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Abstract

As we move to increasingly complex cyber-physical systems (CPS), new approaches are needed to plan efficient state trajectories
in real-time. In this paper, we propose an approach to significantly reduce the complexity of solving optimal control problems
for a class of CPS with nonlinear dynamics. We exploit the property of differential flatness to simplify the Euler-Lagrange
equations that arise during optimization, and this simplification eliminates the numerical instabilities that plague optimal
control in general. We also present an explicit differential equation that describes the evolution of the optimal state trajectory,
and we extend our results to consider both the unconstrained and constrained cases. Furthermore, we demonstrate the
performance of our approach by generating the optimal trajectory for a planar manipulator with two revolute joints. We show
in simulation that our approach is able to generate the constrained optimal trajectory in 4.5 ms while respecting workspace
constraints and switching between a ‘left’ and ‘right’ bend in the elbow joint.
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1 Introduction

There is an increasing demand to extend the bound-
aries of autonomy in cyber-physical systems (CPS) us-
ing experimental testbeds (see: Rubenstein et al. (2012);
Jang et al. (2019); Beaver et al. (2020); Chalaki et al.
(2022)) and outdoor experiments (see: Vásárhelyi et al.
(2018); Mahbub and Malikopoulos (2020); Chalaki et al.
(2022)). As CPS achieve higher autonomy levels, they
will be forced into complicated interactions with other
agents and the surrounding environment (Malikopoulos
et al., 2021; Beaver and Malikopoulos, 2021; Oh et al.,
2017). These autonomous agents must be able to react
quickly to their environment and re-plan efficient trajec-
tories. To this end, we propose a new method to simplify
real-time optimal trajectory planning by exploiting dif-
ferential flatness.

A system is differentially flat if there exist a set of en-
dogenous flat variables, also called outputs, such that the
original state and control variables can be written as an
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explicit function of the flat variables and a finite number
of their derivatives. This yields an equivalent flat system
that is completely described by integrator dynamics. It
is significantly easier to generate control trajectories in
the flat space, wherein the trajectories can be exactly
mapped back to the original coordinate system. Differ-
entially flat systems have garnered significant interest
since their introduction by Fliess et al. (1995), and it has
been shown that generating trajectories in the flat space
can reduce computational time by at least an order of
magnitude (e.g., see: Petit et al. (2001)). Differentially
flat systems are closely related to feedback linearizable
systems (Lévine, 2007); however, the standard control
techniques for flat systems are distinct from feedback
linearization.

The overwhelming majority of research on trajectory
generation with differential flatness uses collocation
techniques, i.e., finding optimal parameters for a set of
basis functions in the flat space. Under this approach, a
designer selects an appropriate basis function for their
application, e.g., polynomial splines in Mellinger and
Kumar (2011); Sreenath et al. (2013), Bezier curves
in Milam (2003), Fourier transforms in Ogunbodede
(2020), or piece-wise constant functions in Kolar et al.
(2017). The parameters of these basis functions are op-
timally determined to yield the optimal trajectory for
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the selected basis. A rigorous overview of this approach
is given in the recent textbook by Sira-Ramirez and
Agrawal (2018).

In contrast, we propose an indirect approach that seeks
a solution by solving a set of optimality conditions.

Our approach is similar to contemporary methods, such
as NOSNOC (see Nurkanović and Diehl (2022)) and
the Method of Evolving Junctions (MEJ); see Li et al.
(2017). Each of these algorithms explicitly resolves the
junctions that arise in the optimal control problem.
NOSNOC was developed to solve systems with switched
dynamics, and explicitly includes the switching point
in its discretization. Similarly, MEJ has been used for
optimal navigation in discrete flow fields (see Zhai et al.
(2022)), where the boundary between different flow re-
gions are explicitly resolved. Similarly, our approach
generates a collection of optimal trajectory segments
between discrete junctions. However, we determine the
optimal junctions using standard root-finding algo-
rithms, whereas NOSNOC discretizes the entire space,
and MEJ uses a stochastic global search method.

We also note that the MEJ has primarily been applied to
linear systems with quadratic objective functions, e.g.,
see Li et al. (2017). Furthermore, our approach gives an
equation that describes the system’s trajectory between
junctions, whereas MEJ and NOSNOC give no such con-
struction.

There are also weaker and more general analytical re-
sults for the so-called maximal inversion approach by
Chaplais and Petit (2007, 2008), which proves that the
optimality conditions for a feedback linearizable system
can be separated into two parts—one describing the op-
timal state trajectory, and the other describing the opti-
mal costate trajectory. This separation result is signifi-
cant, as the general optimality conditions couple the evo-
lution of the states and costates, which leads to signifi-
cant numerical instabilities (see: Bryson (1996)). While
Chaplais and Petit (2008) proved that the optimality
conditions are separable, in this paper, we provide the
analytical form of the ordinary differential equation that
explicitly describes their evolution. Furthermore, while
Chaplais and Petit (2008) considers control-affine non-
linear systems, our proposed approach does not require
affinity in the control variables. More recent work follow-
ing this approach employs saturation functions to han-
dle trajectory constraints, e.g., Graichen et al. (2010),
whereas our approach explicitly generates constrained
optimal trajectories. Finally, we also derive the optimal
boundary conditions in the flat space, which, to the best
of our knowledge, has not been addressed in the litera-
ture to date. The contributions of this paper are:

• We present a set of ordinary differential equations that
describe the evolution of the costates as explicit func-
tions of the state and control variables (Theorem 1).

• We derive optimality conditions that are independent
of the costates (Theorem 2). This independence prop-
erty holds for interior-point (Section 3.2) and path
(Section 3.3) constraints.

• We derive equivalent boundary conditions for the
state and control variables when an initial or final
state is left free or when the final time is unknown
(Section 3.4).

The remainder of the article is organized as follows. In
Section 2, we provide the modeling framework and enu-
merate our assumptions before presenting our main the-
oretical results in Section 3. In Section 4, we provide
an illustrative example of controlling a nonlinear planar
manipulator, and relate our differential flatness transfor-
mations to the forward and inverse kinematics. Finally,
we draw concluding remarks and present directions of
future work in Section 5.

