ui(t)∥2Ri

]
dt

}
,

(2)

where u−i = (u1, · · · , ui−1, ui+1, · · · , uN ). LS sys-
tem (1)-(2) is in linear quadratic (LQ) setting that
is well documented in mean-field literature (e.g. [2],
[10], [22], etc). Henceforward, for notation simplicity,
we will drop t if no confusion. For i ∈ I, the decen-
tralized admissible strategy set for the ith agent is

given by Ui =
{
ui|ui ∈ L2

Fi
(0, T ;Rm)

}
; the centralized

admissible strategy set for the ith agent is given by

Uc
i =

{
ui|ui ∈ L2

F(0, T ;Rm)
}
.

For LS (1), centralized decision on full information F be-
comes inefficient due to coupling. Instead, we prefer de-
centralized one on distributed Fi via mean-field scheme.
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Along this line, recall the well-studied MG and MT:





MG: inf
ui(·)∈Ui

Ji(ui;u−i);

MT: inf
u(·)∈UN

J (N)
soc (u) :=

N∑

i=1

Ji(u), UN :=

N∏

i=1

Ui.

(3)
MG, MT are both decentralized on L2

Fi
(0, T ;Rm) or∏N

i=1 L
2
Fi
(0, T ;Rm). So, they differ from mean-field-type

control ([1], [18], etc.), still centralized on F. But, MT

aims to unified team cost J (N)
soc by cooperative team-

decision u = (u1, · · · , uN ), whereas MG to competitive
Ji by individual ui. Our inspiration is to recast MG,
MT from a coalition matrix insight.

2.3 A coalition matrix representation

First, we introduce nominal cost vector J := (J1, · · · ,JN )T

formalized by all {Ji}Ni=1. For fixed Ai, we call Ji its
principal cost, while {Jk}k ̸=i marginal costs. Next, set
effective cost vector K := (K1, · · · ,KN )T withKi the ef-
fective cost really “targeted” by Ai. In general, Ki ̸= Ji.

Bymatrix operation,K = C·J for some coalition matrix
C = [ci,j ]1≤i,j≤N for which some typical forms are listed
below as C1-C5:

N1 N2 s1 · · · snc


1 0 · · · 0
0 1 · · · 0
...

...
. . .

0 0 1







1 1 · · · 1
1 1
...

. . .

1 1







1 ··· 1 −1 ··· −1

...
. . .

...
...
. . .

...
1 ··· 1 −1 ··· −1
−1 ··· −1 1 ··· 1

...
. . .

...
...
. . .

...
−1 ··· −1 1 ··· 1




N1

a
N2

a




∣∣∣1N1

∣∣∣ α1N1×N2

β1N2×N1

∣∣∣∣∣
1∫
1

1N2

1∫
1




∑
s1

∑...
1∑
1
snc




1s1

. . .
1∫
1

1snc

1∫
1




(C1) (C2) (C3) (C4) (C5)

1
Fig. 1. C−form coalition matrices.

Notably, all coalition C−forms above share a common
block feature: the diagonal “covered” by 1 ≤ nc ≤ N
square one matrix 1s (i.e., all entries are 1) of possible
varying sizes (e.g., s1, · · · , snc

) as exhibited by the gen-
eral C5. Noting C5 nests C4 if nc = 2, s1 = N1, s2 =
N2 = N−N1 and properly setting its off-diagonal blocks;
C4 further nests C3 by α = β = −1 and C2 by α = β =
1 (nc = 1, s1 = N); also,C5 nestsC1 by nc = N, si ≡ 1.
The meaning of “coalition” is illustrated by classifica-
tions below:





C = C1 = IN =⇒ (K = J) ⇔ (Ki = Ji)

=⇒ MG ⇔ (non-cooperative) {Ai}Ni=1;

C = C2 = 1N =⇒ (Ki ≡ J (N)
soc =

∑
Jk)

=⇒ MT ⇔ (cooperative) {Ai}Ni=1.

(4)

So, different C−forms induce different coalitions among
{Ai}Ni=1. Here, we do not distinguish more subtle ex-
ogenous or endogenous coalition formation (e.g., [13],
[20], [23]) as they are economics biased. We observe
C1,C2 as exactly two extremeC−forms which are lead-
ing to “pure” MG or MT. But various other C−forms
1 < nc < N do exist such as C3−C5 which should
connect to other meaningful structures beyond “pure”

game/team. In fact, by setting I1 = {θ1, · · · , θN1}, I2 =
{ϑ1, · · · , ϑN2} and N1 + N2 = N , where θi, ϑj are all
positive indexes for 1 ≤ i ≤ N1, 1 ≤ j ≤ N2, we may
proceed more along typical C4 :

C = C4 =⇒ Ki =



J
(1)
mix := J 1,(N)

soc +αJ 2,(N)
soc , J 1,(N)

soc :=
∑

k∈I1

Jk,

J
(2)
mix := J 2,(N)

soc +βJ 1,(N)
soc , J 2,(N)

soc :=
∑

k∈I2

Jk,

(5)

where α, β ∈ R. For k = 1, 2, let π
(N)
k = Nk

N , then

π(N) = (π
(N)
1 , π

(N)
2 ) is a probability vector represent-

ing the empirical distribution of I1 and I2. Thus, the
original LS system divides into two sub-systems: LS1 :=
{Ak}k∈I1

, LS2 := {Ak}k∈I2
. All agents inside LS1/LS2

aim the same cost so formalize two cooperative inter-
nal MTs. LS1 and LS2 remain competitive outside if
α < 0, β < 0; while cooperative outside if α > 0, β > 0.

2.4 Mixed game-team via coalition

Now, we are ready to formally introduce the “mixed”
game-team (Mix) via coalition matrix representation
C4 as

(Mix)





LS1: inf
u1(·)∈U(1)

J
(1)
mix(u1;u2),

u1 := (· · · , uk, · · · )|k∈I1
, U(1) :=

∏

k∈I1

Uk;

LS2: inf
u2(·)∈U(2)

J
(2)
mix(u2;u1),

u2 := (· · · , uk, · · · )|k∈I2 , U
(2) :=

∏

k∈I2

Uk.

