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Abstract

The COVID-19 crisis highlighted the importance of non-medical interventions,
such as testing and isolation of infected individuals, in the control of epidemics. Here,
we show how to minimize testing needs while maintaining the number of infected
individuals below a desired threshold. We find that the optimal policy is adaptive,
with testing rates that depend on the epidemic state. Additionally, we show that
such epidemic state is difficult to infer with molecular tests alone, which are highly
sensitive but have a short detectability window. Instead, we propose the use of baseline
serology testing, which is less sensitive but detects past infections, for the purpose of
state estimation. Validation of such combined testing approach with a stochastic
model of epidemics shows significant cost savings compared to non-adaptive testing
strategies that are the current standard for COVID-19.

1 Introduction

A large literature in mathematical epidemiology has studied how to control and eradicate
diseases by means of therapeutics and vaccinations, [Nowzari et al., 2016, Behncke, 2000].
However, the influenza pandemic of 1918 and the current COVID-19 pandemic underscore
the difficulty of such eradication in the case of virulent viruses, and have necessitated mea-
sures to reduce transmissions, for example with the use of face masks [Chu et al., 2020], so-
cial distancing and costly lockdown measures [Flaxman et al., 2020, Bertuzzo et al., 2020]
[Di et al., 2020]. Another powerful tool to limit transmissions is early identification of
infected individuals and epidemic hot-spots in local communities, which can both be
accomplished by testing [Grassly et al., 2020, OECD, 2020]. Nevertheless, during the
COVID-19 pandemic testing resources have proven to be limited and expensive in much
of the world [AACC, 2020, Apuzzo and Gebredikan, 2020, Mervosh and Fernandez, 2020,
Pullano et al., 2020]; in the US, lack of testing capacity not only helped spread the virus
but also led to the underestimation of the severity of the pandemic in the first half of 2020,
[Fink and Baker, 2020]. This crucial role of testing notwithstanding, the question of how
limited testing resources can be deployed to optimally control the spread of a pandemic
has attracted relatively little systematic attention.

In this paper, we derive an optimal (dynamic) testing strategy in an SIR (Susceptible,
Infected, Recovered) model of epidemics. Because undetected individuals may pass the
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disease to others and may be more likely to develop serious symptoms requiring hospital-
ization, we start by assuming that the number of undetected infected individuals has to be
kept below a maximum imax at all times. We show that the optimal testing strategy takes
a simple form: the testing rate has to be time-varying in order to satisfy the constraint,
and takes the form of a most rapid approach path, [Spence and Starrett, 1975]. Namely,
there is no testing until undetected infections reach imax, after which testing resources are
used to keep infections at the threshold imax until infections decline naturally, bringing the
pandemic to an effective close. The intuition for this result is that it is not worth using
testing resources to keep undetected infections strictly below imax so long as the pandemic
is still ongoing and infections cannot be brought down to zero. Hence, the best approach is
to let the infection reach the threshold and then keep it there with a time-varying testing
policy. Note that such optimal time-varying strategy is state-dependent, that is, the level
of testing is dependent on the epidemic state (the current number of infected, susceptible
and recovered individuals).

The second contribution of our paper starts by recognizing that the epidemic state
needed to implement the aforementioned optimal testing strategy is typically hard to
know precisely, as highlighted by the early stages of COVID-19 spread in the US. In fact,
the most common qPCR tests for COVID-19, which are molecular tests based on detection
of the virus’ genetic material via quantitative polymerase chain reaction, may be ill-suited
to obtain such aggregate information. These tests identify infected individuals only during
a short window of time. For example, according to [Kucirka et al., 2020] the probability
of COVID-19 detection via qPCR is above 75% in a window of roughly a week within
active cases, while [Roche, 2020] gives a three weeks window for detectability of cases via
qPCR. In contrast, serology tests, which detect antibodies produced by the immune sys-
tem in response to current and past infections, identify infections during a longer window
[Kubina and Dziedzic, 2020], but are typically less sensitive and thus received relatively
less attention in the epidemic control literature. These problems are unlikely to be confined
to COVID-19 and would probably recur in the event of future pandemics. To systematize
these observations we study the effectiveness of both types of tests for identifying the epi-
demic state and find that serology tests, which have lower sensitivity but are faster, cheaper
and can reveal past infections, offer a better alternative than qPCR-like tests (from here
on termed molecular tests), which have high accuracy but a short-window of detection.
Namely, we show that if the transmission rate in the SIR model is time-varying, then the
epidemic state cannot be identified—is not observable—with molecular tests alone. Intu-
itively, just observing the flow of current infections may not be sufficient to distinguish
the nonlinear dynamic evolution of the system due to different initial conditions versus
different time-varying trajectories of transmission rates. Serology testing overturns this
result, however, by providing a cheap way of estimating the stocks of past infected and re-
covered individuals. This is despite the fact that serology tests may have significant Type
II errors because of low sensitivity (especially in the first stage - 0 to 6 days - of infection,
[Roche, 2020]). Indeed, we find that Type II errors, which can be very costly when the
purpose is to diagnose individual infections, are not problematic for the purpose of esti-
mating the epidemic state (which is aggregate information). For such purpose, detection
of recovered individuals is a more important feature than high sensitivity. Hence, serology
tests are an ideal complement to molecular tests for the purpose of estimating aggregate
infections—an intuition that is formally established by our mathematical analysis.

In addition to our main analysis, we consider two important extensions. First, we
study a variant of our baseline model of optimal testing in which both undetected and
detected infections have to be kept below a maximum threshold. In this case, the optimal
testing strategy is more complex. Nevertheless, we establish that the basic insights from
our baseline analysis generalize to this problem. Second, we recognize that in reality
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the dynamics of epidemics are intrinsically stochastic. To confirm the robustness of the
proposed approach, we apply our testing methodology to a stochastic continuous-time
Markov chain model of epidemics and develop an extended Kalman filter [Khalil, 2015]
to estimate the epidemic state in the presence of stochasticity. To this end, we exploit
an expansion of the master equation governing the probability distribution of the Markov
chain model [van Kampen, 2007, Gardiner, 2009] to derive a description of the epidemic
dynamics in terms of a Langevin equation, whose mean coincides with the deterministic
SIR model used for computing the optimal testing strategy. The covariance matrix of the
noise term in the Langevin equation (which can be explicitly characterized as a function
of the epidemic state) is then given as input to the extended Kalman filter to optimally
incorporate new observations in the model predictions.

Our paper is related to the growing literature on SIR models, especially applied to
the recent COVID-19 pandemic. Classic references on the SIR model and its applica-
tions to model epidemics include [Kermack and McKendrick, 1927, Daley and Gani, 2001,
Diekmann and Heesterbeek, 2000, Keeling and Rohani, 2011, Andersson and Britton, 2012].
Additionally, see [Pastor-Satorras et al., 2015] for a review of models of epidemic processes
over networks and [Anderson and May, 1992, Nowzari et al., 2016] for analysis and con-
trol of epidemic models. Several papers developed more general compartmental models
for analyzing the spread of COVID-19 and examining the effects of interventions (see e.g.,
[Gatto et al., 2020, Atkeson, 2020, Stock, 2020, Cashore et al., 2020, Zhang et al., 2020,
Chinazzi et al., 2020]). Other papers, such as [Paré et al., 2017, Hota and Sundaram, 2019,
Paré et al., 2020, Hota and Gupta, 2020] analyzed the spread of epidemics over both time-
varying and static networks.

Our work is more closely connected to a smaller literature that considers testing within
this framework. [Alvarez et al., 2020, Acemoglu et al., 2020a, Brotherhood et al., 2020]
consider testing in the context of optimal lockdown policies in SIR models (in the lat-
ter two papers with explicit recognition of heterogeneities across different age groups).
Neither of these papers studies optimal testing, nor discusses the problem of identifying
the underlying epidemic state, which is assumed to be known in this branch of the lit-
erature. [Acemoglu et al., 2020b] considers optimal testing in a simple model of disease
percolation, but their focus is on the countervailing effects that testing creates by dis-
couraging social distancing among certain groups of individuals. Moreover, their analysis
is simplified by focusing on a non-SIR percolation model that enables explicit character-
ization and they do not discuss the issue of estimating the underlying epidemic state.
[Drakopoulos and Randhawa, 2020] studies settings where accurate tests are not available
in abundance. They show that moderately good tests provide enough information to have
a positive social outcome, and that it is not optimal to wait for tests with very high
accuracy. Similarly, [Larremore et al., 2020] compared molecular and antigen tests and
found that test sensitivity is less important than testing frequency for screening purposes.
[Kraay et al., 2020] suggests the use of serology testing to allow seropositive individuals
(i.e., individuals with immunity) to increase their level of social interaction. They con-
clude through extensive simulations that serology testing has the potential to mitigate the
impacts of the COVID-19 pandemic while also allowing a substantial number of individ-
uals to safely return to social interactions and to the workplace. Information about the
epidemic state of individuals obtained through both qPCR and serology tests is used in
[Li et al., 2020a] to derive disease-dependent lockdown policies. [Vespignani et al., 2020]
highlights the need for integrating seroepidemiological data into transmission models to
reduce the uncertainty in the parameter estimates of clinical severity and transmission dy-
namics. [Behncke, 2000] studies the optimal testing policy when the objective is a weighted
combination of the cost of infection and testing with no constraints on the state variables.
They show that the optimal testing policy takes the maximal value until some time and

3



then zero after. The key novelty of our work is to suggest the combined use of serology
testing for the purpose of state estimation with molecular testing for optimal containment
of the number of infected within a desired thresholds, together with an analytic derivation
of the optimal adaptive testing rates.

