
Set-Point Tracking MPC with Avoidance Features⋆

Marcelo A. Santosa,c,∗, Antonio Ferramoscab, Guilherme V. Raffoa,c

aGraduate Program in Electrical Engineering, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil
bDepartment of Management, Information and Production Engineering, University of Bergamo, Via Marconi 5, Dalmine (BG) 24044, Italy

cDepartment of Electronics Engineering, Federal University of Minas Gerais, Belo Horizonte, MG 31270-901, Brazil

Abstract

This work proposes a finite-horizon optimal control strategy to solve the tracking problem while providing avoidance features to
the closed-loop system. Inspired by the set-point tracking model predictive control (MPC) framework, the central idea of including
artificial variables into the optimal control problem is considered. This approach allows us to add avoidance features into the set-
point tracking MPC strategy without losing the properties of an enlarged domain of attraction and feasibility insurances in the face
of any changing reference. Besides, the artificial variables are considered together with an avoidance cost functional to establish
the basis of the strategy, maintaining the recursive feasibility property in the presence of a previously unknown number of regions
to be avoided. It is shown that the closed-loop system is recursively feasible and input-to-state-stable under the mild assumption
that the avoidance cost is uniformly bounded over time. Finally, two numerical examples illustrate the controller behavior.
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1. Introduction

Model predictive control (MPC) is one of the few strategies
that allow the control of constrained systems regarding an op-
timal criterium while ensuring stability and convergence to an
equilibrium point. Under certain assumptions, closed-loop sta-
bility can be demonstrated for any feasible initial condition in
standard regulating MPC schemes (Mayne et al., 2000). Of-
ten, MPC strategies are designed with the underlying assump-
tion that the desired set-point is feasible, which may not be true
since feasibility issues can come from the system dynamics lim-
itations and constraints. Besides, if changing set-points are con-
sidered, there is no guarantee that the closed-loop system will
be stable (Pannocchia and Kerrigan, 2005).

The problem of changing set-points has been addressed
through different approaches (Mayne, 2014), such as switching
strategies for feasibility recovery (Chisci and Zappa, 2003) and
command governor-based strategies (Bemporad et al., 1997;
Garone et al., 2017). In the command governor framework,
a feasible evolution of the system to the reference is obtained
based on the inclusion of a low-pass filter of the reference. In-
spired by the reference governor ideas, in Limon et al. (2008),
a set-point tracking MPC strategy has been proposed seeking
to deal with the problem of loss of recursive feasibility in the
presence of changing set-points. The authors have shown that
the so-called tracking MPC has a larger domain of attraction
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when compared to the ones obtained with regulating predictive
controllers. In this strategy, the controller is designed to ensure
asymptotic convergence for any admissible steady-state refer-
ence and, if not the case, to ensure convergence to an admissible
steady-state. The control strategy is formulated using artificial
state and input variables to describe an artificial steady-state for
which asymptotic convergence is guaranteed. In addition, ter-
minal conditions for stability are considered through a terminal
penalty term in the cost functional and a terminal constraint en-
suring that the system reaches a maximum admissible invariant
set for tracking. In Ferramosca et al. (2009), it was shown that
the controller proposed in Limon et al. (2008) holds the local
optimality property present in regulating predictive controllers.

In some applications, besides being able to track changing
set-points, avoiding specific regions in some known admissi-
ble space is an important requirement. For instance, in au-
tonomous navigation, the ability to ensure collision avoidance
against obstacles is paramount. Also, problems that have in-
herently non-convex admissible spaces, such as charging Li-
ion batteries (Goldar et al., 2020), may benefit from it by go-
ing from a non-convex control problem to an equivalent convex
one. In the literature, the avoidance problem is often solved
through optimal control by considering either the space to be
avoided as a modified constraint in an equivalent problem or
by adding relaxed avoidance constraints. Such solutions can be
formulated into single-layer frameworks, which, unlike multi-
layer strategies, avoid suboptimal solutions, loss of feasibility,
and lack of stability guarantees (Limon et al., 2012).

Among those works considering constraints in an equiva-
lent problem, in Raković et al. (2021), an MPC strategy for
collision avoidance has been proposed to the regulation prob-
lem with deterministic linear systems. The authors have con-
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sidered a strategic-tactical decision-making architecture to ob-
tain a resulting convex MPC for collision avoidance. In Zhang
et al. (2021), the authors have considered avoidance in an n-
dimensional space by reformulating the collision avoidance
constraints as smooth non-convex constraints under the as-
sumption that obstacles can be described as convex sets. In
Thirugnanam et al. (2022), the problem of avoidance between
polytopes has been approached using control barrier function
constraints to generate dynamically collision-free feasible tra-
jectories. In Cotorruelo et al. (2021), the authors have extended
the set-point tracking MPC framework by incorporating a con-
vexifying homeomorphism into the optimization problem so
that non-convex admissible output sets could be handled. If the
convexifying homeomorphism exists, the proposed approach is
suitable for applications with non-convex output space.

Among those works relaxing avoidance constraints, in
Kamel et al. (2017), an avoidance cost based on a logistic func-
tion has been added to a decentralized nonlinear model predic-
tive control scheme for collision avoidance during multi-agent
flights. In Hermans et al. (2018), the authors have considered
nonlinear model predictive control within a penalty method
framework designed to satisfy collision-avoidance while calcu-
lating the trajectory to be followed by the system. In Pereira
et al. (2021), an ellipsoidal-polytopic representation of obsta-
cles has been incorporated into a nonlinear model predictive
controller as relaxed avoidance constraints. Furthermore, in
Sánchez et al. (2021), artificial variables have been used to inte-
grate the obstacle avoidance feature to model predictive control.
In the work, obstacles are represented as soft constraints in the
optimization problem, and the artificial variables help solving
the path-following problem while avoiding obstacles.

Approach the avoidance problem through an equivalent one
that either convexifies the space or changes the constraints to
achieve some given properties may require prior knowledge of
the regions to be avoided. Also, in the presence of changing
set-points, feasibility issues must be addressed. When consid-
ering a previously unknown number of regions to be avoided,
the inclusion of penalty functions into the optimization problem
allows avoiding online computation of equivalent constraints.
Likewise, the stability analysis can be performed without any
assumptions on the convexity of the admissible space, but at
the price of possibly invalidating the decreasing property of the
value function commonly used to derive stability. A similar
problem appears in economic MPC schemes, where the value
function is generally non-decreasing as the system approaches
the economically optimal steady-state. Under this condition,
asymptotic stability of the resulting closed-loop system can still
be demonstrated. In Diehl et al. (2011), a decreasing rotated
value function has been designed using dissipativity theory, and
in Alessandretti et al. (2017), it has been shown that any addi-
tional cost acting as a disturbance to the standard stabilizing
cost presents Input-to-State-Stability (ISS) property as long as
it is uniformly bounded over time.

This work differs from the existing literature by approaching
the problem in which a previously unknown number of regions
is considered to be avoided within the system admissible states,
while the feasibility issues related to changing set-points are

addressed. As in Limon et al. (2008), the problem of feasibil-
ity while tracking changing set-points is solved using artificial
variables and an offset cost functional. Afterwards, the avoid-
ance feature is included in the set-point tracking MPC strategy
through a penalty function allowing to work with convex admis-
sible sets even in the presence of a previously unknown number
of regions to be avoided. Therefore, with both ideas combined,
the resulting control framework is a linear set-point tracking
MPC with avoidance features, since, as in Limon et al. (2008),
a linear model is used for prediction. Further, we prove that the
proposed set-point tracking MPC with avoidance features have
the properties of recursive feasibility and ISS with respect to
the avoidance cost functional.

