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Abstract

We propose a hybrid control algorithm that guarantees fast conver-
gence and uniform global asymptotic stability of the unique minimizer
of a C1, convex objective function. The algorithm, developed using
hybrid system tools, employs a uniting control strategy, in which Nes-
terov’s accelerated gradient descent is used “globally” and the heavy
ball method is used “locally,” relative to the minimizer. Without
knowledge of its location, the proposed hybrid control strategy switches
between these accelerated methods to ensure convergence to the min-
imizer without oscillations, with a (hybrid) convergence rate that pre-
serves the convergence rates of the individual optimization algorithms.
We analyze key properties of the resulting closed-loop system including
existence of solutions, uniform global asymptotic stability, and conver-
gence rate. Additionally, stability properties of Nesterov’s method are
analyzed, and extensions on convergence rate results in the existing
literature are presented. Numerical results validate the findings and
demonstrate the robustness of the uniting algorithm.

1 Introduction

1.1 Background and Motivation

There has been growing interest in analyzing accelerated gradient methods
from a dynamical systems perspective [1], which permits the use of well
established analysis tools, such as Lyapunov theory, to study convergence
and stability properties of accelerated algorithms [2], [3], [4], [5], [6], [7].
The heavy ball method is an accelerated gradient method that guarantees
convergence to the minimizer of a convex function L [8], and that achieves a
faster convergence rate than classical gradient descent by adding a “velocity”
term to the gradient. The dynamical system characterization for this method
is

ξ̈ + λξ̇ + γ∇L(ξ) = 0 (1)

where λ and γ are positive tunable parameters that represent friction and
gravity, respectively; see [3], [2]. In [9] and [10] it is shown that the discrete-
time version of the heavy ball method converges exponentially when L is
strongly convex with a Lipschitz continuous gradient, and [9] shows conver-
gence with rate 1

k
when L is convex. It is shown in [11] that for strongly
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convex L with Lipschitz continuous ∇L global convergence of the discrete-
time heavy ball method can only be guaranteed for condition numbers of
about 18 or less, and it is found in [12] that the exact condition number
of 9 + 5

√
14 ≈ 17.94 denotes such a boundary between global convergence

and non-convergence, for such objective functions. For the case when L is
strongly convex, and inspired by the heavy ball algorithm, two algorithms
with a resettable velocity term are proposed in [13] and shown to guaran-
tee exponential convergence. In [14], however, it was demonstrated that the
heavy ball algorithm converges exponentially for convex L when such an ob-
jective function also has the property of quadratic growth away from its min-
imizer. Global asymptotic stability of the minimizer, which is the property
that all solutions that start close to the minimizer stay close, and solutions
from all initial conditions converge to the minimizer, is demonstrated in [15],
[16], when L is convex and smooth. The work in [2] provides several Lya-
punov functions to establish global asymptotic stability of the minimizer and
convergence rates for the heavy ball method, both when L is strongly convex
and when L is convex.

Another powerful accelerated method is Nesterov’s accelerated gradient
descent. One characterization of the dynamical system for Nesterov’s method,
for convex L, proposed in [1], is

ξ̈ + 2d̄(t)ξ̇ +
1

Mζ2
∇L(ξ + β̄(t)ξ̇) = 0, (2)

where M > 0 is the Lipschitz constant of the gradient of L and where the
constant ζ > 0 rescales time in solutions to (2). The dynamical system in (2)
resembles the model of a mass-spring-damper, with a curvature-dependent
damping term where the total damping is a linear combination of d̄(t) and
β̄(t). In [1], the convergence rate of Nesterov’s method is characterized as

1
(t+2)2

for (2) (for t ≥ 1), when ζ = 1, and when the minimizer is the origin,
at which L is zero.

Exponential convergence of the discrete-time analogue of Nesterov’s
method is established for strongly convex L with Lipschitz continous ∇L in
[10] and [11]. The earliest dynamical system characterization for Nesterov’s
algorithm was proposed in [4], including a variation for higher friction, and
the proposed characterizations were shown to have a convergence rate of 1

t2
.

In [5], the analysis of the dynamical system in [4] is extended to include
optimization of objective functions L with non-Euclidean geometries, and
this dynamical system is combined with mirror descent to design an acceler-
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ated mirror descent ODE, with a convergence rate of 1
t2

. In [6], a dynamical
system, consisting of an Euler-Lagrange equation, is derived for Nesterov’s
algorithm via a Bregman Lagrangian, with an exponential rate of conver-
gence under ideal scaling and a rate of convergence of 1

tp
with p ≥ 2 for a

polynomial subclass of such a dynamical system.
In [6] an exponential rate of convergence for such a system under ideal

scaling is provided, and, for a polynomial class of dynamical systems, a con-
vergence rate of 1

tp
with p ≥ 2 is shown. In [17] and [18], two hybrid algo-

rithms based on the ODE in [4] are presented: one with a state-dependent,
time-invariant damping input and another with an input that controls the
magnitude of the gradient term. The algorithms require the objective func-
tion to satisfy the Polyak-Łojasiewicz inequality, which includes a subclass
of nonconvex functions in which all stationary points are global minimizers.
The authors in [19] propose two hybrid reset algorithms based on the ODE
in [4], HAND-1 and HAND-2, which yield an exponential convergence rate
for strongly convex L and a rate of 1

t2
for convex L, with the latter rate only

assured until the first reset.
While the results in [1], [4], [5], [6], [10], and [11] characterize the con-

vergence properties of Nesterov’s method (or a variation of) the stability
properties of the method are not revealed. A particularly useful property for
optimization algorithms, called uniform global asymptotic stability (UGAS),
requires that solutions reach a neigborhood of the minimizer in time that
is uniform on the set of initial conditions [19], [20], [21]. After finite time,
the error of such solutions becomes smaller than a given threshold [22]. Due
to such a guarantee for solutions, UGAS is typically useful for certifying
robustness to small perturbations in time-varying dynamical and hybrid sys-
tems [23], [22]. Remarkably, the algorithm with resets in the velocity term
proposed in [13] can be shown to induce UGAS of the minimizer (with zero
velocity term) and reduced oscillations, for the particular case when L is
strongly convex. The algorithm with resets in [21] can be shown to induce
UGAS of the minimizer when L is invex, has an exponential convergence
rate when L satisfies the Polyak-Łojasiewicz inequality, and uniform global
exponential stability (UGES) when L is strongly convex. Unfortunately, as
shown in [19], via a counterexample, Nesterov-like algorithms do not neces-
sarily assure UGAS of the minimizer when L is convex. In response to this,
[19] proposes the HAND-1 and HAND-2 reset algorithms, based on the ODE
in [4], and prove UGAS of the minimizer for both algorithms. The exponen-
tial convergence rate of HAND-2, however, only applies to strongly convex
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L, and the convergence rate of 1
t2

for HAND-1, for convex L, only holds up
until the first reset. The work in this paper is motivated by the lack of an
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Figure 1: Comparison of the performance of heavy ball, with large λ, Nes-
terov’s method, and the proposed logic-based algorithm. The objective func-
tion is L(ξ) = ξ2. Top left: the heavy ball algorithm, with large λ, converges
very slowly. Top inset: zoomed out view of heavy ball. Middle left: Nes-
terov’s method converges quickly, but with oscillations. Bottom left: our
proposed logic-based algorithm yields fast convergence, with no oscillations.
Right: comparison of the value of L(ξ) − L∗ (in log scale) versus time for
each algorithm. Different tunings of the logic-based algorithm’s parameters
leads to modifications of the solution’s profile.

accelerated gradient algorithm assuring UGAS, with a convergence rate that
holds for all time and that resembles that of Nesterov’s method (at least far
from the minimizer), when the objective function is convex. However, attain-
ing such a rate is expected to lead to oscillations, which are typically seen in
accelerated gradient methods. The performance of the heavy ball method,
for instance, depends highly on the choice of λ and γ. In particular, for a
fixed value of γ, the choice of the friction parameter λ significantly affects the
asymptotic behavior of the solutions to (1). For rather simple choices of the
function L, the literature on this method indicates that large values of λ are
seen to give rise to slowly converging solutions resembling solutions yielded
by steepest descent [3]. The top plot1 on the left in Figure 1 demonstrates
such behavior. In contrast, smaller values of λ give rise to fast solutions with
oscillations getting wilder as λ decreases [3]. Nesterov’s method converges

1Code at gitHub.com/HybridSystemsLab/UnitingMotivation
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quickly but also suffers from oscillations [4], as the coefficient of the veloc-
ity term starts small and tends toward zero (but being always positive) as t
tends to infinity. The oscillatory behavior of Nesterov’s method, with ζ = 2,
is shown in the middle plot on the left in Figure 1.

Due to its implications on robustness, we are particularly interested in an
algorithm that assures UGAS of the minimizer of L with a rate of convergence
that holds for all time, and without the undesired oscillations. As pointed
out in Section 1.1, these properties are not guaranteed by Nesterov’s method.
The behavior shown in the top and middle plots in Figure 1 motivates the
logic-based algorithm proposed in this paper. The proposed algorithm ex-
ploits the main features of heavy ball and Nesterov’s method to achieve fast
convergence and UGAS of the minimizer. More precisely, without knowledge
of the location of the minimizer, it selects Nesterov’s method to converge
quickly to nearby the minimizer and, once solutions reach a neighborhood
of the minimizer, switches to the heavy ball method with large λ to avoid
oscillations. Such logic-based algorithms, or uniting algorithms, were first
proposed in [24] and [25]. General uniting algorithms, with examples, are
discussed in [23] and [22]. We use the hybrid systems framework for our pro-
posed algorithm, as hybrid systems utilize hysteresis to avoid chattering at
the switching boundary; see [13], [22], [23], [21]. An example solution to our
proposed logic-based algorithm, shown in the bottom plot on the left of Fig-
ure 1, demonstrates the improvement obtained by using Nesterov’s method
globally and the heavy ball method locally, under relatively mild assumptions
on the objective function L. The proposed algorithm guarantees UGAS and
a (hybrid) convergence rate that holds for all t ≥ 0.

1.2 Contributions

The main contributions of this paper are as follows.

1) A uniting algorithm for fast convergence and UGAS of the minimizer: In
Section 2 we propose a uniting algorithm that solves optimization prob-
lems of the form minξ∈Rn L(ξ) with accelerated gradient methods. De-
signed using hybrid system tools, the algorithm unites Nesterov’s method
in (3) globally and the heavy ball method in (1) with large λ locally to
guarantee fast convergence with UGAS of the minimizer ξ∗ of a convex
objective function L; see Sections 2 and 4. The establishment of UGAS
solves the difficult problem of achieving such a property for Nesterov-like
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algorithms [19], [26]. The algorithm we propose exploits measurements
of ∇L and requires no knowledge of L∗ := L(ξ∗) or ξ∗. In practice, such
measurements of ∇L are typically approximated from measurements of
L. The algorithm, however, does not require measurements of the Hessian
of L.

2) Well-posedness and existence of solutions: Nesterov’s method can suffer
from error accumulation, due to its velocity term [27]. To overcome this
issue, in Section 2 we prove well-posedness and existence of solutions
for the proposed hybrid closed-loop algorithm. Hybrid systems that are
well-posed are defined to be those hybrid systems, vaguely speaking, for
which graphical limits of graphically convergent sequences of solutions,
with no perturbations and with vanishing perturbations, respectively, are
still solutions [23, Chapter 6]. It is important for our algorithm to be well-
posed as we want to ensure robustness to small noise in measurements of
the gradient of L.

3) Robustness to small perturbations: Due to the well-posedness of the pro-
posed hybrid uniting algorithm, we show that the established UGAS prop-
erty is robust to small perturbations in measurements of the gradient of L
[23, Theorem 7.21]. We illustrate this robustness in Section 3 via numeri-
cal simulations that include small noise in measurements of the gradient.

4) A (hybrid) convergence rate preserving the rates of Nesterov’s method and
heavy ball: In Sections 2 and 4 we show that our uniting algorithm at-
tains a rate of 1

(t+2)2
for the global algorithm and exp (−(1−m)ψt), where

m ∈ (0, 1) and α > 0 are such that ψ := mαγ

λ
> 0 and2 ν := ψ(ψ−λ) < 0,

for the local algorithm. The latter rate holds under the mild assumption
on L of quadratic growth away from the minimizer. As mentioned in Sec-
tion 1.1, Nesterov-like algorithms do not necessarily assure UGAS of the
minimizer. The HAND-1 algorithm for convex L, proposed in [19], pro-
vides UGAS via a hybrid restarting mechanism that yields a convergence
rate 1

t2
. However, this convergence rate holds only until the first reset.

The algorithm we propose not only renders the minimizer UGAS, but also
has a (hybrid) convergence rate that preserves the rates of the individual
optimization algorithms for all (hybrid) time. Moreover, the global rate

2Although the constant ν does not appear in the rate for the local algorithm, such a
constant is used in the forthcoming Proposition 4.3 to derive this rate.
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of our algorithm is commensurate with that of HAND-1. In Figure 2 and
Section 3, our uniting algorithm is shown via numerical simulations3 to
have improved performance over the HAND-1 algorithm in [19].

0 2 4 6 8 10 12 14 16 18 20
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Hybrid
Heavy ball
Nesterov
Nesterov, average
HAND-1
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L
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Figure 2: A comparison of the evolution of L over time for Nesterov’s method
in (3), heavy ball, HAND-1 from [19], and our proposed uniting algorithm, for
a function L(ξ) := ξ2, with a single minimizer at ξ∗ = 0. Nesterov’s method,
shown in purple, settles to within 1% of ξ∗ in about 8.8 seconds. The heavy
ball algorithm, shown in green, settles to within 1% of ξ∗ in about 138.1
seconds. HAND-1, shown in orange, settles to within 1% of ξ∗ in about 14.3
seconds. The hybrid closed-loop system H, shown in blue, settles to within
1% of z∗1 in about 2.4 seconds. As opposed to Figure 1, which uses ζ = 2 for
H1, this example uses ζ = 1, which results in slower convergence of solutions
to H and H1 than in Figure 1.

5) Extension of the results on Nesterov’s method in [1]: In the process, in
Section 4, we extend the properties and convergence results for Nesterov’s
method in [1]. In particular, while the convergence rate results in [1]
assume that L(ξ∗1) = 0 at ξ∗ = 0, and ζ = 1 for (2), here we prove UGAS
of the minimizer, with a convergence rate of 1

(t+2)2
, for cost functions with

a minimum value that is not necessarily zero, which holds for a generic

3Code at gitHub.com/HybridSystemsLab/UnitingTradeoff
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parameter ζ > 0. We achieve the relaxation on ζ by moving it into the
numerator of the coefficient of the gradient, effectively decoupling ζ and
M , namely,

ξ̈ + 2d̄(t)ξ̇ +
ζ2

M
∇L(ξ + β̄(t)ξ̇) = 0. (3)

Such a modification leads to faster convergence as ζ increases, and slower
convergence as ζ → 0.

Preliminary work in [28] proposed an algorithm uniting Nesterov’s method
globally and heavy ball locally for C2, strongly convex objective functions L,
and included different results and examples that reflect such conditions, with
proofs omitted due to space considerations. The uniting algorithm proposed
in this paper relaxes the conditions in [28] to C1, convex L with a unique
minimizer. Such a relaxation is reflected in the results, examples, and proofs
presented here.

1.3 Notation

The sets of real, positive real, and natural numbers are denoted by R, R>0,
and N, respectively. The closed unit ball, of appropriate dimension, in the
Euclidean norm is denoted as B. The set Cn represents the family of n-
th continuously differentiable functions. For vectors v ∈ R

n and w ∈ R
n,

|v| =
√
v⊤v denotes the Euclidean vector norm of v, and 〈v, w〉 = v⊤w

the inner product of v and w. For any x ∈ R
n and y ∈ R

m, (x, y) :=
[x⊤, y⊤]⊤. The closure of a set S is denoted S and the set of interior points
of S is denoted int(S). Given a set S ⊂ R

n × R
m, the projection of S onto

R
n is defined as Π(S) := {x ∈ R

n : ∃y such that (x, y) ∈ S }. The distance
of a point x ∈ R

n to a set S ∈ R
n is defined by |x|S = infy∈S |y − x|.