2 Problem Formulation

Consider the nonlinear dynamical system,

ẋ(t) = f
(
x(t),u(t)

)
, (1)

where x(t) ∈ X ⊂ Rn and u(t) ∈ U ⊂ Rm, n ≥ m,
are the state and control vectors, respectively, f is a
smooth vector field, and t ∈ R is time. The system is
differentially flat if the following definition holds.

Definition 1 (Adapted from Rigatos (2015)). A system
described by (1) is said to be differentially flat if there
exists a vector of outputs y(t) = (y1(t), . . . , ym(t)), such
that:

(1) There exists a smooth function σ that maps x(t),
u(t), and a finite number of its derivatives to y, i.e.,

y(t) = σ
(
x(t),u(t), u̇(t), . . . ,u(p)(t)

)
, (2)

for some p ∈ N.
(2) The variables x(t) and u(t) can be expressed as

smooth functions of y(t) and a finite number of its
time derivatives, i.e.,

x(t) = γ0
(
y(t), ẏ(t), . . . ,y(q)(t)

)
, (3)

u(t) = γ1
(
y(t), ẏ(t), . . . ,y(q)(t)

)
, (4)

for some q ∈ N.
(3) The vectors y(t), i = 1, . . . ,m and their time

derivatives are differentially independent, i.e.,
there exists no differential relation satisfying
η(y, ẏ, . . . ) = 0 .

Then the variables yi(t), i = 1, 2, . . . ,m are the outputs
of the differentially flat system.
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Definition 1 implies a smooth bijective mappings σ, γ0,
and γ1 between the original space, X × U × U (1) × . . . ,
and a flat space Y × Y(1) × . . . . Furthermore, since this
mapping uses only the original state variables and their
derivatives, this is said to be an endogenous transforma-
tion.

For a comprehensive discussion on differential flatness
and the topological properties of flat spaces see Fliess
et al. (1999). Next, we impose our working assumptions
for the analysis of differentially flat systems that satisfy
Definition 1.

Assumption 1. The trajectory of the system is con-
tained in an open set where the functions (2)–(4) are
well-defined.

Assumption 2. The control actions in the original and
flat spaces are upper and lower bounded.

Assumption 1 is a standard assumption in the literature
(see: Van Nieuwstadt et al. (1994)). It can be relaxed
by constraining the trajectory to remain within a subset
where (2)–(4) are well-defined, and several relaxations
of this assumption are discussed in Milam (2003).

Assumption 2 is common in optimal control (see: Bryson
and Ho (1975)), particularly for physical systems where
actuators are ultimately bounded by their physical
strength or energy consumption. This assumption can
be relaxed by allowing the control input to take the form
of a Dirac delta function, which introduces additional
complexity that requires nonsmooth analysis.

We note that, for mechanical systems, Assumption 1 has
been proven to hold for a broad class of practical prob-
lems. For example, in the case of robot manipulators the
diffeomorphism (2) is exactly the forward kinematics,
and the inverse transformations (3) and (4) are exactly
the inverse kinematics and inverse dynamics. While pro-
viding an algorithm to determine the inverse kinematics
in general is an open problem, the transformations have
been derived and tabulated for many systems (see Spong
et al. (2020) for some examples). We also demonstrate
in our example that singularities in the transformations
are equivalent to the unconstrained switching points of
Bryson and Ho (1975); we treat these as interior point
constraints in our case study. Furthermore, when dis-
continuities of the first kind appear in these transfor-
mations, they can easily be handled by piecing the left
and right limits using continuity in the state–which is
implied by the differentially flat dynamics and bounded
control in Assumption 2 (Bryson and Ho, 1975). This
further motivates our approach, which is robust to these
kinds of discontinuities and singularities.

Next, as an illustrative example of our approach, we
introduce a “running” example that we will refer back to
throughout the manuscript: a unicycle operating in R2.

Example 1. Let x(t) = [px(t), py(t), θ(t)]
T be the state

of a unicycle in the R2 plane, where px(t) and py(t) de-
note the position, and θ(t) denotes the heading angle. Let
u(t) = [u1(t), u2(t)]

T be the vector of control actions,
where u1(t) and u2(t) denote the forward and angular
velocity, respectively. Then, the dynamics are given by,

ẋ(t) =


u1(t) cos

(
θ(t)

)
u1(t) sin

(
θ(t)

)
u2(t)

 . (5)

This system admitsm = 2 differentially flat base states,
y(t) = [y1(t), y2(t)]

T = [px(t), py(t)]
T (see Sira-Ramirez

and Agrawal (2018)). The transformations (3) and (4)
between the flat and original variables are

px(t)

py(t)

θ(t)

 =


y1(t)

y2(t)

atan2(ẏ2, ẏ1)

 , (6)

[
u1(t)

u2(t)

]
=

√ẏ1(t)2 + ẏ2(t)2

ÿ2ẏ1−ẏ2ÿ1

ẏ2
2+ẏ2

1

 , (7)

which satisfy Assumption 1 for u1(t) ̸= 0. Note
that atan2 is the two-argument inverse tangent with
codomain (−π, π].

Next, we formulate a constrained optimal control prob-
lem for a system governed by (1) under Assumptions 1
and 2.

Problem 1. Consider a differentially flat system (1)
with running cost L

(
x(t),u(t)

)
over the time horizon

[t0, tf ] ⊂ R and a final cost ϕ(x(tf ),u(tf )). Determine
the optimal control input that minimizes the total cost,
i.e.,

min
u(t)

ϕ
(
x(tf ),u(tf )

)
+

∫ tf

t0
L
(
x(t),u(t)

)
dt

subject to: (1),

ĝ
(
x(t),u(t), t

)
≤ 0,

given: initial conditions,final conditions,

where the initial and final states may be fixed, a function
of the state variables, or left free. In addition, the func-
tion ĝ(x(t),u(t), t) defines a vector of state and control
trajectory constraints.

