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Abstract

This paper presents novel stabilizability conditions for switched linear systems with arbitrary and
uncontrollable underlying switching signals. We distinguish and study two particular settings: i) the
robust case, in which the active mode is completely unknown and unobservable, and ii) the mode-
dependent case, in which the controller depends on the current active switching mode. The technical
developments are based on graph-theory tools, relying in particular on the path-complete Lyapunov
functions framework. The main idea is to use directed and labeled graphs to encode Lyapunov inequalities
to design robust and mode-dependent piecewise linear state-feedback controllers. This results in novel and
flexible conditions, with the particular feature of being in the form of linear matrix inequalities (LMIs).
Our technique thus provides a first controller-design strategy allowing piecewise linear feedback maps
and piecewise quadratic (control) Lyapunov functions by means of semidefinite programming. Numerical
examples illustrate the application of the proposed techniques, the relations between the graph order,
the robustness, and the performance of the closed loop.

1 Introduction

In this paper, given matrices A1, . . . , AM ∈ Rn×n and B1, . . . , BM ∈ Rn×m, we consider the discrete-time
switched control system

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1)

where σ : N → ⟨M⟩ := {1, . . . ,M} is a switching signal. Switched systems are a popular model for
hybrid or cyber-physical systems, with many applications in modern engineering; see e.g., Liberzon (2003);
Hespanha & Morse (2002); Shorten et al. (2007). We are interested in the feedback stabilization problem
of (1) under arbitrary switching, i.e. we aim to design a feedback control stabilizing policy for (1), no matter
the underlying switching rule σ : N → ⟨M⟩. In recent years, stabilization of switched systems has been
tackled from the perspective of designing a stabilizing switching sequence, i.e. the signal σ : N → ⟨M⟩ is
considered a control input for the “autonomous” system (1) with u(k) ≡ 0. In this context, see Geromel
& Colaneri (2006); Hu et al. (2008); Lin & Antsaklis (2009); Fiacchini & Jungers (2014); Jungers & Mason
(2017) and references therein, among many other results. The problem where both the switching signal and
the input u(k) are available for design has also been tackled (Fiacchini & Tarbouriech, 2017).
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Instead, in this manuscript, we study the design of feedback maps u(k) = Φ(x(k)) for which the switched
closed-loop system (1) is asymptotically stable, without any further assumption on the external switching
policy. The underlying switching rule σ : N → ⟨M⟩ cannot be designed/modifiable by the user, and it can
thus be seen as an external disturbance. Two cases can be highlighted, supposing, respectively, that the
value of the switching signal is:

• Un-observable by the designer/controller, in this case we aim to construct a robust feedback controller
Φ : Rn → Rm,

• Observable at the current instant of time, and in this case the goal is to design mode-dependent feedback
controllers Φ1, . . . ,ΦM : Rn → Rm.

The stabilization problem has been intensively studied in a close and related context, that is, in the frame-
work of polytopic linear parameter-varying (LPV) systems, see Blanchini & Miani (2003) and references
therein for a formal introduction. While the class of LPV systems provides a more general model than (1),
the corresponding stabilization problems are strongly related, and in some remarkable cases they are proved
to be equivalent, see Blanchini et al. (2007). Several results have been established in the LPV framework,
both for the robust and mode-dependent (in this literature, also called gain-scheduling) cases. First, it has
been proved that a quadratic Lyapunov function approach, while leading to numerically-appealing condi-
tions, is conservative, see Daafouz & Bernussou (2001); Blanchini (1995). In order to have less conservative
conditions in studying stability and stabilizability of (1), approaches based on piecewise-defined (control)
Lyapunov functions (and, thus piecewise continuous feedback maps) have been proposed: maxima and min-
ima of quadratic functions in Goebel, Teel, et al. (2006); Goebel, Hu, & Teel (2006), polyhedral functions
in Blanchini & Miani (2003); Blanchini et al. (2007); Blanchini & Miani (2008). For an equivalence re-
sult between these two approaches, see Hu & Blanchini (2010). While these methods provide exhaustive
characterizations of the robust and mode-dependent stabilizability properties (Blanchini et al., 2007; Hu &
Blanchini, 2010), from a numerical point of view they are affected by two main limitations; first of all, the
number of quadratics composing the candidate piecewise Lyapunov function (or, equivalently, the number
of vertices of the candidate polyhedral Lyapunov function) to reach necessary conditions is theoretically
unbounded. Secondly, the arising conditions are in the form of bilinear matrix inequalities (BMI), which
are known to be NP-hard in general (Toker & Ozbay, 1995). Other works have tackled related stabilization
problems, with results leading to linear matrix conditions, for example considering static output feedback
with polynomial Lyapunov functions (see Chesi et al. (2005); Chesi (2013) and references therein), or design-
ing dynamic output feedbacks with quadratic Lyapunov functions, such as Blanchini et al. (2009). Herein,
we focus on piecewise linear controllers.