The contributions of this work are threefold: i) a novel lin-
ear set-point tracking MPC strategy with avoidance features;
ii) proof of recursive feasibility for changing targets and pre-
viously unknown non-feasible output regions to be avoided
within the system admissible states; and iii) demonstration of
ISS property with respect to the avoidance cost.

In the remainder of this paper: Section 2 describes the
problem addressed; Section 3 presents the control design and
demonstrates recursive feasibility and ISS; Section 4 analyses
the proposed controller properties; Section 5 provides two nu-
merical examples; finally, Section 6 concludes the work.

Notation and definitions
The set I0:N denotes the set of integers {0, 1, · · · ,N}. A ma-

trix On,m ∈ Rn×m denotes a matrix of zeros, and In ∈ Rn×n de-
notes the identity matrix. A positive definite symmetric matrix
P is denoted as P > 0, and ∥x∥P =

√
x′Px denotes the weighted

Euclidean norm of x with ′ being the transpose operator. Con-
sider a ∈ Rna and b ∈ Rnb , for a set Γ ⊂ Rna+nb , the projection
operation is defined as Proja(Γ) = {a ∈ Rna : ∃b ∈ Rnb , (a, b) ∈
Γ}. Given a set X ⊂ Rn and a variable λ ∈ R, the set λX ⊂ Rn is
defined as λX = {λx : x ∈ X}. A bold lowercase variable u de-
notes a sequence of values of a signal (u(0), u(1), · · · , u(N−1)),
with u(i) being the i-th element and N being the length of the se-
quence deduced by the context. A parameter-dependent signal
is denoted by u(a), and its i-th element is u(i; a). The iden-
tity function from R onto R is denoted as id, and γ1 ◦ γ2 de-
notes the composition of two functions γ1 and γ2. A diagonal
matrix M ∈ Rn×n is denoted as M = diag{m1, · · · ,mn}, and
max{a1, · · · , an} denotes the maximum operator.

2. Problem Description

Consider a linear time-invariant dynamical system of the
form

x(k + 1) = Ax(k) + Bu(k),
y(k) = Cx(k) + Du(k), (1)

with x(k) ∈ Rn, u(k) ∈ Rm, and y(k) ∈ Rp being, respectively,
the state, input, and output vectors. The solution of the system
for a given sequence of control inputs u and initial state x is
denoted as x( j) = ϕ( j; x,u), j ∈ I≥0, where x = ϕ(0; x,u).

Assumption 1. The dynamical system (1) is controllable, ob-
servable, and the states are available at each sampling time.
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The evolution of the system must be such that the constraint

(x(k), u(k)) ∈ Z (2)

holds for all k ≥ 0, defining the sets of admissible states and
inputs as X = Projx(Z) and U = Proju(Z), respectively. In ad-
dition, there exists an invertible linear map f : Z 7→ Y defining
the set of admissible output Y .

Assumption 2. The set Z ⊂ Rn+m is a compact convex polyhe-
dron containing the origin in its interior.

If a finite previously unknown number No of non-feasible
output regions Oi strictly contained in Y are considered, the ad-
missible output set might become the non-convex set

Ỹ = Y −
⋃No

i=1
Oi. (3)

Thus, assuming that the inverse map f −1 : Ỹ 7→ Z̃ exists, the
evolution of the system must be such that the constraint

(x(k), u(k)) ∈ Z̃ (4)

is satisfied for all k ≥ 0, where Z̃ may be a non-convex set that
does not fulfill Assumption 2.

Set-point tracking MPC aims to make the error between the
target output and the actual output tend to zero. Without the
presence of non-feasible output regions Oi, for asymptotic sta-
bilization, a target output yt must be a steady-output associated
with an admissible equilibrium point (xs, us) ∈ Z. If this condi-
tion is satisfied, the target output is said to be reachable; other-
wise, the tracking control problem fails since it is not possible to
stabilize the system in the provided output (Limon et al., 2008).
Therefore, any target output must satisfy[

A − In B
C D

] [
xs

us

]
=

[
On,1
yt

]
. (5)

For any given target output yt, there exists an associated equi-
librium point (xs, us) if and only if (Rawlings and Mayne, 2009)

rank
([

(A − In) B
C D

])
= n + p. (6)

For a square system, p = m, if condition (6) is satisfied, every
yt can be tracked and there is a unique equilibrium point (xs, us)
associated to it. For a flat system, p < m, if condition (6) holds,
every yt can be tracked and there is an infinite number of equi-
librium points (xs, us) whose output is yt. If the system is thin,
p > m, or the condition (6) does not hold, yt can be partially
tracked or steered to a target zone (Ferramosca et al., 2010).

Considering that condition (6) is satisfied, it is possible to
define the set of joint steady-states and inputs, Zs, and the set of
reachable outputs, Yr, respectively, as

Zs = {(xs, us) : xs = Axs + Bus, (xs, us) ∈ Z}, (7)
Yr = {yt : yt = Cxs + Dus, (xs, us) ∈ Zs}. (8)

Two main sources of feasibility and stability issues are
present when handling set-point tracking MPC with avoidance

features. First, since the feasibility region for the closed-loop
system is reference-dependent, unknown variations on the tar-
get outputs may compromise recursive feasibility and asymp-
totic stability, leading the controller to fail tracking the refer-
ence (Pannocchia and Kerrigan, 2005). Second, the existence of
previously unknown non-feasible regions in the known admis-
sible output space might make the target output unfeasible (yt <
Ỹ) or unreachable in the obstructed space (there is no evolution
of the system output towards yt that fulfill y(k) ∈ Ỹ ,∀k ≥ 0).
Therefore, within this context, the following problem is posed:

Problem. Design an MPC law κo
N(x(k), yt,Oi) to track any

prior reachable target output yt ∈ Yr ensuring that the evolution
of the system output lies outside any non-feasible output region
Oi. Also, by considering that a global solution to the problem
can be obtained, if the target is feasible and reachable in the
obstructed space (yt ∈ Yr ∩ Ỹ), and there is no non-feasible re-
gion in the neighborhood of the target, the tracking error must
tend to zero asymptotically. Otherwise, the system output must
converge to a bounded set around a reachable steady-output
ys ∈ Yr ⊂ Ỹ that minimizes a given performance index.

3. Control Design

The controller proposed in this section is designed to ensure
Input-to-State Stability in the Lyapunov sense for any reachable
target in the obstructed space while avoiding any non-feasible
output region Oi. We consider the system (1) subjected to the
constraint (2). Besides, to avoid loss of controllability related
to active constraints (Rao and Rawlings, 1999), we remove
from Yr those reachable targets that are associated with equi-
librium points lying at active constraints. Then, the condition
(xs, us) ∈ Zs of (8) is replaced by (xs, us) ∈ λZs with λ ∈ (0, 1)
and possibly very close to 1.