In what follows, we present our main results, which yield
a set of sufficient conditions for optimality that are only
dependent on the state and control variables.
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Fig. 1. An overview of our proposed approach, showing how the original optimization problem is split into motion primitives
in the flat space. These are optimally pieced together to generate the optimal trajectory in either space.

3 Main Results

We generate the optimal solution to Problem 1 as fol-
lows: first, we apply the diffeomorphism of Definition 1
to generate an equivalent problem in the flat space. Next,
we apply Pontryagin’s principle to construct the Hamil-
tonian in the flat space, and apply the Euler-Lagrange
and optimality conditions to generate an ordinary dif-
ferential equation that describes the optimal motion of
the system. We solve the differential equation to gen-
erate all possible motion primitives that the optimality
conditions admit; we achieve this by considering every
possible combination of constraints that could become
active along the trajectory over a non-zero time inter-
val. This procedure is similar to exhaustively checking
every possible constraint activation in a static optimiza-
tion problem to guarantee complimentary slackness as
part of the KKT conditions (Boyd and Vandenberghe,
2004). Finally, the resulting motion primitives can be
passed back through the flatness diffeomorphism to gen-
erate the optimal motion primitives in the original co-
ordinate system. Thus, we generate a collection of op-
timal motion primitives–in both the original and flat
coordinates–that must be pieced together using the op-
timality conditions to generate the optimal solution to
Problem 1. This process is summarized in Fig. 1.

3.1 Separability of the Optimality Conditions

First, we construct the flat space, which allows us to
transform Problem 1 into an optimization over the dif-
ferentially flat variables. Note that the transformations
(3), (4), are a function of y = [y1, y2, . . . , ym] and a finite
number of their derivatives. Thus, we perform dynamic
extension on each of our i = 1, 2, . . . ,m output variables
yi by taking ki time derivatives. The value of ki is the
minimum number of derivatives required to span the do-
main of (3) and (4), and thus it depends explicitly on
the diffeomorphism in Definition 1. This can be achieved
using the dynamic extension algorithm, as detailed in
Di Benedetto et al. (1989). Using the dynamic exten-
sion, we define analogous state and control variables for
the system in the flat space.

Definition 2. Group each output yi, i = 1, . . . ,m and
their ki derivatives into the state vector s(t) and control
vector a(t) such that,

s(t) =
[
y1(t), . . . , y

(k1−1)
1 (t), . . . , y

(km−1)
m (t)

]T
, (8)

a(t) =
[
y
(k1)
1 (t), . . . , y

(km)
m (t)

]T
, (9)

and s× a ∈ Y × Y(1) × . . . span the flat space.

Remark 1. For the unicycle system in Example 1, the
flat state and control variables are

s(t) =
[
y1(t), y2(t), ẏ1(t), ẏ2(t)

]T
, (10)

a(t) =
[
ÿ1(t), ÿ2(t)

]T
, (11)

which consists of two integrator chains, each with a
length of ki = 2, for i = 1, 2.

With the flat space completely defined, we apply the
mappings (Definition 1) to construct an equivalent op-
timal control problem over the flat variables.

Problem 2. Find the cost-minimizing trajectory in the
flat space,

min
a(t)

Φ(s(tf ),a(tf )) +

∫ tf

t0
Ψ
(
s(t),a(t)

)
dt

subject to: ṡ = I(s(t),a(t)),

g
(
s(t),a(t), t

)
≤ 0,

given: initial conditions, final conditions,

where I denotes integrator dynamics from Definition 2
in Brunovsky canonical form (Brunovský, 1970), while
Φ, Ψ, g, and the boundary conditions are constructed
by composing ϕ, L, ĝ and the boundary conditions of
Problem 1 with the inverse of (3) and (4).
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Under the framework proposed by Bryson and Ho
(1975), we write the constraint g with explicit depen-
dence on the control action a(t). This is not restrictive
on our analysis, and we rigorously prove in Section 3.3
that, under Assumption 2, any trajectory constraint
h(s(t), t) can be transformed into an explicit function of
the control input. This is achieved by taking successive
time derivatives of h(s(t), t) until any component of the
control vector a(t) appears; this yields a constraint with
explicit functional dependence on the control variable
and a set of tangency conditions that must be satisfied.
This technique is similar to the derivation of control
barrier functions with high relative degree, as discussed
in Xiao and Belta (2019).

Note that solving Problem 2 yields the optimal solution
to Problem 1 through Definition 1, and this construction
is common in the literature (see Fliess et al. (1995); Pe-
tit et al. (2001); Milam (2003); Ogunbodede (2020) for
examples). We present our first result next, which de-
couples the state and costates for the Hamiltonian func-
tion associated with Problem 2. Note that to simplify
the notation, we omit the explicit dependence on a(t),
s(t), and t for the remainder of this Section where it does
not lead to ambiguity.

We follow the standard process of Bryson and Ho (1975);
Ross (2015) for solving optimal control problems. First,
we construct the Hamiltonian for Problem 2,

H = Ψ(s(t),a(t)) + λT (t)I(s(t),a(t))

+ µT (t)g
(
x(t),a(t), t

)
, (12)

where λ(t) is the vector of costates, g is a vector of
inequality constraints, and µ(t) is a vector of inequality
Lagrange multipliers. This leads to our first result.

Theorem 1. The costates λy
(j)
i , for each base state

i = 1, 2, . . . ,m and derivative j = 0, 1, . . . , ki − 1, for
Problem 2 are,

λy
(j)
i =

ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(j+n)
i

+ µTg
y
(j+n)
i

)
, (13)

where the d
dt operator is the Cartan field of Fliess et al.

(1999).

Proof. The Euler-Lagrange and optimality equations for
(12) are,

−λ̇T = Ψs + λT Is + µTgs, (14)

0 = Ψa + λT Ia + µTga, (15)

where the subscripts a and s correspond to partial
derivatives with respect to those variables. We simplify

(14) by exploiting the integrator structure of I for each
element of s(t).