In a slightly different setting, in studying stability of (1) (i.e., considering B1 = · · · = BM = 0), the
concept of path-complete Lyapunov functions (PCLFs) has been introduced in Ahmadi et al. (2014), in order
to provide flexible conditions based on multiple Lyapunov functions. This framework involves a combinatorial
component given by a directed graph that describes the set of Lyapunov inequalities to be verified and that
has to be path-complete in the sense that it captures every finite switching sequence. The complexity of this
underlying graph can be increased by the user to reduce the conservatism of the arising stability conditions.
For recent developments on this topic and more discussion regarding the relationship between graphs and
conservatism, we refer to (Debauche et al., 2022). In this setting, in (Philippe et al., 2019, Theorem III.8),
it has been proved that any path-complete Lyapunov function induces/can be used to construct a common
Lyapunov function in the form of max-min of quadratics, thus building a bridge between the PCLF framework
of Ahmadi et al. (2014) and the piecewise quadratic functions approach of Johansson & Rantzer (1997);
Goebel, Hu, & Teel (2006); Goebel, Teel, et al. (2006). Summarizing, it is shown in Philippe et al. (2019)
that the PCLF framework provides a compressed representation of common Lyapunov functions, which
allows for faster computation. In addition, the directed graph defining the PCLF provides a discrete design
parameter for the user, which can be optimized in order to mitigate the numerical computational effort.

In this manuscript, we propose a novel approach to robust and mode-dependent stabilization of (1). Our
method relies on path-complete Lyapunov functions theory, and, more specifically, we adapt and generalize
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this framework from stability to stabilizability analysis. The arising sufficient stabilization results, while de-
pending on an underlying combinatorial structure (a path-complete graph), lead to linear matrix inequalities
(LMI) conditions, thus bypassing the numerical limitations of previous results (Blanchini & Miani, 2008;
Blanchini et al., 2007; Goebel, Hu, & Teel, 2006; Goebel, Teel, et al., 2006; Hu & Blanchini, 2010). From
an analytic point of view, our conditions lead to the construction of piecewise quadratic control Lyapunov
functions, in the form of minimum of quadratics, for both the robust and mode-dependent cases; moreover,
the resulting feedback controllers are in a piecewise linear form. We thus build a connection with exist-
ing literature on piecewise quadratic (control) Lyapunov functions and piecewise defined controller, see for
example Johansson & Rantzer (1997); Goebel, Hu, & Teel (2006); Hu & Blanchini (2010); Legat et al. (2021).

We point out that we recover, as a particular case of our conditions, the techniques proposed in Lee (2006);
Lee & Dullerud (2006); Lee & Khargonekar (2009); Essick et al. (2014); however, on top of being more general,
our approach does not require the observation and memorization of past/future values of the switching signal
(as in the memory/horizon-based control of Lee (2006); Lee & Dullerud (2006); Lee & Khargonekar (2009);
Essick et al. (2014)). Indeed, the core of our proof technique is based on the above-mentioned results from
path-complete Lyapunov functions (Philippe et al., 2019), which shows that a path-complete graph describes
implicitly a common Lyapunov function, thus leading to a closed expression for the feedback maps (in a
piecewise-linear form). This in particular allows us to tackle robust stabilization of LPV systems, for which
the underlying time-varying parameter is un-observable. Moreover, our stabilization techniques are valid for
a class of graphs that goes beyond the memory structures used in Lee (2006); Lee & Dullerud (2006); Lee
& Khargonekar (2009); Essick et al. (2014), thus allowing for a larger class of stabilization certificates. For
a discussion of the benefits of such generalization in the stability context, we refer to Philippe et al. (2019);
Debauche et al. (2022); Della Rossa & Jungers (2023). Our theoretical developments are then illustrated,
both in the robust and mode-dependent cases, with the help of numerical examples already introduced in
the literature, thus allowing the comparison between our technique and existing results.

The rest of the manuscript is organized as follows: in Section 2 we recall the necessary definitions and
base results for switched systems and graph theory. In Section 3 we derive our main results concerning
robust stabilizability, while in Section 4 we present the stabilizability statement in the mode-dependent case.
Section 5 closes the manuscript with some concluding remarks and possible directions for future research.