(6)
To better illustrate the categories of LS1 and LS2, we
need rewrite the dynamics Si in (1) as the following ho-
mogeneous form:





dxi(t)=
(
A1xi(t)+B1ui(t)+F1x

(N)(t)
)
dt

+σ1(t)dWi(t), xi(0)=ξi, i ∈ I1,
dxj(t)=

(
A2xj(t)+B2uj(t)+F2x

(N)(t)
)
dt

+σ2(t)dWj(t), xj(0)=ηj , j ∈ I2,

(7)

where x(N)(·) = 1
N

(∑
i∈I1

xi(·)+
∑

j∈I2
xj(·)

)
. For

the sake of notation simplicity, we denote x1 :=
(xθ1 , · · · , xθN1

), x2 := (xϑ1
, · · · , xϑN2

). we also rewrite

the individual cost functionals (2) as

3





Ji(u1(·),u2(·))

=
1

2
E
∫ T

0

[
∥xi(t)− Γ1x

(N)(t)∥2Q1
+∥ui(t)∥2R1

]
dt,

Jj(u1(·),u2(·))

=
1

2
E
∫ T

0

[
∥xj(t)− Γ2x

(N)(t)∥2Q2
+∥uj(t)∥2R2

]
dt.

(8)

The agents in {Ai}i∈I1
and {Aj}j∈I2

are cooperative

respectively and their social cost functionals J
(1)
mix, J

(2)
mix

are given by (5). We impose the following general as-
sumptions, which are commonly used in LQ models, on
the coefficients:

(H1) Ak, Fk, Γk ∈ Rn×n, Bk ∈ Rn×m, σk ∈
L∞(0, T ;Rn), k = 1, 2.

(H2) Qk ∈ Sn, Rk ∈ Sm, Qk > 0, Rk > 0, k = 1, 2.

(H3) {ξi}N1
i=1 are independent identically distributed

(i.i.d) with mathematical expectation Eξ; {ηj}N2
j=1 are

i.i.d with mathematical expectation Eη.
(H4) There exists a probability mass vector π =

(π1, π2) such that lim
N→+∞

π(N) = π, min
1≤k≤2

πk > 0.

Thus, we can propose the following homogeneous mixed
game-team problem:

Problem 2.1 Find a centralized strategy set (ū1, ū2),
where ū1 = (ūθ1 ,· · ·, ūθN1

), ū2 = (ūϑ1
, · · · , ūϑN2

), ūi ∈
Ui, ūj ∈ Uj, i ∈ I1, j ∈ I2, such that

(Mix)





LS1: J
(1)
mix(ū1, ū2) = inf

u1∈U(1)
J
(1)
mix(u1, ū2),

LS2: J
(2)
mix(ū1, ū2) = inf

u2∈U(2)
J
(2)
mix(ū1,u2).

(9)

(Mix) is meaningful, not only in mathematics as verified
by coalition arguments above, but also in practice as
supported by real motivations (see [4], [7], etc).

3 Variation synthesis analysis

Initially, we synthesize all response components for J
(1)
mix

in (9), from a bilateral viewpoint of LS1, LS2. In what
follows, we only focus on the viewpoint of LS1, and the
similar argument can be applied to LS2.

3.1 Variation decomposition

Let ū1, ū2 be centralized optimal strategies of the
agents in I1, I2. We now perturb ui and keep
ū−i = (ūθ1 , · · · , ūi−1, ūi+1, · · · , ūθN1

), ū2 fixed. For
k ̸= i, denote the perturbation δui = ui − ūi,
δxi = xi− x̄i, δxk = xk − x̄k, δx

(N) = 1
N

∑
k∈I1∪I2

δxk,

and δJ 1,(N)
soc , δJ 2,(N)

soc are the first variations (Fréchet

differentials) of J 1,(N)
soc , J 2,(N)

soc w.r.t. δui. Therefore,





dδxi(δui)=
[
A1δxi(δui)+B1δui+F1δx

(N)(δui)
]
dt,

δxi(0)=0,

dδxk(δui)=
[
A1δxk(δui)+F1δx

(N)(δui)
]
dt,

δxk(0)=0, k ∈ I1, k ̸= i,

dδxk(δui)=
[
A2δxk(δui)+F2δx

(N)(δui)
]
dt,

δxk(0)=0, k ∈ I2.

Then we derive the following lemma.

Lemma 3.1 δJ
(1)
mix(δui) can be represented as

δJ
(1)
mix(δui) = E

∫ T

0

[ 〈
Θ̄1, δxi

〉
+⟨Θ2, δui⟩+

〈
Θ̄3,

∑
k∈I1,k ̸=i

δxk

〉
+
〈
Θ̄4,

∑
k∈I2

δxk

〉
+

∑
k∈I1,k ̸=i

〈
Θk

5 , δxk

〉
+
∑
k∈I2

〈
Θk

6 , δxk

〉 ]
dt+εi1,

(10)
where

εi1 = E
∫ T

0

[ 〈
Θ1 − Θ̄1, δxi

〉
+
〈
Θ3 − Θ̄3,

∑
k∈I1,k ̸=i

δxk

〉
+
〈
Θ4 − Θ̄4,

∑
k∈I2

δxk

〉]
dt,



Θ1 = Q1x̄i−
(
Q1Γ1x̄

(N)
+Γ

T
1 Q1π

(N)
1

∑
k∈I1

x̄k

N1

−π
(N)
1 Γ

T
1 Q1Γ1x̄

(N)

)

−α

(
Γ
T
2 Q2π

(N)
2

∑
k∈I2

x̄k

N2

−π
(N)
2 Γ

T
2 Q2Γ2x̄

(N)

)
,

Θ3 = −
(
Q1Γ1x̄

(N)
+Γ

T
1 Q1π

(N)
1

∑
k∈I1

x̄k

N1

−π
(N)
1 Γ

T
1 Q1Γ1x̄

(N)

)

−α

(
Γ
T
2 Q2π

(N)
2

∑
k∈I2

x̄k

N2

−π
(N)
2 Γ

T
2 Q2Γ2x̄

(N)

)
,

Θ4 = −α

(
Q2Γ2x̄

(N)
+Γ

T
2 Q2π

(N)
2

∑
k∈I2

x̄k

N2

−π
(N)
2 Γ

T
2 Q2Γ2x̄

(N)

)

−
(
Γ
T
1 Q1π

(N)
1

∑
k∈I1

x̄k

N1

−π
(N)
1 Γ

T
1 Q1Γ1x̄

(N)

)
,

Θ2 = R1, Θ
k
5 = Q1x̄k, Θ

k
6 = αQ2x̄k,

Θ̄1 = Q1x̄i−
(
Q1Γ1m̄+Γ

T
1 Q1π1m̄1−π1Γ

T
1 Q1Γ1m̄

)
−α

(
Γ
T
2 Q2π2m̄2−π2Γ

T
2 Q2Γ2m̄

)
,

Θ̄3 = −
(
Q1Γ1m̄+Γ

T
1 Q1π1m̄1−π1Γ

T
1 Q1Γ1m̄

)
−α

(
Γ
T
2 Q2π2m̄2−π2Γ

T
2 Q2Γ2m̄

)
,

Θ̄4 = −α
(
Q2Γ2m̄+Γ

T
2 Q2π2m̄2−π2Γ

T
2 Q2Γ2m̄

)
−
(
Γ
T
1 Q1π1m̄1−π1Γ

T
1 Q1Γ1m̄

)
.