Note that, by construction,

λT Is =
[
0, λy1 , . . . , λy

(k1−2)

1 , . . . , 0, λym , . . . , λy
(km−2)
m

]
,

(16)

λT Ia =
[
0, 0, . . . , λy

(k1−1)

1 , 0, 0, . . . , λy
(km−1)
m

]
. (17)

First we consider (15) for some base state i ∈
{1, 2, . . . ,m}, which yields,

0 = Ψ
y
(ki)

i

+ λy
(ki−1)

i + µTg
y
(ki)

i

, (18)

which satisfies Theorem 1 when j = ki − 1. Next, for
j ∈ {0, 1, . . . , ki − 1}, (14) implies,

λ̇y
(j)
i = −Ψ

y
(j)
i

− λy
(j−1)
i − µTg

y
(j)
i

. (19)

For the case that j = ki − 1, (19) becomes,

λ̇y
(ki−1)

i = Ψ
y
(ki−1)

i

+ λy
(ki−2)

i − µTg
y
(ki−1)

i

. (20)

Solving (18) for λy
(ki−1)

i , taking its derivative, and sub-
stituting the result into (20) satisfies Theorem 1 for
j = ki − 2. Taking repeated time derivatives and substi-
tuting completes the proof of Theorem 1.

Theorem 1 could be interpreted as an alternative to the
proof of separability presented in Chaplais and Petit
(2008), however, our result is constructive and explic-
itly derives the costates as functions of state and control
variables. Furthermore, our result relies on differential
flatness, rather than feedback linearization, and does not
require affinity with respect to the control inputs in the
system dynamics. Furthermore, in the following subsec-
tions, we apply Theorem 1 to generate the optimal con-
strained trajectory and boundary conditions as a func-
tion of the state and control variable. This, to the best
of our knowledge, has not been addressed to date.

Remark 2. For the unicycle system in Example 1, the
costates are,

λy = −
(
ψẏ + µTgẏ

)
+
d

dt

(
ψa + µTga

)
, (21)

λy(1)

= −
(
ψa + µTga

)
. (22)

Our next result comes from manipulating Theorem 1 to
eliminate the costate variables; this yields an equivalent
optimality condition that is independent of the costates.
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Theorem 2. The optimal trajectory for the system de-
scribed in Problem 2 satisfies

ki∑
n=0

(−1)n
dn

dtn

(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
= 0, (23)

for each integrator chain starting with the base state yi,
i = 1, 2, . . . ,m.

Proof. By Theorem 1,

λyi =

ki∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
, (24)

while for j = 0 (19) implies,

λ̇yi = −Ψyi − µTgyi . (25)

Taking the derivative of (24) and substituting (25)
yields,

λ̇yi = −Ψyi
− µTgyi

=

ki∑
n=1

(−1)n
dn

dtn
(
Ψ

y
(n)
i

+ µTg
y
(n)
i

)
, (26)

which proves Theorem 2.

Note that while we prove Theorem 2 for the flat space,
the mapping (3) and (4) can be composed with (23) to
generate an equivalent optimality condition in the orig-
inal space. Thus, the separation of states and costates is
independent of the coordinate system, and is instead a
fundamental property of differentially flat systems.

Remark 3. Applying Theorem 2 to Example 1 yields
the optimality equation,

(
Ψp + µTgp

)
− d

dt

(
Ψv + µTgv

)
+
d2

dt2
(
Ψa + µTga

)
= 0.

Furthermore, the following (arbitrary) terminal cost,
running cost, and constraints,

ϕ =
1

2
u2(t)

2, L =
1

2
u1(t)

2, ĝ = θ − θmax ≤ 0,

become

Φ =
1

2

( ÿ2ẏ1 − ẏ2ÿ1
ẏ22 + ẏ21

)2
, Ψ =

1

2

(
ẏ1(t)

2 + ẏ22
)
,

g′ = atan2
(
ẏ2(t), ẏ1(t)

)
− θmax ≤ 0.

The transformed constraint g′ is not an explicit function
of the control variables ÿ1 or ÿ2. We resolve this by tak-
ing a single derivative of the constraint, which we call
g := d

dtg
′. The new function g is an explicit function of

the control variables, and we take partial derivatives of
it in the optimality equation–we discuss this step in fur-
ther detail in Section 3.3. Note that we have, in essence,
moved the nonlinearities of the dynamics into the objec-
tives and constraints.

While Theorem 2 describes the evolution of the optimal
state trajectory, one must also consider instantaneous
jumps in the trajectory caused by constraint activations.
Consider a constraint vector g that has c linearly in-
dependent rows, then µ(t) is a c × 1 matrix. When a
constraint gi, i = 1, 2, . . . , c does not influence the sys-
tem trajectory then µi(t) = 0 by definition, otherwise
µi(t) > 0. When µ = 0 the trajectory is said to follow a
singular (unconstrained arc), and if any µi > 0, then the
trajectory is said to follow a regular (constrained) arc.
When the system switches between singular and regu-
lar arcs, the corresponding costates may switch instan-
taneously at the so-called constraint junction.

We propose a new interpretation of this property, where
the collection of singular and regular arcs constitute a set
of optimal motion primitives. A vector of c constraints
implies at most 2c different motion primitives, which
can be automatically computed using Theorem 2 and
the corresponding constraint equations. In other words,
Theorem 2 provides an optimal motion primitive gener-
ator, which can be solved numerically or analytically to
derive every possible motion primitive.

In this context, dealing with switching elements of µ(t)
is reduced to optimally switching between a finite set of
motion primitives at unknown constraint junctions. The
standard approach of Bryson and Ho (1975) derives op-
timality conditions that must be satisfied at each junc-
tion,

λ−T
= λ+T

+ πTNs, (27)

H+ −H− = πTNt, (28)

∂H−

∂a− =
∂H+

∂a+
= 0, (29)

where the superscripts − and + denote the instant in
time just before and just after the junction, respectively,
π is a constant vector of Lagrange multipliers, N is a
vector of tangency conditions, which we rigorously de-
rive in the following subsections, and the subscripts s
and t correspond to partial derivatives with respect to
the state and time. In the following subsections, we em-
ploy Theorem 1 to exhaustively write the jump condi-
tions (27)–(29) as explicit functions of the state and con-
trol variables. This enables us to solve Problem 2 using
only the state and control variables, which removes the
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numerical instabilities that are generally associated with
nonlinear optimal control.