In characterizing optimal controls in an SIR framework, our paper is related to a
few other papers that study optimal lockdown policies in SIR models. These include
[Miclo et al., 2020], which provides an analytical characterization of optimal lockdown
policies in a setting where suppression is costly and there is an upper bound on the number
of infections, representing a constraint on intensive care unit resources. Another related
paper in this regard is [Kruse and Strack, 2020] which studies optimal social distancing
measures to minimize a combination of the total health and economic cost of the infected
population and the cost of reducing the transmission rate. The key difference of our work
is that we focus on testing as a means to identify and isolate infected individuals instead
of lockdown policies that impose a degree of isolation to an entire community.

Finally, because of its analytical focus, our paper is distinguished from a large number
of recent papers that analyze intervention policies numerically (see e.g., [Zaman et al., 2008,
Sharma and Samanta, 2015, Di Giamberardino and Iacoviello, 2017, Farboodi et al., 2020],
[Gollier and Gossner, 2020], [Berger et al., 2020] among others). As detailed in the dis-
cussion section, we believe that the theoretical insights generated from our analysis of the
SIR model highlight fundamental mechanisms and properties related to the use of testing
as a tool for controlling an epidemic, that can then be generalized and refined to more
sophisticated models of specific epidemics as typically done in the numerical literature
above.

2 Results

2.1 Optimal adaptive testing strategies

We model the progression of the epidemic in a population via a Susceptible-Infected-
Recovered (SIR) model with three compartments corresponding to susceptible, infected
and recovered individuals. Testing is introduced in the model by partitioning the infected
compartment into infected individuals that have not yet been detected and are free to
circulate, which we term infected-undetected (Iu), and infected individuals that have been
detected and are therefore separated from the general population (e.g., quarantined),
which we term infected-detected (Id) (see Fig. 1A). Infected-undetected individuals infect
susceptible ones with possibly time-varying transmission rate β(t), denoting the number
of contacts per unit time multiplied by the probability that a contact leads to infection.
For the purpose of controlling the epidemics, we assume that molecular testing (such as
qPCR) is performed at rate θ(t) and has sensitivity η, i.e., infected individuals who get
tested are detected with probability η. Individuals that test positive for the infection
are quarantined and moved to the infected-detected compartment. Infected individuals
become recovered with rate γ. The corresponding model equations are:

ds(t)

dt
= −β(t)s(t)iu(t)

diu(t)

dt
= β(t)s(t)iu(t)− γiu(t)− ηθ(t)iu(t)

did(t)

dt
= ηθ(t)iu(t)− γid(t)

dr(t)

dt
= γiu(t) + γid(t),

(1)
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where small letters denote the fraction of individuals in each compartment. We assume
that the population size is constant with time, thus the last equation is redundant since
r = 1− s− iu − id.

ɣiu

ɣid

ηθiu ηBIθBiu ηBRθBru

S Iu

Id Rd

Ru
βsiu

ɣiu

ɣid

S Iu

Id

R

βsiu

A. Model for the derivation of optimal testing policies

B. Model for state estimation

ηθiu

Figure 1: The deterministic epidemiological models used for the derivation of optimal
testing policies (A) as discussed in Section 2.1 and for state estimation (B) as discussed
in Section 2.2. Individuals in the population are divided in compartments according to
their epidemiological state. In (A), Susceptible individuals (S) are infected via contact
with infected-undetected individuals (Iu), which either transition to the infected-detected
(Id) compartment if they are tested positive for infection, or to the Recovered (R) com-
partment if they recover from the infection before being tested positive. Infected-detected
individuals also recover from the infection. In (B), infected-undetected individuals (Iu)
can transition to the infected-detected state by being tested positive via either adaptive
molecular testing or baseline testing. Infected-undetected individuals can also transition
to the recovered-undetected (Ru) compartment, if they recover from the infection before
being tested positive or displaying symptoms. With serology baseline testing, recovered-
undetected individuals can transition to the recovered-detected compartment (Rd) if they
are tested positive for past infection. Infected-detected individuals transition directly to
the recovered-detected compartment when they recover from the infection. Transitions
between compartments are indicated along with the corresponding rates, orange arrows
indicate transitions due to serology testing.

Subject to these dynamics, we aim at solving the following constrained optimization
problem:

min
θ(·)≥0

∫ ∞
t=0

θ(t)dt

such that: iu(t) ≤ imax ∀t.
(2)

In words, our goal is to design the optimal adaptive testing rate to minimize the total
number of tests needed while controlling the epidemic so that the fraction of infected-
undetected individuals always remains below a desired threshold imax � 1. This constraint
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is motivated by two considerations. First, infected-undetected individuals circulate freely
in the society and infect others, and thus a high number of such individuals would lead to a
rapid takeoff in infections. Second, because they do not receive care, undetected infected
individuals may later develop severe complications, and may need emergency intensive
care unit (ICU) capacity, which has proven to be in short supply during the COVID-
19 pandemic. The appropriate level of imax is a policy choice, and depends on several
factors, including whether policymakers are intending to keep the reproduction rate of the
pandemic below one and the maximum surge capacity of ICU resources.

Our first main result provides a complete characterization of the optimal adaptive
policy for problem (2). For simplicity we here discuss the case when the transmission rate
β is constant (i.e., β(t) = β for all times). In this case, we say that the system reaches
herd immunity when the epidemic state is such that s(t) = γ/β, as from that time on the
number of infected-undetected individuals decreases even without testing. We prove an
analogous theorem with time-varying monotonic β(t) in the Supplementary Materials.

Theorem 1. The optimal testing policy θ†(t) for problem (2) with dynamics as in Eq. (1)
and constant transmission rate β is described in three phases:

1. While iu(t) < imax, do not test, i.e., set θ†(t) = 0.

2. After iu(t) reaches imax, test with time-varying rate θ†(t) = (βs(t)− γ)/η.

3. Once herd immunity is reached, stop testing, i.e., set θ†(t) = 0.
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Figure 2: Illustration of the optimal testing policy for problem (2). The green and light-
blue curves are, respectively, the fractions of susceptible and infected-undetected individ-
uals in the population. The fraction of infected-undetected iu is kept below the constraint
imax (black, dashed line) at all times by the optimal adaptive testing policy (red, dashed
curve), which is equal to zero until iu reaches imax, is then equal to (βs(t)− γ)/η (yellow
curve) until herd immunity is reached (i.e., when s(t) = γ/β), and is equal to zero after-
wards. For illustration purposes, we set imax = 0.1 and η = 1, the other parameters are
as in Table 1.

As illustrated in Fig. 2, the optimal policy for problem (2) starts testing only once
the constraint on iu is attained, and then sets a time-varying rate (βs(t)− γ)/η such
that diu(t)/dt = 0, keeping the fraction of infected-undetected individuals constant at the
threshold imax until herd immunity is reached, after which there is no need for further
testing as the epidemic tends naturally towards extinction. Intuitively, given that no
testing is needed once herd immunity is reached, the optimal policy takes the form of
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the most rapid approach path introduced in [Spence and Starrett, 1975] to reach herd
immunity as fast as possible, while satisfying the imax constraint. The testing policy
detailed above leads to the highest number of infected-undetected individuals by employing
no testing until undetected infections reach imax and then utilizing testing resources to
keep the infections at this threshold, thus guaranteeing the most rapid feasible path to
herd immunity.

2.2 State Estimation

The optimal adaptive testing policy θ†(t) derived in the previous section depends on
knowledge of the aggregate epidemic state, i.e., the values of s, iu, id and r at all times.
In practice, because this information is not readily available, the state of the epidemic
must be estimated from detected infections. Additionally, the policy makers must know
the model parameters. While many of such parameters are related to properties of the
disease, the transmission rate is a function of people’s behavior [Weitz et al., 2020], is
typically time-varying and needs to be estimated from data. This is a nontrivial problem,
since the dynamics induced by the SIR model is highly nonlinear and a given path of
infections can be due to different β(t) trajectories coupled with different initial conditions.

To address these problems, we propose the use of baseline testing with a constant rate
θB to complement the adaptive testing policy derived above, see Fig. 3. Importantly, the
objective of baseline testing is not to control the epidemic, but rather to collect enough
data to robustly estimate the state of the epidemic and the parameter β(t). The policy
maker can then use the estimated state and parameter to implement the optimal adaptive
policy discussed in Section 2.1.

Epidemic Dynamics

State estimatorOptimal testing

id(t)

rd(t)

îu(t)

ŝ(t)

✓̂†(t)

✓B

Baseline testing

Figure 3: Schematic of the proposed procedure. Measurements of detected-infected and
detected-recovered individuals (id(t), rd(t)) as defined in Eq. (3) obtained via baseline
testing with rate θB are used to estimate the aggregate epidemic state (ŝ(t), îu(t)), which
is then used to compute the optimal adaptive testing rate (θ̂†(t)) according to the results
of Theorem 1 (the hat symbol denotes the fact that the optimal testing rate is evaluated
as a function of the estimated state). The objective of adaptive testing is to contain the
fraction of infected-undetected individuals below the desired threshold imax.