Here, m̄1, m̄2 and m̄ = π1m̄1+π2m̄2 are mean-field
(MF) approximations of 1

N1

∑
k∈I1

x̄k,
1
N2

∑
k∈I2

x̄k and

x̄(N), respectively.

3.2 Bilateral duality

Lemma 3.2 δJ
(1)
mix(δui) can further be represented as

4



δJ
(1)
mix(δui) = E

∫ T

0

[ 〈
Θ̄1+π1F

T
1 Ep(1)∗k +π2F

T
2 Ep(2)∗k

+π1F
T
1 p(1)∗+π2F

T
2 p(2)∗, δxi

〉
+ ⟨Θ2, δui⟩

]
dt

+εi1+εi2+εi3,

(11)

where

εi2=E
∫ T

0

[〈
Θ̄3,

∑
k∈I1,k ̸=i

δxk−x(1),∗∗
〉
+

〈
Θ̄4,

∑
k∈I2

δxk−x(2),∗∗
〉

+
1

N1

∑
k∈I1,k ̸=i

〈
Θk

5 , N1δxk−x
(1),∗
k

〉
+

1

N2

∑
k∈I2

〈
Θk

6 , N2δxk−x
(2),∗
k

〉 ]
dt,

εi3=E
∫ T

0

〈
π1F

T
1

(∑
k∈I1,k ̸=i p

(1)
k

N1
−Ep(1)∗k

)
+π2F

T
2

(∑
k∈I2

p
(2)
k

N2
−Ep(2)∗k

)
+π1F

T
1

(
p(1)−p(1)∗

)
+π2F

T
2

(
p(2)−p(2)∗

)
, δxi

〉
dt,

and

dx
(1),∗
k =

[
A1x

(1),∗
k +π1F1(δxi+x(1),∗∗+x(2),∗∗)

]
dt,

dx
(2),∗
k =

[
A2x

(2),∗
k +π2F2(δxi+x(1),∗∗+x(2),∗∗)

]
dt,

dx(1),∗∗=
[
A1x

(1),∗∗+π1F1(x
(1),∗∗+x(2),∗∗+δxi)

]
dt,

dx(2),∗∗=
[
A2x

(2),∗∗+π2F2(x
(1),∗∗+x(2),∗∗+δxi)

]
dt,

x
(1),∗
k (0) = 0, x

(2),∗
k (0) = 0, x(1),∗∗(0) = 0, x(2),∗∗(0)=0,



dp
(1)
k

= −
(
Θ

k
5 +A

T
1 p

(1)
k

)
dt+q

(1)
k

dWk+
∑

k′ ̸=k

q
(1)

kk′dWk′ ,

dp
(2)
k

= −
(
Θ

k
6 +A

T
2 p

(2)
k

)
dt+q

(2)
k

dWk+
∑

k′ ̸=k

q
(2)

kk′dWk′ ,

dp
(1)

= −
(
Θ̄3+π1

∑
k∈I1,k ̸=i FT

1 p
(1)
k

N1

+π2

∑
k∈I2

FT
2 p

(2)
k

N2

+A
T
1 p

(1)
+π1F

T
1 p

(1)
+π2F

T
2 p

(2)
)
dt+

∑
q
(1)

k′ dWk′ ,

dp
(2)

= −
(
Θ̄4+π1

∑
k∈I1,k ̸=i FT

1 p
(1)
k

N1

+π2

∑
k∈I2

FT
2 p

(2)
k

N2

+π1F
T
1 p

(1)
+π2F

T
2 p

(2)
+A

T
2 p

(2)
)
dt+

∑
q
(2)

k′ dWk′ ,

p
(1)
k

(T ) = 0, p
(2)
k

(T ) = 0, p
(1)

(T ) = 0, p
(2)

(T ) = 0,

P̂(2)∗
k : dp

(1)∗
k = −

(
Θk

5+AT
1 p

(1)∗
k

)
dt+q

(1)∗
k dWk,

P̂(1)∗
k : dp

(2)∗
k = −

(
Θk

6+AT
2 p

(2)∗
k

)
dt+q

(2)∗
k dWk,

P̂(2)∗ : dp(1)∗=−
[
Θ̄3+π1F

T
1 Ep(1)∗k +π2F

T
2 Ep(2)∗k

+
(
AT

1 +π1F
T
1

)
p(1)∗+π2F

T
2 p(2)∗

]
dt,

P̂(1)∗ : dp(2)∗ = −
[
Θ̄4+π1F

T
1 Ep(1)∗k +π2F

T
2 Ep(2)∗k

+π1F
T
1 p(1)∗+

(
π2F

T
2 +AT

2

)
p(2)∗

]
dt,

p
(1)∗
k (T ) = 0, p

(2)∗
k (T ) = 0, p(1)∗(T ) = 0, p(2)∗(T ) = 0.

An asymptotic “Fréchet response” holds for δJ
(1)
i =

lim δJ
(1)
mix(δui):

LS1: δJ
(1)
i =⟨Θ†(x̄i,m,P∗), δxi⟩+⟨Θ††(ūi), δui⟩

(12)
withΘ†† = R1ūi andΘ

† is revised on
(
Θ̄1, Θ̄3, Θ̄4,Θ

k
5 ,Θ

k
6

)
.

Here,m := (m̄, m̄1, m̄2), P̂
∗
:= (P̂(1)∗

k , P̂(1)∗; P̂(2)∗
k , P̂(2)∗).

4 Distributed design

4.1 Auxiliary control

Motivated by (11), we introduce the following auxiliary
problem for i ∈ I1:
Problem 4.1 Minimize Ji(ui) over ui ∈ Ui where



dxi=(A1xi+B1ui+F1m̄)dt+σ1dWi, xi(0)=ξi, i ∈ I1,

J
(1)
i (ui)=

1

2
E
∫ T

0

[⟨Q1xi, xi⟩+2⟨S1, xi⟩+⟨R1ui, ui⟩]dt,

S1 =−
(
Q1Γ1m̄+ΓT

1 Q1π1m̄1−π1Γ
T
1 Q1Γ1m̄

)
−α

(
ΓT
2 Q2π2m̄2−π2Γ

T
2 Q2Γ2m̄

)
+ π1F

T
1 Ep(1)∗k

+π2F
T
2 Ep(2)∗k +π1F

T
1 p(1)∗+π2F

T
2 p(2)∗.