3.2 Interior-Point Constraints

First, we will consider the case where a set of state
and/or control values are imposed at a single time in-
stant. Let h

(
s(t1), t1

)
= 0 describe an interior point

constraint that is imposed at some time t1. We construct
the tangency vector,

N
(
s(t), t

)
=

[
h
(
s(t), t

)
t− t1

]
, (30)

which is necessary and sufficient for constraint satisfac-
tion at t1 whenN

(
s(t1), t1

)
= 0. Note that if the time t1

is unknown, then (30) reduces to N = h. To determine
the optimal jump conditions, we substitute the tangency
vector (30) into the optimality equations (27) and (28).
Applying Theorem 1 to (27)–(29) yields

∑m
i=1{ki−1}+1

equations that determine the optimal change in a and
its derivatives at t1, and these equations are independent
of the costate vectors.

Further manipulating (27)–(29) yields a useful pair of
equations that are amenable to finding an analytical so-
lution. First, we substitute (12) into (28) and use (27)
to eliminate λ−,

(Ψ+ −Ψ−) + (µ+T
g+ − µ−T

g−)

+ λ+T
(I+ − I−) = πT

(
Nt +NsI

−).
(31)

Note that, by definition, µTg = 0 along the optimal
state-trajectory, thus we set those terms equal to zero.
Furthermore, the state trajectory is continuous under
Assumption 2 and the integrator dynamics. Thus,

I+ − I− =

[
0

a+ − a−

]
. (32)

Applying Theorem 1 to (31) for the case j = ki − 1 and
simplifying yields,

(Ψ+ −Ψ−) − (Ψa + µTga)
− · (a+ − a−)

= πT
(
Nt +NsI

+
)
. (33)

Following a similar process also implies,

(Ψ+ −Ψ−) − (Ψa + µTga)
+ · (a+ − a−)

= πT
(
Nt +NsI

−). (34)

3.3 Path Constraints

Next, we consider the case when path constraints on the
state and/or control variables are imposed on Problem
2 and influence the trajectory of the system. To gener-
ate our optimal motion primitive using Theorem 2, we
first need to ensure our constraints are functions of the
state and control variables. Let hi

(
s(t), t

)
≤ 0 denote

the i = 1, 2, ..., c state or control constraints. Note that
hi is not required to be an explicit function of the con-
trol input. Under the standard approach of Bryson and
Ho (1975), we require that hi is at least qi−times differ-
entiable, where qi is the minimum number of derivatives
required for any component of the control input to ap-
pear in dqi

dtqi hi. To guarantee satisfaction of the original
constraint hi, we construct the tangency vector,

Ni(s(t), t) :=


hi
(
s(t), t

)
h
(1)
i

(
s(t), t

)
...

h
(qi−1)
i

(
s(t), t

)

 , (35)

and define the constraint,

gi
(
s(t),a(t), t

)
:= h

(qi)
i

(
s(t),a(t), t

)
. (36)

Thus, whenever hi
(
s(t), t

)
= 0 over a non-zero inter-

val, we impose Ni

(
s(t), t

)
= 0 and gi

(
s(t),a(t)

)
= 0

over the interior of the interval; this satisfies the original
constraint under Assumption 2 (Bryson and Ho, 1975).
Note that, if hi is a function of the control variable, q = 0
andNi is empty. Furthermore, if the constraint is active
over a zero-length interval, the problem reduces to the
analysis in Section 3.2 with an unknown activation time.

Finally, to construct the tangency matrix for the c con-
straints, we construct the stacked tangency vector,

N
(
s(t), t

)
=


N1

(
s(t), t

)
N2

(
s(t), t

)
...

Nc

(
s(t), t

)

 , (37)

which accounts for all of the constraints that may influ-
ence the state and control trajectory. As with the previ-
ous section, (27)–(29) determine the required instanta-
neous change in the control variables and their deriva-
tives for an optimal trajectory.

Again, further manipulating (27)–(29) yields a pair of
useful equations. Note that, by construction,

πT Ṅ+ = 0, (38)
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as Ni = 0 and g+
i = 0 when constraint i is active, and

the corresponding πi = 0 otherwise. Thus, taking the
full derivative implies

πT Ṅ+ = πT
(
Nt +Ns · I+

)
= 0. (39)

Thus, applying (33) at the end of a constrained motion
primitive yields

(Ψ+ −Ψ−)− (Ψa + µTga)
− · (a+ − a−) = 0. (40)

This leads directly to our next result,

Corollary 1. If the system exits from or enters to an
unconstrained motion primitive, the optimal control in-
put satisfies

Ψ+ −Ψ− −Ψ−
a (a

+ − a−) = 0, or (41)

Ψ+ −Ψ− −Ψ+
a (a

+ − a−) = 0, respectively. (42)

Proof. When the system exits from an unconstrained
motion primitive, µ− = 0 and the result follows by (40).
When the system enters an unconstrained motion prim-
itive, µ+ = 0 and π = 0; the result follows by (33).

Corollary 2. If the objective function has the form
Ψ = f(s(t)) + ||a(t)||2, then the control input a(t) is
always continuous when the system enters or exits an
unconstrained motion primitive.

Proof. The proof follows trivially from Corollary 1 and
continuity in s(t) from Assumption 2.

3.4 Boundary Conditions

The results of Sections 3.2 and 3.3 completely describe
the evolution of the system if the boundary conditions
are known. Next, we extend this result to the case that a
boundary condition is unspecified by applying Theorem
1.

Corollary 3. Let the state y
(j)
i (t) for i ∈ {1, 2, . . . ,m}

and j ∈ {0, 1, 2, . . . , ki−1} be unspecified at a boundary,
i.e., it can be arbitrarily selected. There exists an equiv-
alent boundary condition that guarantees optimality of
the system trajectory.