Avoidance features can be obtained enforcing y(k) ∈ Ỹ for
all k > 0, implying that the closed-loop system satisfies (4).
However, since Z̃ is possibly a non-convex set priory unknown,
enforcing (4) directly may be impractical from the optimization
problem point-of-view. Besides, there is no guarantee that the
inverse map f −1 : Ỹ 7→ Z̃, required to obtain (4), exists. A pos-
sible solution to work around those issues considers an equiv-
alent strictly convex optimization problem that constrains the
closed-loop system to the known admissible convex set Z by en-
forcing (2) and that handles the non-feasible regions Oi through
penalties functions. Following this procedure, set-point track-
ing MPC with avoidance features can be obtained extending the
formulation proposed in Limon et al. (2008) by considering an
avoidance cost functional in addition to the offset functional.

Let ya be an artificial steady-output, which is an extra de-
cision variable in the optimal control problem to avoid issues
related to the loss of feasibility. Moreover, let (xa, ua) be an
artificial equilibrium point associated with ya.

Assumption 3. Any output non-feasible set Oi is available at
each sampling time either by measurement and estimation or,
if available, by previous knowledge on the sets. Also, they are
considered constant throughout the prediction horizon.
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Remark 1. Modeling, measurement, and estimation errors can
be accounted for considering an enclosure for each set Oi, such
as σiOi with σi > 1.

Given a value function V(y) and the constraints y < Oi, for all
i, with the constraint set being represented as Oi = {y : g j(y) ≤
0, j ∈ I1:qi }, the optimization problem

minimize V(y) subject to y < Oi,∀i, (9)

can be rewritten as the unconstrained problem

minimize V(y) +
∑

i

µiF(y,Oi), (10)

where µi is a positive constant, and F(y,Oi) is a continuous
function such that F(y,Oi) ≥ 0 if y ∈ Oi, and F(y,Oi) = 0 oth-
erwise (Luenberger and Ye, 2008). A general class of penalty
functions is

F(y,Oi) =
∑qi

j=1
(max{0, g j(y)})ϵ , (11)

for some ϵ > 0. As µi → ∞, the solution of the penalty problem
converges to the solution of the constrained problem. Besides,
if ϵ = 1, exact penalization can be obtained if µi is chosen to
be greater than the biggest corresponding Lagrange multiplier
(Luenberger and Ye, 2008; Ferramosca et al., 2011). Notice
that the definition of µi allows us to give different weights for
different non-feasible regions Oi.

Following the presented penalty method, the proposed con-
troller is based on the solution at each sampling time of an op-
timal control problem having as parameters (x, yt,Oi) and as
decision variables (u, xa, ua). The cost functional is composed
of three terms: i) a dynamic term, which is a combination of
a stage cost with respect to the artificial steady-state and input
(xa, ua) and a terminal cost; ii) a stationary term, which is the
offset cost functional penalizing the deviation of the artificial
steady-output ya to the target output yt; and iii) another station-
ary term, which is the avoidance cost functional penalizing the
artificial steady-output ya and the system predicted output y.
Considering a horizon length N ∈ I>0, it can be defined

VN(x, yt,Oi; u, xa, ua) =
N−1∑
j=0

∥x( j) − xa∥
2
Q + ∥u( j) − ua∥

2
R+

∥x(N) − xa∥
2
P + Vo f (ya, yt) +

No∑
i=1

[
µiF(ya,Oi)+

N∑
j=0

µiF(y( j),Oi)
]
. (12)

The following assumptions from the tracking MPC litera-
ture are sufficient conditions to ensure asymptotic stability for
the closed-loop system without non-feasible regions Oi (Limon
et al., 2008; Ferramosca et al., 2009).

Assumption 4. Let R ∈ Rm×m be a positive definite matrix
and Q ∈ Rn×n a positive semidefinite matrix such that the pair
(Q1/2, A) is observable.

Assumption 5. Let K ∈ Rm×n be a stabilizing control gain such
that the matrix AK = A + BK is Schur.

Assumption 6. Let P ∈ Rn×n be a positive definite matrix, so-
lution of the Lyapunov equation P = A′K PAK + Q + K′RK.

Assumption 7. Let Ωa
t ⊆ Rn+n+m be an admissible polyhedral

invariant set for tracking for (1) subject to (2), for a given gain
K. That is, ∀(x, xa, ua) ∈ Ωa

t , it holds that (x,K(x−xa)+ua) ∈ Z,
(xa, ua) ∈ λZs, and (Ax + B(K(x − xa) + ua), xa, ua) ∈ Ωa

t .

Assumption 8. Let the offset cost Vo f (·) : R2p 7→ R≥0 be a con-
tinuous, convex, and positive definite function with Vo f (0, 0) =
0 for k = 0, such that arg min

ya∈Yr
Vo f (ya, yt) is unique for any yt.

Defining Ωt = Projx(Ωa
t ), the feasible region XN(Ωt) is de-

fined as the N-steps controllable set to Ωt. Notice that XN(Ωt)
is by definition the domain of attraction for the proposed con-
troller. Furthermore, to provide the controller with avoidance
features and to later derive the ISS property with respect to the
avoidance cost, consider the following assumption.

Assumption 9. Let Vav (·) : Rp 7→ R≥0 be the continuous func-
tion Vav (·) =

∑No
i=1

[
µiF(ya,Oi) +

∑N
j=0 µiF(y( j),Oi)

]
. More-

over, let the bound of the avoidance function be defined as
S = sup(Vav(·)), such that Vav(·) → S if ya < Ỹ or y( j) < Ỹ
for any j ∈ I0:N , with Vav(·) = 0 whenever ya ∈ Ỹ and y( j) ∈ Ỹ
for all j ∈ I0:N .

The controller is derived from the solution of the optimiza-
tion problem PO

N(x, yt,Oi) given by

VO
N (x, yt,Oi) = min

u,xa,ua
VN(x, yt,Oi; u, xa, ua)

s.t. x(0) = x, (13a)
x( j + 1) = Ax( j) + Bu( j), (13b)
y( j) = Cx( j) + Du( j), (13c)
(x( j), u( j)) ∈ Z, j ∈ I0:N−1, (13d)
ya = Cxa + Dua, (13e)
(x(N), xa, ua) ∈ Ωa

t , (13f)

with constraints (13a)-(13d) subjecting the predicted trajectory
to the system dynamics and constraints, and with constraints
(13e) and (13f), respectively, defining the artificial steady-
output related to an artificial equilibrium and enforcing the ter-
minal state to be in a region where the system can be stabilized
by a local control law u = K(x − xa) + ua. Notice that the con-
straints of the problem PO

N(x, yt,Oi) do not depend on yt, mak-
ing it feasible for any changing set-point. Additionally, the re-
sulting optimization problem has a known convex output space
because the inclusion of the previously unknown non-feasible
regions Oi as penalties allowed the use of the known admissi-
ble set Z in constraint (13d). Furthermore, the penalty approach
makes the set Ωa

t time-invariant, which allows it to be obtained
through offline computation.

Considering the receding policy of MPC controllers and that
the problem (13) is solved at each sampling time based on the
current knowledge of the optimization parameters, the optimal
control law is given by κo

N(x, yt,Oi) = uO(0; x, yt,Oi).
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Theorem 1. (Asymptotic stability (Ferramosca et al., 2009,
Theorem 1)) Consider that Assumptions 1, 2, and 4 to 8 hold
for (1) constrained by (2) without the presence of non-feasible
output regions Oi. For a given target yt and for any feasible
initial state x ∈ XN(Ωt), the closed-loop system with κo

N(x, yt) is
stable, fulfills the constraints throughout the time and, besides

(i) If yt ∈ Yr, the closed-loop system asymptotically converges
to yt.