Given a set-valued mapping M : Rm
⇒ R

n, the domain of M is the set
domM = {x ∈ R

m :M(x) 6= ∅}, and the range of M is the set rge M =
{y ∈ R

n : ∃x ∈ R
m such that y ∈M(x)}. A function α : R≥0 → R≥0 is a

class-K∞ function, also written α ∈ K∞, if α is zero at zero, continuous,
strictly increasing, and unbounded. A function β : R≥0 × R≥0 → R≥0 is
a class-KL function, also written β ∈ KL, if it is nondecreasing in its first
argument, nonincreasing in its second argument, limr→0+ β(r, s) = 0 for each
s ∈ R≥0, and lims→∞ β(r, s) = 0 for each r ∈ R≥0.
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2 Uniting Optimization Algorithm

2.1 Problem Statement

As illustrated in Figure 1, the performance of Nesterov’s accelerated gradient
descent commonly suffers from oscillations near the minimizer. This is also
the case for the heavy ball method when λ > 0 is small. However, when λ is
large, the heavy ball method converges slowly, albeit without oscillations. In
Section 1 we discussed how Nesterov’s algorithm guarantees a rate of 1

(t+2)2

for convex L. We also discussed how the heavy ball algorithm guarantees a
rate of 1

t
for convex L, although it was demonstrated in [14] that the heavy

ball algorithm converges exponentially for convex L when such an objective
function also has the property of quadratic growth away from its minimizer.
We desire to attain the rate 1

(t+2)2
globally and an exponential rate locally,

while avoiding oscillations via the heavy ball algorithm with large λ. We
state the problem to solve as follows:
Problem (⋆): Given a scalar, real-valued, continuously differentiable, and
convex objective function L with a unique minimizer, design an optimization
algorithm that, without knowing the function L or the location of its min-
imizer, has the minimizer UGAS, with a convergence rate of 1

(t+2)2
globally

and an exponential convergence rate locally, and with robustness to arbitrar-
ily small noise in measurements of ∇L.

2.2 Modeling

In this section, we present an algorithm that solves Problem (⋆). We interpret
the ODEs in (1) and (3) as control systems consisting of a plant and a control
algorithm [29] [22]. Defining z1 as ξ and z2 as ξ̇, the plant associated to these
ODEs is given by the double integrator

[

ż1
ż2

]

=

[

z2
u

]

=: FP (z, u) (z, u) ∈ R
2n × R

n =: CP (4)

With this model, the optimization algorithms that we consider assign u to a
function of the state that involves the cost function, and such a function of the
state may be time dependent. The control algorithm leading to (1) assigns
u to −λz2 − γ∇L(z1) where γ > 0 and λ > 0, and the control algorithm

leading to (3) assigns u to −2d̄(t)z2− ζ2

M
∇L(z1+ β̄(t)z2) where ζ > 0, M > 0

9



is the Lipschitz constant for ∇L, and where d̄(t) and β̄(t) are defined, for all
t ≥ 0, as

d̄(t) :=
3

2(t+ 2)
, β̄(t) :=

t− 1

t+ 2
. (5)

The functions d̄ and β̄ are defined expressly as in (5) for ease of analysis in
the forthcoming Propositions 4.4-4.6. Such a time-varying definition satisfies
the linear combination of the damping terms mentioned below (2). While
constant terms can be used for (2), when L is strongly convex, constant
damping terms are not adequate for convex L; see [1]. The proposed logic-
based algorithm “unites” the two optimization algorithms modeled by κq,
where the logic variable q ∈ Q := {0, 1} indicates which algorithm is currently
being used. The local and global algorithms, respectively, are defined as

κ0(h0(z)) = −λz2 − γ∇L(z1) (6a)

κ1(h1(z, t), t) = −2d̄(t)z2 −
ζ2

M
∇L(z1 + β̄(t)z2) (6b)

where the algorithm defined by κ1 plays the role of the global algorithm in
uniting control (see, e.g., [22, Chapter 4]), while the algorithm defined by κ0
plays the role of the local algorithm. The outputs h0 corresponding to the
output for the heavy ball algorithm and h1 corresponding to the output for
Nesterov’s algorithm are defined as

h0(z) :=

[

z2
∇L(z1)

]

, h1(z, t) :=

[

z2
∇L(z1 + β̄(t)z2)

]

. (7)

Namely, the algorithm exploits measurements of ∇L, which in practice are
typically approximated using measurements of L. The parameters λ > 0 and
γ > 0 should be designed to achieve convergence without oscillations nearby
the minimizer.

We use the hybrid systems framework to design our algorithm. A hybrid
system H has data (C, F,D,G) and is defined as [23, Definition 2.2]

H =

{

ẋ ∈ F (x) x ∈ C

x+∈ G(x) x ∈ D
(8)

where x ∈ R
n is the system state, F : Rn

⇒ R
n is the flow map, C ⊂ R

n is
the flow set, G : Rn

⇒ R
n is the jump map, and D ⊂ R

n is the jump set.
Since the ODE in (3) is time varying, and since solutions to hybrid systems
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are parameterized by4 (t, j) ∈ R≥0 × N, we employ the state τ to capture
ordinary time as a state variable, in this way, leading to a time-invariant
hybrid system. To encapsulate the plant, static state-feedback laws, and the
time-varying nature of the ODE in (3), we define a hybrid closed-loop system
H with state x := (z, q, τ) ∈ R

2n ×Q× R≥0 as5

ż =

[

z2
κq(hq(z, τ), τ)

]

q̇ = 0

τ̇ = q



















=: F (x) x ∈ C := C0 ∪ C1 (9a)

z+ =

[

z1
z2

]

q+ = 1− q

τ+ = 0



















=: G(x) x ∈ D := D0 ∪D1 (9b)

The sets C0, C1, D0, and D1 are defined as

C0 := U0 × {0} × {0}, C1 := R2n \ T1,0 × {1} × R≥0 (10a)

D0 := T0,1 × {0} × {0}, D1 := T1,0 × {1} × R≥0. (10b)

The sets U0, T1,0, and T0,1 are precisely defined in Section 2.3, using Lyapunov
functions defined therein, but the idea behind their construction is as follows.
The switch between κ0 and κ1 is governed by a supervisory algorithm imple-
menting switching logic; see Figure 3. The supervisor selects between these
two optimization algorithms, based on the output of the plant in (7) and the
optimization algorithm currently applied. When z ∈ U0, q = 0, and τ = 0
(i.e., x ∈ C0), due to the design of U0 in Section 2.3.1, then the state z is near
the minimizer, which is denoted z∗1 , and the supervisor allows flows of (9)
using κ0 and τ̇ = q = 0 to avoid oscillations. Conversely, when z ∈ R2n \ T1,0

and q = 1 (i.e., x ∈ C1), due to the design of T1,0 in Section 2.3.2, then the
state z is far from the minimizer and the supervisor allows flows of (9) using
κ1 and τ̇ = q = 1 to converge quickly to the neighborhood of the minimizer.
When z ∈ T1,0 and q = 1 (i.e., x ∈ D1), then this indicates that the state z

4The variable t is the amount of time that has passed and j is the number of jumps
that have occurred.

5Although h0 in (7) does not depend on τ , to simplify notation we keep τ as an argument
in the general function hq.
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is near the minimizer, and the supervisor assigns u to κ0, resets q to 0, and
resets τ to 0. Conversely, when z ∈ T0,1, q = 0, and τ = 0 (i.e., x ∈ D0), due
to the design of T0,1 in Section 2.3.3, then this indicates that the state z is
far from the minimizer and the supervisor assigns u to κ1 and resets q to 1.
The complete algorithm, defined in (9)-(10), is summarized in Algorithm 1.

Algorithm 1 Uniting algorithm

1: Set q(0, 0) to 0, τ(0, 0) to 0, and set z(0, 0) as an initial condition with
an arbitrary value.

2: while true do
3: if z ∈ T0,1, q = 0, and τ = 0 then
4: Reset q to 1.
5: else if z ∈ T1,0 and q = 1 then
6: Reset q to 0 and τ to 0.
7: else if z ∈ U0, q = 0, and τ = 0 then
8: Assign u to κ0(h0(z)) and update z, q, and τ according to (9a).
9: else if z ∈ R2n \ T1,0 and q = 1 then

10: Assign u to κ1(h1(z, τ), τ) and update z, q, and τ according to (9a).
11: end if
12: end while

The reason that the state τ in (9) changes at the rate q during flows and
is reset to 0 at jumps is that when the state x is in C1, then τ̇ = q = 1, which
implies that τ behaves as ordinary time, so it is used to represent time in the
time-varying algorithm κ1. On the other hand, when the state x is in C0,
then τ̇ = q = 0 causes the state τ to stay at zero, which is an appropriate
value for τ as it is not required by the time-invariant algorithm κ0. Such an
evolution ensures that the set to asymptotically stabilize is compact.

Figure 3 shows the feedback diagram of this hybrid closed-loop system
H. We denote the closed-loop system resulting from κ0 as H0, which is given
by

ż =

[

z2
κ0(h0(z))

]

z ∈ R
2n (11)

and we denote the closed-loop system resulting from κ1 as H1, which is given
by

ż =

[

z2
κ1(h1(z, τ), τ)

]

, τ̇ = 1 (z, τ) ∈ R
2n × R≥0. (12)

12



Supervisor

q̇ = 0 τ̇ = q (z, q, τ) ∈ C := C0 ∪C1

q+ = 1− q τ+ = 0 (z, q, τ) ∈ D := D0 ∪D1

plant

ż1 = z2
ż2 = u

κ1(h1(z, τ), τ)
τ̇ = 1, τ+ = 0

global (q = 1)

κ0(h0(z))

local (q = 0)

q

u hqhq

∇L(z1)

z∗1 z1
z1◦

Figure 3: Feedback diagram of the hybrid closed-loop system H (on the
right), in (9), uniting global and local optimization algorithms. An example
optimization problem to solve is shown on the left and, for this example
optimization problem, measurements of the gradient are used for the input
of κq.

2.3 Design of the Hybrid Algorithm

In order for the supervisor to determine when the state component z1 is close
to the minimizer of L, denoted z∗1 , without knowledge of z∗1 or L∗ := L(z1),
we impose the following assumptions on L.

Assumption 2.1 The function L is C1, convex6, and has a single minimizer
z∗1.

Assumption 2.2 (Quadratic growth of L) The function L has quadratic
growth away from its minimizer z∗1 ; i.e., there exists α > 0 such that

L(z1)− L∗ ≥ α |z1 − z∗1 |2 ∀z1 ∈ R
n. (13)

Remark 2.3 Assumption 2.1, which is a common assumption used in the
analysis of optimization algorithms [30] [31], ensures that the objective func-
tion is continuously differentiable, which is necessary for well-posedness of

6A function L : R
n → R is convex if, for all u1, w1 ∈ R

n, L(u1) ≥ L(w1) +
〈∇L(w1), u1 − w1〉 [30].
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H, as was explained in Section 1.2. Additionally, the convex property and
the restriction that L has a single minimizer z∗1 in Assumption 2.1 rules out
the possibility of the objective function having a continuum of minimizers or
multiple isolated minimizers. Assumption 2.2, which is used for the construc-
tion of U0, T1,0, and T0,1, is employed as a means of determining when the
state z is near the minimizer of L, via measurements of the gradient. Such
an assumption is also commonly used in the analysis of convex optimization
algorithms; see, e.g., [32], [33].

To make the switch back to κ1, we impose the following assumption on
L.

Assumption 2.4 (Lipschitz Continuity of ∇L) The function ∇L is Lip-
schitz continuous with constant M > 0, namely,
|∇L(w1)−∇L(u1)| ≤M |w1 − u1| for all w1, u1 ∈ R

n.

Remark 2.5 Assumption 2.4 is used in the forthcoming construction of T0,1.
Additionally, Assumption 2.4 is commonly used in nonlinear analysis to en-
sure that the differential equations of the individual optimization algorithms,
for example, those in (3) and (1), do not have solutions that escape in fi-
nite time, which is used to guarantee existence and completeness of maximal
solutions to Hq [34, Theorem 3.2].

Under Assumptions 2.1 and 2.2, the following lemma, used in some of the
results to follow, relates the size of the gradient at a point to the distance
from the point to z∗1 .

Lemma 2.6 (Suboptimality): Let L satisfy Assumptions 2.1 and 2.2, and
let α > 0 come from Assumption 2.2. For some ε > 0, if z1 ∈ R

n is such
that |∇L(z1)| ≤ εα, then |z1 − z∗1 | ≤ ε.

Proof. Combining Assumption 2.1 and (13) from Assumption 2.2 with u1 =
z∗1 and w1 = z1 yields

α |z1 − z∗1 |2 ≤ |L(z1)− L∗| ≤ |〈∇L(z1), z∗1 − z1〉| ≤ |∇L(z1)| |z1 − z∗1 | (14)

where the first inequality holds since L(z1) ≥ L∗. Then,

|z1 − z∗1 | ≤
1

α
|∇L(z1)| . (15)
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From (15), we can deduce that |∇L(z1)| ≤ εα implies |z1 − z∗1 | ≤ 1
α
(εα) = ε.

The suboptimality condition from Lemma 2.6 is typically used as a stop-
ping condition for optimization, as it indicates that the argument of L is close
enough to the minimizer z∗1 [30]. We exploit Lemma 2.6 to determine when
the state component z1 of the hybrid closed-loop system H is close enough
to the minimizer z∗1 so as to switch to the local optimization algorithm, κ0,
in this way activating H0; see Figure 3.

2.3.1 Design of the Set U0

Recall from lines 7-8 of Algorithm 1 that the objective is to design U0 such
that when z ∈ U0, q = 0, and τ = 0, the state component z1 is near z∗1
and the uniting algorithm allows flows of (9) with κ0 and q = 0. For such a
design, we use Assumptions 2.1 and 2.2 and the Lyapunov function

V0(z) := γ (L(z1)− L∗) +
1

2
|z2|2 (16)

defined for each z ∈ R
2n, where γ > 0. The choice of V0 in (16) leads to

V̇0 showing decrease of V1 for each z ∈ R
2n, in the proof of the forthcoming

Proposition 4.1. Such a property of V0 is needed to establish UGAS of the
minimizer for H0 in (11). Given ε0 > 0, c0 > 0, and γ > 0 from κ0 in (6a),
let α > 0 come from Assumption 2.2 such that

c̃0 := ε0α > 0, d0 := c0 − γ

(

c̃20
α

)

> 0. (17)

Then, V0 in (16) can be upper bounded, using Assumption 2.1 as done to
arrive to (14), as follows: for each z ∈ R

2n

V0(z) = γ (L(z1)− L∗) +
1

2
|z2|2 ≤ γ |∇L(z1)| |z1 − z∗1 |+

1

2
|z2|2 . (18)

Then, due to L being C1, convex, and having a single minimizer z∗1 by As-
sumption 2.1, and due to L having quadratic growth away from z∗1 by As-
sumption 2.2, when |∇L(z1)| ≤ c̃0, the suboptimality condition in Lemma
2.6 implies |z1 − z∗1 | ≤ c̃0

α
, from where we get

V0(z) ≤ γ

(

c̃20
α

)

+
1

2
|z2|2 (19)
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Then, by defining the set U0 as

U0 :=

{

z ∈ R
2n : |∇L(z1)| ≤ c̃0,

1

2
|z2|2 ≤ d0

}

, (20)

every z ∈ U0 belongs to the c0-sublevel set of V0. In fact, using the conditions
in (17) and (19), we have that for each z ∈ U0,

V0(z) ≤ γ

(

c̃20
α

)

+
1

2
|z2|2 ≤ c0. (21)

Since κ0 in (6a) is such that the set {z∗1} × {0} is globally asymptotically
stable for the closed-loop system resulting from controlling (4) by κ0, as we
show in the forthcoming Proposition 4.1, the set U0 is contained in the basin
of attraction induced by κ0.