We next argue that state estimation may be infeasible with molecular testing, which
is highly sensitive but detects infections only during a short window of time. Intuitively,
detection of current infections from molecular testing is not always sufficient to identify
whether a given trajectory of infections is due to a particular time path of β(t) coupled
with a given set of initial conditions, or to a different time path of transmission coupled
with a different set of initial conditions. In contrast, such identification is always possible
with baseline serology testing.

To illustrate these points, we consider a more detailed model where we partition the
recovered population into recovered-undetected (Ru), consisting of individuals who had
the disease but are not recorded as having immunity (because they were not diagnosed
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with either test) and recovered-detected (Rd), which consists of individuals that are known
to have immunity because they were either detected during their illness or at a later time
(via serology testing). Correspondingly, we consider an augmented model that includes
both adaptive and baseline testing with different sensitivities (Fig. 1B). All individuals
are tested via adaptive molecular testing with rate θ(t) and sensitivity η, and via baseline
testing with sensitivity ηBI for the detection of current infections and ηBR for the detection
of past infections. The model equations read:

ds(t)

dt
= −β(t)s(t)iu(t)

diu(t)

dt
= β(t)s(t)iu(t)− γiu(t)− ηθ(t)iu(t)− θBηBIiu(t)

did(t)

dt
= ηθ(t)iu(t) + θBηBIiu(t)− γid(t)

dru(t)

dt
= γiu(t)− θBηBRru(t)

drd(t)

dt
= γid(t) + θBηBRru(t),

(3)

where the last equation is redundant since rd = 1− s− iu − id − ru.
We use the more detailed model in Eq. (3) to study the system’s observability, that is,

the question of whether an outside observer or policymaker can estimate the underlying
state from detected cases. We prove that even when id(t) is observed perfectly and con-
tinuously in time but there is no detection of recovered individuals, the underlying state
cannot always be estimated (see Lemma 1 in the Materials and Methods Section 4.3). In-
stead, we prove that when serology testing is used, which allows the correct reconstruction
of the time path of both id(t) and rd(t) via observations of both ongoing and past infec-
tions, the underlying state can always be estimated (see Lemma 2 in the Materials and
Methods Section 4.3). This result does not depend on the frequency of baseline testing,
nor on the exact sensitivity of serology testing.

2.3 Extensions

In the previous sections we presented a rigorous analysis of optimal testing and observabil-
ity for a simple yet insightful deterministic SIR model. Such results are derived under the
assumption of perfect and continuous time observations. We next discuss some extensions
to account for non-idealities encountered in practice.

First, we consider a model where individuals are detected not only via the testing
program but also because they may become symptomatic. Specifically, we assume that
infected-undetected individuals may develop symptoms and thus become infected-detected
with rate κ (this leads to an additional flow from infected-undetected to infected-detected
with rate κ as detailed in Eq. (S4) in the Supplementary Materials). Accordingly, we
consider a variant of the original optimization problem where the constraint is imposed on
the total number of infected individuals, instead of infected-undetected individuals only.
We also impose a constraint on the maximum testing rate, modeling daily limitations
in processing capacity. Overall, this results in the following extended optimal control
problem:

min
θ(·)≥0

∫ ∞
t=0

θ(t)dt

such that: iu(t) + id(t) ≤ imax ∀t
θ(t) ≤ θmax ∀t.

(4)

To find the optimal adaptive testing policy θ∗(t) for the extended problem of Eq. (4),
we adopted a numerical approach using the interior point optimizer library within the
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GEKKO optimization suite [Beal et al., 2018, Wächter and Biegler, 2006]. The optimal
testing policy, computed numerically using parameters taken from the literature on the
COVID-19 epidemic (see Materials and Methods Table 1 and Section 4.7) is shown in
Fig. 4. Remarkably, the optimal adaptive testing policy for the extended optimization

s
i
imax
θ*
(β(s-iu)-ɣ-κ)/η

tA tB
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Figure 4: Optimal testing strategy for the extended problem (4). The green and blue
curves are, respectively, the fractions of susceptible and infected individuals in the popu-
lation, respectively. The black, dashed line represents the constraint on the total fraction
of infected individuals, i = iu + id ≤ imax. The optimal testing policy (red, dashed curve)
is equal to zero at first, switches to its maximum value θmax at time tA, such that iu + id
reaches the constraint imax with zero derivative at time tB. Between times tB and tC , the
optimal testing policy is equal to (β(s(t) − iu(t)) − γ − κ)/η (yellow curve), which keeps
iu + id = imax. At time tC , the optimal testing policy switches back to θmax until time
tD, after which it is equal to zero. The times tC and tD are such that, after tD, the total
fraction of infected individuals grows initially, reaching the constraint imax tangentially
(inset), and then decreases to zero. The switching times can be computed analytically,
given the initial condition (as discussed in the Supplementary Materials). For illustration
purposes, we set imax = 0.1 and η = 1, while the other parameters are as in Table 1.

problem of Eq. (4) follows the same principle as the optimal testing policy for the original
optimization problem of Eq. (2), that is, it aims at keeping the constrained quantity (iu for
Eq. (2) and iu+id for Eq. (4)) at the threshold imax for as long as possible, in order to bring
the epidemic as fast as possible to a point after which it naturally goes to extinction. Two
differences arise in the testing policy that optimizes the modified problem (4). First, in the
original problem, one can afford to delay testing right until the time at which iu reaches
the constraint imax. This is possible because in the original model the first derivative
of the constrained quantity, diu/dt = iu(βs − γ − ηθ), depends explicitly on the testing
frequency θ, and thus one can set the testing rate to θ = (βs − γ)/η to instantaneously
ensure diu/dt = 0. In the extended model, instead, the first derivative of the constrained
quantity iu+id does not depend directly on the testing frequency θ. Therefore, one cannot
instantaneously impose d(iu+id)/dt = 0 and thus testing must start before the constrained
quantity iu + id reaches the threshold imax. The optimal testing policy thus switches from
θ = 0 to θ = θmax at a time tA (for which iu(tA) + id(tA) < imax) such that iu + id reaches
imax with zero derivative at time tB > tA (Fig. 4). After time tB, the optimal testing
strategy switches to a frequency that maintains iu + id at the imax value (the specific rate
can be computed from equating the second derivative of iu + id to zero). Second, iu + id
can naturally decrease even before herd immunity if id > 0. For this reason, towards the
end of the epidemic the optimal testing policy for the extended problem of Eq. (4) adopts
a second phase with maximal testing frequency θmax that decreases iu and increases id up
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to a point when, if testing is stopped, iu + id naturally remains below the threshold imax

for all subsequent times (it increases initially but again reaches the threshold tangentially,
see inset of Fig. 4). The switching times can be characterized analytically as discussed in
the Supplementary Materials.

Next, we allow the dynamics of the epidemic to be governed by a stochastic process
rather than a deterministic (albeit time-varying) one. This is, of course, more realistic
given the stochastic nature of transmissions and the time-varying and stochastic transition
of individuals across different compartments. Additionally, we assume that observation of
detected cases happens at discrete time instants (e.g. daily) instead of continuously. To
deal with this type of non-idealities and stochasticity in our state estimation, we propose
the use of a state-estimator which, given observations at discrete time instants tk, produces
estimates of the state of the system (denoted by ŝ, ı̂u, ı̂d, r̂u, r̂d), which can then be used
to implement the adaptive testing policy. For the purpose of this analysis, we assume that
β is known and constant, and use an extended Kalman filter with state constraints as state
estimator (Materials and Methods Section 4.5) coupled with a system size expansion of the
master equation governing the probability distribution of the stochastic model to derive
the dependence of process noise on the epidemic state and population size (Materials
and Methods Section 4.4). Extensions to unknown and time-varying β are discussed
in the Supplementary Materials Section S.5. To validate our procedure in the presence
of non-idealities, we used a receding horizon implementation θ̂∗ of the optimal testing
policy derived for the deterministic SIR model (see Materials and Methods Section 4.6).
Fig. 5A shows the performance of the state estimator and of the adaptive testing policy
for multiple stochastic realizations with θB = 1/14 d−1 (where d stands for day). The
extended Kalman filter provides good estimates (black, dashed curves in Fig. 5C-D) of
the real state of the epidemic (blue and orange curves), which lies within the confidence
bounds of the estimate. In addition, the time-varying testing rate implemented using the
estimated state is effective in maintaining the number of infected individuals around the
desired threshold Imax = Nimax (where N is the population size). Fluctuations of order√
N around such threshold are to be expected as the epidemic is simulated as a stochastic,

Markov process (Materials and Methods Section 4.4). Finally, we show that the mean of
the receding horizon testing policy, computed across realizations of the stochastic model
of epidemics, follows the optimal policy derived for the deterministic SIR model (Fig. 5B).