Proof. Without loss of generality, let the state variable

y
(j)
i (t) be undefined at the final time tf . Under the stan-
dard approach Bryson and Ho (1975), the corresponding

boundary condition λy
(j)
i (tf ) = 0 is required to guaran-

tee optimality. Thus, by Theorem 1,

ki−j∑
n=1

(−1)n
dn−1

dtn−1

(
Ψ

y
(j+n)
i

+ µTg
y
(j+n)
i

)∣∣∣
tf

= 0 (43)

is an equivalent boundary condition.

In practice, it is likely that Problem 2 will have boundary
conditions defined by functions of the state variables.
Without loss of generality, let B(s(tf ), tf ) = 0 describe
the functional constraints at tf . This implies that

λT (tf ) =

(
∂Φ

∂s
+ ν

∂B

∂s

)
t=tf

, (44)

B(s(tf ), tf ) = 0, (45)

where ν is a constant Lagrange multiplier that guar-
antees constraint satisfaction (see: Bryson and Ho
(1975)). Applying Theorem 1 to (44) results in a system
of equations that guarantees constraint satisfaction at
the boundaries, which ensures that Problem 2 has the
correct number of initial and final conditions.

Finally, it’s possible that the boundary conditions are
described at an unknown terminal time. In this case, the
optimal terminal time tf satisfies (Bryson and Ho, 1975)

Ω =

[
∂Φ

∂t
+ ν

∂B

∂t
+
(∂Φ
∂s

+ νT ∂B

∂s

)
I +Ψ

]
t=tf

= 0.

(46)
Thus, Problem 2 always corresponds to a two-point
boundary value problem with m initial conditions and
m final conditions that are independent of the costates.
Next, we present a numerical example for generating the
trajectory of a double-integrator system in real time.

4 Robotic Manipulator Case Study

To demonstrate the effectiveness of our approach, we
consider the motion planning problem for a planar serial
manipulator with two revolute joints, which we refer to
as ‘the manipulator.’ In particular, we derive the optimal
trajectory for the pick-and-place problem. Note that,
to improve readability, we omit the explicit dependence
of variables on time where it does not cause ambiguity.
We use the standard model for our manipulator, which
is depicted in Fig. 2.

The state space x = [θ1, θ2, θ̇1, θ̇2]
⊺ corresponds to the

joint space of the manipulator, and the action space
u = [τ1, τ2]

⊺ is the torque applied at each angle. The
manipulator’s dynamics are given by,

τ = D(θ)θ̈ + C(θ, θ̇)θ̇ +G(θ), (47)

where θ = [θ1, θ2]
⊺, D is the inertial matrix, C is the

Coriolis matrix, and G is the gravitational matrix (see
Spong et al. (2020) for further details).
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Fig. 2. A 2-link serial manipulator with 2 revolute joints.

In this case study we consider a pick-and-place task, i.e.,
we seek to plan a trajectory for the grasper located at
point p. The system is under-actuated; we have two con-
trol inputs, namely, the two joint torques applied to θ1
and θ2. However, we have three states of interest: the
Cartesian position of the grasper at point p and its ori-
entation. For pick-and-place, our variable of interest is
the grasper position p, and the manipulator satisfies the
definition of differential flatness with p as the flat out-
put variable. In fact, the diffeomorphism from the joint
to the state space is exactly the forward and inverse
kinematics. We also note that the inverse kinematics for
the manipulator are non-unique and contain a singular-
ity when θ2 = Kπ for any integer K. In the sequel we
demonstrate that thse singularity points can be included
as interior point constraints per Section 3.2–which we
can either impose or avoid as part of our optimal control
problem.

First, we write the grasper position as an explicit func-
tion of the state variables using the forward kinematics,

p =

[
px

py

]
= l1

[
cos(θ1)

sin(θ1)

]
+ l2

[
cos(θ1 + θ2)

sin(θ1 + θ2).

]
. (48)

The joint angles can also be written as an explicit func-
tion of the output variables using the inverse kinematics
(Spong et al., 2020),

θ2 = ± cos−1
(
p2x + p2y − l21 − l22, 2 l1l2

)
, (49)

θ1 = atan2
(
py, px

)
− atan2

(
l2 sin(θ2), l1 + l2 cos(θ2)

)
.

Finally, composing the inverse dynamics (49) and its
derivatives with the dynamics (47) yields the control in-
put τ as an explicit function of the position p. Thus, the
forward and inverse kinematics of the serial manipula-
tor are exactly the diffeomorphisms of Definition 1. The

resulting flat state and action space is,

s =

[
p

ṗ

]
, a = p̈. (50)

Next, for the pick-and-place task, we seek to bring the
manipulator from its current state at time t = 0 and
position the grasper at a desired position at some later
time T > 0, i.e.,

p(0) = l1

[
cos(θ1)

sin(θ1)

]
+ l2

[
cos(θ1 + θ2)

sin(θ1 + θ2)

]
,

ṗ(0) =
d

dt
p(t = 0),

p(T ) = pf ,

ṗ(T ) = 0.

(51)

Note that the inverse kinematics (49) are non-unique.
Thus, any position p(t) that is non-singular at time t can
correspond to a ‘left’ or ‘right’ bend in the elbow at θ2.
We refer to these as the two ‘modes’ of the manipulator.
The initial mode at time t = 0 is determined by the
initial state state; the final mode at time t = T can be
selected to influence the final orientation of the grasper.
If the initial and final modes differ, then the grasper must
enter a singular configuration at some time t1 ∈ (0, T ),
i.e.,

||p(t1)||2 = (l1 + l2)
2, or

||p(t1)||2 = (l1 − l2)
2.

(52)

Thus, may we include (52) as an interior point constraint
with an unknown time as per Section 3.2 when the ini-
tial and final modes are distinct. Finally, to ensure As-
sumption 1 is satisfied, we must constrain the grasper to
remain within the manipulator’s workspace, i.e.,

||p||2 − (l1 + l2)
2 ≤ 0, (53)

(l1 − l2)
2 − ||p||2 ≤ 0, (54)

which coincidentally coencides with the singular config-
uration of this manipulator.