The mean-field terms m̄, m̄1, m̄2, p
(1)∗
k , p

(2)∗
k will be

determined by the CC system later. Similarly, for j ∈
I2, by following the procedure in Section 3, we can also
introduce the following auxiliary problem
Problem 4.2 Minimize Jj(uj) over uj ∈ Uj where



dxj =(A2xj+B2uj+F2m̄)dt+σ2dWj , xj(0)=ηj , j ∈ I2,

J
(2)
j (uj)=

1

2
E
∫ T

0

[⟨Q2xj , xj⟩+2⟨S2, xj⟩+⟨R2uj , uj⟩]dt,

S2 =−
(
Q2Γ2m̄+ΓT

2 Q2π2m̄2−π2Γ
T
2 Q2Γ2m̄

)
−α

(
ΓT
1 Q1π1m̄1−π1Γ

T
1 Q1Γ1m̄

)
+ π2F

T
2 Ep̂(2)∗k

+π1F
T
1 Ep̂(1)∗k +π2F

T
2 p̂(2)∗+π1F

T
1 p̂(1)∗,

where the limiting duality on δuj yields parallel P̂
∗
:=

(P̂(1)∗
k , P̂(1)∗; P̂(2)∗

k , P̂(2)∗). Here, it holds that



P̂(2)∗
k : dp̂

(2)∗
k = −

(
Θ̂k

5+AT
2 p̂

(2)∗
k

)
dt+q̂

(2)∗
k dWk,

P̂(1)∗
k : dp̂

(1)∗
k = −

(
Θ̂k

6+AT
1 p̂

(1)∗
k

)
dt+q̂

(1)∗
k dWk,

P̂(2)∗ : dp̂(2)∗ = −
[
ˆ̄Θ4+π2F

T
2 Ep̂(2)∗k +π1F

T
1 Ep̂(1)∗k

+
(
AT

2 +π2F
T
2

)
p̂(2)∗+π1F

T
1 p̂(1)∗

]
dt,

P̂(1)∗ : dp̂(1)∗ = −
[
ˆ̄Θ3+π2F

T
2 Ep̂(2)∗k +π1F

T
1 Ep̂(1)∗k

+π2F
T
2 p̂(2)∗+

(
π1F

T
1 +AT

1

)
p̂(1)∗

]
dt,

p̂
(2)∗
k (T ) = p̂

(1)∗
k (T ) = p̂(2)∗(T ) = p̂(1)∗(T ) = 0,
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and 

ˆ̄Θ4 = −
(
Q2Γ2m̄+ΓT

2 Q2π2m̄2−π2Γ
T
2 Q2Γ2m̄

)
−β

(
ΓT
1 Q1π1m̄1−π1Γ

T
1 Q1Γ1m̄

)
,

ˆ̄Θ3 = −β
(
Q1Γ1m̄+ΓT

1 Q1π1m̄1−π1Γ
T
1 Q1Γ1m̄

)
−
(
ΓT
2 Q2π2m̄2−π2Γ

T
2 Q2Γ2m̄

)
,

Θ̂k
5 = Q2x̄k, Θ̂k

6 = βQ1x̄k.

The above analysis constructs a bilateral auxiliary con-
trol problem

(Bilateral auxiliary problem)



Ai : inf
ui(·)∈Ui

J
(1)
i (ui;m,P∗),

Aj : inf
uj(·)∈Uj

J
(2)
j (uj ;m, P̂

∗
).

(13)

Then, upon distributed Ui or Uj , two generic Ai,Aj aim

to optimize J
(1)
i or J

(2)
j . Applying standard LQ method,

under some mild (say, convexity) condition, above bilat-
eral auxiliary problem can be solved with optimal pair
(x̌i(ǔi), ǔi) for Ai, (x̌j(ǔj), ǔj) for Aj , which depend on

(m,P∗) or (m, P̂
∗
) by (13). Note that m is not speci-

fied yet. By stochastic maximum principle, we have the
following result for the bilateral auxiliary problem:

Proposition 4.1 Under (H1)-(H4), Problem 4.1-4.2
are both uniquely solvable, and the optimal auxiliary con-
trols ūi, ūj are determined by the following Hamiltonian
systems





dx̌i=(A1x̌i+B1ǔi+F1m̄)dt+σ1dWi, x̌i(0)=ξi,

dx̌j=(A2x̌j+B2ǔj+F2m̄)dt+σ2dWj , x̌j(0)=ηj ,

dyi=−
(
AT

1 yi+Q1x̌i+S1

)
+zidWi, yi(T )=0,

dyj=−
(
AT

2 yj+Q2x̌j+S2

)
+zjdWj , yj(T )=0,

R1ǔi+BT
1 yi = 0, R2ǔj+BT

2 yj = 0.

4.2 Consistency condition

This sub-step aims to synthesize all generic behav-

iors {x̌i(ǔi(m,P∗))}i∈I1
in LS1, {x̌j(ǔj(m, P̂

∗
))}j∈I2

in LS2, to match aggregated m across LS. Noting
LS1 itself is homogenous (although LS is not), opti-
mal auxiliary controls {ǔi}i∈I1 are thus symmetric
and so is {x̌i(ǔi)}i∈I1 . Parallel holds for {x̌j(ǔj)}j∈I2 .
Then, applying de Finetti’s theorem to realized

{x̌i(ǔi(m,P∗))}i∈I1
, {x̌j(ǔj(m, P̂

∗
))}j∈I2

, we yield
a bilateral fixed-point CC equivalence (noticing that
m = (m̄, m̄1, m̄2) ):

(CC)





LS1: m̄1 = E(x̄i(ūi(m̄1, m̄2,P
∗))),

P∗ = P∗(x̄i(ūi(m̄1, m̄2,P)));

LS2: m̄2 = E(x̄j(ūj(m̄1, m̄2, P̂
∗
))),

P̂
∗
= P̂

∗
(x̄j(ūj(m̄1, m̄2, P̂

∗
))).