3 Discussion

A major lesson from the recent COVID-19 crisis is that, in the absence of comprehensive
vaccines and therapeutic solutions, rapid testing and isolation become crucial tools to
contain the spread of a pandemic. In this paper, we developed an approach to determine
an optimal testing strategy, relevant especially when there are scarce or expensive testing
resources.

Our approach has two basic pillars. First, we showed that, in the context of a clas-
sic SIR model, when the epidemic state in terms of infected, recovered and susceptible
individuals is known and the objective can be formulated as keeping the number of un-
detected infections below a certain threshold, then the optimal testing strategy takes a
simple form, similar to a most rapid approach path. In particular, there should be no
testing until the aforementioned threshold is reached, and thereafter, testing resources
should be used to keep infections at this threshold until herd immunity is reached and the
epidemic starts disappearing naturally. The standard molecular tests, which have high
accuracy, are crucial for this result, because they enable the identification and isolation of
infected individuals.

The second pillar of our approach turns to the identification of the epidemic state. Our
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Figure 5: Control of stochastic trajectories by using a receding horizon version of
the optimal testing policy θ∗ in combination with baseline serology testing with rate
θB = 1/(14 days). Panel A shows the mean number of infected-undetected individuals
〈Iu(t)〉 (blue, thick curves), the mean total number of infected individuals 〈I(t)〉 (orange,
thick curves) across 500 realizations and Iu(t), I(t) in five, randomly selected stochastic
trajectories (solid, thin lines). Note that capital letters denote absolute numbers instead
of fractions of individuals. Colored bands are 95% empirical confidence intervals and the
thick, yellow lines show the value of Imax. Panel B shows the mean molecular time-varying
testing rate in the simulations (thick, green curve) and its 95% confidence interval. The
dotted, black line shows (β(〈S〉 − 〈Iu〉)/N − γ − κ)/η, which is the functional form of the
optimal adaptive testing rate θ∗(t) for the deterministic SIR model in the interval [tB, tC ]
(Eq. S11). The black, dashed line shows the maximum testing rate θmax. Panel C shows
the number of infected-undetected individuals Iu(t) (blue curve) and the total number of
infected individuals I = Iu(t) + Id(t) (orange curve) in a single realization. The estimated
number of infected-undetected individuals Îu(t) and estimated total number of infected
individuals Î(t) are shown with black, dashed curves. The 95% confidence intervals for
Îu(t) and Î(t) computed using the predicted variance estimated according to the extended
Kalman filter are shown as colored bands. The infected threshold value Imax is shown as
a yellow line. Panel D shows a zoom of the initial phases of the epidemic highlighting the
accuracy of the Kalman filter estimates. Model parameters and initial conditions are as
in the Materials and Methods Table 1 and Section 4.7.

11



optimal testing policy crucially depends on such knowledge, but where does this knowledge
come from? We tackle this question by adopting a state estimation framework, where the
underlying state is unknown but can be estimated from the sequence of infections and
additional information obtained from testing. Though molecular tests are also useful in
this context (because they reveal the trajectory of infections), our main result in this part
is that this information by itself is not sufficient for identifying the underlying state. This
is because the dynamics of the SIR model are highly nonlinear and dependent on initial
conditions, and it is not always possible to tell apart whether a given sequence of infections
is due to one of many time-varying paths of transmission rates coupled with different initial
conditions. Instead, we showed that serology testing which is lower-accuracy, cheaper and
longer-range (in terms of estimating past infections) can be useful to disentangle this
information.

More specifically, we proposed a two-pronged approach in which baseline serology
testing is used to collect information about the state of the epidemic, and the more costly
and sensitive molecular testing is adaptively deployed based on such information (Fig. 3).
Our analysis formalizes the notion that serology offers advantages as a baseline testing
tool not only because of cost benefits, but also because it conveys information about past
infections, which proves fundamental to correctly and timely estimate the state of the
epidemic. We then showed that, based on information about the state of the epidemic,
optimal adaptive molecular testing can be adopted and implemented.

Inevitably for a mathematical analysis based on a stylized model, our approach simpli-
fied many aspects of the problem. Our extensions dealt with two such aspects. First, we
showed that similar insights apply in the context of an SIR model in which both detected-
infected and undetected-infected numbers have to be kept below a certain threshold. Sec-
ond, our state estimation techniques apply even when we are dealing with a stochastic
model of epidemics.

Our analysis suggests that there are tangible gains from the proposed approach. Fig. 6
shows that our two-pillar approach with state estimation plus optimal testing can lead to
significant reductions of overall cost with respect to constant testing strategies, leading to
up to 60% cost reduction for the parameters we investigated.

In concluding, we make three additional remarks. First, optimality of the proposed
approach is claimed in terms of the problems formulated in Eqs. (2) and (4) where the
only epidemic constraint comes from keeping infections below a desired threshold imax.
Strategies that achieve such an objective are typically classified as “containment strate-
gies”, since their objective is to contain the disease to a state that can be handled by
the health system. This is very different from “eradication strategies” where instead the
objective is to eradicate the disease as fast as possible. It is important to note that the
more costly constant testing strategy detailed in the Materials and Methods Section 4.2
would lead to faster eradication of the disease than the adaptive strategy suggested here,
but testing would need to continue indefinitely to ensure that outside infections would not
create further waves, as for the parameters considered in the simulations herd immunity
is not reached before eradication under constant testing. Whether eradication or contain-
ment strategies should be preferred depends on considerations about testing availability,
possible long-term effects of infections on the health of individuals [Davis et al., 2020] and
the impact of the epidemic on the economy, and is outside of the scope of this work. Our
objective here was to derive the optimal containment strategy for cases when eradication
is simply not possible, e.g., because of test scarcity or budget limitations.

Second, we derived our results for a standard SIR model (yet with extensions to testing
and symptomatic individuals). Our objective was to derive analytic insights for a model
of epidemics that is general enough to encode the core traits of an epidemic without
getting lost in the details of specific diseases. Clearly, caution is required when applying
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Figure 6: Cost of the optimal testing policy for the optimization problem 4, as a function
of different baseline testing rates θB. Costs are normalized with respect to the cost of
the constant testing policy with the minimum testing frequency required to maintain the
constraints Iu + Id ≤ Imax at all times (Materials and Methods Section 4.2). Data points
connected by straight lines are mean statistics across 1000 simulations of the stochastic
trajectories. Shaded bands represent 95% confidence intervals. Orange and black data
points report the relative contribution of adaptive qPCR testing and baseline serology
testing to the total cost (blue points), respectively. All adaptive policies induce significant
cost savings, up to 60% reduction with respect to the cost under the optimal constant
testing strategy derived in Section 4.2 for the parameters investigated. Model parameters
and initial conditions are as in the Materials and Methods Table 1 and Section 4.7.

our findings in the field and additional steps are needed to validate our suggestions with
detailed models of any specific disease before translation to practice. We note especially
that we did not account explicitly for delays due to test processing time in our model.
However, the fact that serology has typically a faster turnaround time than qPCR is an
additional argument in support of serology as a baseline testing tool.

Finally, we investigated the robustness of our procedure to sources of stochasticity
that are intrinsic to the spread of an epidemic, and found that using information on
the expected scaling of fluctuations with the population size and the state of the epi-
demic, one can apply the testing strategies developed for the deterministic SIR model
to control epidemics even in the presence of intrinsic stochasticity. In practical applica-
tions, one may encounter additional sources of exogenous stochasticity due to people’s
behavioral responses, changes in policies, infections coming from external sources such
as neighboring states, seasonal changes, etc. We believe that a dual approach where
our theoretical results are used as a guideline for formulating candidate policies that are
then tested extensively with numerical approaches adopting an ensemble of models (as in
[Ray et al., 2020, Viboud and Vespignani, 2019]) would be a powerful tool in the control
of future pandemics.

4 Materials and Methods

4.1 Model parameters

In our numerical studies, we used model parameters that have been used in the literature
to describe the spread of COVID-19. Table 1 reports the parameter values, along with
the corresponding sources. Note that we decided to use low sensitivity both for molecular
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and serology testing to be conservative and to account for the fact that infected agents in
the initial incubation period may not be detectable.

Parameter Value Sources

Transmission rate (β) 0.3 d−1 [Della Rossa et al., 2020]
[Gatto et al., 2020]

[Bertozzi et al., 2020]
Recovery rate (γ) 1/14 d−1 [Della Rossa et al., 2020]

Rate of symptoms development (κ) 0.04 d−1 [McAloon et al., 2020]
[Gatto et al., 2020]

qPCR sensitivity (η) 0.9 [Watson et al., 2020]
Serology sensitivity (current infections) (ηBI) 0.6 [Roche, 2020], [FDA, 2020]

[Public Health England, 2020]
Serology sensitivity (past infections) (ηBR) 0.8 [Roche, 2020], [FDA, 2020]

[Public Health England, 2020]
Cost of serology relative to qPCR (cser) 0.4 [Haseltine, 2020a]

[Haseltine, 2020b]
Maximum adaptive testing rate (θmax) 2/7 d−1 [Cashore et al., 2020]

Table 1: Parameter values and corresponding sources. Our estimate for β is a compromise
between different estimates reported in the literature on COVID-19. The rate of symptoms
development κ was estimated as the product of the probability of becoming symptomatic,
times the incubation rate.