(ii) If yt < Yr, the closed-loop system asymptotically converges
to a reachable steady-output that minimizes Vo f (ya, yt).

Theorem 2. (ISS-based avoidance) Consider that Assumptions
1 to 9 hold, then the closed-loop system with κo

N(x, yt,Oi) is ISS
with respect to the avoidance cost Vav(·), i.e., there is a KL-
function β(·) and a K-function γ(·) such that for any feasible
initial state x(0) ∈ XN(Ωt), steady-state xs ∈ Zs, and bound S ,
the solution ϕ(k; x(0),u) exists and satisfies for all k ∈ I>0

∥ϕ(k; x(0),u) − xs∥ ≤ β(∥x(0) − xs∥, k) + γ(S ). (14)

Theorem 2 can be interpreted as follows. In presence of non-
feasible output regions, the avoidance cost acts as disturbance
and only ISS can be ensured. Therefore, the closed-loop system
converges to a bounded set around a steady-state, either desired
or feasible. Besides, depending on the penalties obtained, only
local convergence might be achieved. In this context, asymp-
totic stability in the terms of Theorem 1 is only recovered when
the avoidance cost goes to zero.

To demonstrate Theorem 2, first, we prove that the con-
trolled system is recursively feasible. Afterward, as proposed
in Alessandretti et al. (2017), a shifted value function is de-
fined to account for the effect of the avoidance cost. Then, up-
per and lower bounds are obtained, as well as a bound on the
shifted value function decrease. Finally, inspired by Alessan-
dretti et al. (2017) and following the procedure presented in
Jiang and Wang (2001), it is shown that the closed-loop system
is ISS with respect to the bound S and, consequently, to the
avoidance cost functional. Proofs of the following lemmas can
be found in the Appendix.

Lemma 1. (Steady condition convergence) Consider that As-
sumptions 1 to 9 hold for the system (1) constrained by (2). For
any feasible initial state x ∈ XN(Ωt), target yt, and bound S , let
the optimal solution to PO

N(x, yt,Oi) be such that x = xO
a , u = uO

a ,
and y = yO

a . Moreover, let (xs, us, ys) be the optimal triplet sat-
isfying (5), such that function Vo f (ya, yt) + Vav(y, ya,Oi) is min-
imized. Then, x = xs, u = us, and y = ys.

Lemma 2. (Artificial error boundedness) Consider that the As-
sumptions 1 to 9 hold. Let xs be the optimal steady-state asso-
ciated to the optimal target ys, such that function VN(x, yt,Oi)
is minimized. For all x ∈ XN(Ωt) and xO

a ∈ Projx(Zs), define the
function e(x) = x − xO

a . Then, there exists a K-function αe(·)
such that ∥e(x)∥ ≥ αe(∥x − xs∥).

Lemma 3. (Recursive feasibility) Consider that Assumptions 1
to 8 hold, then the closed-loop system with κo

N(x, yt,Oi) is re-
cursively feasible for any feasible state x ∈ XN(Ωt).

Consider as a Lyapunov candidate for the problem
PO

N(x, yt,Oi) the shifted value function defined as Vs(x, yt,Oi) =
VN(x, yt,Oi) − S .

Lemma 4. (Upper bound) Consider that Assumptions 1 to 9
hold and let αc(·) be aK∞-function, then the shifted value func-
tion Vs(·) satisfies Vs(x, yt,Oi) ≤ αc(∥x − xs∥).

Lemma 5. (Lower bound) Consider that Assumptions 1 to 9
hold and let αb(·) be aK∞-function, then the shifted value func-
tion Vs(·) satisfies Vs(x, yt,Oi) ≥ αb(∥x − xs∥) − S .

Lemma 6. (Decreasing property) Consider that Assumptions 1
to 9 hold and let α(·) be a K∞-function, then the shifted value
function Vs(·) satisfies VO

s (x(k + 1), yt,Oi) − VO
s (x(k), yt,Oi) ≤

−α(∥x − xs∥) + S .

Lemma 7. (ISS bound) Consider that Assumptions 1
to 9 hold, then there exists a KL-function β̂ such
that the shifted function Vs(·) satisfies VO

s (x(k), yt,Oi) ≤

max{β̂(VO
s (x(0), yt,Oi), k), γ̂(S )}, where γ̂(r) = α̂−1 ◦ ρ−1(r) for

all k ∈ I≥0, with ρ(·) being a K∞-function such that (id − ρ)(·)
is a K∞-function, and with α̂(·) being a K∞-function such that
α̂(r) ≤ αb ◦ α

−1
c (r), for all r ≥ 0, and with (id − α̂)(·) being a

K-function.

Proof. (Theorem 2) From Lemma 5 and Lemma 7, and know-
ing that max{a, b} ≤ a + b ≤ max{2a, 2b},

αb(∥x − xs∥) ≤ max{β̂(VO
s (x(0), yt,Oi), k), γ̂(S )} + S

≤ max{2β̂(VO
s (x(0), yt,Oi), k), 2γ̂(S ), 2S }, (15)

and by the monotonicity of α−1
b (·)

∥x − xs∥ = α
−1
b ◦max{2β̂(αc(∥x(k0)−xs∥), k), 2γ̂(S ), 2S }

≤ α−1
b ◦ 2β̂(αc(∥x(k0)−xs∥), k)) + α−1

b ◦ 2γ̂(S ) + α−1
b (2S ).

(16)

Moreover, let β(·) and γ(·) be class-KL and class-K∞ functions,
respectively, defined as β(r1, s) = α−1

b ◦2β̂(αc(r1, s)) and γ(r2) =
α−1

b ◦ 2γ̂(r2) + α−1
b (2r2).

Based on Lemmas 4 to 6, Vs(x, yt,Oi) is a ISS-Lyapunov
function for (1) with bounds β̂(·) and γ̂(·). Then, from Jiang and
Wang (2001, Lemma 3.5), the system is ISS, i.e., ∥ϕ(k; x(0),u)−
xs∥ ≤ β(∥x(0) − xs∥, k) + γ(S ) for all k ∈ I>0, which concludes
the proof.

Remark 2. (Terminal Equality Constraint) Considering a ter-
minal equality constraint is a practical way to implement the
proposed controller. For that, let (xa, ua) ∈ λZs, x(N) = xa,
and P = On,n. Following the same arguments presented before,
it can be proved that the results of Theorem 2 and Lemma 3
still hold under the mild assumption that the N-controllability
matrix of the system, CoN = [AN−1B · · · AB B], has full rank.

4. Controller Properties

In addition to the stability guarantees proved before, some
properties of the set-point tracking MPC strategy still hold after
the inclusion of the avoidance penalty cost.
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Property 1 (Stability under changing references). Theorems 1
and 2 show that the closed-loop system with κo

N(x, yt,Oi) is ISS
with respect to the avoidance cost and asymptotic stable for a
given target yt if the avoidance cost tends to zero, i.e., if there
are no non-feasible output regions Oi. Besides, since the con-
straints of the problem PO

N(x, yt,Oi) do not depend on yt, the
closed-loop system is feasible for any changing target. Thus,
even in the presence of significant changes in yt, the controller
is still well-posed and recursive feasibility and input-to-state
stability are not lost.