Notation: We denote by N the set of natural numbers including {0}, by Z+ the set of natural numbers
excluding {0}. Given M ∈ Z+, we define ⟨M⟩ := {1, . . . ,M}. Given n,m ∈ Z+, C0(Rn,Rm) is the set of
continuous functions from Rn to Rm. We denote by Sn×n the set of the n× n symmetric matrices, and by
Sn×n
+ the set of n × n positive definite matrices. A function U : Rn → R is said to be positive definite if

U(0) = 0 and U(x) > 0 for all x ̸= 0. It is said to be radially unbounded if limλ→+∞ U(λx) = +∞ for all
x ̸= 0.

2 Preliminaries

This section introduces the studied setting and recalls the necessary definitions and tools.

2.1 Stabilization Notions and Characterizations

Given M ∈ Z+, and f1, . . . , fM : Rn → Rn such that fj(0) = 0 for all j ∈ ⟨M⟩, consider the switched system

x(k + 1) = fσ(k)(x(k)), x(0) = x0, k ∈ N, (2)

where σ : N → ⟨M⟩ is an external switching signal and x0 ∈ Rn is the initial condition. We denote by
Φσ(k, x0) the solution of (2) starting at x0 ∈ Rn and with respect to the signal σ : N → ⟨M⟩, evaluated at
time k ∈ N.
Definition 1 System (2) is said to be uniformly globally asymptotically stable (UGAS) if there exists a
KL function1 β such that, for all σ : N → ⟨M⟩ and for all x0 ∈ Rn, we have |Φσ(k, x0)| ≤ β(|x0|, k). If the

1A continuous function β : R+ ×R+ → R+ is of class KL if β(0, s) = 0 for all s, β(·, s) is strictly increasing and unbounded
for all s, β(r, ·) is decreasing and β(r, s) → 0 as s → ∞, for all r.
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function β is of the form β(r, k) := Cγk r for some C > 0 and γ ∈ [0, 1) the system is said to be uniformly
exponentially stable (UES), and γ is said to be the decay rate of the system.

Let us consider M ∈ Z+ and a set F = {(Ai, Bi) ∈ Rn×n × Rn×m | i ∈ ⟨M⟩}. We want to study the
discrete-time control switched system defined by

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), k ∈ N, (3)

where σ : N → ⟨M⟩ is an external switched signal and u : N → Rm is a control input.

Remark 1 (Related models: LPVs) As far as the general class of switching signals is considered, i.e.,
with no further assumption on the feasible signals σ ∈ S := {θ : N → ⟨M⟩}, system (3) can be equivalently
represented in different frameworks. Notably, we can consider the formalism of linear parameter-varying
(LPV) systems, i.e. the case of

x(k + 1) = A(w(k))x(k) + B(w(k))u(k), (4)

where w : N → ΛM := {w ∈ RM
+ |

∑M
i=1 wi = 1} is a time-varying parameter taking values in ΛM , the

standard simplex of dimension M − 1, and A(w) =
∑M

i=1 wiAi and B(w) =
∑M

i=1 wiBi. System (4) provides
a more general framework with respect to (3), since it allows the state to “follow” directions obtained as
convex combination of sub-systems in F . Under some assumption on the proposed design methods and on
the systems matrices, the stabilization techniques for (3) are also effective for (4), as discussed in what
follows. △

Definition 2 (Stabilization Notions) System (3) is said to be

1. Robust Feedback Stabilizable (RFS) if there exists a Φ : Rn → Rm such that the closed-loop system given
by

x(k + 1) = Aσ(k)x(k) +Bσ(k)Φ(x(k)) (5)

is UGAS.

2. Mode-Dependent Feedback Stabilizable (MDFS) if there exist Φ1, . . . ,ΦM : Rn → Rm such that the
closed-loop system given by

x(k + 1) = Aσ(k)x(k) +Bσ(k)Φσ(k)(x(k)) (6)

is UGAS.

In order to present the main equivalence results concerning robust and mode-dependent stabilization, we
introduce a tailored notion of piecewise linear functions, inspired by (Boyd & Vandenberghe, 2004, Problem
3.29).

Definition 3 (Piecewise Linear Functions) A function Ψ : Rn → Rm is said to be piecewise linear if:

• It is homogeneous of degree 1, i.e., for any λ ∈ R+ and any x ∈ Rn, it holds that Ψ(λx) = λΨ(x);

• For some c ∈ Z+, there exist c closed convex cones C1, . . . Cc ⊂ Rn and c linear maps Ξ1, . . . ,Ξc : Rn → Rm

such that
⋃

j∈⟨c⟩ Cj = Rn, Int(Ci) ∩ Int(Cj) = ∅ for all i ̸= j and Ψ(x) = Ξj(x) for all x ∈ Int(Cj) for all

j ∈ ⟨c⟩.