4.2 Constant testing strategy

One possibility for controlling an epidemic with a constant testing rate is selecting a value
of the testing rate θconst that guarantees a basic reproduction number [Daley and Gani, 2001]
smaller than unity. For the model with symptomatic agents (Supplementary Materials
Eq. S4) the basic reproduction number is

R0 =
β

γ + κ+ ηθconst
,

corresponding to the number of secondary infections generated by an individual when
he/she is free to circulate and the rest of the population is made entirely of susceptible
individuals. Setting the basic reproduction number to unity and solving for θconst leads
to a testing rate guaranteeing that the number of infected undetected is monotonically
decreasing. This is a more restrictive condition than what is needed to satisfy the con-
straint iu+ id ≤ imax in Problem (4). Indeed, a lower testing rate for which the fraction of
infected-undetected initially increases but reaches the constraint imax tangentially would
suffice. To be fair in the comparison with the adaptive testing policy, we next derive
such lower constant testing rate as a function of the fractions s0 and i0 of susceptible and
infected individuals (all assumed to be undetected) at time t = 0. Note that to satisfy the
constraint with the least amount of constant testing, θconst should be such that i = iu + id
reaches the constraint imax tangentially (i.e., only once at time t̄ with first derivative
equal to zero). Our objective is to derive a series or relations between the initial state
(s(0), iu(0), id(0)), the state at time t̄ (i.e., s(t̄), iu(t̄), id(t̄)), and the testing rate θconst.
We then exploit these relations to solve for θconst. From the discussion above we have

iu(t̄) + id(t̄) = imax (5)
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and
di(t̄)

dt
= βs(t̄)iu(t̄)− γi(t̄) = βs(t̄)iu(t̄)− γimax = 0. (6)

Next, by Eq. (1) it holds ds(t)/dt = −βs(t)iu(t) and did(t)/dt+dr(t)/dt = (ηθconst+γ)iu(t)
leading to

1

s(t)

ds(t)

dt
+

β

(ηθconst + γ)

d(id(t) + r(t))

dt
= 0.

Integrating this equation we can derive a constant of motion for the epidemic which leads
to the following relation between the epidemic state at time zero and at time t̄:

ln

(
s(t̄)

s0

)
− β

γ + ηθconst
(s(t̄) + iu(t̄)− s0 − i0) = 0. (7)

Finally, integrating did(t)/dt = ηθconstiu(t)− γid(t) in the interval [0, t̄] we obtain

id(t̄) = ηθconste
−γ∆t(s(t̄),s0,i0)

∫ s0

s(t̄)

eγ∆t(s,s0,i0)

βs
ds = imax − iu(t̄), (8)

where we used id(0) = 0 and a reformulation ∆t(s̃, s0, i0) of the time interval such that
s(∆t) = s̃ as a function of the epidemic state as introduced in [Harko et al., 2014] and
detailed in Supplementary Materials Eq. (S6). Solving Eqs. (5)-(8) for the unknowns
s(t̄), iu(t̄), id(t̄), θconst leads to the minimum constant testing rate θconst that ensures i(t) =
iu(t) + id(t) ≤ imax for all t.

4.3 Observability notions

We formally define observability for a parametric system as follows.

Definition 1. A dynamical system dx(t)/dt = g(x(t), β(t)) with state x(t) and time-
varying parameter β(t) is observable from the output y(t) = h(x(t)) if for any two observed
outputs y1(t) and y2(t), the condition y1(t) ≡ y2(t) for all t implies x1(0) = x2(0) and
β1(t) ≡ β2(t) for all t.

Lemma 1 (Observability from molecular testing). Consider the system of Eq. (1) with
state x(t) = [s(t), iu(t), id(t), r(t)] and continuous time output y(t) = id(t). Suppose that
ηθ(t) > 0 for all t and that γ is known.

1. If β(t) ≡ β, the system is observable.

2. If β(t) is time-varying, the system is not observable.

Lemma 2 (Observability from serology testing). Consider the system of Eq. (3) with
state x(t) = [s(t), iu(t), id(t), ru(t), rd(t)] and continuous time output y(t) = [id(t), rd(t)].
If ηθ(t) + ηBRθB > 0 and γ is known, the system is observable.

The proofs of these lemmas are provided in the Supplementary Materials.

4.4 Stochastic model

We performed stochastic simulations of a compartmental model of epidemics in which
individuals of a population of size N are assigned to the same compartments S, Iu, Id, Ru

and Rd as in the deterministic SIR model with symptomatic individuals (Supplementary

15



Materials Eq. (S4)). In analogy with the deterministic SIR model, transition rates among
states are set to:

W (S − 1, Iu + 1, Id, Ru|S, Iu, Id, Ru) = β
SIu
N

(new infection)

W (S, Iu − 1, Id, Ru + 1|S, Iu, Id, Ru) = γIu (recovery of Iu)

W (S, Iu − 1, Id + 1, Ru|S, Iu, Id, Ru) = [ηθ + κ+ θBηBI ] Iu (detection of Iu)

W (S, Iu, Id − 1, Ru|S, Iu, Id, Ru) = γId (recovery of Id)

W (S, Iu, Id, Ru − 1|S, Iu, Id, Ru) = θBηBRRu (detection of Ru)

where W (X ′|X) is the probability per unit time of transitioning from state X to state X ′

and the parameters have the same interpretation as in the deterministic SIR model, and
capital letters S, Iu, Id and Ru indicate the absolute number of individuals in the various
compartments of the stochastic model. The compartment Rd is not mentioned explicitly,
as its abundance is equal to N − S − Iu − Id − Ru. Unlike the deterministic SIR model,
the stochastic model of epidemics accounts for the fact that the numbers of individuals in
each compartment are integers and that infection, recovery and detection are stochastic
events. As such, the stochastic model is better suited to describing epidemics in small
populations or the epidemiological dynamics in the initial phases of an epidemic, where
number fluctuations can be important. The dynamics of the stochastic model is governed
by the master equation, [van Kampen, 2007, Gardiner, 2009]:

∂P

∂t
(S, Iu, Id, Ru, t) =

((
E+1
S E−1

Iu
− 1
)
β
SIu
N

+
(
E+1
Iu

E−1
Ru
− 1
)
γIu+

+
(
E+1
Iu

E−1
Id
− 1
)
Iu (ηθ + κ+ θBηBI) +

(
E+1
Id
− 1
)
γId+

+
(
E+1
Ru
− 1
)
θBηBRRu

)
P (S, Iu, Id, Ru, t),

(9)

where P (S, Iu, Id, Ru, t) is the probability of being in state X := [S, Iu, Id, R] at time t
and the transition operator E+1

S is defined by E±1
S f(S, Iu, Id, Ru) = f(S±1, Iu, Id, Ru) for

a generic function f , and similarly for the other operators.1 We simulated trajectories of
the stochastic model of epidemics by using the Gillespie algorithm [Gillespie, 1976], with
the parameters reported in Table 1.

For large N , Eq. (9) can be expanded in powers of 1/N following a Kramers-Moyal or
system-size expansion [van Kampen, 2007, Gardiner, 2009]. Eq. (9) can be expressed in
terms of the rescaled variables x̃ := X/N = [s̃, ĩu, ĩd, r̃u] as follows:

1

N

∂p

∂t
(s̃, ĩu, ĩd, r̃u, t) =

((
E

+ 1
N

s̃ E
− 1
N

ĩu
− 1

)
βs̃̃iu +

(
E

+ 1
N

ĩu
E
− 1
N

r̃u
− 1

)
γĩu+

+

(
E

+ 1
N

ĩu
E
− 1
N

ĩd
− 1

)
ĩu (ηθ + κ+ θBηBI) +

(
E

+ 1
N

ĩd
− 1

)
γĩd+

+

(
E

+ 1
N

r̃u
− 1

)
θBηBRr̃u

)
p(s̃, ĩu, ĩd, r̃u, t).

(10)

Note that x̃(t) is a stochastic process, whereas x(t) as defined in the main text is the
solution to the deterministic SIR model. The right hand side of Eq. (10) is a function of
x̃ ± 1/N . Expanding this function around x̃ up to the second order (1/N2), one obtains

1In Eq. (9), operators within parentheses act on all the functions of state variables to their right
according to conventional operator precedence, e.g.