To summarize, our approach enables us to formulate the
optimal manipulator trajectory planning problem as a
kinematic particle with workspace bounds (53), (54).We
can switch between ‘left’ and ‘right’ bending modes with
the interior point constraint (52) if the initial and final
modes are distinct, or we can constrain the manipulator
to avoid singular configurations.

Finally, for brevity of our analysis, we present an opti-
mization problem that minimizies the L2 norm of the
grasper’s acceleration; this minimizes the magnitude of
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the force that the grasper must apply during the pick-
and-place operation. For more complex objectives, e.g.,
minimizing the total joint torque, the objective func-
tion must be written as an explicit function of p and
any number of its derivatives using (49). While this may
be challenging analytically, it is trivial to achieve using
automatic differentiation, e.g., with Maple, Matlab, or
Autodiff. Our final optimal control problem is

min
ä

1

2

∫ T

0

1

2
||a||2dt

subject to:

integrator dynamics p̈ = a,

initial conditions (51),

mode switching constraint (52),

workspace constraints (53), (54),

where the mode switching constraint is neglected if the
initial and final configurations share the same mode.

Optimal Motion Primitives: We employ Theorem 2
to generate an ordinary differential equation that is suf-
ficient for optimality,

ä+ 2µip− 2µop = 0, (55)

where µi and µo are the time-varying Lagrange multi-
pliers corresponding to the inner and outer bounds of
the workspace in (53) and (53), respectively. Both con-
straints cannot be active simultaneously, thus there are
only three motion primitives:

(1) Unconstrained motion, µi = µo = 0.
(2) Inner constraint, µi ≥ 0 and ||p|| = l1 − l2.
(3) Outer constraint, µo ≥ 0 and ||p|| = l1 + l2.

The optimal trajectory is a piecewise combination of
these three cases. We construct the dynamical motion
primitives from (55) with the orthonormal unit vectors
p̂ and t̂, which are parallel and perpandicular to the po-
sition vector p, respectively. The resulting motion prim-
itives are,

ä = 0 (unconstrained) (56)

ä · p̂+ 2(l1 − l2)µi(t) = 0

ä · t̂ = 0
(inner constrained) (57)

ä · p̂+ 2(l1 + l2)µo(t) = 0

ä · t̂ = 0
(outer constraint) (58)

Each dynamical motion primitive has an analytic solu-
tion,

a(t) = c1t+ c2 (unconstrained), (59)

a(t) · p̂ =
v2

r
ä · t̂ = 0

(constrained). (60)

where r = (l1 + l2) for the outer constraint and r =
(l1 − l2) for the inner constraint.

To avoid unnecessary complexity in this example, we
introduce an additional assumption for this case study.

Assumption 3. The boundary conditions satisfy (l1 −
l2) < ||p(t)|| < (l1 + l2), and the constraints bounding
p(t) are active only instantaneously.

We only employ Assumption 3 for brevity; the impli-
cation is that the optimal trajectory consists of an un-
known number of unconstrained arcs connected with in-
terior point constraints.We have found this constraint to
be reasonable for energy-minimizing systems that start
and stop at rest, e.g., see Beaver et al. (2023).

Switching Conditions: Under Assumption 3, the op-
timal solution is a piecewise collection of unconstrained
optimal motion primitives connected at junction points.
The unconstrained optimal trajectory is a system of 8
equations and 8 unknowns, which are the boundary con-
ditions (51) and 8 unknown constants of integration for
the optimal motion primitives, i.e.,

p = c3t
3 + c2t

2 + c1t+ c0,

v = 3c3t
2 + 2c2t+ c1,

u = 6c3t+ 2c2

(61)

In particular, the initial and final conditions are captured
by a set of linear equations

A(0)c0 = b0, (62)

A(T )cf = bf , (63)

whereA(0)c0 andA(T )cf denote the initial and final un-
constrained trajectory segments (61) evaluated at t = 0
and t = T , respectively. The vectors c0 and cf contain
the constants of integration for the initial and final un-
constrained motion primitives, and b0, bf are the initial
and final conditions. In the case that the unconstrained
trajectory is feasible, c0 = cf and the system consists of
a single unconstrained arc.

If the unconstrained trajectory is infeasible, or the ini-
tial and final modes of the manipulator are distinct, then
the trajectory must transition to a singular configura-
tion where either the inner or outer workspace constraint
becomes active. Under Assumption 3, this implies that
there is only a single junction, and that it is an inte-
rior point constraint at an unknown time t1. Following
Section 3.2, we first write the tangency vector with an
unknown activation time,

N(s(t), t) = (l1 − l2)
2 − ||p||2. (64)
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The tangency condition is satisfied by definition when
θ2 = π; this allows us to write thie tangency condition in
an equivalent form that is linear in p. We achieve this by
parameterizing the point p with the unknown angle θ1,

p(t1) = (l1 − l2)

[
cos(θ1)

sin(θ1)

]
. (65)

Next, using Theorem 1 to rewrite the costates yields,

λv = −a− 2µip (66)

λp = ȧ+ 2µ̇ip− 2µiv. (67)

Substituting these into jump in the costates (27) yields,

ȧ+ + 2µ̇+
i p− 2µ+

i v = ȧ− + 2µ̇−
i p− 2µ−

i v − 2πp,
(68)

−a+ − 2µ+
i p = −a− − 2µ−

i p. (69)

To complete our analysis take advantage of two facts,

• The quantity p · v = 0 in the singular configuration;
this can be trivially verified using (48).

• Although µi(t) is problematic to evaluate at t1, it is
equal to zero in an open set around t1; thus we take
µ−
i = µ+

i .

Thus, taking the dot product of (68) and (69) with v
and cancelling yields,(

ȧ+ − ȧ−) · v = 0, (70)(
a− − a+

)
= 0. (71)

This implies continuity in the control input and the
quantity ȧ · v at t1 Thus, the optimality conditions at
each junction are,

(1) Continuity in the state at t1: 4 equations.
(2) Tangency condition: 2 equations, 1 unknown θ1.
(3) p · v = 0 at t1: 1 equation.
(4) Continuity in the control input at t1: 2 equations.
(5) Continuity in a · v at t1: 1 equation.