(14)

So m can be specified. The CC system is given by





dx = (Ax+Bu+FEx) dt+σ1dWi+σ2dWj ,

dy =
(
Āx+B̄y+F̃Ex+H̃Ey

)
dt+z1dWi+z2dWj ,

Ru+B̃Ty = 0, x(0) = x0, y(T ) = 0,
(15)

where



x = (x̌i, x̌j), y = (yi, p
(1)∗

, p
(2)∗

, p
(1)∗
i

, p
(2)∗
j

, yj , p̂
(2)∗

, p̂
(1)∗

, p̂
(2)∗
j

, p̂
(1)∗
i

),

x0 = (ξi, ηj), z1 = (zi, 0, 0, q
(1)∗
i

, 0, 0, 0, 0, 0, q̂
(1)∗
i

),

z2 = (0, 0, 0, 0, q
(2)∗
j

, zj , 0, 0, q̂
(2)∗
j

, 0), u = (ǔi, ǔj),

A =
(

A1 0

0 A2

)
,B =

(
B1 0

0 B2

)
,F =

(
π1F1 π2F1

π1F2 π2F2

)
,R =

(
R1 0

0 R2

)
,

Ā =



−Q1 0

0 0

0 0

−Q1 0

0 −αQ2

0 −Q2

0 0

0 0

0 −Q2

−βQ1 0


, B̃ =



B1 0

0 0

0 0

0 0

0 0

0 B2

0 0

0 0

0 0

0 0


,σ1 =

( σ1

0

)
,σ2 =

(
0

σ2

)
,

B̄ =



−AT
1

−π1F
T
1

−π2F
T
2

0 0 0 0 0 0 0

0 −AT
1
−π1F

T
1

−π2F
T
2

0 0 0 0 0 0 0

0 −π1F
T
1

−AT
2
−π2F

T
2

0 0 0 0 0 0 0

0 0 0 −AT
1

0 0 0 0 0 0

0 0 0 0 −AT
2

0 0 0 0 0

0 0 0 0 0 −AT
2

−π2F
T
2

−π1F
T
1

0 0

0 0 0 0 0 0 −AT
2
−π2F

T
2

−π1F
T
1

0 0

0 0 0 0 0 0 −π2F
T
2

−AT
1
−π1F

T
1

0 0

0 0 0 0 0 0 0 0 −AT
2

0

0 0 0 0 0 0 0 0 0 −AT
1


,

F̃ =



π1(Q1Γ1+ΓT
1
Q1−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2) π2(Q1Γ1+αΓT

2
Q2−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2)

π1(Q1Γ1+ΓT
1
Q1−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2) π2(Q1Γ1+αΓT

2
Q2−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2)

π1(Γ
T
1
Q1+αQ2Γ2−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2) π2(αQ2Γ2+αΓT

2
Q2−π1Γ

T
1
Q1Γ1−απ2Γ

T
2
Q2Γ2)

0 0

0 0

π1(Q2Γ2+βΓT
1
Q1−βπ1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2) π2(Q2Γ2+ΓT

2
Q2−βπ1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2)

π1(Q2Γ2+βΓT
1
Q1−βπ1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2) π2(Q2Γ2+ΓT

2
Q2−βπ1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2)

π1(βQ1Γ1+βΓT
1
Q1−π1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2) π2(βQ1Γ1+ΓT

2
Q2−π1Γ

T
1
Q1Γ1−π2Γ

T
2
Q2Γ2)

0 0

0 0


,

H̃ =



0 −π1F
T
1

−π2F
T
2

−π1F
T
1

−π2F
T
2

0 0 0 0 0

0 −π1F
T
1

−π2F
T
2

−AT
1
−π1F

T
1

−π2F
T
2

0 0 0 0 0

0 −π1F
T
1

−AT
2
−π2F

T
2

−π1F
T
1

−π2F
T
2

0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 −π2F
T
2

−π1F
T
1

−π2F
T
2

−π1F
T
1

0 0 0 0 0 0 −AT
2
−π2F

T
2

−π1F
T
1

−π2F
T
2

−π1F
T
1

0 0 0 0 0 0 −π2F
T
2

−AT
1
−π1F

T
1

−π2F
T
2

−π1F
T
1

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0


.

and the mean field terms are determined by m̄1 = Ex̌i,
m̄2 = Ex̌j .

Proposition 4.2 If Riccati equations





Ṗ+P (A+F)−
(
H̃+B̄

)
P−PBR−1B̃TP

−
(
Ā+F̃

)
= 0,

K̇+K
(
A−BR−1B̃TP

)
−
(
B̄+PBR−1B̃T

)
K

+KBR−1B̃TK+PF−F̃−H̃P = 0,

P(T ) = 0, K(T ) = 0
(16)

admit solutionsP∈C([0, T ];R10n×2n),K∈C([0, T ];R10n×2n),
then Problem 2.1 admits a feedback form decentralized
control ũ = Θ1x̃+Θ2 (Ex̃−x̃), where ũ = (ũi, ũj),
x̃ = (x̃i, x̃j), and

Θ1 = −R−1B̃TP, Θ2 = −R−1B̃TK.

The realized state x̃ = (x̃i, x̃j) satisfies the following dy-
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namic




dx̃i=

(
A1x̃i+B1ũi+F1x̃

(N)
)
dt+σ1dWi, x̃i(0)=ξi,

dx̃j=
(
A2x̃j+B2ũj+F2x̃

(N)
)
dt+σ2dWj , x̃j(0)=ηj .

For the solvability of (16), we have the following result

Proposition 4.3 Let Ψ, Φ be fundamental matrices

Ψ =
(

A+F −BR−1B̃T

Ā+̃F H̃+B̄

)
andΦ =

(
A−BR−1B̃TP BR−1B̃T

−
(
PF−̃F−H̃P

)
B̄+PBR−1B̃T

)
.

If





[
(0, I)eΨ(T−t)

(
0

I

)]−1

∈ L1(0, T ;R10n×10n),

[
(0, I)eΦ(T−t)

(
0

I

)]−1

∈ L1(0, T ;R10n×10n),

then (16) admits unique solutions P, K as





P(t) = −
[
(0, I)eΨ(T−t)

(
0

I

)]−1

(0, I)eΨ(T−t)

(
I

0

)
,

K(t) = −
[
(0, I)eΦ(T−t)

(
0

I

)]−1

(0, I)eΦ(T−t)

(
I

0

)
.

(17)

Remark 4.1 Actually, for different α and β, we may
reach different kinds of mean field problems and find some
interesting phenomena. Details can be referred to Ap-
pendix A.

4.3 Distributed design

Thus, we can conclude the following procedure of deriv-
ing the mean-field strategy:

Step 1 By (17), the solution (P,K) of Riccati equations
(16) can be obtained.