2.3.2 Design of the Set T1,0

Recall from lines 5-6 of Algorithm 1 that the objective is to design T1,0 such
that when z ∈ T1,0 and q = 1, the state component z1 is near z∗1 and the
supervisor resets q to 0, resets τ to 0, and assigns u to κ0(h0(z)). For such a
design, we use Assumptions 2.1 and 2.2 and the Lyapunov function

V1(z, τ) :=
1

2
|ā(τ) (z1 − z∗1)+z2|2 +

ζ2

M
(L(z1)− L∗) (22)

defined for each z ∈ R
2n and each τ ≥ 0, where ζ > 0, M > 0 is the Lipschitz

constant of ∇L, and the function ā is defined as

ā(τ) :=
2

τ + 2
. (23)

The choice of V1 in (22) comes from [1], and such a choice leads to V̇1 showing
decrease of V1, for each z ∈ R

2n and each τ ∈ R≥0, in the proof of the
forthcoming Proposition 4.4. Such a property of V1 is needed to establish
UGAS of the minimizer for H1 in (12), and the convergence rate 1

(t+2)2
. In

this same proof, the specific choice of ā in (23), which comes from [1], leads to
the elimination of the cross term 〈z1 − z∗1 , z2〉 – which has indeterminate sign
– in the upper bound on V̇1. In other words, without the definitions of V1 in
(22) and ā in (23), decrease of V1 and, consequently, UGAS of the minimizer
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for H1and the convergence rate 1
(t+2)2

cannot be established. More details

on how (22) and (23) are used in our analysis can be found in Appendix
C. Given c1,0 ∈ (0, c0) and ε1,0 ∈ (0, ε0), where c0 > 0 and ε0 > 0 come
from Section 2.3.1, let c̃0 and d0 be given in (17), and let α > 0 come from
Assumption 2.2 such that

c̃1,0 := ε1,0α ∈ (0, c̃0) (24a)

d1,0 := c1,0 −
(

c̃1,0
α

)2

− ζ2

M

(

c̃21,0
α

)

∈ (0, d0) (24b)

where ζ > 0 comes from (3). Note that ā, defined via (23), which is in V1,
equals 1 when τ = 0 and monotonically decreases toward zero (but being
always positive) as τ tends to ∞. Namely, ā is upper bounded by 1. Then,
with V1 given in (22) and using Assumption 2.1 with u1 = z∗1 and w1 = z1,

V1(z, τ) ≤ |z1 − z∗1 |2 + |z2|2 +
ζ2

M
|∇L(z1)| |z1 − z∗1 | . (25)

Then, due to L being C1, convex, and having a single minimizer z∗1 by As-
sumption 2.1, and due to L having quadratic growth away from z∗1 by As-
sumption 2.2, when |∇L(z1)| ≤ c̃1,0, the suboptimality condition in Lemma

2.6 implies |z1 − z∗1 | ≤ c̃1,0
α

, from where we get

V1(z, τ) ≤
(

c̃1,0
α

)2

+ |z2|2 +
ζ2

M

(

c̃21,0
α

)

. (26)

Then, by defining T1,0 as

T1,0 :=
{

z ∈ R
2n : |∇L(z1)| ≤ c̃1,0, |z2|2 ≤ d1,0

}

(27)

which, by construction, is contained in the interior of U0 defined in (20), every
z ∈ T1,0 belongs to the c1,0-sublevel set of V1. In fact, using the conditions in
(24) and (26), we have for each z ∈ T1,0,

V1(z, τ) ≤
(

c̃1,0
α

)2

+ |z2|2 +
ζ2

M

(

c̃21,0
α

)

≤ c1,0. (28)

The constants c̃0, c̃1,0, d0, and d1,0 in (17) and (24) comprise the hysteresis
necessary to avoid chattering at the switching boundary. The idea behind
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these hysteresis boundaries is as follows. When z ∈ U0 and q = 1, we have
that z ∈ R2n \ T1,0, and it is not yet time to switch to κ0 but to continue to
flow using κ1. But once z ∈ T1,0 then z is close enough to {z∗1} × {0}, and
the supervisor switches to κ0. Note that T0,1 ∩ T1,0 = ∅. Figure 4 illustrates
the hysteresis mechanism in the design of U0 and T1,0.

q = 0 q = 1

γ
(

α
M2

)

|∇L(z1)|2 + 1

2
|z2|2 = c0

|∇L(z1)| = c̃1,0,
1

2
|z2|2 = d1,0

U0

T0,1

T1,0

R2n \ T1,0

{z∗1} × {0}

{z∗1} × {0}

Figure 4: An illustration of hysteresis in the design of the sets U0, T1,0, and
T0,1 on R

2n, via the constants c̃1,0 ∈ (0, c̃0), d1,0 ∈ (0, d0), and c0 > 0. Left:
due to the design of U0 in (20), every z ∈ U0 belongs to the c0-sublevel set
of the Lyapunov function V0, where V0 is defined via (16). Hence, the same
value of c0 > 0 is also used to define T0,1 as the closed complement of a
sublevel set of V0 with level equal to c0. Right: the constants c̃1,0 ∈ (0, c̃0)
and d1,0 ∈ (0, d0), defined via (24), are chosen such that the set T1,0 in (27)
is contained in the interior of U0.

2.3.3 Design of the Set T0,1

Recall from lines 3-4 of Algorithm 1 that the objective is to design T0,1 such
that when z ∈ T0,1, q = 0, and τ = 0, the state component z1 is far from z∗1
and the supervisor resets q to 1 and assigns u to κ1(h1(z, τ), τ) so that κ1
steers z1 back to nearby z∗1 . Given c0 > 0, let α > 0 come from Assumption
2.2, and let M > 0 come from Assumption 2.4. Then, using Assumption
2.4 with u1 = z∗1 and w1 = z1 yields |∇L(z1)| ≤ M |z1 − z∗1 | for all z1 ∈ R

n.
Since L has quadratic growth away from z∗1 by Assumption 2.2, then dividing
both sides of |∇L(z1)| ≤ M |z1 − z∗1 | by M and substituting into (13) leads
to L(z1) − L∗ ≥ α

M2 |∇L(z1)|2, where α > 0 comes from Assumption 2.2.
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Then, V0 in (16) is lower bounded as follows: for each z ∈ R
2n,

V0(z) = γ (L(z1)− L∗) +
1

2
|z2|2 ≥ γ

( α

M2

)

|∇L(z1)|2 +
1

2
|z2|2 . (29)

Using the right-hand side of (29) and the same c0 > 0 as in Section 2.3.1, we
define the set

T0,1 :=

{

z ∈ R
2n :γ

( α

M2

)

|∇L(z1)|2 +
1

2
|z2|2 ≥ c0

}

. (30)

The set in (30) defines the (closed) complement of a sublevel set of the
Lyapunov function V0 in (16) with level equal to c0. The constant c0 is also
a part of the hysteresis mechanism, as shown in Figure 4. When z ∈ U0,
q = 0, and τ = 0, then the supervisor does not need to switch to κ1, as the
state component z is close enough to the minimizer to keep using κ0. But if
z ∈ T0,1 while q = 0 and τ = 0, then z is far enough from the minimizer, and
the supervisor then switches to κ1.

While the constants c̃0, c̃1,0, d0, d1,0, and the set T0,1 in (30) depend on
the constants M > 0 and α > 0 which characterize the objective function L,
as long as M and α are positive, the uniform asymptotic stability property
established in the forthcoming Theorem 2.11 still holds. As long as M > 0
and α > 0 belong to a known set, the parameters c̃0, c̃1,0, d0, and d1,0 can
still be tuned, treating such tuning as a worst-case tuning problem.

2.4 Design of the Parameter λ

The heavy ball parameter λ > 0 should be made large enough to avoid os-
cillations near the minimizer, as stated in Sections 1.1, 1.2, and 2.1. To gain
some intuition on how to tune λ, consider the quadratic objective function
L(z1) =

1
2
a1z

2
1 , a1 > 0, which was analyzed in detail in [3]. For such a case, so-

lutions to the heavy ball algorithm are overdamped (i.e., converge slowly with
no oscillations) when λ > 2

√
a1, critically damped (i.e., the fastest conver-

gence possible with no oscillations) when λ = 2
√
a1, and underdamped (fast

convergence with oscillations) when λ < 2
√
a1. Therefore, setting λ ≥ 2

√
a1

gives the desired behavior of solutions to H0, for such an objective function.
More generally, setting λ sufficiently large to avoid oscillations suffices, in
practice. Numerically, λ can be tuned as follows. Choose an arbitrarily large
value of λ. If there is still oscillations or overshoot locally, despite the switch
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from κ1 to κ0 being made near the minimizer, then gradually increase λ un-
til the oscillations and overshoot disappear. See Examples 3.1, 3.2, and 3.7
where λ was tuned in such a way.

2.5 Well-posedness of the hybrid closed-loop system H
When L satisfies Assumptions 2.1, 2.2, and 2.4, the hybrid closed-loop system
H in (9) satisfies the hybrid basic conditions from [23] and [22], defined as
follows.

Definition 2.7 (Hybrid basic conditions) A hybrid system H is said to
satisfy the hybrid basic conditions if its data (C, F,D,G) is such that

(A1) C and D are closed subsets of Rn;

(A2) F : Rn
⇒ R

n is outer semicontinuous and locally bounded relative to
C, C ⊂ dom F , and F (x) is convex for every x ∈ C;

(A3) G : Rn
⇒ R

n is outer semicontinuous and locally bounded relative to
D, and D ⊂ dom G.

The hybrid basic conditions are defined in such a manner as to ensure
that a hybrid system satisfying such conditions does not have any disconti-
nuities. In particular, for a discontinuous system, if the state starts close to
one of the points of a discontinuity and small measurement noise is present,
the solution remains nearby such a point, even when the noise is arbitrarily
small. The limit of such a solution as the noise goes to zero is a solution to a
differential inclusion (or a difference inclusion, or a hybrid inclusion) which
is a Krasovskii regularization of the discontinuous system. Such a solution,
when the right-hand side of the Krasovskii regularization is bounded, is also
a Hermes solution, and represents an equilibrium point of the discontinuous
system, from which the state cannot converge to the set of interest. Con-
versely, when a hybrid system satisfies the hybrid basic conditions of closed
sets C and D and outer semicontinuous maps F and G, this ensures that
any existing stability properties of such a hybrid system are robust to small
perturbations. See [23] and [22] for more details. The satisfaction of such
conditions is demonstrated in the following lemma. A hybrid closed-loop
system H that satisfies the hybrid basic conditions is said to be well-posed
in the sense that the limit of a graphically convergent sequence of solutions
to H having a mild boundedness property is also a solution to H [23].
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Lemma 2.8 (Well-posedness of H): Let the function L satisfy Assumptions
2.1, 2.2, and 2.4. Let the sets U0, T1,0, and T0,1 be defined via (27), and (30),
respectively. Let the functions d̄ and β̄ be defined as in (5). Let κ0 and κ1
be defined via (6). Then, the hybrid closed-loop system H in (9) satisfies the
hybrid basic conditions.

Proof. See Section A.

In Theorem 2.11 we show that H has a compact pre-asymptotically stable
set. In light of this property, Lemma 2.8 is key as it leads to pre-asymptotic
stability that is robust to small perturbations [23, Theorem 7.21]. In the case
of gradient-based algorithms, for instance, such perturbations can take the
form of small noise in measurements of the gradient.

2.6 Existence of solutions to H
Under Assumptions 2.1, 2.2, and 2.4, every maximal solution to H is com-
plete7 and bounded, as stated in the following lemma. Such a property is
useful since it guarantees that nontrivial solutions to H exist from each ini-
tial point in C ∪ D, and that such solutions do not escape C ∪ D. When
every maximal solution is complete, then uniform global pre-asymptotic sta-
bility8 of the set A becomes UGAS. The following lemma also states that
Π(C0) ∪ Π(D0) = R

2n and Π(C1) ∪ Π(D1) = R
2n. Such a property ensures

that nontrivial solutions to H, which exist from each initial point in C ∪D,
also exist from any initial point in R

2n ×Q× R≥0.

Proposition 2.9 (Existence of solutions to H): Let the function L sat-
isfy Assumptions 2.1, 2.2, and 2.4. Let the sets U0, T1,0, and T0,1 be de-
fined via (27), and (30), respectively. Let the functions d̄ and β̄ be defined
as in (5). Let κ0 and κ1 be defined via (6). Then, Π(C0) ∪ Π(D0) =
R

2n, Π(C1) ∪ Π(D1) = R
2n, and each maximal solution (t, j) 7→ x(t, j) =

(z(t, j), q(t, j), τ(t, j)) to H in (9) is bounded and complete.

Proof. See Section B.

7A solution x to H is called maximal if it cannot be extended further. A solution is
called complete if its domain is unbounded.

8Uniform global pre-asymptotic stability indicates the possibility of a maximal solution
that is not complete, even though it may be bounded.
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2.7 Main Result

The result in this section depends on the notion of stability, uniform global
stability, pre-attractivity, uniform global pre-attractivity, and uniform global
pre-asymptotic stability (UGpAS) which are listed in the following definition,
from [22] and [23].

Definition 2.10 (Stability and attractivity notions) Given a hybrid
closed-loop system H as in (8), a nonempty set A ⊂ R

n is said to be

• Stable for H if for each ε > 0 there exists δ > 0 such that each solution x
to H with |x(0, 0)|A ≤ δ satisfies |x(t, j)|A ≤ ε for all9 (t, j) ∈ domx;

• Uniformly globally stable for H if there exists a class-K∞ function α such
that any solution x to H satisfies |x(t, j)|A ≤ α (|x(0, 0)|A) for all (t, j) ∈
dom x;

• Pre-attractive for H if there exists µ > 0 such that every solution x to H
with |x(0, 0)|A ≤ µ is such that (t, j) 7→ |x(t, j)|A is bounded and if x is
complete then lim

(t,j)∈dom x, t+j→∞
|x(t, j)|A = 0;

• Uniformly globally pre-attractive (UGpA) for H if for each ε > 0 and δ > 0
there exists T > 0 such that, for any solution x to H with |x(0, 0)|A ≤ δ,
(t, j) ∈ dom x and t + j ≤ T imply |x(t, j)|A ≤ ε;

• Uniformly globally pre-asymptotically stable (UGpAS) for H if it is both
uniformly globally stable and uniformly globally pre-attractive.

In the notions involving convergence in Definition 2.10, when every max-
imal solution is complete, then the prefix “pre” is dropped to obtain attrac-
tivity, UGA, and UGAS. The prefix “pre” is in the notions involving conver-
gence in Definition 2.10 to allow for maximal solutions that are not complete.
When every maximal solution is complete, such a property guarantees that
nontrivial solutions exist from each initial point in C∪D to the hybrid system
resulting from using our proposed uniting algorithm.

As was mentioned in Section 1.1, establishing UGAS for Nesterov’s algo-
rithm is a difficult problem to solve, due to its time-varying nature, as some

9The domain of x, namely, domx ⊂ R≥0 × N, is a hybrid time domain, which is a set
such that for each (T, J) ∈ domx, domx∩ ([0, T ]× {0, 1, . . . , J}) = ∪J

j=0([tj , tj+1], j) for a
finite sequence of times 0 = t0 ≤ t1 ≤ t2 ≤ . . . ≤ tJ+1.
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solutions converge in a non-uniform way. We show in this section that our
proposed uniting algorithm overcomes such a difficulty.

In this section, we present a result that establishes UGAS of the set

A :=
{

z ∈ R
2n :∇L(z1) = z2 = 0

}

× {0} × {0} = {z∗1} × {0} × {0} × {0}
(31)

and a hybrid convergence rate that, globally, is equal to 1
(t+2)2

while locally,

is exponential, for the hybrid closed loop algorithm H in (9) and (10). Recall
that the state x := (z, q, τ) ∈ R

2n × Q × R≥0. In light of this, the first
component of A, namely, {z∗1}, is the minimizer of L. The second component
of A, namely, {0}, reflects the fact that we need the velocity state z2 to
equal zero in A so that solutions are not pushed out of such a set. The third
component in A, namely, {0}, is due to the logic state ending with the value
q = 0, namely using κ0 as the state z reaches the set of minimizers of L. The
last component in A is due to τ being set to, and then staying at, zero when
the supervisor switches to κ0.

Theorem 2.11 (UGAS of A for H): Let the function L satisfy Assumptions
2.1, 2.2, and 2.4. Let ζ > 0, λ > 0, γ > 0, c1,0 ∈ (0, c0), and ε1,0 ∈ (0, ε0)
be given. Let α > 0 be generated by Assumption 2.2, and let M > 0 be
generated by Assumption 2.4. Let c̃1,0 ∈ (0, c̃0) and d1,0 ∈ (0, d0) be defined
via (17) and (24). Let the sets U0, T1,0, and T0,1 be defined via (27), and
(30), respectively. Let the functions d̄ and β̄ be defined as in (5), and let κ0
and κ1 be defined via (6). Then, the set A, defined via (31), is UGAS for
H given in (9)-(10). Furthermore, each maximal solution (t, j) 7→ x(t, j) =
(z(t, j), q(t, j), τ(t, j)) of the hybrid closed-loop algorithm H starting from C1

with τ(0, 0) = 0 satisfies the following:

1) The domain dom x of the solution x is of the form10 ∪1
j=0(I

j×{j}), with I0

of the form [t0, t1] and with I1 of the form [t1,∞) for some t1 ≥ 0 defining
the time of the first jump. In other words, the system experiences at most
one jump;

2) For each t ∈ I0 such that11 t ≥ 0

L(z1(t, 0))− L∗ ≤ 4cM

ζ2(t+ 2)2
(

|z1(0, 0)− z∗1 |2 + |z2(0, 0)|2
)

(32)

10We define the interval Ij := {t : (t, j) ∈ domx}.
11Note that at each t ∈ I0, q(t, 0) = 1, and at each t ∈ I1, q(t, 1) = 0.
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where L∗ = L(z∗) and c := (1 + ζ2) exp

(

√

13
4
+ ζ4

M

)

. Namely, L(z1(t, 0))−
L∗ is
O
(

4cM
ζ2(t+2)2

)

;

3) For each t ∈ I1, L(z1(t, 1))−L∗ is O (exp (−(1−m)ψt)), wherem ∈ (0, 1)
is such that ψ := mαγ

λ
> 0 and ν := ψ(ψ − λ) < 0.