Property 2 (Unreachable references). In the case of unreach-
able references, either due to the system dynamics and con-
straints or due to non-feasible output regions Oi, i.e., yt < Yr,
yt < Ỹ, or y(k) < Ỹ for some k ≥ 0, the controller will steer
the system to a reachable steady-output ys ∈ Yr ⊂ Ỹ such that
ys = arg min

ya∈Yr
Vo f (ya, yt) + Vav(y, ya,Oi). The same behavior oc-

curs in the case of local solutions to the optimization problem.

Property 3 (Enlarged domain of attraction). Since the designed
terminal set Ωt in the worst case will be equal to the maxi-
mal admissible invariant set of a standard MPC (Mayne et al.,
2000), the domain of attraction XN(Ωt) is said to be enlarged
(see Limon et al. (2008) for further details).

Property 4 (Avoidance guarantees). Avoidance can be ensured
only if at each sampling period the artificial and the predicted
output sequence lie outside any non-feasible output regions
Oi, i.e., ya < Oi and y < Oi. These constraints, and conse-
quently avoidance, can be enforced exactly through the penalty
function (11) if µi → ∞ or if the penalization is considered
with ϵ = 1 and µi greater than the biggest corresponding La-
grange multiplier (Luenberger and Ye, 2008; Ferramosca et al.,
2011). However, since exact penalization often results in ill-
posed optimization problems and µi → ∞ violates Assumption
9, non-exact penalization may be chosen together with a def-
inition of safety regions around the non-feasible regions Oi to
ensure avoidance while keeping the avoidance cost superiorly
bounded, e.g., by considering σiOi with σi > 1. Furthermore,
this cautious approach of considering an enclosure of Oi can be
exploited to mitigate uncertainties, such as measurement, esti-
mation, modeling, and linearization errors.

5. Examples

This section presents two simulated examples obtained to
corroborate the effectiveness of the proposed MPC strategy to
provide set-point tracking control with avoidance features. The
first one considers a ball-on-plate system with a known non-
convex admissible output set. The second example considers a
UAV navigating in a cluttered environment with previously un-
known obstacles. In both cases, the simulations are performed
with MATLAB® using the CasADI Toolbox (Andersson et al.,
2019) with the IPOPT solver (Wächter and Biegler, 2005).

5.1. Ball-on-plate with non-convex plate
Consider the ball-on-plate system with non-convex admissi-

ble output set proposed in Cotorruelo et al. (2021). Based on

a reference frame rigidly attached to the center of the plate, let
p1 and p2 be the position of the ball and θ1 and θ2 be the an-
gle of the plate, both along the reference frame axes. Thus, the
mechanical system can be modeled for simulation purposes as

p̈1 =
m

m+Ib/r2 (p1θ̇
2
1 + p2θ̇1θ̇2 + g sin θ1), θ̈1 = a1,

p̈2 =
m

m+Ib/r2 (p2θ̇
2
2 + p1θ̇1θ̇2 + g sin θ2), θ̈2 = a2,

(17)

with the parameters m = 0.05 Kg, r = 0.01 m, and Ib = 2.5·10−6

Kg·m2 being, respectively, the ball mass, radius, and inertia mo-
ment. Moreover, g = 9.81 m/s2 is the gravitational acceleration.

From (17) and considering the system actuated through the
desired angular acceleration of the plate, the state and input
vectors can be defined as x = [p1 p2 θ1 θ2 ṗ1 ṗ2 θ̇1 θ̇2]′ and
u = [a1 a2]′. Further, the output of the system is y = [p1 p2]′.
The system input is constrained by ∥u∥∞ ≤ 0.2, and the admis-
sible output space is constrained by the ellipsoids Y1 = {y :
(y− yc1 )′E1(y− yc1 ) ≤ 1} and Y2 = {y : (y− yc2 )′E2(y− yc2 ) ≤ 1},

with E1=

[
16 0
0 0.5

]
, E2=

[
5.8551 7.3707
7.3707 10.6449

]
, yc1 =yc2 =

[
0 0

]′
.

Following the proposed methodology, the admissible output
set is Ỹ = Y1∪Y2. However, for control design purposes, we
consider the output admissible set to be Y = {y : ∥y∥∞ ≤ 2}
with an associate avoidance cost functional to avoid the non-
feasible output region O = Y− Ỹ . The system is constrained to
Ỹ if the disjoint constraint y ∈ Y1∨y ∈ Y2 holds. Notice that in
this example it is easier to define the constraint y ∈ Ỹ instead
of y < O. For that, we need a penalty function F(y, Ỹ) that is
greater than zero when y < Ỹ , and zero otherwise. Considering
the disjoint constraint y ∈ Y1 ∨ y ∈ Y2 to obtain y ∈ Ỹ , such
a function can be obtained from the product of the functions
describing Y1 and Y2 (Hermans et al., 2018), yeilding F(y, Ỹ) =
(max{0, g1(y)}max{0, g2(y)})2, where g1(y)= (y−yc1 )′E1(y−yc1 )−
1+γ1 and g2(y)= (y− yc2 )′E2(y− yc2 )−1+γ2, with γ1=γ2=0.15
being a constant to define a safety region around O.

The linear model required for prediction is obtained from
(17) through the linearization around the equilibrium condition
(xeq, ueq) with xeq = O8,1 and ueq = O2,1. Afterward, the lin-
earized system is discretized considering the Euler approxima-
tion with sampling time Ts = 0.25 s. The system starts in the
initial condition x(0) = [0 − 1.2 0 0 0 0 0 0]′, and it is re-
quired to reach two distinct target outputs, yt1 = [−0.85 0.60]′

and yt2 = [1 − 0.25]′. The horizon prediction is N = 8, the
weighting matrices are Q = diag{2, 2, 1, 1, 10, 10, 50, 50} and
R = diag{0.01, 0.01}, the stabilizing control gain K is the lin-
ear quadratic regulator gain, and the terminal cost P is obtained
solving the associated Riccati equation. Furthermore, for the
avoidance cost, we consider µ = 105, while the offset cost is
defined as Vo f (ya, yt) = ∥ya − yt∥

2
κ with κ = diag{104, 104}.

Figure 1 shows the shape of the non-convex plate defined by
the union of the ellipses Y1 and Y2. In addition, it depicts the
output trajectory performed by the closed-loop system from the
initial condition towards both desired outputs yt1 and yt2 (indi-
cated by the black x-shaped markers). For the target yt1 , notice
that the position of the ball starts following the ellipse Y1 con-
tour with a safe distance until there is a clear path towards the
output target. This behavior can be seen in more detail in the
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Figure 1: Complete trajectory performed by the ball over the non-convex plate
composed by the union of two ellipses when tracking the targets yt1 and yt2 ,
which are depicted, respectively, by the blue and the red-dashed lines. In the
figure, the black cross-markers denote the desired set-points.

left plots of Figure 2(a). Notice that, especially on the upper-
left graphic, the tracking error decay rate reduces up to the point
where it becomes almost constant. After the cornering point
where the ellipses intersect each other, the decay rate increases
again. Unlike any controller designed only for set-point track-
ing, the avoidance term disturbs the asymptotic convergence
when necessary. However, since the closed-loop system is ISS
with respect to the avoidance cost, at some point the effect of
the avoidance may vanish and the asymptotic convergence to
an admissible steady-output point is reached again. Analyzing
the trajectory to the target yt2 , it is possible to observe the sec-
ond condition of Theorem 1 since the target is unfeasible, i.e.,
yt2 < Yr∩Ỹ . As expected, the system converges to an admissible
output that minimizes Vo f (ya, yt2 )+Vav(y, ya,O). This behavior
is corroborated in the right plots of Figure 2(a) by noticing that
the tracking error converges to a positive value instead of zero.