Step 2 For any agent Ai (or Aj) in I1 (or I2), besides
its own information, it still need the information of
another generic agent denoted by Aj (or Ai) in its op-
posite team I2 (or I1). Then it can obtain its feedback
form mean-field strategy by

(
ũi

ũj

)
= Θ1

(
x̃i

x̃j

)
+Θ2

(
E
(
x̃i

x̃j

)
−
(
x̃i

x̃j

))
,

where Θ1 = −R−1B̃TP and Θ2 = −R−1B̃TK.
Step 3 The realized states x̃i, x̃j satisfy the following
bilateral closed-loop system:

d

(
x̃i

x̃j

)
=

{[(
A1 0

0 A2

)
+

(
B1 0

0 B2

)
(Θ1−Θ2)

](
x̃i

x̃j

)

+

(
B1 0

0 B2

)
Θ2E

(
x̃i

x̃j

)
+

(
F1

F2

)
x̃(N)

}
dt

+

(
σ1

0

)
dWi+

(
0

σ2

)
dWj ,

(
x̃i

x̃j

)
(0) =

(
ξi
ηj

)
.

Remark 4.2 It should be noticed that there are MF
terms in Step 2-3. To break up this couple feather, we
should take the expectation to the system, which becomes
an ordinary differential equation (ODE). By solving the

ODE, we derive E
(
x̃i

x̃j

)
which implies the MF term, and

then we focus on the SDE without MF terms.

5 Performance analysis

We present (Mix) analysis in a three-step procedure
by highlighting its novelty via pairwise comparisons to
“pure” MG and MT. All limits below are in N → +∞
sense.

We continue to analyze the performance of (Mix)
strategy (ū1, ū2) derived by Section 4, in an asymptotic
mixed-equilibrium-optima (AMEO) sense (it combines
equilibrium due to game, and (social) optima due to
team):

(AMEO )





∃ ρ, λ > 0, s.t. LS1 :∣∣∣∣
1

N1
J
(1)
mix(û1, ū2)−

1

N1
J
(1)
mix(ū1, ū2)

∣∣∣∣
= O(N−ρ

1 + ϵλN ),
∃ ρ, λ > 0, s.t. LS2 :∣∣∣∣
1

N2
J
(1)
mix(ū1, û2)−

1

N2
J
(1)
mix(ū1, ū2)

∣∣∣∣
= O(N−ρ

2 + ϵλN ),
(18)

where ϵN = sup
1≤k≤2

∣∣∣π(N)
k − πk

∣∣∣.

AMEO poses an inside-outside-mixed concept: social
(team) optima inside, and Nash (game) equilibrium out-
side (LS1,LS2), along perturbed û1 := (· · · ûk · · · )|k∈I1

,
û2 := (· · · ûk · · · )|k∈I2

. AMEO mainly includes three
sub-steps as below.

(1) Study convergence behavior of realized empirical
LS1, LS2 averages to off-lined CC system (cf.(14))
in an L2-norm. A key point here is a refined bilat-
eral forward-backward SDE (FBSDE) estimates on
(ū1, ū2).

(2) Estimate two upper bound(s) for candidate per-
turbation(s) (û1, û2) respectively subject to

J
(1)
mix(û1, ū2) ≤ J

(1)
mix(ū1, ū2),J

(2)
mix(ū1, û2) ≤

J
(2)
mix(ū1, ū2). Two keys: some tailor-made FBSDE

stability estimates; J
(1)
mix convexity by underlying

(Q,R) positiveness in (2).
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(3) Formulate J
(1)
mix in (18) as a quadratic functional on

(u1,u2) by specifying its second-order-operator(s)
for convexity, and first-order ones for gradient.
Its Fréchet derivatives to team-wise (u1,u2), and
componentwise {uk}k∈I can thus be structured.
Then, AMEO can be verified by combining (û1, û2)
bounds in step (ii), a near-stationarity (asymptotic
zero Fréchet derivative) by step (i), and (uniform)

convexity of J
(1)
mix.

Now, we give the main result of this work, whose proof
is based on some lemmas. Please refer to Appendix B-E
for details.

Theorem 5.1 Under (H1)-(H4), the mean-field strat-
egy (ũ1, ũ2) satisfies the following asymptotic optimality





1

N1

(
J
(1)
mix(ũ1, ũ2)−inf

u1

J
(1)
mix(u1, ũ2)

)
= O(N

− 1

2

1 + ϵN ),

1

N2

(
J
(2)
mix(ũ1, ũ2)−inf

u2

J
(2)
mix(ũ1,u2)

)
= O(N

− 1

2

2 + ϵN ).

(19)
Hence, (ũ1, ũ2) is an asymptotic Nash equilibrium for
the game between I1 and I2.
Proof For L2 bounded candidate û1, by letting δu1 =
ũ1−û1 we have

J
(1)
mix(ũ1, ũ2)−J

(1)
mix(û1, ũ2) = 2⟨M2ũ1+M1, δu1⟩+o(δu1).

Here, ⟨M2ũ1 +M1, ·⟩ is the Fréchet derivative of J
(N)
soc

on ũi. Due to the linearity, we also get

J
(1)
mix(ũ1, ũ2)−J

(1)
mix(û1, ũ2)

= 2

N1∑

i=1

⟨M2ũ+M1, δu
i
1⟩+ o(δu),

where δui
1 := (0, · · · , 0, ũi− ûi, 0, · · · , 0). Based on the

synthesis analysis in Section 3, we derive

⟨M2ũ+M1, δu
i
1⟩ = δJ

(1)
mix(δui)

= E
∫ T

0

[ 〈
Θ̄1+π1F

T
1 Ep(1)∗k +π2F

T
2 Ep(2)∗k +π1F

T
1 p(1)∗

+π2F
T
2 p(2)∗, δxi

〉
+ ⟨Θ2, δui⟩

]
dt+εi1+εi2+εi3

= εi1+εi2+εi3.

By virtue of some FBSDE estimations, we obtain

0 ≤ J
(1)
mix(ũ1, ũ2)−J

(1)
mix(û1, ũ2)

≤
N1∑

i=1

∣∣εi1+εi2+εi3
∣∣ = N1O(N

− 1

2

1 + ϵN ).

The first equation of (19) is established. Applying similar
argument, we obtain the second one. 2

6 Conclusion

This paper investigates a new class of “mixed” mean-
field analysis. The C4−type coalition matrix analysis is
related to game-team problem. A novel bilateral person-
by-person optimality is introduced and wellposedness of
related CC system is investigated. Game-team strategies
are designed and a novel asymptotic mixed-equilibrium-
optima is proposed. An interesting work for further
study is to consider the C5−type game-team problem
referred in this work.
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Appendix

Appendix A: Some cases for different α and β.