As will be shown in the forthcoming proof of Theorem 2.11 in Section 4,
solutions starting from C1 jump no more than once. The UGAS of the hybrid
closed-loop algorithm H in Theorem 2.11 is proved as follows. First, in the
forthcoming Proposition 4.1, we establish UGAS of the set {z∗1}×{0} for the
closed-loop algorithm H0 in (11) via Lyapunov theory and the application of
an invariance principle. Then, in the forthcoming Proposition 4.6, we prove
UGAS of the set {z∗1}×{0}×R≥0 for the closed-loop algorithm H1 in (12) via
Lyapunov theory and a comparison principle. Then, UGAS of A for H and
item 1) in Theorem 2.11 follow from a proof-by-contradiction employing the
UGAS of H0, the UGAS of H1, and the construction of the sets U0, T1,0, and
T0,1. The hybrid convergence rate of the closed-loop algorithm H in items 2)
and 3) of Theorem 2.11 is proved in the forthcoming Propositions 4.3, 4.4,
and 4.5.

3 Numerical Examples

In this section, we present multiple numerical examples to illustrate the hy-
brid closed-loop algorithm in (9) and (10). Example 3.1 first illustrates the
operation of the nominal hybrid closed-loop system H, and then demon-
strates the robustness of H to different amounts of noise in measurements
of ∇L. Example 3.2 compares solutions to the hybrid closed-loop algorithm
in (9) and (10) with solutions to H0, H1, and HAND-1 from [19], with pa-
rameters chosen such that HAND-1 and H are compared on equal footing.
Example 3.2 then compares multiple solutions of H, starting from different
initial values of z1, to multiple solutions of HAND-1 from such initial val-
ues of z1, to show that H has a consistent percentage of improvement over
HAND-1 for different solutions. Example 3.3 compares solutions to the hy-
brid closed-loop algorithm in (9) and (10) with solutions to H0, H1, HAND-1
from [19], and the hybrid Hamiltonian algorithm (HHA) from [21], with pa-
rameters chosen such that HAND-1, HHA, and H are compared on equal
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footing. Example 3.7 Illustrates the trade-off between speed of convergence
and the resulting values of parameters for the uniting algorithm H, for differ-
ent tunings of ζ > 0. As in Example 3.2, the parameter values for Example
3.7 are chosen such that HAND-1 and H are compared on equal footing.

Example 3.1 In this example, we simulate a solution to the nominal hybrid
closed-loop system H to illustrate how the uniting algorithm works. Then, we
compare that same solution to solutions with different amounts of noise in
measurements of ∇L. For both the nominal system and the perturbed system,
the choice of objective function, parameter values, and initial conditions are
as follows. We use the objective function L(z1) := z21, the gradient of which
is Lipschitz continuous with M = 2, and which has a single minimizer at
z∗1 = 0. This choice of objective function is made so that we can easily tune
λ, as described in Section 2.4. We arbitrarily chose the heavy ball parameter
value γ = 2

3
and we tuned λ to 200 by choosing a value arbitrarily larger

than 2
√
a1, where a1 comes from Section 2.4, and gradually increasing it

until there is no overshoot in the hybrid algorithm. For Nesterov’s algorithm,
we chose ζ = 2. In Figure 2, we stated that choosing ζ = 2 leads to faster
convergence, for Nesterov’s method in (3) and H, than choosing ζ = 1.
In general, convergence for such algorithms is faster as as ζ increases, and
slower as ζ tends to zero. The parameter values for the uniting algorithm
are c0 = 7000, c1,0 ≈ 6819.68, ε0 = 10, ε1,0 = 5, and α = 1, which yield the
values c̃0 = 10, c̃1,0 = 5, d0 = 6933, and d1,0 = 6744, which are calculated via
(17) and (24). These values are chosen for proper tuning of the algorithm,
in order to get nice performance, and the value of c1,0 is chosen to exploit
the properties of Nesterov’s method for a longer time, so that the nominal
solution gets closer to the minimizer faster. Initial conditions for H are
z1(0, 0) = 50, z2(0, 0) = 0, q(0, 0) = 1, and τ(0, 0) = 0. The plot on the top
in Figure 5 shows the solution to the nominal hybrid closed-loop algorithm12

H, namely, the value of z1 over time, with the time it takes for the solution to
settle to within 1% of z∗1 marked with a black dot and labeled in seconds. The
jump at which the switch from H1 to H0 occurs is labeled with an asterisk.
The solution converges quickly, without oscillations near the minimizer.

To show that the UGAS of A, established in Theorem 2.11, is robust to
small perturbations, due to the hybrid closed-loop system H satisfying the
hybrid basic conditions by Lemma 2.8. we simulate the hybrid algorithm, us-
ing the objective function, parameter values, and initial conditions listed in

12Code at gitHub.com/HybridSystemsLab/UnitingRobustness
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sup |L(z1(t, j))− L∗|
0.01 8.857× 10−6 7.844× 10−11

0.1 8.011× 10−4 6.418× 10−7

0.5 9.039× 10−4 8.171× 10−7

1 6.982× 10−3 4.875× 10−5

5 9.459× 10−3 8.947× 10−5

10 1.450× 10−2 2.103× 10−4

15 4.938× 10−2 2.438× 10−3

20 5.992× 10−2 3.591× 10−3

25 6.663× 10−2 4.439× 10−3

Figure 5: Top: The evolution over time of z1, for the nominal hybrid closed-
loop algorithm H, for a function L(z1) := z21 with a single minimizer at
z∗1 = 0. The time at which the solution settles to within 1% of z∗1 is marked
with a dot and labeled in seconds. The jump is labeled with an asterisk.
Bottom: Simulation results for perturbed solutions using zero mean Gaussian
noise, with each simulation using a different value of the standard deviation
σ. Results listed are for a large value of t+ j.
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Figure 6: Simulation results for hybrid closed-loop algorithm H, for a func-
tion L(z1) := z21 with a single minimizer at z∗1 = 0, with zero-mean Gaussian
noise added to measurements of the gradient. Each subplot is labeled with
the standard deviation used. Left subplots: the value of z1 over time for each
perturbed solution, with the jump in each solution labeled by an asterisk.
Right subplots: the corresponding value of L over time for each perturbed
solution.
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the first paragraph of this example, with zero-mean Gaussian noise added to
measurements of the gradient. Separate simulations were run for each of the
following standard deviations: σ ∈ {0.01, 0.1, 0.5, 1, 5, 10, 15, 20, 25}. Figure
6 shows some of these perturbed solutions, with each subplot labeled with the
corresponding standard deviation used13. The subplots on the left side of Fig-
ure 6 show the value of z1 over time for different standard deviations, and
the subplots on the right side of Figure 6 show the corresponding value of L
over time for such standard deviations. Note that, while all perturbed solu-
tions shown in Figure 6 get close to the minimizer quickly, such perturbed
solutions do not get as close to the minimizer as the solution to the nomi-
nal algorithm does; see the plot on the top in Figure 5. Also note that as
the standard deviation gets larger, the corresponding perturbed solution stays
slightly farther away from the minimizer. The results for all standard devia-
tions are listed in the table in Figure 5, showing the neighborhood of z∗1 that
each solution settles to, for a large value of t+j, along with the corresponding
value of L.

Example 3.2 In this example, to show the effectiveness of the uniting algo-
rithm, we compare the hybrid closed-loop algorithm H, defined via (9) and
(10), with the individual closed-loop optimization algorithms H0 and H1 and
with the HAND-1 algorithm from [19] which, in [19], is designed and ana-
lyzed for convex functions L satisfying Assumptions 2.1 and 2.4. First, we
compare the convergence rates of H and HAND-1 analytically. Using an al-
ternate state space representation, namely, z1 := ξ and z2 := ξ + τ

2
ξ̇, the

HAND-1 algorithm has state (z, τ) ∈ R
2n+1 and data (C, F,D,G)

F (z, τ) :=





2
τ
(z2 − z1)

−2c1τ∇L(z1)
1



 (z, τ) ∈ C, G(z, τ) :=

[

z
Tmin

]

(z, τ) ∈ D

(33)
where c1 > 0 and the flow and jump sets are
C := {(z, τ) ∈ R

2n+1 : τ ∈ [Tmin, Tmax]} and
D := {(z, τ) ∈ R

2n+1 : τ ∈ [Tmed, Tmax]}, with 0 < Tmin < Tmed < Tmax < ∞,

and Tmed ≥
√

B
δmed

+Tmin > 0, δmed > 0. It is shown in [19] that each maximal

13Code found at same link as in Footnote 12.
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solution (t, j) 7→ (z(t, j), τ(t, j)) to the HAND-1 algorithm satisfies

L(z1(t, 0))− L∗ ≤ B

t2
(34)

for all (t, j) ∈ dom(z, τ) such that j = 0, z1(0, 0) = z2(0, 0), τ(0, 0) = Tmin,
z1(0, 0) ∈ K0 := {z∗1} + rB, where B := r2

2c1
+ T 2

min (L(z1(0, 0))− L∗) > 0,
r ∈ R>0, c1 > 0.

For the hybrid closed-loop algorithm H, the coefficient of the bound on H1

from (32), namely,

L(z1(t, 0))− L∗ ≤ 4cM

ζ2(t+ 2)2
(

|z1(0, 0)− z∗1 |2 + |z2(0, 0)|2
)

(35)

for each t ∈ I0, t ≥ 0, at which q(t, 0) = 1, and for each ζ > 0, and M > 0, is

4cM
ζ2

(

|z1(0, 0)− z∗1 |2 + |z2(0, 0)|2
)

, where c := (1 + ζ2) exp

(

√

13
4
+ ζ4

M

)

. The

coefficient of the bound in HAND-1 is B := r2

2c1
+ T 2

min (L(z1(0, 0))− L∗).

Since, as t→ ∞, 1
(t+2)2

→ 1
t2

, then, comparing the coefficients of the bounds,

the bound in (35) is slightly better than (34) since r2

2c1
is very large for small

t. Neglecting the r2

2c1
term, however, the bound on H1 (35) matches (34).

The rate for HAND-1, nevertheless, is only guaranteed until the first jump.
After this, there is no characterized bound for HAND-1. In contrast, H
has a characterized bound for the domain of every solution such that t ≥ 0.
Namely, it has rate 1

(t+2)2
until the state z is within a small neighborhood of

the minimizer – where the rate then switches to exp (−(1 −m)ψt), where,
given γ > 0 and λ > 0, m ∈ (0, 1) is such that ψ = mαγ

λ
> 0 and ν =

ψ(ψ − λ) < 0.
Next, we compare H0, H1, H, and HAND-1 in simulation. To compare

these algorithms, we use the same objective function L, heavy ball parameter
values λ and γ, Lipschitz parameter M , Nesterov parameter ζ, and uniting
algorithm parameter values c0, c1,0, ε0, ε1,0, α, c̃0, c̃1,0, d0, and d1,0 as in
Example 3.1. Given ζ = 2 for Nesterov’s algorithm and H, the HAND-
1 parameters c1 = 0.5 and Tmin = 1+

√
7

2
are chosen such that the resulting

gain coefficients for z1 and z2 are the same for both H and HAND-1, so that
these algorithms are compared on equal footing14. The remaining HAND-1

14Although there exist parameter values for which HAND-1 has faster, oscillation-free
performance, due to the way H and HAND-1 relate to each other, they are compared
fairly for a particular set of parameters.
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parameters, r and δmed, have different values depending on the initial con-
ditions z1(0, 0) = z2(0, 0), listed in Table 2, which leads to different val-
ues of Tmed and Tmax, for each solution. Such values are chosen such that

Tmed ≥
√

B
δmed

+ Tmin > 0. Additionally, we choose Tmax = Tmed + 1. The

parameter values for the uniting algorithm are ε0 = 10, ε1,0 = 5, and α = 1.
The remaining parameter values c0 and c1,0 are different depending on the
initial condition z1(0, 0) and are listed in Table 2, which leads to different
values of d0, calculated via (17), and d1,0 calculated via (24). These values
are chosen for proper tuning of the algorithm, in order to get nice perfor-
mance, and for exploiting the properties of Nesterov’s method as long as we
want. Initial conditions for all solutions to H are z2(0, 0) = 0, q(0, 0) = 1,
and τ(0, 0) = 0, with values of z1(0, 0) listed in Table 2. Initial conditions for
all solutions to HAND-1 are τ(0, 0) = Tmin, with values of z1(0, 0) = z2(0, 0)
listed in Table 2.

Average time Average %
Algorithm to converge (s) improvement

H 0.811 –
H0 690.759 99.9
H1 4.409 81.6

HAND-1 8.649 90.6

Table 1: Average times for which H, H0, H1, and HAND-1 settle to within
1% of z∗1 , and the average percent improvement of H over each algorithm.
Percent improvement is calculated via (36). The objective function used for
this table is L(z1) := z21 .

Table 1 shows the time that each algorithm takes to settle within 1% of z∗1,
averaged over solutions starting from ten different values15 of z1(0, 0) (listed
in the first column of Table 2), and the average percent improvement of H
over H0, H1, and HAND-1, which is calculated using the following formula

(

(Time of H0,H1, or HAND-1)− Time of H
Time of H0,H1, or HAND-1

)

× 100%. (36)

As can be seen in Table 1, H converges faster than the other algorithms, and

15Code at gitHub.com/HybridSystemsLab/UnitingDifferentICs

30



the average percent improvement of H over each of the other algorithms in
Table 1 is 99.9% over H0, 81.6% over H1, and 90.6% over HAND-1.
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Figure 7: The evolution of L over time, from different initial conditions,
for H (left) and HAND-1 (right). All solutions are for the objective function
L(z1) := z21 , and the parameters used for HAND-1 and H are listed in Table 2,
with different values of c0 and c1,0 for each solution of H, leading to different
values of d0 calculated via (17) and d1,0 calculated via (24), and different
values of r and δmed for each solution of HAND-1, leading to different values
of Tmed and Tmax. Jumps are marked with asterisks.

Figure 7 compares different solutions for H and HAND-1, from different
values of z1(0, 0), for the objective function L(z1) := z21. Table 2 lists the
times for which each solution settles to within 1% of z∗1 for both H and HAND-
1, and shows the percent improvement of H over HAND-1. As can be seen in
Figure 7 and in Table 2, the percent improvement of H over HAND-1 for all
solutions is 90.6%, which shows consistency in the performance of H versus
HAND-1.

The bound for HAND-1, shown in (34) and which holds only until the first
reset, is only guaranteed when z1(0, 0) = z2(0, 0). This leads to a required
nonzero velocity for HAND-1 in most scenarios, which leads to overshoot. In
contrast, H has no such constraint on z2(0, 0), which can be set to zero in all
scenarios. The lack of such a constraint on the initial condition z2(0, 0) for
the hybrid closed-loop algorithm H is essential to its improved performance
over HAND-1, as the overshoot in solutions to HAND-1 due to z1(0, 0) =
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Time to converge (s) % Improve-

z1(0, 0) c0 c1,0 r δmed H HAND-1 ment

110 34000 32719.231 111 240700 0.811 8.649 90.6
100 28000 27053.704 101 199000 0.811 8.65 90.6
90 23000 21927.75 91 161300 0.811 8.648 90.6
80 18000 17341.37 81 127550 0.811 8.65 90.6
70 14000 13294.565 71 97700 0.811 8.649 90.6
60 10500 9787.333 61 71875 0.811 8.648 90.6
50 7000 6819.676 51 50000 0.810 8.65 90.6
40 5000 4391.593 41 32075 0.811 8.65 90.6
30 3000 2503.083 31 18110 0.811 8.648 90.6
20 2000 1154.148 21 8112 0.811 8.648 90.6

Table 2: Times for which H and HAND-1 settle to within 1% of z∗1 , and
percent improvement of H over HAND-1, for solutions from different initial
conditions, shown in Figure 7. The objective function used for this table is
L(z1) := z21 .

z2(0, 0) leads to a slower convergence time than for H, as seen in Table 1.
Moreover, as described previously in this example, no bound for HAND-1
is characterized after the first reset, whereas the (hybrid) convergence bound
characterized for H holds for the domain of every solution such that t ≥ 1.

Example 3.3 In this example, we compare the hybrid closed-loop algorithm
H, defined via (9) and (10), with the individual closed-loop optimization
algorithms H0 and H1, the HAND-1 algorithm from [19], and the hybrid
Hamiltonian algorithm (HHA) from [21]. In [21], the HHA algorithm is
designed and analyzed for objective functions L which satisfy the following
assumptions:

Assumption 3.4

(L1) The function L is C1;

(L2) The function L has compact sublevel sets;

(L3) ∇L is Lipschitz continuous with constant M ∈
(

0, M̄
]

.
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First, we compare the convergence rates of H and HHA analytically. Let-
ting H : R2n → R≥0 denote the separable Hamiltonian

H(z) := L(z∗1)− L∗ +
1

2
|z2|2 (37)

and letting J and R0 be defined as

J :=

[

0 In
−In 0

]

, R0 :=

[

In 0
0 0

]

(38)

the HHA algorithm has state (z, τ) ∈ R
2n+1 and data (C, F,D,G)

F (z, τ) :=

[

J∇H(z)
1

]

=





z2
−∇L(z)

1



 (z, τ) ∈ C (39a)

G(z, τ) :=

[

R0z
0

]

=





z1
z2
0



 (z, τ) ∈ D (39b)

where the flow and jump sets are

C := C0 ×
[

0, T̄
]

(40a)

D :=
(

C0 ×
{

T̄
})

∪
(

D0 ×
[

0, T̄
])

(40b)

where C0 := {z ∈ R
2n : 〈∇L(z1), z2〉 ≤ 0},

D0 :=
{

z ∈ R
2n : 〈∇L(z1), z2〉 = 0, |z2|2 ≥ |∇L(z1)|2 /M̄

}

, and T̄ ∈ (0,∞) is
the timeout parameter of the timer τ . The following assumption is imposed
on HHA in (39)-(40):

Assumption 3.5 No solution to the flow dynamics starting from (z1(0, 0), 0, 0)
with ∇L(z1) 6= 0 causes the timer to timeout, i.e., reaches (C0 \D0)×

{

T̄
}

.