Furthermore, Figure 2(b) shows for both targets the evolu-
tion of the ball position and the plate orientation together with
the artificial references denoted by the dashed lines. Besides
showing the convergence to the desired position, this figure also
depicts the angles stably converging to the steady condition of
null orientation of the plate. Finally, Figure 2(c) depicts the
calculated control inputs for both targets. It can be seen in the
figure that the controller was able to perform set-point tracking
while satisfying the constraints imposed on the control action.

Remark 3. On one hand, when compared to the results ob-
tained in Cotorruelo et al. (2021), the proposed controller is
less computationally efficient since its control law is derived
from the solution of a nonlinear programming problem while
in Cotorruelo et al. (2021) it only requires the solution of a
second order cone programming problem. On the other hand,
unlike Cotorruelo et al. (2021), the results obtained in this work
still hold if a convexifying homeomorphism of the output space
does not exist. These results are expected since the proposed
framework was developed to provide avoidance features.

5.2. UAV navigation in cluttered environment

Consider the quadrotor UAV described in (Raffo, 2011),
where the position of the body frame’s origin expressed in the
inertial frame is given by ξ = [xIyIzI]′ and its attitude by

η =
[
ϕ θ ψ

]′. Thus, the generalized coordinates describing the
quadrotor UAV motion can be chosen as q =

[
ξ′ η′

]′, which
leads to the state-vector x =

[
q′ q̇′

]′. Moreover, the system
inputs are u =

[
f1 f2 f3 f4

]′, with fi being the thrust force gen-
erated by the i-th rotor, and the output-vector is y = [xIyIzIψ]′.
Aiming to better emulate the vehicle dynamics during the sim-
ulation, a more complete dynamic model is considered taking
into account the coupling between translational and rotational
dynamics due to the displacement between the quadrotor’s ge-
ometric center and its center of mass. However, for control
design purposes, this displacement is neglected, and, for pre-
diction, it is used a model linearized around the equilibrium
qeq = [ξeq

′ ηeq
′]′ and ueq =

[
f1,eq f2,eq f3,eq f4,eq

]′
. For the sake

of simplicity, the models are omitted.

Since the proposed control strategy requires a discrete dy-
namical model, a sampling time of Ts = 0.01 s is consid-
ered for discretization using the Euler approximation. Also, to
access the capacity of avoiding non-feasible regions, we con-
sider a 48 × 30 × 20 m map with 7 rectangle-shaped obsta-
cles obstructing the UAV workspace. A 3D lidar-like sensor
is emulated to detect the obstacles within a spherical range of
4 m based on the quadrotor UAV global position and the en-
vironment map. However, it is noteworthy that, from the con-
trol algorithm standpoint, the obstacles are previously unknown
and perceived only by the obstacle detection system. Hence,
they are only avoided when inside the sensor range. Based on
the sensor information, the obstacles are defined in execution
time as a 2 m radius sphere centered in the closest point mea-
sured in the boundary of the obstacle. Therefore, considering
g(y,Oi) = −(y− yci )

′I3(y− yci )+ 22, the penalty function can be
defined as F(y,Oi) = max{0, g j(y,Oi)}2.

Here, we consider the terminal equality constraint ver-
sion of the controller (see Remark 2) with horizon N =

50 and the weighting matrices Q = diag{1, 1, 1, 0.1, 0.1,
1, 1, 1, 1, 10, 10, 1} and R = diag{10, 10, 10, 10}. As for the
offset and avoidance costs, Vo f (ya, yt) = ∥ya − yt∥

2
κ with κ =

diag{4000, 4000, 30000, 4000} and µi = 40000, for all Oi. Also,
the admissible input set is U = {( f1, f2, f3, f4) ∈ R4 : 0 ≤ fi ≤
12, i = 1, . . . , 4}, and the admissible state set is defined accord-
ingly to the map dimensions and the system operational condi-
tions X = {[ξ′ η′ ξ̇′ η̇′]′ : [−24 − 15 0]′ ≤ ξ ≤ [24 15 20]′, |η| ≤
[π/2 π/2 π]′, |ξ̇| ≤ [5 5 5]′, |η̇| ≤ [π/2 π/2 π/2]′}.

In this simulation scenario, the quadrotor UAV is required to
go autonomously from its initial position [−17 − 12 0]′ to the
desired position [18.75 8 15]′, depicted in the upper part of Fig-
ure 5.2, with ψ = 0. It is expected that the proposed set-point
tracking MPC with avoidance features will find an alternative
path around the obstacles by means of the artificial variables.
In fact, Figure 5.2 shows the vehicle after it reaches the goal
and the alternative path performed to reach the desired target.
Then, the use of the proposed control strategy provides the sys-
tem with two interesting features. First, in the presence of ob-
stacles, the controller autonomously finds a path around them
by means of the artificial variables. Second, it provides feasible
intermediary equilibrium points when the required target is not
reachable in N steps by the system due to its dynamics and con-
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(a) Tracking error (b) States (c) Inputs

Figure 2: (a) Absolute output tracking error with ep1 = p1 − p1t and ep2 = p2 − p2t for the targets yt1 and yt2 . In the figure, it is illustrated the relation between
error reduction and avoidance. (b) Time evolution of the ball position (p1 and p2) and the plate angles (θ1 and θ2) during the tracking of the provided targets. In the
figures, the dashed lines denote the artificial references. (c) Time evolution of the desired angular accelerations (a1 and a2), the manipulated variables of the system.

straints. It is worthwhile mentioning that the obstacles shape
and spatial distribution has direct impact on the ability to obtain
a global solution to the optimal control problem. However, the
proposed formulation does not limit neither the shape nor the
spatial distribution of the regions to be avoided. Furthermore,
by perceiving the obstacles within a given range as spheres cen-
tered in the closest points measured in the boundaries of each
obstacle, from the control algorithm standpoint, the number and
position of the perceived obstacles change over-time despite the
environment being static. Figure 4 exemplifies this behavior by
showing the number of detected obstacles at each time instant.

The avoidance process can also be verified by looking at the
absolute position error. In fact, the control algorithm gives up
performance to achieve safe navigation, which can be seen in
Figure 5(a) where the error stops decreasing at some points even

Figure 3: Trajectory performed by the UAV (black line) to safely complete a
given task while avoiding 7 previously unknown obstacles, which are denoted
by the green rectangle-shaped objects. In the figure, the UAV is denoted as a
black cross with blue and red spheres in its extremities and the light red sphere
around the UAV denotes the range in which obstacles can be detected.
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Figure 4: Number of obstacles being perceived by the 3D lidar-like sensor em-
ulated to detect obstacles within a given range.

before converging to zero. Moreover, Figure 5(b) presents the
time evolution of the quadrotor UAV orientation stably converg-
ing to an equilibrium value. This is expected since at the end of
the task execution the UAV will be in hovering flight mode due
to the equilibrium condition of the artificial variables. Notice
that, since the artificial steady-output is defined in the output
level, there is no need to require a reference for ϕ and θ. In fact,
the artificial orientation, which are depicted in Figure 5(b) as
dashed lines, is obtained from the artificial position by means
of the model constraints. Finally, Figure 5(c) shows the control
signals applied to the quadrotor UAV.