(
E+1
S E−1

Iu
− 1

)
SIuP (S, Iu, Id, Ru, t) is to be in-

terpreted as
(
E+1
S E−1

Iu
−1

)
SIuP (S, Iu, Id, Ru, t) = E+1

S E−1
Iu

(SIuP (S, Iu, Id, Ru, t))−SIuP (S, Iu, Id, Ru, t)
= (S + 1)(Iu − 1)P (S + 1, Iu − 1, Id, Ru, t)− SIuP (S, Iu, Id, Ru, t).
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the Fokker-Planck equation:

∂p

∂t
(x̃, t) = −

∑
j

∂

∂x̃j
(gj(x̃, θ)p(x̃, t)) +

1

2N

∑
j,k

∂2

∂x̃j∂x̃k
(Bjk(x̃, θ)p(x̃, t)) , (11)

where g is the vector field corresponding to the deterministic dynamics used for computing
the optimal testing strategy (see Eq. (4) and Eq. (S4) in the Supplementary Materials)
and B is the matrix:

B(x̃, θ) =

 βs̃̃iu −βs̃̃iu 0 0

−βs̃̃iu [βs̃+ γ + ηθ + κ+ θBηBI ] ĩu − [ηθ + κ+ θBηBI ] ĩu −γĩu
0 − [ηθ + κ+ θBηBI ] ĩu [ηθ + κ+ θBηBI ] ĩu + γĩd 0

0 −γĩu 0 γĩu + θBηBRr̃u

 .
Eq. (11) is known as the diffusion approximation of the master Eq. (10) and describes
the probability distribution of a continuous stochastic process specified by the following
Itô Langevin equation: [van Kampen, 2007, Gardiner, 2009]

dx̃

dt
= g(x̃, θ) +

1√
N
ε(x̃, θ, t), (12)

where ε(x̃, θ, t) is a Gaussian noise with covariance 〈εj(x̃(t), θ(t), t)εk(x̃(t′), θ(t′), t′)〉 =
Bjk(x̃(t), θ(t))δ(t− t′) and zero mean, where δ is the Dirac delta. Intuitively, in Eq. (12)
the first term g(x̃, θ) coincides with the vector field of the deterministic dynamics while the
second term captures diffusive fluctuations due to stochasticity, whose amplitude depends
both on the population size and on the epidemic state. As detailed in the next section,
this approach enables us to characterize the process noise for the extended Kalman filter
with the correct scaling in N and highlights its dependence on the current epidemic state
(e.g., the number of infected-undetected) as captured by the matrix B.

4.5 State estimation for the stochastic simulations

Given the dynamics of Eq. (12), we discuss here how we estimate the state of the epidemic.
We assume the following observation model:

ỹ(tk) = [̃id(tk); r̃d(tk)] = Cx̃(tk) + c (13)

with:

C =

[
0 0 0 1
−1 −1 −1 −1

]
, c =

[
0
q

]
,

that is, only infected-detected and recovered-detected are observed, and we assume dis-
crete observation times tk (e.g., daily observations). Such observations can be used to
estimate the state of the system via a state observer, which we implemented using an
extended Kalman filter with state constraints (see [King et al., 2008, Pasetto et al., 2017,
Pasetto et al., 2018, Li et al., 2020b] for other applications of the Kalman filter in the
context of epidemiology).

In a Kalman filter, observations yk = ỹ(tk) are used to create an estimate of the
state, denoted by x̂(t) = [ŝ(t); îu(t); îd(t); r̂u(t)]. The first step is to initialize x̂0|0 =

E[x(t0)], P0|0 = E[(x(t0) − x̂(t0))(x(t0) − x̂(t0))>]. Then, the dynamics of the extended
Kalman filter [Khalil, 2015] is computed as follows, at any time step tk:

1. Predict the next state, given previous observations:
dx̂(t)

dt
= g(x̂(t), θ(t))

dP (t)

dt
= G(t)P (t) + P (t)G(t)> +Q(t)

with

{
x̂(tk) = x̂k|k

P (tk) = Pk|k
and G(t) =

∂g

∂x

∣∣∣∣
x̂(t),θ(t)
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and set x̂k+1|k = x̂(tk+1), Pk+1|k = P (tk)

2. Update the prediction, given the current observation:

Kk+1 = Pk+1|kC
>(CPk+1|kC

> +R)−1

x̂k+1|k+1 = ΠXk+1
[x̂k+1|k +Kk+1(yk+1 − Cx̂k+1|k)]

Pk+1|k+1 = (I −Kk+1C)Pk+1|k,

where ΠXk represents the projection in the feasible set Xk = {x ≥ 0 | Cx+ c = yk}.

The matrices Q and R are covariance matrices for the process and measurement noise.
In our analysis, we assume R = 0 (as the number of infected-detected and recovered-
detected is perfectly know by the policy maker and thus there is no measurement error
in Eq. (13)), while Q(t) is the covariance of the process noise, which is equal to B/N as
derived from the expansion of the master equation in Section 4.4.

4.6 Testing strategy for the stochastic simulations

The testing policy derived for the deterministic SIR model is not necessarily robust to
the presence of stochastic fluctuations. For this reason, in the stochastic simulations we
implemented a receding horizon version θ̂∗(t) of the testing policy where at any time
tk > tA (as defined in Fig. 4) we computed the constant testing rate needed to drive
the total fraction of infected to the threshold imax in a horizon of H days (we set H = 3
d), assuming that the dynamics follows the deterministic SIR model, i.e. Eq. (S4) in the
Supplementary Materials. According to the principles of receding horizon control, such
testing rate is applied for one time step and then a new problem is solved for the next
horizon [tk+1, tk+1 + H] given the new realized state. Thus, at every time step tk the
testing rate is set to:

θ̂∗(tk) =

{
0 if tk < tA

max({0,min{θmax, θrh(ŝ(tk), îu(tk)}}) otherwise
(14)

where θrh is the testing rate that would bring the deterministic system to the constraint
iu + id = imax with zero derivative in a time horizon H, starting from ŝ(tk) and îu(tk) (see
Eq. (S16) in the Supplementary Materials). Note that we assume here that the receding
horizon is implemented for any time tk > tA, where tA is the optimal time to start testing
as computed for the deterministic SIR model. In practice, the policy maker may prefer to
implement the receding horizon control from the beginning, for additional robustness and
to compensate for the uncertainty of state estimates in the early phases of the dynamics.
This has a minor cost implications, since tA is typically very small with the parameters
considered here.

4.7 Parameters used in simulations of the stochastic model of epidemics

Simulations of the stochastic model of epidemics were performed with population size
N = 50000 and constraint Imax = 1000 corresponding to 2% of the population size. This
percentage was chosen for illustration purposes and it roughly corresponds to the peak
percentage quarantine capacity estimated to be required for the safe reopening of Cornell’s
Ithaca NY campus during the COVID-19 pandemic in the Fall 2020 [Cashore et al., 2020].
Realizations of stochastic epidemics were initialized with I(0) = Iu(0) = 50 infected
and S(0) = N − 50 susceptible individuals (the other compartments were initialized at
Id(0) = Rd(0) = Ru(0) = 0). The other parameters were set to the values in Table 1.
The initial state estimate for the extended Kalman filter was set to Î(0) = 0 infected and
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Ŝ(0) = N susceptible individuals (the estimates for the other compartments were set to
zero). All entries of the initial estimate for the covariance matrix P (see Section 4.5) of
the extended Kalman filter were set to zero, with the exception of the estimate for the
variance of Ŝ(0) and of Îu(0), which were set to I2

max/12, to reflect a large uncertainty on
the initial condition.
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Supplementary Materials

S.1 Optimal testing policy

We next present the proof of the following theorem. Theorem 1 in the main text is obtained
as a special case when the transmission rate is constant.

Theorem 2. Suppose that the transmission rate β(t) is a monotone non-increasing func-
tion of time. The optimal testing policy θ†(t) for the optimization problem of Eq. (2) with
dynamics as in Eq. (1) acts in three phases:

1. While iu(t) < imax, do not test, i.e. set θ†(t) = 0.

2. After iu(t) reaches imax, test with time-varying rate θ†(t) = (β(t)s(t)− γ)/η.

3. Once herd immunity is reached, that is s(t) = γ/β(t) for the first time, stop testing,
i.e. set θ†(t) = 0.

To prove such theorem we start with a series of auxiliary lemmas. Let therd be the
first instant of time such that s(therd) = γ/β(therd). We say that the system reached herd
immunity at time therd since for any t > therd the fraction of infected naturally decreases.
Mathematically,

diu(t)

dt
= (β(t)s(t)− γ)iu(t) ≤ (β(therd)s(therd)− γ)iu(t) = 0,

where we use the fact that in this model the susceptible and β are monotonically non-
increasing. We start by proving that after herd immunity it is optimal to stop testing.

Lemma 3. Under the optimal testing policy θ† there exists a finite time therd at which
s(therd) = γ/β(therd). Moreover, θ†(t) = 0 for all t ≥ therd. Here the superscript † denotes
the evolution under the optimal testing policy.

Proof. The fact that under the optimal testing policy herd immunity is reached is imme-
diate as if that was not the case the objective function would be infinite. Let therd be
the time when herd immunity is reached and recall that β(therd)s(therd) − γ ≤ 0 for all
t ≥ therd since β(t) and s(t) are both decreasing with time. Consequently, diu(t)/dt ≤ 0
for all t ≥ therd and the control policy that sets θ†(t) = 0 ∀ t ≥ therd is feasible and
therefore optimal (as no other control policy can achieve zero cost).

We next show that, under the optimal control, once herd immunity is reached the
number of infected undetected must be at the threshold.

Lemma 4. If the optimal objective is strictly positive, i†u(therd) = imax.