It is shown in [21] that Assumption 3.5 holds for quadratic functions L with
A = A⊤ > 0, when T̄ := nπ

2
√

λmin(A)
, where λmin(A) denotes the minimum

eigenvalue of A.
The forthcoming convergence rate results in [21] hold when L satisfies the

following assumption:
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Assumption 3.6 The function L satisfies the Polyak-Łojasiewicz inequality
with ς > 0, namely,

|∇L(z1)|2 ≥ 2ς (L(z1)− L∗) . (41)

It is shown in [21] that when L satisfies Assumptions 3.4 and 3.6, and
HHA in (39)-(40) satisfies Assumption 3.5, each maximal solution (t, j) 7→
(z(t, j), τ(t, j)) to HHA in (39)-(40) satisfies

L(z1(t, j))− L∗ ≤ (L(z1(0, 0))− L∗)min {1, exp (−Ω (t− θ))} (42)

for each (t, j) ∈ dom(z, τ) such that z2(0, 0) = 0 and τ(0, 0) = 0, where

Ω := ln
(

1 +
ς

M

)

T̄−1, θ := T̄ (43)

and where ς > 0 comes from Assumption 3.6 and M > 0 comes from As-
sumption 3.4. Comparing the bound in (42) with the bound on H1 in (12),
from (32), the HHA algorithm reaches the neighborhood of the minimizer
faster than the hybrid closed-loop algorithm H in (9)-(10). The assumptions
imposed on L for HHA, however, are different from the assumptions on L for
the hybrid closed-loop algorithm H. While some assumptions on L are weaker
for HHA – for instance, Assumption 3.6 – other assumptions are stronger,
such as items (L2) and (L3) of Assumption 3.4. Moreover, Assumption 3.5
is imposed on HHA, which is not imposed on the hybrid closed-loop algorithm
H. Table 3 summarizes the assumptions and the convergence rate results for
HHA, H, and HAND-1.

Next, we compare H0, H1, H, HAND-1, and HHA in simulation. To
compare these algorithms, the choice of objective function, parameter values,
and initial conditions are as follows. We use the objective function L(z1) :=
z21, the gradient of which is Lipschitz continuous with M = 2, and which has
a single minimizer at z∗1 = 0. This choice of objective function is made so
that we can easily tune λ, as described in Section 2.4. We arbitrarily chose
the heavy ball parameter value γ = 2

3
and we tuned λ to 40 by choosing a value

arbitrarily larger than 2
√
a1, where a1 comes from Section 2.4, and gradually

increasing it until there is no overshoot in the hybrid algorithm. Since the
gain coefficient of z1 for HHA is fixed at −1, then to ensure that the gain
coefficients of z1 for H and HHA are the same, the only value possible for
ζ, for the objective function L chosen, is

√
2, for Nesterov’s algorithm. In

Addition, since z2 does not appear in the dynamics of ż2 of HHA in (39),
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Algorithm Assumptions Convergence Rate

H
Assumptions 1

(t+2)2
globally and

2.1, 2.2, exp (−(1−m)ψt) locally, where
and 2.4 m ∈ (0, 1) s.t. ψ := mαγ

λ
> 0

and ν := ψ(ψ − λ) < 0.

HAND-1
Assumptions 1

t2
until the first

2.1 and 2.4 reset (at j = 1).

HHA

Assumptions min {1, exp (−Ω (t− θ))},
3.4, 3.5, where Ω and θ are
and 3.6 defined via (43).

Table 3: A comparison of assumptions and convergence rates, for HAND-1
from [19], HHA from [21], and the hybrid closed-loop algorithm H.

we could not compare gain coefficients for z2 for both H and HHA. For the
remaining HHA parameters, we chose M̄ = 2, since this satisfies M̄ ≥ M .
To ensure Assumption 3.5 is satisfied, we chose T̄ := π

2
√
1
. Given ζ =

√
2,

the HAND-1 parameters c1 = 0.25 and Tmin =
1+

√
13

2
are chosen such that the

resulting gain coefficients for z1 and z2 are the same for both H and HAND-
1, so that these algorithms are compared on equal footing. The remaining
HAND-1 parameters, we chose r = 51 and δmed = 8650 such that Tmed ≥
√

B
δmed

+ Tmin > 0, and we chose Tmax = Tmed + 1 to ensure resets happen

at the proper times. The uniting algorithm parameters are c0 = 7000, c1,0 ≈
1354.025, ε0 = 10, ε1,0 = 5, and α = 1, which yield the values c̃0 = 10,
c̃1,0 = 5, d0 ≈ 6933.3, and d1,0 ≈ 1304.0, which are calculated via (17) and
(24). These values are chosen for proper tuning of the algorithm, in order to
get nice performance, and for exploiting the properties of Nesterov’s method
as long as we want. Initial conditions for H are z1(0, 0) = 50, z2(0, 0) = 0,
q(0, 0) = 1, and τ(0, 0) = 0 Initial conditions for HAND-1 are z1(0, 0) =
z2(0, 0) = 50 and τ(0, 0) = Tmin. Initial conditions for HHA are z1(0, 0) = 50,
z2(0, 0) = 0, and τ(0, 0) = 0.

Figure 8 and Table 4 show the time that each algorithm takes to settle
within16 1% of z∗1. Table 4 shows the percent improvement H over H0, H1,
and HAND-1, which is calculated using (36). Since HHA converges expo-

16Code at github.com/HybridSystemsLab/UnitingComparison

35



0 1 2 3 4 5 6 7 8 9
10-40

10-30

10-20

10-10

100

7.9741s

1.105s

1.3909s

6.198s

Hybrid
Heavy ball
Nesterov
Nesterov, average
HAND-1
HAND-1, average
HHA
HHA, average

0 100 200
10-2

102

106

138.0673s

1 1.5
10-1

100

1.105s

1.3909s

L
(z

1
)
−
L
∗

t[s]

Figure 8: A comparison of the evolution of L over time for Nesterov’s method
in (3), heavy ball, HAND-1 from [19], HHA from [21], and our proposed
uniting algorithm, for a function L(z1) := z21 , with a single minimizer at
z∗1 = 0. Nesterov’s method, shown in purple, settles to within 1% of z∗1
in about 6.2 seconds. The heavy ball algorithm, shown in green, settles to
within 1% of z∗1 in about 138.1 seconds. HAND-1, shown in orange, settles to
within 1% of z∗1 in about 8.0 seconds. HHA, shown in red, settles to within
1% of z∗1 in about 1.1 seconds. The hybrid closed-loop system H, shown in
blue, settles to within 1% of z∗1 in about 1.4 seconds.
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Time to %
Algorithm converge (s) improvement

H 1.390 –
H0 138.1 99.0
H1 6.191 77.5

HAND-1 7.974 82.6
HHA 1.105 –

Table 4: Average times for which H, H0, H1, HAND-1, and HHA settle to
within 1% of z∗1 , and the percent improvement of H over each algorithm.
Percent improvement is calculated via (36). The objective function used for
this table is L(z1) := z21 .

nentially, as shown in the bound in (42), such a rate explains why HHA is
faster than H in Figure 8 and Table 4. The hybrid closed-loop algorithm H
converges faster than H0, H1, and HAND-1, however.

Example 3.7 This example explores the trade-off that results from using
different values of ζ > 0 for the uniting algorithm. Particularly, for ζ =
1, we first compare the uniting algorithm in simulation with the individual
optimization algorithms H0, H1, and the HAND-1 algorithm from [19], using
the same objective function as in Example 3.2, and next we compare the
resulting solutions with those in Table 1. Recall that the objective function
in Example 3.2 is L(z1) := z21, the gradient of which is Lipschitz continuous
with M = 2, and which has a single minimizer at z∗1 = 0. Since the gain
coefficient of ∇L is proportional to ζ2, we choose different parameters for the
HAND-1 algorithm for the simulation depicted in17 Figure 2, so that the gain
coefficients of z1 and z2 are the same for HAND-1 and H in this simulation.
Namely, given ζ = 1, for HAND-1 we choose Tmin = 3 and c1 = 0.25. For
the other HAND-1 parameters, we choose r = 51 and δmed = 4010 such

that Tmed ≥
√

B
δmed

+ Tmin > 0, and we again choose Tmax = Tmed + 1 to

ensure resets happen at the proper times. We arbitrarily choose γ = 2
3
,

and we tuned λ to 40 by choosing a value arbitrarily larger than 2
√
a1 and

gradually increasing until there was no overshoot in the hybrid algorithm.

17Code found at same link as in Footnote 3
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The uniting algorithm parameters are c0 = 320, c1,0 ≈ 271.584, ε0 = 10,
ε1,0 = 5, and α = 1, which yield the values c̃0 = 10, c̃1,0 = 5, d0 ≈ 253.333,
and d1,0 ≈ 234.084, which are calculated via (17) and (24). These values are
chosen for proper tuning of the algorithm, in order to get nice performance,
and for exploiting the properties of Nesterov’s method as long as we want.
Initial conditions for H are z1(0, 0) = 50, z2(0, 0) = 0, q(0, 0) = 1, and
τ(0, 0) = 0, and for HAND-1 are z1(0, 0) = z2(0, 0) = 50 and τ(0, 0) = Tmin.

First, we compare solutions to each algorithm within Figure 2 itself. Table
5 shows the time that each algorithm takes to settle within 1% of z∗1, averaged
over solutions starting from ten different values of z1(0, 0) (listed in the first
column of Table 2), and the percent improvement of H over H0, H1, and
HAND-1, which is calculated using (36). While the closed-loop algorithm H
still converges faster than all the other algorithms in Figure 2 and Table 5,
the improvement over H0, H1, and HAND-1 is smaller than it is in Table 1.

Algorithm Average time to converge (s) Average % improvement

H 2.387 –
H0 138.066 98.3
H1 8.782 72.8

HAND-1 14.343 83.4

Table 5: Times for which H, H0, H1, and HAND-1 settle to within 1% of
z∗1 , and percent improvement of H over each algorithm, as shown in Figure
2. Percent improvement is calculated via (36). The objective function used
for this table is L(z1) := z21 .

Next, we compare solutions using ζ = 1, in Figure 2, with solutions using
ζ = 2, in Table 1. Since ζ > 0 scales time in solutions to (3), Then smaller
values of ζ result in slower settling to within 1% of z∗1 for H1 with less frequent
oscillations, as seen in Figure 2 with ζ = 1 (about 8.8 seconds), while larger
values of ζ result in settling to within 1% of z∗1 for H1 faster, with more
frequent oscillations, as seen in Figure 1 and Table 1 with ζ = 2 (about 4.5
seconds). For the uniting algorithm, this translates to faster settling to within
1% of z∗1 with ζ = 2 (about 0.8 seconds), in Figure 1 and Table 1, compared
with slower settling to within 1% of z∗1 with ζ = 1 (about 2.4 seconds), in
Figure 2, but with no oscillations, in both cases, due to the switch to H0.
In both Figure 2, and Table 1, the uniting algorithm converges more quickly
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than the HAND-1 algorithm, when both algorithms are tuned to have the
same gain coefficients for the z1 and z2 terms. Although larger ζ results in
faster convergence, the trade-off is that even though the z2 (velocity) term
generally reduces quickly as it approaches the neighborhood of the minimizer
for any size of ζ, the z2 still ends up relatively larger near the minimizer than
it is when ζ is smaller. The consequence is that, when ζ is larger, d1,0 needs
to be set much larger so that the uniting algorithm can still make the switch
to H0 at the proper time. This also means that c1,0 needs to be set much
larger, due to the definition of d1,0 in (24). Additionally, c0 and d0, also need
to be set larger to ensure the algorithm still has adequate hysteresis. Recall
that, in Example 3.2, for ζ = 2, we have the parameter values c0 = 7000,
c1,0 ≈ 6819.676, d0 = 6933, and d1,0 = 6744, which are quite large, while for
the simulation shown in Figure 2 these same parameters have much smaller
values, as listed in the second paragraph of this example.

4 Proof of Theorem 2.11

This section provides a proof of Theorem 2.11 from Section 2.7. The proof
consists of the following steps.

• Section 4.1 establishes UGAS of {z∗1}×{0}, and an exponential convergence
rate for the closed-loop algorithm H0;

• Section 4.2 establishes UGAS of {z∗1}×{0}×R≥0, and a convergence rate
1

(t+2)2
for the closed-loop algorithm H1;

• Section 4.3 uses the properties in Sections 4.1 and 4.2 and a proof-by-
contradiction to establish UGAS of A, defined via (31), for H;

• Section 4.4 proves the convergence rate of H using the convergence rates
of the individual closed-loop algorithms H0 and H1 established in Sections
4.1 and 4.2, respectively.

4.1 Properties of H0

The following result establishes that the closed-loop algorithm H0 in (11) has
the set {z∗1} × {0} UGAS. To prove it, we use an invariance principle.
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Proposition 4.1 (UGAS of {z∗1} × {0} for H0) Let L satisfy Assumptions
2.1, 2.2, and 2.4. For each λ > 0 and γ > 0, the set {z∗1}×{0} is UGAS for
the closed-loop algorithm H0 in (11).

Proof. By Proposition 2.9, each maximal solution to the closed-loop algo-
rithm H0, defined via (11), is bounded, complete, and unique. Recall that,
in the proof of Proposition 2.9, it was shown that V0 in (16) satisfies (74)
for all z ∈ R

2n, since λ is positive. Therefore, by an application of Theorem
D.3, since γ > 0 and λ > 0, the set {z∗1} × {0} is stable for the closed-loop
algorithm H0. Since by Lemma 2.8 H0 satisfies the hybrid basic conditions,
then, using the invariance principle in Theorem D.6, every maximal solution
that is complete and bounded approaches the largest weakly invariant set for
H0 in (11) that is contained in

{

z ∈ R
2n : V̇0(z) = 0

}

∩
{

z ∈ R
2n : V0(z) = r

}

, r ≥ 0. (44)

Such a set is nonempty only when r = 0 and, precisely, is equal to {z∗1} ×
{0}. This property can be seen by noticing that

{

z ∈ R
2n : V̇0(z) = 0

}

=

{z ∈ R
2n : z2 = 0}, and that after setting z2 to zero in (11) we obtain

[

ż1
0

]

=
[

0
−γ∇L(z1)

]

. For any solution to this system, its z1 component satisfies

0 = γ∇L(z1), which, since γ > 0 and since ∇L(z1) = 0 only when z1 is
the minimizer of L, leads to z1 = z∗1 . Then, the only maximal solution that
starts and stays in (44) is the solution from {z∗1} × {0}, for which r = 0.
Then, every bounded and complete solution to the closed-loop algorithm
H0 converges to {z∗1} × {0}. The arguments above involving the Lyapunov
theorem in Theorem D.3 and the invariance principle in Theorem D.6 yield
global pre-asymptotic stability of {z∗1} × {0} for H0. Since by Proposition
2.9, each maximal solution to H0 is complete, then {z∗1} × {0} is globally
asymptotically stable for the closed-loop algorithm H0. Since H0 satisfies the
hybrid basic conditions by Lemma 2.8, then, by Theorem D.4, {z∗1} × {0} is
UGAS for H0.

Next, we establish the convergence rate of the closed-loop algorithm H0. To
do so, we use the following Lyapunov function, proposed in [14, Lemma 4.2],
for H0:

V (z) := γ (L(z1)− L∗) +
1

2
|ψ(z1 − z∗1) + z2|2 +

ν

2
|z1 − z∗1 |2 (45)
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where, given λ > 0, ψ > 0 is chosen such that ν := ψ (ψ − λ) < 0. When
L satisfies Assumption 2.1, the following lemma, which is a version of [14,
Lemma 4.2] tailored for the unperturbed heavy ball algorithm in (11), gives
an upper bound on the change of the Lyapunov function in (45).