6. Conclusions

In this work, it was proposed a linear model predictive con-
trol strategy able to perform set-point tracking while avoiding
non-feasible regions inside the prior known admissible space.
For that, three main ingredients were considered: i) artificial
variables to represent artificial steady conditions; ii) offset cost
functional playing the role of a steady-state target optimizer;
and iii) an avoidance cost functional avoiding the system evolu-
tion to lie inside non-feasible regions. It was shown that, under
mild conditions, the closed-loop system is ISS with respect to
the avoidance cost. Thus, it was possible to demonstrate that
the closed-loop system is stable and recursively feasible. Two
numerical examples were proposed to analyze the behavior of
the proposed control strategy. First, a ball-on-plate system with
a non-convex plate is considered to show how a problem with
non-convex admissible sets could be handled within the pro-
posed formulation. Second, it is considered the autonomous
navigation problem of a quadrotor UAV in a cluttered envi-
ronment with previously unknown obstacles. In future works,
the proposed control strategy will be extended to the nonlinear
case, robustification strategies will be addressed to handle un-
certainties, and computationally efficient solutions will be pro-
posed aiming at real-world applications.

Appendix. Proof of Lemmas 1 to 7

Proof. (Lemma 1) Consider that (xO
a , u

O
a , y

O
a ) is the optimal

solution to PO
N(x, yt,Oi). Then VO

N (x, yt,Oi) = Vo f (yO
a , yt) +
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Figure 5: (a) Absolute output tracking error illustrating the relation between error reduction and avoidance. In the figure, ex = x − xt , ey = y − yt , and ez = z − zt .
(b) Time evolution of the quadrotor UAV orientation (ϕ, θ, and ψ) during the execution of the provided task. In the figures, the dashed lines denote the artificial
references. (c) Time evolution of the applied lift forces to the quadrotor UAV, with fi being the lift force of the i-th propeller.

Vav(y, yO
a ,Oi). This Lemma will be proved by contradiction,

extending the results of Limon et al. (2018, Lemma 1) for the
case with avoidance. For that, assume now that the station-
ary point is not optimal, i.e., (xO

a , u
O
a ) , (xs, us). Let us define

(x̃a, ũa) = β(xO
a , u

O
a ) + (1 − β)(xs, us) with β ∈ [0, 1]. Since

both (xs, us) and (xO
a , u

O
a ) are in Zs, and this set is convex, then

a convex combination of these points, (x̃a, ũa), is also in Zs.
Considering Assumptions 8 and 9, it is possible to obtain

a convex cost functional that superiorly bounds the non-convex
cost Vo f (ya, yt)+Vav(y, ya,Oi). Then, we can define VB(ya, yt) =
Vo f (yO

a , yt) + S , for any bound S , such that

VB(ỹa, yt) ≤ VB(yO
a , yt) (18)

for every β. In other words, since the system is not at the opti-
mal point (xs, us), it is more convenient to move towards (x̃a, ũa)
than to remain in (xO

a , u
O
a ).

Let ũ be a feasible control sequence that drives the system
from (xO

a , u
O
a ) to (x̃a, ũa). This sequence is such that, the j-th

element is given by ũ( j) = K(x̃( j) − x̃a) + ũa and x̃( j + 1) =
Ax̃( j) + Bũ( j), with x̃(0) = xO

a . Then, the cost to drive the
system to (x̃a, ũa) in N steps is

VN(xO
a , yt,Oi) =

N−1∑
j=0

∥x̃( j) − x̃a∥
2
Q + ∥K(x̃( j) − x̃a)∥2R

+∥x̃(N) − x̃a∥
2
P + Vo f (ỹa, yt) + Vav(ỹ, ỹa,Oi)

≤ ∥xO
a − x̃a∥

2
P + Vo f (ỹa, yt) + S

≤ (1 − β)2∥xO
a − xs∥

2
P + Vo f (ỹa, yt) + S .

Now define W(β) = (1−β)2∥xO
a − xs∥

2
P +VB(ỹa, yt) and notice

that for β = 1, W(1) = VB(yO
a , yt). Taking the partial deriva-

tive with respect to β and evaluating it for β = 1, we obtain
∂W/∂β|β=1 = gO′ (yO

a , yt), with gO′ (yO
a , yt) ∈ ∂VB(yO

a , yt), where
∂VB(yO

a , yt) is defined as the subdifferential of VB(yO
a , yt).

From convexity and from (18), ∂W/∂β|β=1 = gO′ (yO
a , yt) ≥

VB(yO
a , yt) − VB(ỹa, yt) > 0. This means that there exists a value

of β ∈ [0, 1) such that VB(ỹa, yt) is smaller than the value of
the cost VB(ỹa, yt) for β = 1, which is VB(yO

a , yt). This contra-
dicts the optimality of the solution of PO

N(x, yt,Oi). Then, it has
to be (xO

a , u
O
a ) = (xs, us), with (xs, us) being the minimizer of

Vo f (ya, yt) + Vav(y, ya,Oi), which concludes the proof.

Proof. (Lemma 2) This lemma extends the results of D'Jorge
et al. (2020, Lemma 4) for the case with avoidance. Thus, fol-
lowing a similar analysis, due to convexity, e(x) is a continuous
function (Rawlings and Mayne, 2009, Theorem A.23). More-
over, let us consider these two cases.

1. ∥e(x)∥ = 0 iff x = xs. In fact, i) if e(x) = 0, then x = xO
a ,

and from Lemma 1, this implies that xO
a = xs; ii) if x =

xs, then by optimality xO
a = xs, and then x = xO

a . Then,
∥e(x)∥ = 0.

2. ∥e(x)∥ > 0 for all ∥x − xs∥ > 0. In fact, for any x , xs,
∥e(x)∥ , 0 and moreover ∥x − xs∥ > 0. Then, ∥e(x)∥ > 0.

Therefore, since XN(Ωt) is compact (Vidyasagar, 1993, Chapter
5 - Lemma 6), there exists aK-function αe(·) such that ∥e(x)∥ ≥
αe(∥x − xs∥) on XN(Ωt), which concludes the proof.

Proof. (Lemma 3) For a feasible state x ∈ XN(Ωt) at time k,
the optimal cost functional is VO

N (x, yt,Oi), with the decision
variables (uO, xO

a , u
O
a ) being the optimal solution of the prob-

lem PO
N(x, yt,Oi). The obtained optimal control sequence uO =

(uO(0), uO(1), · · · , uO(N−1)) is associated with the optimal pre-
dicted state sequence xO = (xO(0), xO(1), · · · , xO(N−1), xO(N))
with xO(N) ∈ Ωt. Defining an auxiliary feasible input se-
quence ũ = (uO(1), · · · , uO(N − 1),K(xO(N) − xO

a ) + uO
a ), an

auxiliary feasible artificial state x̃a = xO
a , and an auxiliary

feasible artificial input ũa = uO
a , the state sequence associ-

ated to (ũ, x̃a, ũa) starting from x(k + 1) = Ax(k) + BuO(0) is
given by x̃ = (xO(1), · · · , xO(N), x(N + 1)), with x(N + 1) =
AxO(N) + B(K(xO(N) − xO

a ) + uO
a ). Since (xO(N), xO

a , u
O
a ) ∈ Ωa

t ,
the control action K(xO(N)− xO

a )+ uO
a is admissible and the ter-

minal state x(N + 1) is feasible due to the positive invariance of
Ωa

t , i.e., (x(N + 1), x̃a, ũa) ∈ Ωa
t . Therefore, x(k + 1) ∈ XN(Ωt),

proving that the closed-loop system is recursively feasible.