We note that Definition 3 does not imply continuity, therefore the piecewise linear feedback maps that we
consider are possibly discontinuous, on the null measure set defined by the union of the boundaries of the cones
C1, . . . Cc in the definition. In what follows, we recall a characterization result proved in Blanchini & Miani
(2003); Blanchini et al. (2007); Blanchini & Miani (2008) and reviewed here for the sake of completeness.

Proposition 1 (Blanchini et al., 2007, Proposition 2) Given M ∈ Z+ and a set F = {(Ai, Bi) ∈ Rn×n ×
Rn×m | i ∈ ⟨M⟩}, system (3) is:

4



(A) RFS if and only if there exists a piecewise linear feedback control Φ : Rn → Rm such that the closed-
loop (5) is UGAS.

(B) MDFS if and only if there exist piecewise linear feedback controls Φ1, . . . ,ΦM : Rn → Rm such that
the closed-loop (6) is UGAS.

The proof of this proposition contained in Blanchini et al. (2007) relies on the construction of control-invariant
polyhedral sets and, thus, polyhedral Lyapunov functions. Note that the key result in the proposition is that
the existence of piecewise linear feedback maps is both necessary and sufficient for the stabilizability of (3),
in both robust and mode-dependent cases. We also note that by homogeneity (see (A.Bacciotti & L.Rosier,
2005, Section 5.3) for the details), when a stabilizing piecewise linear feedback is provided, the closed loop
will be uniformly exponentially stable (UES).

Remark 2 While Proposition 1 completely characterizes the (robust and mode-dependent) stabilizability
problem, the underlying conditions are unsatisfactory from a numerical point of view. Indeed, since the proof
of (Blanchini et al., 2007, Proposition 2) relies on the construction of polyhedral control Lyapunov functions,
the following limitations can be highlighted:

• The number of vertices of the polyhedral level sets of the candidate Lyapunov functions has to be fixed a
priori. To reach necessary conditions, the aforementioned number of vertices could be arbitrarily large.

• Even when the number of vertices is fixed, the arising matrix conditions turn out to be bilinear matrix
inequalities (BMIs) which are, in general, NP-hard to solve, see the discussion in (Blanchini & Miani,
2008, Section 7.3.2).

Another classic approach (see Daafouz & Bernussou (2001) and references therein) relies on quadratic
control Lyapunov functions and linear feedbacks, i.e. supposing the existence of K1, . . . ,KM ∈ Rn×m (a
unique K ∈ Rn×m in the robust case) and a P ∈ Sn×n

+ such that

(Ai +BiKi)
⊤P (Ai +BiKi)− P ≺ 0, ∀ i ∈ ⟨M⟩,

which are nonlinear matrix inequalities. Re-parametrizing, considering the variables Q = P−1 and Ri =
KiP

−1, and finally pre- and post-multiplying the latter inequality by Q, we obtain (QA⊤
i +R⊤

i B
⊤
i )Q−1(AiQ+

BiRi)−Q ≺ 0, which can be rewritten, via Schur complement, as[
Q ⋆

AiQ+BiRi Q

]
≻ 0, ∀i ∈ ⟨M⟩,

leading to LMI conditions (the robust case, with a constant K ∈ Rn×m, is similar). The drawback of this
well-known design technique are the following:

• The existence of quadratic common Lyapunov function (and linear feedbacks) is only sufficient for stabil-
ity/stabilizability of switched systems, as highlighted by Proposition 1.

• The change-of-variables technique is not applicable, in general, for broader contexts, for example involving
multiple-(control)-Lyapunov functions.

For the reasons mentioned above, in the following sections, we propose a novel feedback design technique
based on graph theory, which will lead to LMI-based conditions.

2.2 Preliminaries on graph theory and path-complete Lyapunov functions

In the following, we collect some graph-theory notions which will be used in our formal statements. Moreover,
we recall the basic ideas of the sufficient conditions for stability of (2) based on path-complete Lyapunov
functions, for an overview see Philippe et al. (2019); Ahmadi et al. (2014); Philippe et al. (2016).

A (labeled and directed) graph G = (S,E) on ⟨M⟩ is defined by a finite set of nodes S and a subset of
labeled edges E ⊂ S × S × ⟨M⟩.
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Figure 1: The graphs H1(2) and H2(2), respectively the primal De Bruijn graphs of order 1 and 2 on
⟨M⟩ = {1, 2}.