Proof. First, note that if the optimal objective is 0, this means that we do not apply
any control to the system. The optimal trajectory i†u(t) is therefore at most tangent to
imax, because otherwise, we would need to apply some positive control to make sure that
it does not violate the constraint iu ≤ imax. Instead, if the optimal objective is strictly
positive there is an interval of time before herd immunity is reached with positive control.
If i†u(therd) < imax, we could decrease the control by a small amount before reaching herd
immunity (the last time the control was positive before reaching herd immunity). This
would imply that iu increase faster but for small deviations of the control we could still
guarantee iu(t) ≤ imax for all times. Since the rate of decrease of s increases as iu increases,
this would imply that s will decrease faster and therefore herd immunity will be reached at
a time t′herd < therd. From Lemma 3, we have that the optimal control after reaching herd
immunity is identically 0. Therefore, the new control policy strictly reduces the objective,
violating the optimality of the control.
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Finally, we characterize the optimality of the proposed control θ† before therd.

Lemma 5. The optimal control takes the most rapid approach path to reach herd immu-
nity.

Proof. Lemma 3 characterizes how the optimal control behaves after herd immunity.
Therefore, we can rewrite the original optimization problem in Eq. (2) as follows

min

∫ therd

t=0
θ(t)dt

s.t. iu(t) ≤ imax ∀t
θ(t) ≥ 0 ∀t (S1)

where therd is the time to reach herd immunity (which depends on θ). Integrating the
dynamics

ηθ(t) = β(t)s(t)− γ − 1

iu(t)

diu(t)

dt

yields

η

∫ therd

t=0
θ(t)dt =

∫ therd

t=0

(
βs(t)− γ − 1

iu(t)

diu(t)

dt

)
dt

=

∫ therd

t=0
(βs(t)− γ) dt−

∫ therd

t=0

(
1

iu(t)

diu(t)

dt

)
dt

=

∫ therd

t=0
(βs(t)− γ) dt+ log

(
iu(0)

iu(therd)

)
=

∫ therd

t=0
(βs(t)− γ) dt+ log

(
iu(0)

imax

)
,

where we have used Lemma 4 for the last equality. Note that the second term is a
constant and η is a positive constant. Therefore, the original optimal control problem can
be rewritten as:

min

∫ therd

t=0
(βs(t)− γ) dt

s.t. iu(t) ≤ imax ∀t
θ(t) ≥ 0 ∀t. (S2)

We next show that the trajectory i†u induced by the control θ† pointwise dominates
any other feasible trajectory iu and therefore the corresponding trajectory s† is point-
wise smaller than any other feasible trajectory of s, before hitting herd immunity (Fig.
S1). This has two consequences: i) herd immunity is reached sooner under θ† and ii)
(β(t)s(t)− γ) is pointwise smaller. These two points prove that θ† minimizes Eq. (S2)
and thus also Eq. (S1).
To prove points i) and ii) recall that from the first line of Eq. (1)

ds

dt
= −βsiu =⇒ 1

s

ds

dt
= −βiu =⇒ d log(s)

dt
= −βiu

and by integration

log

(
s(t)

s(0)

)
= −

∫ t

0
β(τ)iu(τ)dτ

which shows that for two feasible trajectories (s†(t), i†u(t)) and (s(t), iu(t)), if i†u(t) ≥ i(t)
for all t ≤ T , we have that s†(t) ≤ s(t) for all t ≤ T .
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Figure S1: The trajectory i†u(t) induced by the optimal testing strategy θ† pointwise
dominates any other feasible trajectory iu. Conversely, the trajectory s†(t) induced by the
optimal testing strategy θ† is pointwise smaller than any other feasible trajectory s(t), until
herd immunity is reached. In this illustration β is constant, so that s(therd) = γ/β = sherd.

Combining the lemmas above proves Theorem 2. The expression of θ† when iu(t) =
imax can be obtained from diu/dt = (βs− γ − ηθ†)iu = 0.

S.2 Proofs of Observability

S.2.1 Proof of Lemma 1

We prove the two statements separately.

1. From the third line of Eq. (1), it holds

iu(t) =
1

ηθ(t)

(
did(t)

dt
+ γid(t)

)
hence iu (and all its derivatives) can be reconstructed from the observed output id
(and its derivative). From the second line of Eq. (1), for β constant, we obtain

βs(t) =
1

iu(t)

diu(t)

dt
+ γ + ηθ(t). (S3)

Substituting the expression in Eq. (S3) on the right hand side of

β = − 1

βs(t)i2u(t)

(
d2iu(t)

dt2
− βs(t)diu(t)

dt
+ γ

diu(t)

dt
+ η

dθ(t)

dt
iu(t) + ηθ(t)

diu(t)

dt

)
(obtained by computing the second derivative of id) yields a formula for β as a
function of known quantities (iu, id, θ and their derivatives). Since βs(t) is known
from Eq. (S3), this implies that s(t) is known and finally r(t) = 1−s(t)−iu(t)−id(t).

2. If β(t) is time-varying the system is not observable. To show this we consider two
evolutions that start from different initial conditions and have different β evolutions,
yet lead to the same observable output id. This proves that just observing the
output it is not possible to distinguish the two scenarios. Specifically consider the
two systems:
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

ds

dt
= −βsiu

diu
dt

= βsiu − γiu − ηθ(t)iu
did
dt

= ηθ(t)iu − γid



ds̄

dt
= −β̄s̄̄iu

dīu
dt

= β̄s̄̄iu − γīu − ηθ(t)̄iu
dīd
dt

= ηθ(t)̄iu − γīd

with initial state s(0) 6= s̄(0), iu(0) = īu(0), id(0) = īd(0) = r(0) = r̄(0) = 0 and
suppose that β̄(t) = β(t)s(t)/s̄(t). Then

diu
dt

= βsiu − γiu − ηθ(t)iu,

dīu
dt

= βs̄iu − γīu − ηθ(t)̄iu, īu(0) = iu(0)

Since iu and īu solve the same differential equation it must be īu(t) ≡ iu(t) for all
t. This immediately implies id(t) ≡ īd(t), yet the evolution of s and s̄ is different as
they start from different initial conditions.

S.2.2 Proof of Lemma 2

Since y(t) is observed continuously in time one can use it to compute exactly did/dt and
drd/dt. The third and fifth equations in Eq. (3) can then be used to recover iu(t) and r(t)
exactly as follows:

iu(t) =
1

ηθ(t) + θBηBI

(
did
dt

+ γid

)
,

ru(t) =
1

θBηBR

(
drd
dt
− γid

)
.

Using the fact that

s(t) = 1− iu(t)− ru(t)− id(t)− rd(t)

one can reconstruct s(t) as well. Overall, the state can be estimated exactly from the
observed variables. As a byproduct, knowledge of s(t) and iu(t) allows the identification
of β(t) from the first equation in Eq. (3).

S.3 Optimal testing policy for the extended problem in Eq. 4

We consider an extension of the model in Eq. (3) that accounts for detection of symp-
tomatic individuals by considering an additional flow from infected-undetected to infected-
detected with rate κ:

ds(t)

dt
= −β(t)s(t)iu(t)

diu(t)

dt
= β(t)s(t)iu(t)− γiu(t)− ηθ(t)iu(t)− κiu(t)− θBηBIiu(t)

did(t)

dt
= ηθ(t)iu(t) + κiu(t) + θBηBIiu(t)− γid(t)

dru(t)

dt
= γiu(t)− θBηBRru(t)

drd(t)

dt
= γid(t) + θBηBRru(t)

(S4)
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Figure S2: Structure of the optimal testing strategy (red curve) and corresponding effect
on the total fraction of infected individuals (blue curve). The optimal testing policy θ̂∗

is zero until time tA, when it switches to the maximum testing rate θmax until time tB,
when i = iu + id reaches the constraint imax with zero derivative. In the interval [tB, tC ]
of duration τ3, the optimal testing policy maintains i = imax, until switching back to θmax

between times tC and tD. After tD, i increases until reaching imax with zero derivative at
time tE , and decreases afterwards.

The numerical solution of the problem in Eq. (4) for this extended model (and for
the parameters of Fig. 4) has the structure described in Section 2.3 and schematized in
Fig. S2. To generalize this analysis to any set of parameters, we here aim at deriving
an analytic characterization of the optimal testing policy for Problem 4 within the class
of policies with such a structure. More in detail, we aim at deriving analytic expressions
for the optimal switching times tA, tB, tC and tD and for the testing rate in the interval
[tB, tC ] as a function of the model parameters and initial conditions. With slight abuse
of notation, we denote the optimal policy within this class with the symbol θ∗. For this
analysis we assume β to be constant, and without loss of generality we assume η = 1.
Moreover, we work under the assumption that the state is known, hence we set θB = 0.