Lemma 4.2 Let L satisfy Assumption 2.1, and let λ > 0 and γ > 0, which
come from H0 in (11), be given. For each ψ > 0 such that ν := ψ(ψ−λ) < 0,
the following bound is satisfied for each z ∈ R

2n:

V̇ (z) ≤ −ψ (a(z1) + 2νc(z1)) + 2(ψ − λ)b(z) (46)

where V is defined in (45), a(z1) := γ (L(z1)− L∗), b(z) := 1
2
|ψ(z1 − z∗1) + z2|2,

and c(z1) :=
1
2
|z1 − z∗1 |2.

Proof. Since L is C1, convex, and has a single minimizer z∗1 , and since
∇V (z) =
[γ∇L(z1) + ψ (ψ (z1 − z∗1) + z2) + ν (z1 − z∗1) ψ (z1 − z∗1) + z2], then we eval-
uate the derivative of V , defined via (45), using the map z 7→ FP (κ0(h0(z))),
where FP is defined via (4), κ0 is defined in (6a), and h0 is defined via (7).
For each z ∈ R

2n, we obtain

V̇ (z) = 〈∇V (z), FP (κ0(h0(z)))〉 =
〈

∇V (z),
[

z2
κ0(h0(z))

]〉

(47)

=γ 〈∇L(z1), z2〉+ ψ 〈z2, ψ (z1 − z∗1) + z2〉+ ν 〈z2, z1 − z∗1〉
− λ 〈z2, ψ (z1 − z∗1) + z2〉 − γ 〈∇L(z1), ψ (z1 − z∗1) + z2〉

=− γψ 〈∇L(z1), z1 − z∗1〉+ (ν + ψ(ψ − λ)) 〈z2, z1 − z∗1〉+ (ψ − λ) |z2|2 .

Note that |ψ (z1 − z∗1) + z2|2 = |z2|2 + 2ψ 〈z2, z1 − z∗1〉 + ψ2 |z1 − z∗1 |2, from
where we obtain |z2|2 = |ψ (z1 − z∗1) + z2|2 − 2ψ 〈z2, z1 − z∗1〉 − ψ2 |z1 − z∗1 |2.
Substituting the expression for |z2|2 into (47), we arrive at, for all z ∈ R

2n,

V̇ (z) =− γψ 〈∇L(z1), z1 − z∗1〉+ (ψ − λ) |ψ (z1 − z∗1) + z2|2

+ (ν − ψ(ψ − λ)) 〈z2, z1 − z∗1〉 − ψ2(ψ − λ) |z1 − z∗1 |2

=− γψ 〈∇L(z1), z1 − z∗1〉+ 2(ψ − λ)b(z)− 2ψνc(z1) (48)

since ν = ψ(ψ−λ), where b(z) = 1
2
|ψ (z1 − z∗1) + z2|2 and c(z1) =

1
2
|z1 − z∗1 |2.

Since L is C1, convex, and has a unique minimizer by Assumption 2.1, then
using the definition of convexity in Footnote 6 with u1 = z∗1 and w1 = z1, we
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get − (L(z1)− L∗) ≥ −〈∇L(z1), z1 − z∗1〉. Substituting it into (48) yields,
for all z ∈ R

2n, V̇ (z) ≤ −ψa(z1) + 2(ψ − λ)b(z) − 2ψνc(z1), where a(z1) =
γ (L(z)− L∗), and (46) is satisfied.

We employ Lemma 5.2 to show that when L satisfies Assumptions 2.1
and 2.2, the convergence rate of the closed-loop algorithm H0 in (11) is ex-
ponential. This is supported by the following proposition, which is a version
of [14, Theorem 3.2] tailored for the unperturbed heavy ball algorithm H0 in
(11).

Proposition 4.3 (Convergence rate for H0) Let L satisfy Assumptions 2.1
and 2.2, let α > 0 come from (13), and let λ > 0 and γ > 0 come from H0

in (11). For each m ∈ (0, 1) such that ψ := mαγ

λ
> 0 and ν := ψ(ψ− λ) < 0,

each maximal solution t 7→ z(t) to the closed-loop algorithm H0 satisfies

L(z1(t))− L∗ = O (exp (−(1 −m)ψt)) ∀t ∈ dom z (= R≥0). (49)

Proof. By Lemma 4.2, the bound in (46) is satisfied for V in (45) for
each z ∈ R

2n since, by Assumption 2.1, L is C1, convex, and has a single
minimizer z∗1 . Then, since ψ = mαγ

λ
> 0 is such that ν = ψ(ψ− λ) < 0 and c

is nonnegative, this leads to

V (z) = a(z1) + b(z) + νc(z1) ≤ a(z1) + b(z) ∀z ∈ R
2n (50)

where a, b, and c are defined below (46). By Assumption 2.2, L has quadratic
growth away from z∗1 . Therefore, we have, for all z ∈ R

2n,

a(z1) + 2νc(z1) =a(z1)− 2 |ν| c(z1) = γ (L(z1)− L∗)− |ν| |z1 − z∗1 |2 (51)

≥γ (L(z1)− L∗)− |ν| (L(z1)− L∗)

α
=

(

1− |ν|
αγ

)

a(z1).

Observe that, for each m ∈ (0, 1) such that ψ = mαγ

λ
> 0 and ν = ψ(ψ−λ) <

0, we have
|ν| = ψ (λ− ψ) ≤ λψ = mαγ (52)

It follows from (51) and (52) that

a(z1) + 2νc(z1) ≥ (1−m)a(z1) (53)

for all z ∈ R
2n. Noticing that from (50) we have a(z1) +

1
(1−m)

b(z) ≥ a(z1) +

b(z) ≥ V (z), substituting (53) into (46) we have

V̇ (z) ≤ −(1 −m)ψa(z1) + 2(ψ − λ)b(z)
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≤ −(1 −m)ψa(z1) + ψb(z) + (ψ − 2λ)b(z)

≤ −(1 −m)ψa(z1) + ψb(z)

≤ −(1 −m)ψ

(

a(z1) +
1

(1−m)
b(z)

)

≤ −(1 −m)ψV (z) (54)

for all z ∈ R
2n. The third inequality comes from the fact that we choose

ψ = mαγ

λ
> 0 such that ψ − λ < 0 and, consequently, ψ − 2λ < 0. Applying

Grönwall’s inequality to (54) shows that every maximal solution t 7→ z(t) to
(1) satisfies V (z(t)) ≤ V (z(0)) exp (−(1−m)ψt) for all t ∈ dom z (= R≥0).
Therefore, each maximal solution t 7→ z(t) to the closed-loop algorithm H0

in (11) satisfies (49) for all t ∈ dom z (= R≥0).

4.2 Properties of H1

When L satisfies Assumptions 2.1 and 2.4, then we can derive an upper
bound, for all t ≥ 0, on the Lyapunov function V1 in (22) along solutions to
H1. To derive such a bound, we extend [1, Proposition 3.2], which assumes
L∗ = 0, z∗1 = 0, and ζ = 1, to the general case of L∗ ∈ R, a single minimizer
z∗1 ∈ R

n, and ζ > 0, in the following proposition.

Proposition 4.4 Let L satisfy Assumptions 2.1 and 2.4. Then, each max-
imal solution t 7→ (z(t), τ(t)) to the closed-loop algorithm H1 in (12) with
τ(0) = 0 satisfies

V1(z(t), t) ≤
4

(t+ 2)2
V1(z(0), 0) (55)

for all t ≥ 0, where V1 is defined via (22).

Proof. See Section C.

The following proposition establishes that the closed-loop algorithm H1 has
a convergence rate 1

(t+2)2
for all t ≥ 0. To prove it, we use Proposition 4.4.

This proposition is a new result, which was not analyzed in [1].

Proposition 4.5 (Convergence rate for H1) Let L satisfy Assumptions 2.1
and 2.4. Let ζ > 0 and M > 0 come from Assumption 2.4. Then, for each
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maximal solution t 7→ (z(t), τ(t)) to the closed-loop algorithm H1 in (12) with
τ(0) = 0, the following holds:

ζ2

M
(L(z1(t))− L∗) (56)

≤ V1(z(t), t) ≤
4c

(t+ 2)2
(

|z1(0)− z∗1 |2 + |z2(0)|2
)

for all t ≥ 0, where c := (1 + ζ2) exp

(

√

13
4
+ ζ4

M

)

.

Proof. The proof consists of the following steps.

1) First, we use the definition of convexity in Footnote 6 and the Lipschitz
continuity of ∇L in Assumption 2.4, to show that V1 satisfies

V1(z, τ) ≤ α2 |z|2A2
:=
(

1 + ζ2
)

|z|2A2
(57)

where 1 + ζ2 > 0;

2) Then, we use the Lipschitz continuity of ∇L in Assumption 2.4 and the
comparison principle to show that the bound in step 1) along t 7→ z(t)

satisfies V1(z(t), t) ≤ α2 exp

(

2

(

√

13
4
+ ζ4

M

)

t

)

(

|z1(0)− z∗1 |2 + |z2(0)|2
)

for all t ≥ 0;

3) Next, we show that at t = 0, V1(z(0), 0) is upper bounded by

c
(

|z1(0)− z∗1 |2 + |z2(0)|2
)

, where c = (1 + ζ2) exp

(

√

13
4
+ ζ4

M

)

;

4) Finally, we combine the bound in 3) with (55) to get (56) for all t ≥ 0.

Proceeding with step 1), the Lyapunov function V1, defined via (22), can be
upper bounded by a class-K∞ function, namely, defining the set

A2 := {z∗1} × {0} (58)

then, V1 satisfies
V1(z, τ) ≤ α2 |z|2A2

(59)

for all (z, τ) ∈ R
2n × R≥0, and with α2 derived as follows. Since ā, defined

via (23), equals 1 at τ = 0 and ā is monotonically decreasing toward zero

44



(but being always positive) as τ tends to ∞, then ā is upper bounded by
1, and, consequently, the first term of V1 can be upper bounded, for all
(z, τ) ∈ R

2n × R≥0, as follows:

1

2

∣

∣

∣

∣

2

(τ + 2)
(z1 − z∗1) + z2

∣

∣

∣

∣

2

≤ |z1 − z∗1 |2 + |z2|2 . (60)

The second term of V1 can be bounded as follows. Since by Assumption 2.1,
L is C1, convex, and has a single minimizer z∗1 , then, since ∇L(z∗1) = 0, we
can upper bound L(z1) − L∗ in the following manner, using the definition
of convexity in Footnote 6 and the Lipschitz continuity of ∇L in Assump-
tion 2.4, using u1 = z∗1 and w1 = z1: |L(z1)− L∗| ≤ |〈∇L(z1), z∗1 − z1〉| ≤
|∇L(z1)| |z1 − z∗1 | ≤ M |z1 − z∗1 |2, for all z1 ∈ R

n. Therefore, since L(z1) ≥
L∗, we can upper bound the second term of V1 as follows:

ζ2

M
(L(z1)− L∗) ≤ ζ2 |z1 − z∗1 |2 ≤ ζ2

(

|z1 − z∗1 |2 + |z2|2
)

(61)

for all z ∈ R
2n. Using (60) and (61) V1(z, τ) is upper bounded as in (57) for

each z ∈ R
2n and each τ ∈ R≥0.

Next, for step 2), in order to apply the comparison principle, we define
the system

[

ż1
ż2

]

=

[

z2
−2d̄(t)z2 − ζ2

M
∇L(z1 + β̄(t)z2)

]

=: f(z, t) z ∈ R
2n. (62)

Since ∇L is Lipschitz continuous with constant M > 0 by Assumption 2.4,
then using Assumption 2.4 with w1 = z1+ β̄(t)z2 and u1 = z∗1 yields, for each
z1, z2 ∈ R

n and each t ∈ R≥0,

∣

∣∇L(z1 + β̄(t)z2)
∣

∣ ≤M
∣

∣z1 − z∗1 + β̄(t)z2
∣

∣ . (63)

Then, since
∣

∣d̄(t)
∣

∣ ≤ 3
4

and
∣

∣β̄(t)
∣

∣ ≤ 1 for all t ≥ 0, we have

|f(z, t)|2 = |z2|2 +
∣

∣

∣

∣

−2d̄(t)z2 −
ζ2

M
∇L(z1 + β̄(t)z2)

∣

∣

∣

∣

2

≤ |z2|2 +
9

4
|z2|2 +

ζ4

M2

∣

∣∇L(z1 + β̄(t)z2)
∣

∣

2

≤ 13

4
|z2|2 +

ζ4

M

(

|z1 − z∗1 |2 + |z2|2
)
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=
ζ4

M
|z1 − z∗1 |2 +

(

13

4
+
ζ4

M

)

|z2|2

≤
(

13

4
+
ζ4

M

)

|z|2A2
(64)

for all z ∈ R
2n and all t ∈ R≥0, where A2 is defined via (58). The second

inequality in (64) comes from applying (63). The comparison principle [34,
Lemma 3.4], leads to the following bound of the norm of the solution to (62):

|z(t)|A2
≤ exp

(

1

2

√

13

4
+
ζ4

M
t

)

|z(0)|A2
(65)

for all t ≥ 0. Then, (59) along t 7→ (z(t)) reduces to, for all t ≥ 0

V1(z(t), t) ≤
(

1 + ζ2
)

|z(t)|2A2

≤
(

1 + ζ2
)

exp

(
√

13

4
+
ζ4

M
t

)

(

|z1(0)− z∗1 |2 + |z2(0)|2
)

. (66)

In step 3), we evaluate this bound at t = 0. Finally, for step 4), taking

c = (1 + ζ2) exp

(

√

13
4
+ ζ4

M

)

, combining (55) with 3) at t = 0 yields (56) for

all t ≥ 0.

The following proposition establishes that the closed-loop system H1 in
(12) has the set

A1 := {z∗1} × {0} × R≥0 (67)

UGAS. To prove it, we use Proposition 4.5 and [23, Theorem 3.18]. This
proposition is a new result, which was not analyzed in [1].

Proposition 4.6 (UGAS of A1 in (67) for H1) Let L satisfy Assumptions
2.1 and 2.4. Let ζ > 0 and let M > 0 come from Assumption 2.4. Then, the
set A1 in (67) is UGAS for H1.

Proof. By Proposition 2.9, each maximal solution to H1 in (12) is complete
and unique. Next, since L is C1, convex, and has a unique minimizer by
Assumption 2.1, then A1 ⊂ R

2n × R≥0, defined via (67), is closed by con-
struction, satisfying the first assumption of [23, Theorem 3.18]. Then, since
by Assumption 2.1, L is C1, then V1 in (22) is continuously differentiable
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and therefore, since R
2n × R≥0 ⊂ domV1, V1 is a Lyapunov function candi-

date for H1 by [23, Definition 3.16], satisfying the second assumption of [23,
Theorem 3.18].

Next, since the distance of the state τ to R≥0 is always zero, then we
show that V1 in (22) is radially unbounded in z, relative to A2, defined via
(58). Since L has quadratic growth away from z∗1 with constant α > 0, by
Assumption 2.2, and due to ā, defined via (23), equaling 1 at τ = 0 and
monotonically decreasing toward zero (but being always positive) as τ tends
to ∞, then we lower bound V1 as follows:

V1(z, τ) =
1

2
|ā(τ) (z1 − z∗1) + z2|2 +

ζ2

M
(L(z1)− L∗) (68)

≥1

2
|ā(τ) (z1 − z∗1) + z2|2 +

αζ2

M
|z1 − z∗1 |2

≥ ā
2(τ)

2
|z1 − z∗1 |2 + ā(τ) 〈z1 − z∗1 , z2〉+

1

2
|z2|2 +

αζ2

M
|z1 − z∗1 |2

≥
(

ā2(τ)

2
+
αζ2

M

)

|z1 − z∗1 |2 +
ā(τ)

2
〈z1 − z∗1 , z2〉

+
ā(τ)

2
〈z1 − z∗1 , z2〉+

1

2
|z2|2

≥
[

(z1 − z∗1)
⊤ z⊤2

]

P

[

z1 − z∗1
z2

]

for each z ∈ R
2n and each τ ∈ R≥0, where

P :=

[
(

ā2(τ)
2

+ αζ2

M

)

ā(τ)
2

ā(τ)
2

1
2

]

. (69)

Next, we show that P in (69) is positive definite, so that there exists α1 such
that18

α1 |z|2A2
≤
[

(z1 − z∗1)
⊤ z⊤2

]

P

[

z1 − z∗1
z2

]

≤ V1(z, τ) (70)

for each z ∈ R
2n and each τ ∈ R≥0. To that end, we show that the leading

principal minors of P in (69) are strictly positive, as follows. Since ā(τ) ∈
18It was already shown that there exists α2 such that the upper bound on V1 in (57)

holds.
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(0, 1] for each τ ∈ R≥0, α > 0 from Assumption 2.2, ζ > 0, and M > 0 from
Assumption 2.4, we have:

(

ā2(τ)

2
+
αζ2

M

)

> 0 (71a)

det(P ) =
1

2

(

ā2(τ)

2
+
αζ2

M

)

−
(

ā(τ)

2

)2

=
αζ2

2M
> 0. (71b)

Therefore, since the leading principal minors of P are strictly positive, then
P is positive definite. Hence, there exists α1 such that (70) is true, and V1 is
radially unbounded in z, relative to A2.