Definition 4 (Path-Complete Graphs) A graph G = (S,E) is path-complete for ⟨M⟩ if, for any l ≥ 1
and any “word” (j1 . . . jl) ∈ ⟨M⟩l, there exists a path {(sk, sk+1, jk)}1≤k≤l such that (sk, sk+1, jk) ∈ E, for
each 1 ≤ k ≤ l.

Intuitively, a graph is path-complete if any possible switching sequence can be reconstructed by walking
through the edges of the graph. In our setting, path-complete graphs will represent and encode the structure
of our stability certificates, or in other words, the structure of the inequalities among the candidate Lyapunov
functions we aim to verify, as formalized in what follows.

Definition 5 (Path-complete Lyapunov functions) Given a family F = {f1, . . . , fM} ⊂ C0(Rn,Rn), a
path-complete Lyapunov function (PCLF) for F is a pair (G, V ) where G = (S,E) is a path-complete graph,
and V = {Vs | s ∈ S} ⊆ C0(Rn,R) is a set of positive definite and radially unbounded functions such that
the following inequalities are satisfied:

∀ e = (a, b, i) ∈ E, ∀x ∈ Rn \ {0} : Vb(fi(x)) < Va(x).

We present, in what follows, the main stability result we will use in our stabilizing feedback design.

Proposition 2 Consider a switched system (2) defined by F = {f1, . . . , fM} ⊂ C0(Rn,Rn). If there exists
a path-complete Lyapunov function (G, V ) for F , then (2) is UGAS.

The proof of Proposition 2 can be found in Ahmadi et al. (2014); Philippe et al. (2016, 2019). This result
establishes, given any path-complete graph, sufficient conditions for stability of (2). For a discussion of the
conservatism and comparison among different graph structures for stability, see Debauche et al. (2022). In
order to adapt path-complete Lyapunov stability techniques from stability to stabilization problem of (3),
we need to refine Definition 4, introducing additional properties on the considered graphs, as defined in what
follows.

Definition 6 (Complete graphs) A graph G = (S,E) on ⟨M⟩ is complete if for all a ∈ S, for all i ∈ ⟨M⟩,
there exists at least one node b ∈ S such that the edge e = (a, b, i) ∈ E.

We note that any complete graph2 is in particular path-complete; for a graphical visualization, we point out
that the graphs in Figure 1 are complete. In what follows, we introduce a hierarchical family of complete
graphs firstly defined in the seminal paper (de Bruijn, 1946), used in what follows as a tool for numerical
verification of the proposed conditions.

Definition 7 ( (de Bruijn, 1946)) Given M ∈ Z+, l ∈ N the (primal) De Bruijn graph of order l (on ⟨M⟩)
denoted by Hl(M) = (Sp,l, Ep,l) is defined as follows: Sp,l := ⟨M⟩l and, given any node ı̂ = (i1, . . . , il) ∈ Sp,l,
we have (̂ı, ȷ̂, h) ∈ Ep,l for every ȷ̂ of the form ȷ̂ = (h, i1, . . . , il−1), for any h ∈ ⟨M⟩.

It can be seen that the graph Hl(M) is complete ∀M ∈ Z+, l ∈ N; see Fig. 1 for a graphical representation.

2The considered notion of completeness, arising from automata theory, should not be confused with the notion of graph
completeness imposing the existence of any possible edge, i.e. E = S × S × ⟨M⟩, more common in classic graph theory.
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3 Robust Feedback via Path-complete Graphs

In this section, we provide an LMI formulation for the design of piecewise linear feedback for the robust
stabilization problem. The arising conditions will generalize existing approaches (e.g. (Blanchini et al., 2007;
Blanchini & Miani, 2003; Hu & Blanchini, 2010)), via the use of multiple, or more precisely, path-complete
Lyapunov functions. The theoretical developments are then illustrated by numerical examples.

3.1 Piecewise Linear Robust Feedback

In this subsection we provide the first stabilization result, making use of the path-complete framework to
provide min of quadratics control Lyapunov functions, together with piecewise linear robust feedback control
map for system (3).