(i) Assume α=β = 1, then the cost functionals of Prob-
lem 2.1 reduce to

J
(1)
mix = J

(2)
mix = J 1,(N)

soc +J 2,(N)
soc ,

which leads to a combination of traditional social optima
problems.

If we further assume A1 = A2 := A, B1 = B2 := B,
F1 = F2 := F , Q1 = Q2 := Q, R1 = R2 := R, Γ1 =
Γ2 := Γ, ξi and ηj (1 ≤ i ≤ N1, 1 ≤ j ≤ N2) are i.i.d
and denoted by ζk (1 ≤ k ≤ N), in this case we derive
p(1)∗ = p(2)∗ = p̂(1)∗ = p̂(2)∗ := p̂∗. We also obtain that

(x̄i, ūi, yi, p
(1)∗
i , p

(2)∗
j ), (x̄j , ūj , yj , p̂

(1)∗
i , p̂

(2)∗
j ) are homo-

geneous.

(ii) Assume α = β = −1, then the cost functionals of
Problem 2.1 reduce to

J
(1)
mix = J 1,(N)

soc − J 2,(N)
soc , J

(2)
mix = J 2,(N)

soc − J 1,(N)
soc ,

which leads to a combination of two social optima prob-
lems (inside) and a zero-sum problem (outside). This
mix problem can be viewed as a development of two-
person zero-sum game problem where two-person be-
comes two-team (e.g. [19], etc ). If we further apply con-
ditions on the coefficients, one may simplify the CC sys-
tem and details are omitted.

(iii) Assume α=1, β = 0, or α=0, β = 1, then the cost
functionals reduce to

J
(1)
mix = J 1,(N)

soc +J 2,(N)
soc , J

(2)
mix = J 2,(N)

soc ,

or
J
(1)
mix = J 1,(N)

soc , J
(2)
mix = J 2,(N)

soc +J 1,(N)
soc ,

which leads to two classes of social optima. It means one
group focuses on a social optima in itself manner; while
the other group would like to consider both intra-group
and inter-group cooperations.

(iv) Assume α=−1, β = 0, or α=0, β = −1, then the
cost functionals reduce to

J
(1)
mix = J 1,(N)

soc −J 2,(N)
soc , J

(2)
mix = J 2,(N)

soc ,

⋆ This document supplies appendices of the paper “Linear
quadratic mean-field game-team analysis: a mixed coalition
approach” by Huang, Qiu, Wang and Wu, submitted to Au-
tomatica.

or
J
(1)
mix = J 1,(N)

soc , J
(2)
mix = J 2,(N)

soc −J 1,(N)
soc ,

which means one group focuses on a social optima in
itself manner; while the other group would like to col-
laborate within the group itself and compete with the
former group.

It should be noticed that, as a special case if N = 2,

J 1,(N)
soc = J1, J 2,(N)

soc = J2, and a group referred above
becomes an agent. Thus above problems turn out to be
optimal control problem, two-person social optima, etc.

Appendix B: Estimation of mean field coupling.

Lemma 6.1 Under (H1)-(H4), it holds that

∥∥∥ 1

N1

∑

k∈I1

x̄k − m̄1

∥∥∥
2

L2

= O(N−1
1 + ϵ2N ),

∥∥∥ 1

N2

∑

k∈I2

x̄k − m̄2

∥∥∥
2

L2

= O(N−1
2 + ϵ2N ).

Proof The dynamic of the realized state average is





dx̃(N1)=
(
A1x̃

(N1)+B1ũ
(N1)+F1π

(N)
1 x̃(N1)

+F1π
(N)
2 x̃(N2)

)
dt+

1

N1

∑

i∈I1

σ1dWi,

dx̃(N2)=
(
A2x̃

(N2)+B2ũ
(N2)+F2π

(N)
1 x̃(N1)

+F2π
(N)
2 x̃(N2)

)
dt+

1

N2

∑

j∈I2

σ2dWj ,

x̃(N1)(0)=ξi, x̃(N2)(0)=ηj ,

(20)

where x̃(N1) := 1
N1

∑
k∈I1

x̃k, x̃(N2) := 1
N2

∑
k∈I2

x̃k,

ũ(N1) := 1
N1

∑
k∈I1

ũk, ũ
(N2) := 1

N2

∑
k∈I2

ũk. The dy-
namic of the mean field is





dm̄1=(A1m̄1+B1Eǔi+F1π1m̄1+F1π2m̄2)dt,

dm̄2=(A2m̄2+B2Eǔj+F2π1m̄1+F2π2m̄2)dt,

m̄1(0)=Eξ, m̄2(0)=Eη.
(21)

By applying Cauchy inequality, BDG inequality to the
difference of (20)-(21), for some positive constant K
which is independent of N1, N2, it holds that
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

E sup
0≤s≤t

∥x̃(N1)(s)− m̄1(s)∥2

≤K

∫ t

0

E sup
0≤r≤s

∥x̃(N1)(r)− m̄1(r)∥2ds+O(N−1
1 + ϵ2N ),

E sup
0≤s≤t

∥x̃(N2)(s)− m̄2(s)∥2

≤K

∫ t

0

E sup
0≤r≤s

∥x̃(N2)(r)− m̄2(r)∥2ds+O(N−1
2 + ϵ2N ).

By applying Grönwall’s inequality, we have





E sup
0≤t≤T

∥x̃(N1)(t)− m̄1(t)∥2 = O(N−1
1 + ϵ2N ),

E sup
0≤t≤T

∥x̃(N2)(t)− m̄2(t)∥2 = O(N−1
2 + ϵ2N ).

2

Appendix C: Perturbations estimation.

Lemma 6.2 Under (H1)-(H4), for some positive con-
stant K which is independent on N1, N2, it holds that

J
(1)
mix(ũ1, ũ2) ≤ NK, J

(2)
mix(ũ1, ũ2) ≤ NK.

Proof For J
(1)
mix(ũ1, ũ2), we have the following decompo-

sitions




Ji(u1,u2)=
1

2
E
∫ T

0

[
∥xi − Γ1x

(N)∥2Q1

+∥ui∥2R1

]
dt,

Jj(u1,u2)=
1

2
E
∫ T

0

[
∥xj − Γ2x

(N)∥2Q2

+∥uj∥2R2

]
dt,

J
(1)
mix(ũ1, ũ2) = J 1,(N)

soc (ũ1, ũ2)+αJ 2,(N)
soc (ũ1, ũ2)

=
1

2

N1∑
i=1

E
∫ T

0

[
∥x̃i − Γ1x̃

(N)∥2Q1
+∥ũi∥2R1

]
dt

+
α

2

N2∑
j=1

E
∫ T

0

[
∥x̃j − Γ2x̃

(N)∥2Q2
+∥ũj∥2R2

]
dt

≤ K

2

(
N1∑
i=1

E
∫ T

0

[
∥x̃i − m̄∥2+∥m̄−x̃(N)∥2+∥ũi∥2

]
dt

+α

N2∑
j=1

E
∫ T

0

[
∥x̃j − m̄∥2+∥m̄−x̃(N)∥2+∥ũj∥2

]
dt

)
.