Next, note that splitting one unconstrained arc with a
junction yields 10 unknowns (8 new trajectory coeffi-
cients 1 unknown time, and the unknown parameter θ1)
that we solve using the above 10 equations. Conditions
1, 2, and 4 are bilinear. Thus, if we fix a time t1 and
angle θ1 for the junction, we can write the trajectory
coefficients in the linear form,

A(t1)c = b(θ1), (72)

where A(t1) is a square 8×16 matrix, c is a 16×1 vector
containing the trajectory coefficients for both segments,

and b(θ1) is an 8× 1 vector that encodes the continuity
and tangency conditions. Thus, we combine (72) with
the 8 boundary conditions (51) to form a block-diagonal
square matrix to calculate the optimal trajectory for
a given t1, θ1. Finally, we solve for the optimal values of
t1 and θ1 using an off-the-shelf least-squares method. In
particular, we solve

p(θ1) · v(t1) = 0 (73)

a(t−1 ) · v(t
−
1 )− a(t+1 , θ1) · v(t

+
1 , θ1) = 0. (74)

Note that p,v,a are cubic, quadratic, and linear poly-
nomials defined by the optimal motion primitive (61).

4.1 Result

To demonstrate how our analytic closed-form solution to
the optimal motion planning works, consider the serial
manipulator of Fig. 2 with the following parameters:

• l1 = 3 m, l2 = 2 m
• θ1(0) =

π
4 , θ2(0) =

7π
8 ,

• θ̇1(0) = 0, θ̇2 = 0
• p(T ) = [−2,−3]⊺, ṗ(T ) = 0

We also wish to have the manipulator switch modes,
starting with the ‘left’ bend configuration and ending in
the ‘right’ bend configuration. First, we calculate p(T )
using (48). Then, we write the boundary conditions (51)
in matrix form,

0 0 0 1

0 0 1 0

T 3 T 2 T 1

3T 2 2T 1 0

⊗ I2×2


c1

c2

c3

c4

 =


p(0)

0

p(T )

0

 , (75)

where ⊗ is the Kronecker product and I2×2 is the 2× 2
identity matrix. This analytical expression for the tra-
jectory coefficients yields the optimal unconstrained so-
lution. However, the resulting trajectory is infeasible as
demonstrated in Fig. 3, namely, the grasper position p
violates the condition ||p|| ≥ (l1 − l2).

Next, we construct the optimal trajectory from two seg-
ments, and we impose the constraint ||p|| = (l1 − l2) as
an interior constraint at some unknown time t1. If the
resulting trajectory is feasible, then under Assumption
3 the trajectory is also optimal. Furthermore, this en-
ables us to switch from the ‘left’ to the ‘right’ mode at
the singular point. We generate the optimal trajectory
by constructing the block-diagonal matrix,

A(0) 0

AC(t1)

0 A(T )

 c = b(θ1), (76)
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Fig. 3. Initial (blue) and final (green) manipulator configu-
ration. The unconstrained solution (dashed black), optimal
solution (red line), junction (red square), and elbow trajec-
tory (black line) are marked.

where A(0) and A(T ) are the boundary conditions (75),
AC(t1) captures the bilinear continuity conditions at the
unknown time t1, and 0 is an appropriately sized zero
matrix. The vector c contains the coefficients for both
trajectory segments, and b(θ1) encodes the continuity
and tangency conditions for a given value of θ1 at the
junction. Finally, to determine the optimal time t1 and
angle θ1 for the junction, we solve the remaining two
nonlinear equations, (73) and (74) using nonlinear least
squares. The resulting trajectory is demonstrated in Fig.
3; we note that the mean computational time required to
generate the optimal trajectory is 3.5 ms averaged over
1, 000 trials.

The trajectory of the manipulator, including the joint
angle trajectories, grasper acceleration, and torque ap-
plied at each joint are presented in Fig. 4. Note that we
calculated the joint torques by taking numerical deriva-
tives of the joint angles θ1, θ2 and smoothing themwith a
100 ms moving average window. We used a mass of 0.25
kg and a gravitational acceleration of 0 m/s2 to model a
lightweight arm operating perpendicular to gravity; we
computed the torque directly using (47).

The smooth motion of the manipulator is clear from the
joint angle and acceleration plots of Fig. 4. The junc-
tion occurs at approximately t1 = 5s with an angle
of θ1 = 2.7 radians; the joint angles change gradually
throughout the entire motion. The grasper is brought
toward the base of the manipulator before the junction,
and it is moved away from the manipulator afterward–
this leads to the corner in the acceleration magnitude
that coincides with the singularity. Finally, the torque
at each joint is smooth and continuous, with only minor
disturbances occurring at the singularity.

5 Conclusion

In this paper, we proposed a technique to easily generate
optimal trajectories for differentially flat systems. First,
we derived an explicit ordinary differential equation that
describes the optimal state evolution independently of
the costates. Second, we applied the result of Theorem
1 to derive additional boundary conditions for the flat
system, which has not been presented in the literature
to the best of our knowledge. Third, we proposed a mo-
tion primitive generator in Theorem 2 and derived the
conditions to optimally switch between different motion
primitives. Finally, we applied our results in an illustra-
tive case study, to generate smooth motion that mini-
mizes the acceleration of a gripper for a pick-and-place
operation. We were able to generate trajectories on the
order of milliseconds, and guarantee satisfaction of the
boundary conditions while respecting the worspace con-
straints and switching from a ‘left’ to a ‘right’ mode.
Furthermore, this illustrative example is a concrete im-
plementation of the theoretical contributions of this ar-
ticle.

There are several intriguing directions for future work.
First, it is practical, for given dynamics, to determine
what objective functions guarantee that an analytical
solution to (23) exists. Another potential direction for
future research is to relax Assumptions 1 and 2 and de-
rive similar results for systems with singularities and
unbounded actuation capabilities. Exploring problems
with a large number of constraints, such as motion plan-
ning in cluttered environments, is another practical di-
rection. Finally, developing a general-purpose numerical
method to formulate and solve optimization problems
for differentially flat systems would be a valuable con-
tribution.
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