Proposition 3 Consider M ∈ Z+ and a set F = {(Ai, Bi) ∈ Rn×n × Rn×m | i ∈ ⟨M⟩}, and a complete
graph G = (S,E) on ⟨M⟩. Suppose there exist {Ps}s∈S ⊂ Sn×n

+ , {Ks}s∈S ⊂ Rm×n such that

(Ai +BiKa)
⊤Pb(Ai +BiKa)− Pa ≺ 0, ∀e = (a, b, i) ∈ E, (7)

then the map Φ(x) := Kγ(x)x, x ∈ Rn, robustly exponentially stabilizes system (3), where γ : Rn → S is any
function satisfying

γ(x) ∈ argmin
s∈S

{x⊤Psx}, ∀x ∈ Rn, (8)

and for which Φ : Rn → Rm is piecewise linear (recall Definition 3).3

Proof. The proof is inspired by proof of (Philippe et al., 2019, Proposition III.1). Consider Vs :
Rn → R defined by Vs(x) = x⊤Psx, function W (x) = mins∈S{Vs(x)} and fis : Rn → Rn defined by
fis(x) = (Ai +BiKs)x, for any s ∈ S and any i ∈ ⟨M⟩. Since Ps ≻ 0 for all s ∈ S, the function W : Rn → R
is positive definite and radially unbounded. Condition (7) can be rewritten as

Vb(fia(x)) < Va(x), ∀x ∈ Rn \ {0}, ∀e = (a, b, i) ∈ E. (9)

Consider any x ∈ Rn, x ̸= 0 and any i ∈ ⟨M⟩. Suppose γ(x) = a ∈ argmins∈S{x⊤Psx}, and thus
W (x) = Va(x). By completeness of G, there exists a b ∈ S such that e = (a, b, i) ∈ E, and thus we have

W (fia(x)) = min
s∈S

{Vs(fia(x))} ≤ Vb(fia(x))

< Va(x) = W (x).

We have thus proved that the function W : Rn → R is a Lyapunov function for the closed-loop system

x(k + 1) = fσ(k)(x(k)) :=
(
Aσ(k) +Bσ(k)Kγ(x(k))

)
x(k)

for any σ : N → ⟨M⟩. Since the closed loop system is homogeneous of degree 1 (i.e. fj(λx) = λfj(x) for any
j ∈ ⟨M⟩, for any x ∈ Rn, for any λ ∈ R) it is in particular UES, concluding the proof. □

Thanks to the completeness of G and the particular structure of (7), we can provide, in what follows,
necessary and sufficient LMI conditions for (7).

Lemma 1 Conditions (7) are satisfied if and only if there exist {P s}s∈S ⊂ Sn×n, {Ks}s∈S ⊂ Rm×n such
that [

P b (AiP a +BiKa)

⋆ P a

]
≻ 0, ∀ e = (a, b, i) ∈ E. (10)

Matrices {Ps}s∈S ⊂ Sn×n
+ , {Ks}s∈S ⊂ Rm×n satisfying (7) are then given by defining Ps = P−1

s and

Ks = KsP
−1
s , for any s ∈ S.

3If the node set S is an ordered set, we can simply choose γ(x) = minS(argmins∈S{x⊤Psx}), where minS(S
′) denotes the

minimal element of S′ ⊆ S, with respect to the order of S.
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Proof. Sufficiency: Suppose (10) holds; it is easy to prove that it implies P s ≻ 0 for all s ∈ S. For any
e = (a, b, i) ∈ E we pre- and post-multiply (10) by diag(P−1

b , P−1
a ), obtaining[

P−1
b P−1

b (Ai +BiKaP
−1
a )

⋆ P−1
a

]
≻ 0, ∀ e = (a, b, i) ∈ E.

By defining changes of variables Ps = P−1
s and Ks = KsP

−1
s for any s ∈ S we obtain[

Pb Pb(Ai +BiKa)
⋆ Pa

]
≻ 0, ∀ e = (a, b, i) ∈ E, (11)

which, by Schur complement, is equivalent to

Pa − (Ai +BiKa)
⊤PbP

−1
b Pb(Ai +BiKa) ≻ 0, (12)

∀ e = (a, b, i) ∈ E, leading to (7).
Necessity: Suppose that (7) holds. Rewrite it as (12) and apply Schur complement again to obtain (11).

Next, apply a congruence transformation with diag(P−1
b , P−1

a ) followed by the same changes of variables

as before to obtain (10). Therefore, feasibility of (7) implies satisfaction of (10) with P s = P−1
s and

KsP
−1
s = Ks. □
Proposition 3 and the subsequent LMI characterization in Lemma 1 are stated for generic complete

graphs. In Definition 7, we introduced the class of De-Bruijn graphs, denoted by Hl(M). In the following
statement, as a corollary, we explicitly write the conditions of Lemma 1 associated to Hl(M), proving the
numerical scheme used in the following sections.