By Proposition 4.4, V1 satisfies (89) for each z ∈ R
2n and τ ∈ R≥0. Since

L is C1, convex, and has a unique minimizer by Assumption 2.1, then L
is positive definite with respect to z∗1 and, consequently, V1 is positive def-
inite with respect to A1 in (67). Then, since ā(τ) ∈ (0, 1] for each τ ≥ 0,
ρ
(

|x|A1

)

:= ā(τ)V1(z, τ) is positive definite with respect to A1. Therefore,
by an application of [23, Theorem 3.18], every complete solution to (12) con-
verges to A1 in (67). The arguments above involving the Lyapunov theorem
in [23, Theorem 3.18] yield UGpAS of A1 for H1 in (12). Since by Proposi-
tion 2.9, each maximal solution to H1 is complete, then A1 is UGAS for H1.

4.3 Uniform Global Asymptotic Stability of A for H
The hybrid closed-loop algorithm H satisfies the hybrid basic conditions by
Lemma 2.8, satisfying the first assumption of Theorem D.3. Furthermore,
Π(C0) ∪ Π(D0) = R

2n, Π(C1) ∪ Π(D1) = R
2n, and each maximal solution

(t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H in (9)-(10) is complete and
bounded by Proposition 2.9. Since by Assumption 2.1, L has a unique
minimizer z∗1 , then A, defined via (31), is compact by construction, and
U = R

2n × Q × R≥0 contains a nonzero open neighborhood of A, satisfying
the second assumption of Theorem D.3.

To prove attractivity of A, we proceed by contradiction. Suppose there
exists a complete solution x to H such that lim

t+j→∞
|x(t, j)|A 6= 0. Since

Proposition 2.9 guarantees completeness of maximal solutions, we have the
following cases:

a) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C1 \ D1 for all (t, j) ∈
dom x, t+ j ≥ t′ + j′;
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b) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ C0 \ (A ∪ D0) for all
(t, j) ∈ dom x, t + j ≥ t′ + j′;

c) There exists (t′, j′) ∈ dom x such that x(t, j) ∈ D for all (t, j) ∈ dom x, t+
j ≥ t′ + j′.

Case a) contradicts the fact that, by Proposition 4.6, the set A1, defined
via (67), is UGAS for H1. Such UGAS of A1, guaranteed by Proposition 4.6,
implies there exist c̃1 ∈ (0, c̃1,0) and d1 ∈ (0, d1,0) such that the state z reaches
({z∗1}+ c̃1B)×({0}+ d1B) ⊂ T1,0 at some finite flow time t ≥ 0 or as t→ ∞.
In turn, due to the construction of C1 and D1 in (10), with T1,0 defined via
(27), the solution x must reach D1 at some (t, j) ∈ dom x, t + j ≥ t′ + j′.
Therefore, case a) does not happen.

Case b) contradicts the fact that, by Proposition 4.1, {z∗1}×{0} is UGAS
for H0. In fact, lim

t+j→∞
|x(t, j)|A = 0, and since A ⊂ C0, case b) does not

happen.
Case c) contradicts the fact that, due to the construction of T1,0 in (27)

and T0,1 in (30), we haveG(D)∩D := ((T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}))
∩ ((T0,1 × {0} × {0}) ∪ (T1,0 × {1} × R≥0)) = ∅ where G(D) is defined via
(73) and D is defined in (10). Such an equality holds since T1,0 ∩ T0,1 = ∅;
see the end of Section 2.3.2. Therefore, case c) does not happen.

Therefore, cases a)-c) do not happen, and each maximal and complete
solution x = (z, q, τ) to H with τ(0, 0) = 0 converges to A. Consequently, by
the construction of C andD in (10), the UGAS of A1 (defined via (67)) for H1

established in Proposition 4.6, the UGAS of {z∗1} × {0} for H0 established
in Proposition 4.1, and since each maximal solution to H is complete by
Proposition 2.9, the set A is UGAS for H.

To show that each maximal and complete solution x to H jumps no more
than twice, we proceed by contradiction. Without loss of generality, suppose
there exists a maximal and complete solution that jumps three times. We
have the following possible cases:

i) The solution first jumps at a point in D0, then jumps at a point in D1,
and then jumps at a point in D0; or

ii) The solution first jumps at a point in D1, then jumps at a point in D0,
and then jumps at a point in D1.

Case i) does not hold since, once the jump in D1 occurs, the solution x is
in (T1,0 × {0} × {0}) ⊂ C0. Due to the construction of T1,0 in (27) and T0,1
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in (30) such that T1,0 ∩ T0,1 = ∅, as described in the contradiction of case
c) above, and due to the UGAS of z∗1 × {0} for H0 by Proposition 4.1, the
solution x will never return to D0. Therefore, case i) does not happen. Case
ii) leads to a contradiction for the same reason, and in this case, once the
first jump in D1 occurs, no more jumps happen. Therefore, since cases i)-ii)
do not happen, each maximal and complete solution x to H with τ(0, 0) = 0
has no more than two jumps.

4.4 Convergence Rate of H
Finally, we prove the hybrid convergence rate of H. Letting ζ > 0 and letting
M > 0 come from Assumption 2.4, then by Proposition 4.5, since L satisfies
Assumptions 2.1 and 2.4, each maximal solution t 7→ (z(t), τ(t)) to the closed-
loop algorithm H1 with τ(0, 0) = 0 satisfies (56), for all t ≥ 0, where c is
defined below (56). By Proposition 4.3, since L satisfies Assumptions 2.1 and
2.2, then, given γ > 0 and λ > 0, for each m ∈ (0, 1) such that ψ := mαγ

λ
> 0

and ν := ψ(ψ − λ) < 0, each maximal solution t 7→ z(t) to the closed-
loop algorithm H0 satisfies (49) for all t ∈ dom z (= R≥0). Since maximal
solutions (t, j) 7→ x(t, j) = (z(t, j), q(t, j), τ(t, j)) to H starting from C1 are
guaranteed to jump no more than once, as implied by the contradiction in
cases i)-ii) above, then the domain of each maximal solution x to H starting
from C1 is ∪1

j=0(I
j, j), with I0 of the form [t0, t1] and with I1 of the form

[t1,∞). Therefore, given ζ > 0, λ > 0, γ > 0, c1,0 ∈ (0, c0), ε1,0 ∈ (0, ε0),
α > 0 from Assumption 2.2, and M > 0 from Assumption 2.4, due to
the construction of U0, T1,0, and T0,1 in (20), (27), and (30), with c̃1,0 ∈
(0, c̃0) and d1,0 ∈ (0, d0) defined via (17) and (24), and due to the individual
convergence rates of H1 and H0, each maximal solution (t, j) 7→ x(t, j) =
(z(t, j), q(t, j), τ(t, j)) to the hybrid closed-loop algorithm H that starts in
C1, such that τ(0, 0) = 0, satisfies (32) for each t ∈ I0 at which q(t, 0) is
equal to 1 and t ≥ 0, and satisfies item 3) of Theorem 2.11 for each t ∈ I1 at
which q(t, 1) is equal to 0.

5 Extensions

Some possible extensions of Theorem 2.11, Proposition 4.1, Lemma 4.2, and
Propositions 4.3, 4.4, 4.5, and 4.6 are as follows. A potential approach to
discretizing the hybrid closed-loop algorithm H in (9)-(10) can be found in
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[35]. Such a discretization approach, which is designed for hybrid systems
and which has assumptions that are satisfied by forward Euler and p-stage
Runge-Kutta consistent methods, for example, would yield results similar to
Theorem 2.11, Proposition 4.1, Lemma 4.2, and Propositions 4.3, 4.4, 4.5,
and 4.6.

It is possible to extend Theorem 2.11, Proposition 4.1, Lemma 4.2, and
Propositions 4.3, 4.4, 4.5, and 4.6 to include C1, convex objective functions L
with a compact and connected set of minimizers. Such an extension could be
achieved via the use of Clarke’s generalized derivative (see [36]). Addition-
ally, Clarke’s generalized derivative could be utilized to extend the analysis
of the hybrid closed-loop algorithm to include nonsmooth convex objective
functions L with a compact and connected set of minimizers.

6 Conclusion

We presented an algorithm, designed using hybrid system tools, that unites
Nesterov’s accelerated algorithm and the heavy ball algorithm to ensure fast
convergence and UGAS of the unique minimizer for C1, convex objective
functions L. The hybrid convergence rate is 1

(t+2)2
globally and exponential

locally. In simulation, we showed performance improvement not only over
the individual heavy ball and Nesterov algorithms, but also over the HAND-1
algorithm in [19]. In the process, we proved the existence of solutions for the
individual heavy ball and Nesterov algorithms, and we extended the conver-
gence rate results for Nesterov’s algorithm in [1] to functions L with generic
z∗1 , L

∗, and ζ > 0. Additionally, we established UGAS of the minimizer for
Nesterov’s algorithm, when L is C1, convex, and has a unique minimizer. Fu-
ture work will extend the uniting algorithm to a general framework, allowing
the local and global algorithms to be any accelerated gradient algorithm. We
will also extend the uniting algorithm to learning applications.
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Appendices

A Proof of Lemma 2.8

The objective function L is C1, convex, and has a single minimizer by As-
sumption 2.1. Therefore, since ∇L is continuous, the following hold: the
set U0, defined via (20), is closed since it is a sublevel set of the continuous
function V0; due to ā in (23) being continuous, the set T1,0, defined via (27),
is closed since it is a sublevel set of the continuous function V1; the set T0,1,
defined via (30), is closed since it is the closed complement of a set. There-
fore, since the sets U0, T1,0, and T0,1 are closed, then the sets D0, D1, C0, and
C1 are closed. Since C and D are both finite unions of finite and closed sets,
then C and D are also closed.

Since d̄ and β̄, defined via (5), are continuous, and since by Assumption
2.1, L is C1, then hq in (7) and κq in (6) are continuous. In turn, the map
z 7→ FP (z, κq(hq(z, τ), τ)) is also continuous since FP in (4) is a C1 function
of κq and hq. Therefore, x 7→ F (x) is continuous. The map G satisfies (A3)
by construction since it is continuous.

B Proof of Proposition 2.9

Since Assumptions 2.1, 2.2, and 2.4 hold, then H satisfies the hybrid basic
conditions by Lemma 2.8. With c̃0 > 0 and d0 > 0 defined via (17), since L
is C1, convex, has a single minimizer by Assumption 2.1, and has quadratic
growth away from z∗1 by Assumption 2.2, from the arguments below (18),
every z ∈ U0 belongs to the c0-sublevel set of V0; recall that U0 is defined in
in (20) and that V0 is defined via (16). Additionally, since by Assumption
2.2 L has quadratic growth away from z∗1 , then T0,1 in (30), defines the closed
complement of a sublevel set of V0 with level equal to c0. Therefore, due to the
definitions of U0 in (20) and T0,1 in (30), Π(C0)∪Π(D0) = R

2n. Furthermore,
since T1,0 is defined via (27), and since by the definitions of C1 and D1 in
(10), C1 is the closed complement of D1, then Π(C1) ∪ Π(D1) = R

2n.
Due to the definitions of C0, D0, C1, and D1 in (10), U0 in (20), T1,0 in

(27), and T0,1 in (30), then C \D is equal to int(C). Hence, for each point
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x ∈ C \D, the tangent cone to C at x is

TC(x) :=

{

R
2n × {0} × {0} if x ∈ C0 \D0,

R
2n × {1} × R≥0 if x ∈ C1 \D1.

(72)

Therefore, F (x) ∩ TC(x) 6= ∅, satisfying (VC) of for each point x ∈ C \ D,
and nontrivial solutions exist for every initial point in (C0 ∪ C1)∪ (D0 ∪D1),
where Π(C0) ∪ Π(D0) = R

2n and Π(C1) ∪ Π(D1) = R
2n. To prove that item

(c) of Proposition D.1 does not hold, we need to show that G(D) ⊂ C ∪D.
With D defined in (10), G(D) = (T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}).

G(D) = (T0,1 × {1} × {0}) ∪ (T1,0 × {0} × {0}) . (73)

Notice that T1,0 × {0} × {0} ⊂ C0 and T0,1 × {1} × {0} ⊂ C1. Therefore,
G(D) ⊂ C; hence G(D) ⊂ C ∪ D. Therefore, item (c) of Proposition D.1
does not hold. Then it remains to prove that item (b) does not happen.

To this end, we show first that H0, defined via (11), has no finite time
escape19, and has unique and bounded solutions. Since L is C1 by Assumption
2.1, and ∇L is Lipschitz continuous by Assumption 2.4, then h0 in (7) and κ0
in (6a) are Lipschitz continuous, which, since FP is a C1 function of h0 and κ0,
means the map z 7→ FP (z, κ0(h0(z))) is also Lipschitz continuous. Therefore,
by [34, Theorem 3.2], ż = FP (z, κ0(h0(z))) has no finite time escape and each
maximal solution to H0 is unique. To show that each maximal solution to H0

is bounded, we use the Lyapunov function in (16), defined for each z ∈ R
2n.

Then, solutions to ż = FP (z, κ0(h0(z))) starting from any cV -sublevel set
W := {z ∈ R

2n : V0(z) ≤ cV }, cV ≥ 0, remains in such a set for all time
since V0 satisfies

V̇0(z)=〈∇V0(z), FP (z, κ0(h0(z)))〉=−λ |z2|2 ≤ 0 (74)

for each z ∈ R
2n, since λ is positive. Then, to show that V0 is radially

unbounded, we derive class-K∞ functions α1 and α2 such that20, for all z ∈
19Finite escape time describes when there exists a solution t 7→ x(t) to a continuous-time

nonlinear system that satisfies lim
tրte

|x(t)| = ∞ for some finite time te.

20Since L has quadratic growth away from z∗1 by Assumption 2.2, then the choice of α1

comes from lower bounding L(z1)−L∗ in V0 via Assumption 2.2. The choice of α2 comes
from the following: since L is C1, convex, and has a single minimizer by Assumption 2.1,
then the expression L(z1) − L∗ in V0 is upper bounded using the definition of convexity
in Footnote 6, by the same process that L(z1)−L∗ is upper bounded in (14), to get (18).
Then, |∇L(z1)| in (18) is upper bounded via Assumption 2.4 with u1 = z∗1 and w1 = z1.
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R
2n, with z∗ := (z∗1 , 0),

α1(|z − z∗|) := min

{

αγ,
1

2

}

|z − z∗|2 ≤ V0(z)

≤ α2(|z − z∗|) :=
(

Mγ +
1

2

)

|z − z∗|2 .
(75)

Since L has quadratic growth away from z∗1 with constant α > 0 by Assump-
tion 2.2, then the choice of α1 comes from lower bounding V0 as follows

V0(z) = γ (L(z1)− L∗) +
1

2
|z2|2 ≥ αγ |z1 − z∗1 |2 +

1

2
|z2|2

≥ min

{

αγ,
1

2

}

|z − z∗|2 = α1(|z − z∗|)
(76)

for all z ∈ R
2n. The choice of α2 comes from the following. Since L is C1,

convex, has a single minimizer by Assumption 2.1, and since ∇L is Lipschitz
continuous with constant M > 0 by Assumption 2.4, we upper bound V0 in
the following manner, using the definition of convexity in Footnote 6 to get
(18), and then using the Lipschitz bound in Assumption 2.4 with u1 = z∗1
and w1 = z1 to upper bound (18), yielding

V0(z) = γ (L(z1)− L∗) +
1

2
|z2|2 ≤ γ |∇L(z1)| |z1 − z∗1 |+

1

2
|z2|2

≤Mγ |z1 − z∗1 |2 +
1

2
|z2|2

≤
(

Mγ +
1

2

)

|z − z∗|2 = α2(|z1 − z∗1 |)
(77)

for all z ∈ R
2n. Since (75) is satisfied for V0 in (16) for all z ∈ R

2n, then
V0 is radially unbounded (in z, relative to {z∗1} × {0}). Therefore, W is
compact and, due to (74), forward invariant for H1, that is, any nontrivial
solution starting in the subset W is complete and stays in W . Therefore,
each maximal solution to H0, defined via (11), is bounded.

Next, we show that H1 in (12) has no finite time escape from R
2n ×R≥0,

and has unique solutions. Since d̄ and β̄, defined via (5), are continuous, and
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since by Assumption 2.1, L is C1, then h1 in (7) and κ1 in (6) are also con-
tinuous. Furthermore, since by Assumption 2.4 ∇L is Lipschitz continuous,
then h1 in (7) and κ1 in (6) are Lipschitz continuous which, in turn, means
the map z 7→ FP (z, κ1(h1(z, τ), τ)) is Lipschitz continuous. Consequently,
since the map z 7→ FP (z, κ1(h1(z, τ), τ)) is Lipschitz continuous and since
the solution component τ of H1 increases linearly, then by [34, Theorem 3.2],
H1 in (12) has no finite escape time from R

2n × R≥0 and each maximal so-
lution to H0 is unique. Therefore, each maximal solution to H1, defined via
(12), is complete and unique.