The following analytic relationships (adapted from [Harko et al., 2014]) between s and
iu at two times t1 < t2 under constant testing rate θ will be useful:

fθ(s(t1), iu(t1), s(t2), iu(t2)) := ln

(
s(t2)

s(t1)

)
− β

γ + θ + κ
(s(t2) + iu(t2)− s(t1)− iu(t1)) = 0,

(S5)

t2 − t1 =

∫ s(t2)
s(t1)

e
− β
γ+θ+κ

(1−s(t1)−iu(t1))

e
− β
γ+θ+κ

(1−s(t1)−iu(t1))

1

x

1

−β − (γ + θ + κ) lnx+ βs(t1)xe
β

γ+θ+κ
(1−s(t1)−iu(t1))

dx

:= ∆tθ(s(t2), s(t1), iu(t1)).
(S6)

S.3.1 Intervals [0, tA] and [tA, tB]

First, we evaluate sA := s(tA), iuA := iu(tA), sB := s(tB) and iuB := iu(tB) as functions
of s0 and i0. Using Eq. (S5) we have:

f0(s0, i0, sA, iuA) = 0, (S7)

fθmax(sA, iuA, sB, iuB) = 0. (S8)
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Imposing that at time tB one has (iu + id) |tB= imax and d(iu + id)/dt |tB= 0 yields:

d(iu + id)

dt

∣∣∣∣
tB

= βsBiuB − γ(iuB + id(tB)) = βsBiuB − γimax = 0, (S9)

and integrating did/dt = (θmax + κ)iu − γid in [tA, tB] one finds:

idB = imax − iuB =

(
idA + (θmax + κ)

∫ tB

tA

eγ(t−tA)iu(t)dt

)
e−γ(tB−tA)

=

(
idA + (θmax + κ)

∫ sB

sA

eγ∆tθmax (s,sA,iuA)iu(s)
dt

ds
ds

)
e−γτ2

=

(
idA + (θmax + κ)

∫ sA

sB

eγ∆tθmax (s,sA,iuA)

βs
ds

)
e−γτ2 ,

(S10)

where τ2 can be computed from Eq. S6 as a function of sA, iuA and sB. The quantity idA
can be computed as a function of sA by integrating did/dt = −γid + κiu in the interval
[0, tA], which gives:

idA = e−γtA
∫ s0

sA

eγ∆t0(s,s0,0) κ

βs
ds,

where again we made use of Eq. S6. Eqs. (S7)-(S10) are four equations in four unknowns
that can be solved to find sA, iuA, sB, iuB as a function of s0 and i0. In the interval [tA, tB],
the optimal testing policy is θ∗(t) = θmax, and thus the cost of the control in the interval
[0, tB] is: ∫ tB

0
θ∗(t)dt = τ2θmax.

S.3.2 Interval [tB, tC ]

In the interval [tB, tC ] the optimal testing policy maintains i = iu + id ≡ imax. Hence, the
first and second derivatives of i must be equal to zero. Note that

d(iu + id)

dt
= βsiu − γ(iu + id) = βsiu − γimax = 0

d2(iu + id)

dt2
= β

ds

dt
iu + βs

diu
dt

= β(−βsiu)iu + βs(βsiu − γiu − θ∗iu − κiu)

= −β2si2u + β2s2iu − βsγiu − βsθ∗iu − βκsiu = 0

which yields
θ∗ = β(s− iu)− γ − κ. (S11)

Substituting this expression in the dynamic equations, we obtain that in the interval
[tB, tC ] the undetected fraction of the infected individuals satisfies:

diu
dt

= (βs− γ − θ∗ − κ)iu = βi2u (S12)

and thus

iu(t) =
1

1

iuB
− β(t− tB)

. (S13)

Moreover,

did
dt

= θ∗iu + κiu − γid = βsiu − γiu − βi2u − γid = −ds
dt
− γiu −

diu
dt
− γid

⇒ 0 =
diu
dt

+
did
dt

= −ds
dt
− γ(iu + id)⇒

ds

dt
= −γimax

⇒ s(t) = sB − γimax(t− tB).

(S14)
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Thus, sC = sB−γimaxτ3 and iuC = 1/(1/iuB − βτ3). The value of τ3 is limited from above
by the constraints τ3 < (βiuB)−1 (for solvability of Eq. (S12)) and θ∗ ≥ 0, which can be
expressed as an upper constraint on τ3 via Eqs. (S11), (S13) and (S14). We denote by τ̄3

the minimum of such constraints. The cost of the optimal testing policy in the interval
[tB, tC ] is: ∫ tC

tB

θ∗(t)dt =

∫ tC

tB

(β(s(t)− iu(t))− γ − κ) dt

=

∫ τ3

0

(
β

(
sB − γimaxt

′ − 1
1
iuB
− βt′

)
− γ − κ

)
dt′

= τ3

(
βsB − γ − κ−

γ

2
βimaxτ3

)
+ ln (1− βiuBτ3) .

S.3.3 Intervals [tC , tD] and [tD, tE ]

The analysis is identical to that of Section S.3.1, the objective is to evaluate sD, iuD ,sE
and iuE as a function of sC and iC . From Eq. (S5) we have:

fθmax(sC , iuC , sD, iuD) = 0

f0(sD, iuD, sE , iuE) = 0.

At time tE , iu + id is tangent to imax, hence: (similar to Eq. (S9))

βsEiuE = γimax.

Integrating did/dt = θmaxiu + κiu − γid in the interval [tC , tD] yields:

id(D) =

(
id(C) + (θmax + κ)

∫ sC

sD

eγ∆tθmax (s,sC ,iC)

βs
ds

)
e−γτ4 ,

where id(C) = imax − iuC . We can also compute id(D) from the equation for id in the
interval [tD, tE ] (during which the testing rate is equal to zero) as:

id(D) = (imax − iuE)eγτ5 − κ
∫ sD

sE

eγ∆t0(s,sD,iD)

βs
ds,

and equating the two expressions for id(D) we find:

(imax−iuE)eγτ5−κ
∫ sD

sE

eγ∆t0(s,sD,iD)

βs
ds =

(
imax − iuC + (θmax + κ)

∫ sC

sD

eγ∆tθmax (s,sC ,iC)

βs
ds

)
e−γτ4 ,

The time intervals τ4 and τ5 can be computed from Eq. (S6). The cost of the control in
the interval [tC ,+∞] is thus: ∫ ∞

tC

θ̂∗(t)dt = τ4θmax.

S.3.4 Minimization over τ3 yields the optimal testing policy

So far we obtained a formula for the overall cost that, for fixed s0 and i0, depends only
on τ3. Minimizing such cost for τ3 ∈ [0, τ̄3] yields the optimal value for τ3 (Fig. S3), with
which the optimal testing strategy θ∗ is characterized. Note that since s is monotonically
decreasing, the testing strategy can be formulated as follows:

θ∗(t) =


0 if s(t) > sA or s(t) < sD

θmax if s(t) ∈ [sB, sA] ∪ [sD, sC ]

β(s(t)− iu(t))− γ − κ otherwise
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Figure S3: Cost of testing policies (red curve) with the structure of Fig. S2 for the
deterministic SIR model Eq. (S4), as a function of the duration τ3 of the time interval
[tB, tC ]. Costs are computed relative to the cost of the optimal, constant testing strategy
(Materials and Methods Section 4.2). The optimal testing policy adopts the value of τ3

that minimizes the cost (inset). The dashed, black line indicates the cost of a testing
policy with the largest possible value of τ3, i.e. a testing policy in which the last phase of
testing at maximum testing rate θmax does not occur. The inset shows that the benefit of
the last phase of testing at maximum testing rate is marginal.

S.4 Receding horizon implementation of the optimal testing policy for
the stochastic simulations

In the receding horizon implementation, at any time t > tA we aim at computing the
testing rate θrh(t) that brings the deterministic dynamics of Eq. (S4) to iu + id = imax

with d(iu + id)/dt = 0 in a time H. This leads to the following set of equations:

fθrh(t)(s(t), iu(t), s(t+H), iu(t+H)) = 0

d(iu(t) + id(t))

dt

∣∣∣∣
t+H

= βs(t+H)iu(t+H)− γimax = 0

s(t+H) = s(t)− β
∫ t+H

t
s(t′)iu(t′)dt′ ' s(t)− β

2
(s(t+H)iu(t+H) + s(t)iu(t))H,

(S15)
where fθ is as in Eq. (S5) and in the last equation we used the trapezoidal rule to
approximate the integral. We denote the solution of Eq. (S15) as:

θrh(s(t), iu(t)) := −β s(t) + iu(t)− s(t+H)

ln(s(t+H)/s(t))
+

γimax

s(t+H) ln(s(t+H)/s(t))
. (S16)

S.5 Validation with time-varying transmission rate

Fig. S4 illustrates the performance of the testing policy θ̂∗ for the optimization problem of
Eq. 4 when the transmission rate is time-varying (in this case sinusoidal to mimic season-
ality). For any time t, the transmission rate β(t) is estimated from the reconstructed state
[x̂(τ)]t−1

τ=t−7 over a moving window of length 7 days by nonlinear least square regression.

The testing rate is evaluated by using Eqs. (14) and (S16) with the estimated β̂(t) instead
of β. We see from Fig. S4 that the time-varying transmission rate can be accurately
predicted (while the epidemic is active) and the testing rate implemented using such pre-
diction effectively stabilizes the epidemics at the desired threshold. This is a preliminary
indication that the suggested testing strategy may be effective even in the presence of an
unknown and time-varying transmission rate. A detailed numerical study is needed to
further support this conclusion and is left as future work.
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Figure S4: Performance of the testing policy θ̂∗ when β(t) varies sinusoidally with a one
year period centered at β = 0.3 d−1 and amplitude 0.1 d−1. At any time tk, β(tk) was
estimated using data from the previous 7 days by fitting the epidemiological dynamics
to the deterministic SIR model, taking into account the testing rates adopted. Panel A
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