Corollary 1 (De Bruijn conditions, Robust Case) Consider M ∈ Z+, a set F = {(Ai, Bi) ∈ Rn×n ×
Rn×m | i ∈ ⟨M⟩}, and any l ∈ N. Suppose there exist {P ı̂}ı̂∈⟨M⟩l ⊂ Sn×n, {K ı̂ }ı̂∈⟨M⟩l ⊂ Rm×n such that,

∀ı̂ = (i1, . . . , il) ∈ ⟨M⟩l and ∀h ∈ ⟨M⟩, the inequalities[
P (h,̂ı−) (AhP ı̂ +BhK ı̂)

⋆ P ı̂

]
≻ 0 (13)

hold, where ı̂− := (i1, i2, . . . , il−1) ∈ ⟨M⟩l−1. Then the piecewise linear map Φ(x) := Kγ(x)x, x ∈ Rn, where

Kı̂ = K ı̂P
−1
ı̂ , robustly exponentially stabilizes system (3) where γ : Rn → ⟨M⟩l is a function satisfying

γ(x) ∈ argmin
ı̂∈⟨M⟩l

{x⊤Pı̂x} , ∀x ∈ Rn,

with Pı̂ = P−1
ı̂ and for which Φ : Rn → Rm is piecewise linear. Moreover, the function W (x) :=

minı̂∈⟨M⟩l{x⊤Pı̂x} is a Lyapunov function for the closed loop system.

Proof. Conditions in (13) are the specification of conditions (10) when considering the graph Hl(M)
introduced in Definition 7; by Proposition 3 we conclude. □

Remark 3 (Robust Stabilization of LPVs) It is important to point out that the stabilization techniques
proposed in Proposition 3 and then numerically tackled in Lemma 1 and Corollary 1 for (3) are effective
also for the more general class of LPV systems as in (4). Indeed, suppose that a piecewise linear control
Φ : Rn → Rm as in Proposition 3 is given, it can be shown, by a convexity argument, that the convex
difference inclusion x(k + 1) ∈ co {Aix(k) +BiΦ(x(k)) | i ∈ ⟨M⟩} is exponentially stable, for a direct proof,
we refer to (Blanchini et al., 2007, Proposition 2). This, in particular, implies the exponential stability
of (4). △

Concluding this section, we briefly illustrate an open direction of research. Corollary 1 provides sufficient
conditions for the robust feedback stabilizability of (3). It can be seen that, if the conditions related to the
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l = 0 l = 1 l = 2 l = 3 l = 5
max α 0.6646 0.6684 0.6856 0.6984 0.7032

Table 1: Relation between maximum α and graph order l for Example 2.

graph Hl(M) are feasible, then also the conditions related to graphs Hl′(M) are feasible, for any l′ ≥ l.
Thus, by increasing the order l ∈ N one can reduce the conservatism of the proposed conditions (as we will
illustrate in the next subsection). Such a hierarchy is known to provide non-conservative conditions (by
increasing the order l ∈ N) for the stability problem, see Ahmadi et al. (2014). On the other hand, the
question of whether this is also the case for the robust stabilization problem studied here is still open. More
precisely, future research will investigate the following claim:

Conjecture 1 Consider M ∈ Z+ and a set F = {(Ai, Bi) ∈ Rn×n × Rn×m | i ∈ ⟨M⟩}, and suppose that
system (3) is robust feedback stabilizable, in the sense of Definition 2. Then, there exists a l ∈ N (large
enough) for which the conditions in Corollary 1 are feasible.

3.2 Numerical Examples: Robust Case

In this subsection, we provide some numerical examples in order to illustrate the results presented in Sub-
section 3.1, and the advantages of the proposed techniques with respect to existing literature.

3.2.1 Example 1

Consider system (1) with matrices

A1 =

[
0.1 0.9
0 0.1

]
, A2 =

[
α 0
1 α

]
, B1 =

[
0
0

]
, B2 =

[
α
−1

]
.

where α > 0 is a free parameter. The goal is to find the maximal α for which conditions of Corollary 1
are feasible, thus providing feedback gains for which the closed-loop system is UES. The stabilization of this
system was also studied in (Lee, 2006, Example 2), where the authors design “finite-path dependent state
feedback controllers”, that is, state-feedback controllers that depend on the history of the switching signal σ.
The maximum value of α for which stability is achieved in Lee (2006) is α = 0.6667 by using controllers with
memory. If no memory is employed, the maximum obtained value in Lee (2006) is α = 0.6173. By using the
conditions of Corollary 1, we obtain that the maximum value obtained is α = 0.5872 for the case of the De
Bruijn graph of order l = 0, and α = 0.6667 for all l ≥ 1. Thus, with the strategy developed here, we can
robustly stabilize the system for an α that is as large as the maximum α obtained in Lee (2006) by using
memory-dependent controllers, which require knowledge/measurement of switching signals. In conclusion,
our robust feedback strategy is as conservative as the memory-dependent strategy in Lee (2006). This was
expected since the underlying conditions of Lee (2006) are substantially equivalent to the ones in Corollary 1.
Our graph approach allows us to provide a feedback control map in a closed form as defined in Proposition 3,
without the necessity of storing the past active modes.