Proof. (Lemma 4) From the shifted value function definition,
the suboptimality of the feasible law u f , i.e., u f ( j) ∈ U ∀ j ≥
0, and the boundedness of the avoidance function implying
Vav(y, ya,Oi) − S ≤ 0, it holds that

N−1∑
j=0

∥xO( j) − xO
a ∥

2
Q + ∥u

O( j) − uO
a ∥

2
R + ∥x

O(N) − xO
a ∥

2
P

+ Vo f (yO
a , yt) + Vav(yO, yO

a ,Oi) − S
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≤

N−1∑
j=0

∥x( j) − xa∥
2
Q + ∥u f ( j) − ua∥

2
R + ∥x(N) − xa∥

2
P + Vo f (ya, yt)

= J(x). (19)

Since J(x) is a locally bounded continuous function with
J(xs) = 0 (Lemma 1), then there exists a K∞-function αc(·)
such that J(x) ≤ αc(∥x − xs∥), for all x ∈ XN(Ωt) (Rawlings and
Mayne, 2009).

Proof. (Lemma 5) From Assumptions 4 to 6, there is a K∞-
function α(∥x− xa∥) such that ∥x− xa∥

2
Q+∥u−ua∥

2
R+∥x− xa∥

2
P ≥

α(∥x−xa∥). Following the definition of the Vs(x, yt,Oi), we have

N−1∑
j=0

∥x( j) − xa∥
2
Q + ∥u( j) − ua∥

2
R + ∥x(N) − xa∥

2
P (20)

+ Vo f (ya, yt) + Vav(y, ya,Oi) − S≥
N−1∑
i=0

α(∥x − xa∥) − S .

Finally, based on Lemma 2 and on the optimality principle,

N−1∑
i=0

α(∥x− xa∥)−S ≥ α̂b(∥x− xO
a ∥)−S ≥ αb(∥x− xs∥)−S , (21)

with αb(r) = α̂b ◦ αe(r).

Proof. (Lemma 6) Let uO = (uO(0), uO(1), · · · , uO(N − 1))
be an optimal control sequence, ũ = (uO(1), · · · , uO(N − 1),
K(xO(N) − xO

a ) + uO
a ) be an auxiliary feasible input sequence,

yO = (yO(0), yO(1), · · · , yO(N)) be an optimal output sequence,
ỹ = (yO(1), · · · , yO(N), y(N + 1)) be an auxiliary feasible out-
put sequence, x̃a = xO

a be an auxiliary feasible artificial state,
ỹa = yO

a be an auxiliary feasible artificial output, and ũa = uO
a

be an auxiliary feasible artificial input with the triplet (x̃a, ũa, ỹa)
being the feasible solution to the one-step ahead optimization
problem. Further, let x(k + 1) = Ax(k) + BuO(0).

Comparing, at k + 1, Vs(x(k + 1), yt,Oi; ũ, x̃a, ũa) and
VO

s (x(k), yt,Oi), it is possible to obtain

Vs(x(k + 1), yt,Oi; ũ, x̃a, ũa) − VO
s (x(k), yt,Oi) =

− ∥xO − xO
a ∥

2
Q − ∥u

O(0) − uO
a ∥

2
R − ∥x

O(N) − xO
a ∥

2
P

− Vo f (yO
a , yt) − Vav(yO, yO

a ,Oi) + S + ∥xO(N) − x̃a∥
2
Q

+ ∥K(xO(N) − x̃a)∥2R + ∥x(N + 1) − x̃a∥
2
P + Vo f (ỹa, yt)

+ Vav(ỹ, ỹa,Oi) − S

≤−∥x − xO
a ∥

2
Q − ∥u

O(0) − uO
a ∥

2
R

+ Vav(ỹ, ỹa,Oi) − Vav(yO, yO
a ,Oi). (22)

Based on the boundedness of the avoidance function,
Vav(ỹ, ỹa,Oi) − Vav(yO, yO

a ,Oi) ≤ S , on the optimality princi-
ple, VO

s (x(k + 1), yt,Oi) ≤ Vs(x(k + 1), yt,Oi; ũ, x̃a, ũa), and on
Lemma 2, there is a K∞-function α(∥x − xs∥) such that

VO
s (x(k + 1), yt,Oi)−VO

s (x(k), yt,Oi) ≤ −α̂(∥x − xO
a ∥) + S

≤ −α(∥x − xs∥) + S , (23)

with α(r) = α̂ ◦ αe(r).

Proof. (Lemma 7)
This proof can be obtained following the steps considered in

Jiang and Wang (2001) to proof Lemma 3.5. Thus, rewriting
Lemma 6 and considering Lemma 4, we have

VO
s (x(k + 1), yt,Oi)−VO

s (x(k), yt,Oi) (24)

≤ −α ◦ α−1
c (VO

s (x(k), yt,Oi)) + S .

Without loss of generality, for α̂ = α ◦ α−1
c , we assume (id −

α̂)(·) to be a K-function. Let ρ be any K∞-function such that
(id−ρ)(·) is aK∞-function and consider the set defined byD =
{x : VO

s (x(k), yt,Oi) ≤ b}, where b = α̂−1 ◦ ρ−1(S ).

Claim 1. If there is some k0 ∈ Z>0 such that x(k0) ∈ D, then
x(k) ∈ D for all k ≥ k0.

Proof. Assume x(k0) ∈ D. Then VO
s (x(k0), yt,Oi) ≤ b, i.e.,

ρ ◦ α̂(VO
s (x(k0), yt,Oi) ≤ S . By (24),

VO
s (x(k0 + 1), yt,Oi) ≤ (id − α̂)(VO

s (x(k0), yt,Oi)) + S , (25)

and since id − α̂ is a K-function, we have

VO
s (x(k0 + 1), yt,Oi) ≤ (id − α̂)(b) + S

= −(id − ρ) ◦ α̂(b) + b ≤ b. (26)

By induction, it is possible to show that VO
s (x(k0+ j), yt,Oi) ≤ b

for all j ∈ Z>0, that is, x(k) ∈ D for all k ≥ k0.

We now let j0 = min{k ∈ Z>0 : x(k) ∈ D} < ∞. Then, it
follows from the above conclusion that VO

s (x(k), yt,Oi) ≤ γ̂(S )
for all k ≥ j0, where γ̂(r) = α̂−1 ◦ ρ−1(r). For k < j0, it holds
that ρ ◦ α̂(VO

s (x(k), yt,Oi)) > S , and hence

VO
s (x(k + 1), yt,Oi) − VO

s (x(k), yt,Oi)) (27)

≤ −α̂(VO
s (x(k), yt,Oi)) + S ≤ −(id − ρ) ◦ α̂(VO

s (x(k), yt,Oi))

By a comparison lemma (Jiang and Wang, 2002), there
exists some KL-function β̂ such that VO

s (x(k), yt,Oi) ≤

β̂(VO
s (x(0), yt,Oi), k) for all 0 ≤ k < j0. Thus,

VO
s (x(k), yt,Oi) ≤ max{β̂(VO

s (x(0), yt,Oi), k), γ̂(S )}, (28)

for all k ∈ Z>0.
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