By applying Cauchy inequality, BDG inequality and
Grönwall’s inequality, for some positive constant K
independent on N1, N2 we have





sup
i∈I1

E sup
0≤t≤T

∥x̃i(t)− m̄(t)∥2 ≤ K,

sup
j∈I2

E sup
0≤t≤T

∥x̃j(t)− m̄(t)∥2 ≤ K.

Combined with Lemma 6.1, it holds that

J
(1)
mix(ũ1, ũ2) ≤ NK.

Similar argument can be applied to J
(2)
mix and we com-

plete the proof. 2

Appendix D: Perturbations estimation.

Lemma 6.3 Under (H1)-(H4), since we are studying
the asymptotic optimality of (ũ1, ũ2), it is sufficient only
to consider those admissible controls (û1, û2) performing
better than (ũ1, ũ2). Specifically, (û1, û2) satisfies

N1∑

i=1

E
∫ T

0

∥ûi∥2dt ≤ NK,

N2∑

j=1

E
∫ T

0

∥ûj∥2dt ≤ NK.

(22)

Proof Since û1 performs better then ũ1, we have

N1∑

i=1

E
∫ T

0

∥ûi∥2dt ≤ J 1,(N)
soc (û1, ũ2)+αJ 2,(N)

soc (û1, ũ2)

= J
(1)
mix(û1, ũ2) ≤ J

(1)
mix(ũ1, ũ2) ≤ NK.

Similar argument can be applied to û2 and the proof is
complete. 2

Appendix E: Quadratic representation and
Fréchet derivatives.

For the sake of notation simplicity, for a matrix M and
positive number n1 and n2, we introduce the following
notations



diagn1

(M) :=

1

...
n1

(
M 0

. . .
0 M

)
denotes an n1 × n1 size block

diagonal matrix.

1n1×n2
(M) :=

1

...
n1

(
M ... M

...
. . .

...
M ... M

)
denotes an n1 × n2 size block

1 ··· n2

matrix generated by M.

Rewrite the problem as the following high-dimensional
type



dX = (AX+B1u1+B2u2) dt+

N1∑
i=1

σ1
i dWi+

N2∑
j=1

σ2
jdWj ,

J
(1)
mix(u1,u2)=E

∫ T

0

[
⟨Q1x,x⟩+⟨R1u1,u1⟩+α ⟨R2u2,u2⟩

]
dt,

J
(2)
mix(u1,u2)=E

∫ T

0

[
⟨Q2x,x⟩+⟨R2u2,u2⟩+β ⟨R1u1,u1⟩

]
dt,

11



where



X = (x1,x2),u1 = (uθ1
, · · · , uθN1

),u2 = (uϑ1
, · · · , uϑN2

),

A =
(

diagN1
(A1 )+1N1×N1

(
F1
N

) 1N1×N2
(

F1
N

)

1N2×N1
(

F2
N

) diagN2×N2
(A2 )

)
,σ

1

i
=

1

.

.

.
i

.

.

.
N1

.

.

.
N



0

.

.

.
σ1

.

.

.
0

.

.

.
0


,σ

2

j
=

1

.

.

.
N1

.

.

.
j

.

.

.
N



0

.

.

.
0

.

.

.
σ2

.

.

.
0


,

B1 = ( diagN1
(B1 )

0
) , B2 =

( 0

diagN2
(B2 )

)
,R1 = diag

N1
(R1),R2 = diag

N2
(R2),

Q1 =

(
Q(1,1)

1
Q(1,2)

1

Q(2,1)

1
Q(2,2)

1

)
,Q2 =

(
Q(1,1)

2
Q(1,2)

2

Q(2,1)

2
Q(2,2)

2

)
,

Q(1,1)

1
= diag

N1
(Q1)+

1

N
1N1×N1

(
π

(N)

1
Γ

T

1
Q1Γ1+Γ

T

1
Q1+QΓ1+α

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(1,2)

1
=

1

N
1N1×N2

(
π

(N)

1
Γ

T

1
Q1Γ1+αΓ

T

2
Q2+QΓ1+α

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(2,1)

1
=

1

N
1N2×N1

(
π

(N)

1
Γ

T

1
Q1Γ1+αQ2Γ2+Γ

T

1
Q+α

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(2,2)

1
= αdiag

N2
(Q2)+

1

N
1N2×N2

(
π

(N)

1
Γ

T

1
Q1Γ1+αΓ

T

1
Q2+αQΓ2+α

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(1,1)

2
= βdiag

N1
(Q1)+

1

N
1N1×N1

(
βπ

(N)

1
Γ

T

1
Q1Γ1+βΓ

T

1
Q1+βQΓ1+

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(1,2)

2
=

1

N
1N1×N2

(
βπ

(N)

1
Γ

T

1
Q1Γ1+Γ

T

2
Q2+βQΓ1+

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(2,1)

2
=

1

N
1N2×N1

1

N

(
βπ

(N)

1
Γ

T

1
Q1Γ1+Q2Γ2+βΓ

T

1
Q+

π(N)

2

N
Γ

T

2
Q2Γ2

)
,

Q(2,2)

2
= diag

N2
(Q2)+

1

N
1N2×N2

(
βπ

(N)

1
Γ

T

1
Q1Γ1+Γ

T

1
Q2+QΓ2+

π(N)

2

N
Γ

T

2
Q2Γ2

)
.

Because of the game structure between I1 and I2, for
agents in I1, they are facing with the following social
optima problem





dX = (AX+B1u1+B2ũ2) dt+

N1∑

i=1

σ1
i dWi+

N2∑

j=1

σ2
jdWj ,

min
u1

J
(1)
mix(u1, ũ2)=E

∫ T

0

[
⟨Q1X,X⟩+⟨R1u1,u1⟩

+⟨αR2ũ2, ũ2⟩
]
dt.

Since some bounded linear operators (M2,M1,M0) are
only dependent on the coefficients and ũ2, we can rewrite

J
(1)
mix as the following quadratic form

J
(1)
mix(u1, ũ2) = ⟨M2u1,u1⟩+ 2⟨M1,u1⟩+M0.

12
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