Since H0 has no finite time escape from R
2n and H1 has no finite time

escape from R
2n × R≥0, then this means ẋ = F (x) has no finite time escape

from C for H, as q does not change in C and as the state component τ is
bounded in C, namely, the state component τ – which is always reset to 0
in D – increases linearly in C1 and remains at 0 in C0. Therefore, there is
no finite time escape from C ∪D, for solutions x to H. Therefore, item (b)
from Proposition D.1 does not hold.

C Proof of Proposition 4.4

The Lyapunov function V1, defined via (22), is positive definite with respect
to A1, defined via (67), since, by Assumption 2.1, L is C1, convex, and has a
unique minimizer z∗1 . Then, letting

v̄1(z, τ) := z1 + β̄(τ)z2, (78)

letting ϕ(z, τ) := ā(τ) (ā(τ) (z1 − z∗1) + z2) +
ζ2

M
∇L(z1), and since ∇V1(z, τ)

=

[

ϕ(z, τ) (ā(τ) (z1 − z∗1) + z2)
dā(τ)

dτ
〈z1 − z∗1 , (ā(τ) (z1 − z∗1) + z2)〉

]

, we

evaluate the derivative of V1, using the map z 7→ FP (z, κ1(h1(z, τ), τ)), where
FP is defined in (4), κ1 is defined via (6b), and h1 is defined in (7), to yield

V̇1(z, τ) =

〈

∇V1(z, τ),
[

FP (z, κ1(h1(z, τ), τ))
1

]〉

=

〈

∇V1(z, τ),





[

z2
−2d̄(τ)z2 − ζ2

M
∇L(v̄1(z, τ))

]

1





〉

=ā(τ) 〈ā(τ) (z1 − z∗1) + z2, z2〉+
ζ2

M
〈z2,∇L(z1)〉 − 2d̄(τ) |z2|2
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− 2d̄(τ)ā(τ) 〈z1 − z∗1 , z2〉 −
ā(τ)ζ2

M
〈z1 − z∗1 ,∇L(v̄1(z, τ))〉

− ζ2

M
〈z2,∇L(v̄1(z, τ))〉+ ā(τ)

dā(τ)

dτ
|z1 − z∗1 |2 +

dā(τ)

dτ
〈z1 − z∗1 , z2〉

=− ā(τ)ζ2

M
〈z1 − z∗1 ,∇L(v̄1(z, τ))〉 + ā(τ)

dā(τ)

dτ
|z1 − z∗1 |2

+
(

ā(τ)− 2d̄(τ)
)

|z2|2 +
(

ā2(τ)− 2d̄(τ)ā(τ) +
dā(τ)

dτ

)

〈z1 − z∗1 , z2〉

− ζ2

M
〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 (79)

for all (z, τ) ∈ R
2n×R≥0. Since L is C1, convex, and has a unique minimizer

by Assumption 2.1, then using the definition of convexity in Footnote 6 with
u1 = z∗1 and w1 = v̄1(z, τ), where v̄1 is defined via (78), we get

−〈v̄1(z, τ)− z∗1 ,∇L(v̄1(z, τ))〉 ≤ − (L(v̄1(z, τ))− L∗) (80)

for each z ∈ R
2n and τ ∈ R≥0. Using the definition of convexity in Footnote

6 with u1 = v̄1(z, τ), where v̄1 is defined via (78), and w1 = z1 yields

〈

∇L(z1), β̄(τ)z2
〉

≤ L(v̄1(z, τ))− L(z1) (81)

for each z ∈ R
2n and τ ∈ R≥0. Combining (80) and (81) yields

−〈v̄1(z, τ)− z∗1 ,∇L(v̄1(z, τ))〉+
〈

∇L(z1), β̄(τ)z2
〉

≤−L(v̄1(z, τ))+L(v̄1(z, τ))−
L(z1) + L∗. Then, rearranging terms gives, for all z ∈ R

2n and τ ∈ R≥0,

− 〈z1 − z∗1 ,∇L(v̄1(z, τ))〉 (82)

≤ − (L(z1)− L∗) +
〈

β̄(τ)z2,∇L(v̄1(z, τ))−∇L(z1)
〉

.

Substituting the bound in (82) into (79) yields

V̇1(z, τ) ≤− ā(τ)ζ2

M

(

(L(z1)− L∗)−
〈

β̄(τ)z2,∇L(v̄1(z, τ))−∇L(z1)
〉)

+ ā(τ)
dā(τ)

dτ
|z1 − z∗1 |2 +

(

ā(τ)− 2d̄(τ)
)

|z2|2

+

(

ā2(τ)− 2d̄(τ)ā(τ) +
dā(τ)

dτ

)

〈z1 − z∗1 , z2〉

− ζ2

M
〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 (83)
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for all (z, τ) ∈ R
2n × R≥0. Then, noticing that ā(τ)

2
|ā(τ) (z1 − z∗1) + z2|2 =

ā3(τ)
2

|z1 − z∗1 |2+ā2(τ) 〈z1 − z∗1 , z2〉+ ā(τ)
2

|z2|2, adding it to and subtracting it
from (83), and rearranging terms, yields

V̇1(z, τ) ≤− ā(τ)V1(z, τ) + ā(τ)
dā(τ)

dτ
|z1 − z∗1 |2 +

(

ā(τ)− 2d̄(τ)
)

|z2|2

+

(

ā2(τ)− 2d̄(τ)ā(τ) +
dā(τ)

dτ

)

〈z1 − z∗1 , z2〉+
ā3(τ)

2
|z1 − z∗1 |2

+
ā(τ)

2
|z2|2 + ā2(τ) 〈z1 − z∗1 , z2〉

− ζ2

M

(

1− β̄(τ)ā(τ)
)

〈z2,∇L(v̄1(z, τ))−∇L(z1)〉

≤ − ā(τ)V1(z, τ) +

(

ā3(τ)

2
+ ā(τ)

dā(τ)

dτ

)

|z1 − z∗1 |2

+

(

3ā(τ)

2
− 2d̄(τ)

)

|z2|2

+

(

2ā2(τ)− 2d̄(τ)ā(τ) +
dā(τ)

dτ

)

〈z1 − z∗1 , z2〉

− ζ2

M

(

1− β̄(τ)ā(τ)
)

〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 (84)

for all (z, τ) ∈ R
2n ×R≥0. Due to the definitions of the functions ā and d̄, in

(23) and (5), respectively, the cross term 〈z1 − z∗1 , z2〉 vanishes since 2ā2(τ)−

2d̄(τ)ā(τ) +
dā(τ)

dτ
= 2

(

2

τ + 2

)2

− 2

(

3

2(τ + 2)

)(

2

τ + 2

)

− 2

(τ + 2)2
= 0.

Moreover, the definitions of the functions d̄ and ā lead to the |z1 − z∗1 |2

and |z2|2 terms in (84) vanishing due to ā3(τ)
2

+ ā(τ)
dā(τ)

dτ
=

(

2
τ+2

)3

2
+

(

2

τ + 2

)(

− 2

(τ + 2)2

)

= 0 and 3ā(τ)
2

− 2d̄(τ) =
3( 2

τ+2)
2

− 2
(

3
2(τ+2)

)

= 0.

The bound in (84) reduces to

V̇1(z, τ) ≤ −ā(τ)V1(z, τ)−
ζ2

M

(

1− β̄(τ)ā(τ)
)

〈z2,∇L(v̄1(z, τ))−∇L(z1)〉
(85)

for all (z, τ) ∈ R
2n × R≥0. By Assumption 2.1, L is C1 and convex. By

[31, Theorem 2.1.3], a function L is C1 and convex if and only if, for each
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w1, u1 ∈ R
n,

〈∇L(w1)−∇L(u1), w1 − u1〉 ≥ 0. (86)

Then, since β̄(τ) ≥ 0 for all t ≥ 0, using the bound in (86) with w1 = v̄1(z, τ),
where v̄1 is defined in (78), and u1 = z1, we get, for all z ∈ R

2n and τ ∈ R≥0,

〈v̄1(z, τ)− z1,∇L(v̄1(z, τ))−∇L(z1)〉 =
β̄(τ) 〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 ≥ 0

−β̄(τ) 〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 ≤ 0

−〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 ≤ 0 (87)

Therefore, since 1 − β̄(τ)ā(τ) ≥ 0, due to ā, defined via (23), equaling 1 at
τ = 0 and monotonically decreasing toward zero (but being always positive)
as τ tends to ∞, and due to β̄, defined via (5), equaling 0 at τ = 0 and
monotonically increasing to 1 as τ tends to ∞, we use (87) to upper bound
the last term of (85) as follows:

− ζ2

M

(

1− β̄(τ)ā(τ)
)

〈z2,∇L(v̄1(z, τ))−∇L(z1)〉 ≤ 0 (88)

This leads to, z ∈ R
2n and τ ∈ R≥0,

V̇1(z, τ) ≤ −ā(τ)V1(z, τ). (89)

Applying Grönwall’s Inequality to (89), namely,

V1(z(t), t) ≤ V1(z(0), 0) exp

(

−
∫ t

0

ā(τ)dτ

)

= V1(z(0), 0) exp (−2 ln (t + 2)− 2 ln (2))

= V1(z(0), 0) exp

(

− ln

(

t+ 2

2

)2
)

= V1(z(0), 0)





1

exp
(

ln
(

t+2
2

)2
)





=
4

(t + 2)2
V1(z(0), 0)

shows that each maximal solution t 7→ (z(t), τ(t)) to the closed-loop algo-
rithm H1, such that τ(0) = 0, satisfies (55), for all t ≥ 0.
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D General Results for Hybrid Systems

The following proposition, from [23], is used to prove the existence of solu-
tions to the hybrid closed-loop system.

Proposition D.1 (Basic existence of solutions): Let H = (C, F,D,G) sat-
isfy Definition 2.7. Take an arbitrary ξ ∈ C ∪D. If ξ ∈ D or

(VC) there exists a neighborhood U of ξ such that for every x ∈ U ∩ C,

F (x) ∩ TC(x) 6= ∅,

then there exists a nontrivial solution x to H with x(0, 0) = ξ. If (VC)
holds for every ξ ∈ C \D, then there exists a nontrivial solution to H from
every initial point in C ∪D, and every21 x ∈ SH satisfies exactly one of the
following conditions:

(a) x is complete;

(b) dom x is bounded and the interval IJ , where J = supj dom x, has
nonempty interior and t 7→ x(t, J) is a maximal solution to ż ∈ F (z),
in fact
limt7→T |x(t, J)| = ∞, where T = supt dom x;

(c) x(T, J) 6∈ C ∪D, where (T, J) = sup dom x.

Furthermore, if G(D) ⊂ C ∪D, then (c) above does not occur.

The following definition, from [22, Definition 3.17], describes the basic
properties that a function must satisfy to serve as a Lyapunov function for
the hybrid closed-loop algorithm H.

Definition D.2 (Lyapunov function candidate) The sets U , A ⊂ R
n,

and the function V : domV → R define a Lyapunov function candidate on
U with respect to A for the hybrid closed-loop system H = (C, F,D,G) if the
following conditions hold:

1.
(

C ∪D ∪G(D)
)

∪ U ⊂ domV ;

21The set SH contains all maximal solutions to H.
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2. U contains an open neighborhood of A∩ (C ∪D ∪G(D));

3. V is continuous on U and locally Lipschitz on an open set containing
C ∩ U ;

4. V is positive definite on C ∪D ∪G(D) with respect to A.

The following theorem is used to prove the uniform global asymptotic
stability of the hybrid closed-loop system, via Lyapunov stability and an
invariance principle.

Theorem D.3 (Hybrid Lyapunov theorem): Given sets U ,A ⊂ R
n and a

function V : dom V → R defining a Lyapunov candidate on U with respect
to A for the closed-loop hybrid system H = (C, F,D,G), suppose

• H satisfies the hybrid basic conditions;

• A is compact and U contains a nonzero open neighborhood of A;

• V̇ and ∆V satisfy

V̇ (x) = max
ξ∈F (x)

〈∇V (x), ξ〉 ≤ 0 ∀x ∈ C ∩ U (90)

∆V (x) := max
ξ∈G(x)

V (ξ)− V (x) ≤ 0 ∀x ∈ D ∩ U (91)

Then A is stable. Furthermore, A is attractive and, hence, pre-asymptotically
stable if any of the following conditions hold:

1. Strict decrease during flows and jumps:

V̇ (x) < 0 ∀x ∈ (C ∩ U)\A (92)

∆V (x) < 0 ∀x ∈ (D ∩ U)\A (93)

2. Strict decrease during flows and no instantaneous Zeno:

(a) V̇ (x) < 0 for each x ∈ (C ∩ U)\A,

(b) any instantaneous Zeno solution x to H where rge x ⊂ U converges
to A;

3. Strict decrease during jumps and no complete continuous solution:
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(a) ∆V (x) < 0 for each x ∈ (D ∩ U)\A,

(b) any complete continuous solution x to H where rge x ⊂ U con-
verges to A;

4. Weak decrease during flows and jumps: for each χ ∈ U with r :=
V (χ) > 0 there is no complete solution x to H, x(0, 0) = χ such that

rge x ⊂ {x : V (x) = r } ∩ U (94)

and the set U is the subset of the basin of pre-attraction.

Observe that, if the set A is pre-asymptotically stable via Theorem D.3
and the Lyapunov function V also has compact sublevel sets, namely, for
each cV > 0, {x : V (x) ≤ cV } is compact, then the origin is globally pre-
asymptotically stable.

The following result is used to show that, when a hybrid closed-loop algo-
rithm H has a set A globally asymptotically stable, then when H satisfies the
hybrid basic conditions, the set A is also uniformly globally asymptotically
stable22 for H.

Theorem D.4 (Pre-asymptotic stability implies KL pre-asymptotic stabil-
ity): Suppose that the hybrid closed-loop system H satisfies the hybrid basic
conditions and that a compact set A is pre-asymptotically stable with basin of
pre-attraction Bp

A. Then, Bp
A is open and A is KL pre-asymptotically stable

on Bp
A for H; namely, there exists a function β ∈ KL such that

|x(0, 0)|A ≤ β (|x(0, 0)|A , t+ j) ∀(t, j) ∈ dom x (95)

for each x ∈ SH(Bp
A).

For Proposition 4.1 and Theorem D.6 we use the following definition of
weak invariance, from [23].

Definition D.5 (Weak invariance) Given a hybrid system H, a set S ⊂
R

n is said to be

• weakly forward invariant if for every ξ ∈ S there exists at least one
complete x ∈ SH(ξ) with rge x ⊂ S;

22Uniform global asymptotic stability allows an equivalent characterization involving a
class-KL function [23].
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• weakly backward invariant if for every ξ ∈ S and every T > 0, there
exists at least one x ∈ SH(S) such that for some (t∗, j∗) ∈ dom x,
t∗ + j∗ ≥ T , it is the case that x(t∗, j∗) = ξ and x(t, j) ∈ S for all
(t, j) ∈ dom x with t+ j ≤ t∗ + j∗;

• weakly invariant if it is both weakly forward invariant and weakly back-
ward invariant.

The following hybrid invariance principle, from [22, Theorem 3.23], is
used to establish attractivity when only a “weak” Lyapunov function is avail-
able – meaning that the function does not strictly decrease along both flows
and jumps of the hybrid system. It is also useful to check where particular
solutions of interest converge to.

Theorem D.6 (Hybrid Invariance Principle): Given a hybrid closed-loop
system H = (C, F,D,G) with state x ∈ R

n satisfying the hybrid basic con-
ditions, nonempty U ⊂ R

n, and a function V : domV → R, suppose that
D.2 is satisfied, and that (90) and (91) hold. With X := C ∪D ∪G(D), we
empoly the following definitions:

V −1(r) := {x ∈ X : V (x) = r} (96)

V̇ −1(0) :=
{

x ∈ C : V̇ (x) = 0
}

(97)

∆V −1(0) := {x ∈ D : ∆V (x) = 0} (98)

Let x be a precompact solution to H with rge x ⊂ U . Then, for some r ∈
V (U ∩X), the following hold:

1. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩
[

V̇ −1(0) ∪
(

∆V −1(0) ∩G
(

∆V −1(0)
))

]

; (99)

2. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩∆V −1(0) ∩G
(

∆V −1(0)
)

(100)

if in addition the solution X is Zeno;
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3. The solution x converges to the largest weakly invariant set in

V −1(r) ∩ U ∩ V̇ −1(0) (101)

if, in addition, the solution x is such that, for some a > 0 and some
J ∈ N , tj+1 − tj > a for all j ≥ J ; i.e., the given solution x is such
that the elapsed time between consecutive jumps is eventually bounded
below by a positive constant a.
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