3.2.2 Example 2

We modify the system from Example 1 by setting B1 = [1 0]⊤. In this case, the maximum α obtained for
which the system can be stabilized as a function of the order l of the chosen De Bruijn graph is illustrated in
Table 1. As demonstrated by the table, an increase in l tends to improve the robustness to the uncertainty
α.

Given l = 2 and α = 0.6856, for any ı̂ ∈ ⟨2⟩2, we obtain the following Lyapunov matrices Pı̂ and
controllers Kı̂:

P11 =

[
1.9133 0.2510
0.2510 1.7315

]
, P12 =

[
1.6753 0.3818
0.3818 1.1150

]
,
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l = 0 l = 2 l = 4 l = 6 l = 10
min γ 0.9638 0.9612 0.9586 0.9571 0.9555

Table 2: Relation between minimum upper bound on the decay rate γ and graph order l for Example 3.

P21 =

[
3.2896 −0.0436
−0.0436 0.5803

]
, P22 =

[
2.0241 0.4344
0.4344 0.5322

]
,

K11 =
[
−0.3162 −0.3347

]
, K12 =

[
−0.3342 −0.3596

]
,

K21 =
[
0.6279 −0.4343

]
, K22 =

[
−0.0714 −0.4110

]
.

3.2.3 Example 3

This example illustrates the relationship between the De Bruijn graph order l and the closed-loop perfor-
mance, given by the minimum γ ∈ [0, 1) that satisfies W (x(k + 1)) ≤ γ2 W (x), where W is the Lyapunov
function defined by W (x) := minı̂∈⟨M⟩l{x⊤Pı̂x} given in Corollary 1. This γ represents an upper bound
for the exponential decay rate of the solutions of the closed loop, recall Definition 1. The conditions of
Corollary 1 can be straightforwardly modified to tackle this problem by multiplying the (2, 2)-block of the
matrix in (13) by γ2; then a line search is performed to minimize the parameter γ. Consider the system
defined by the following matrices:

A1 =

[
0 1

−1 0

]
, A2 =

[
−1 0
0 −0.95

]
, B1 = B2 =

[
1
0

]
.

In Table 2, we summarize the relationship between the graph order l and minimum decay rate γ achieved.
Moreover, Fig. 2 illustrates the sub-level set of the Lyapunov function W given by E

W
(x) = {x ∈ Rn :

W (x) ≤ 1} and its relationship with the graph order l. The level sets of W (x) are marked in red in the
figure, while the sub-level sets defined of each function Vs(x) are illustrated in black.

3.2.4 Example 4

Consider a system defined by B1 = B2 = B3 = [1 0]⊤,

A1 =

[
1 0.2
0 0.5

]
, A2 =

[
1.1 0.2
0 −0.5

]
, A3 =

[
0.5 0.8
1.1 0.5

]
.

This example illustrates the geometric intuition behind the min of quadratics strategy that selects the linear
controller at each instant of time. By choosing l = 2, the conditions of Corollary 1 are feasible and thus we

P11 =

[
1.7981 0.5562
0.5562 0.9599

]
, P12 =

[
1.6821 0.4795
0.4795 0.8672

]
, P13 =

[
1.9114 0.5837
0.5837 0.7375

]
,

P21 =

[
1.6331 −0.6584

−0.6584 1.1943

]
, P22 =

[
1.4815 −0.4356

−0.4356 0.9449

]
, P23 =

[
1.9377 −0.3945

−0.3945 0.5639

]
,

P31 =

[
1.7896 −0.4346

−0.4346 0.7507

]
, P32 =

[
29.8984 −6.6345
−6.6345 1.8047

]
, P33 =

[
24.6378 −5.4361
−5.4361 1.5320

]
.

(14)

K11 =
[
−0.4816 −0.3583

]
,K12 =

[
−0.4660 −0.3460

]
,K13 =

[
−0.4861 −0.3628

]
,

K21 =
[
−0.3591 −0.5802

]
,K22 =

[
−0.3652 −0.5817

]
,K23 =

[
−0.4011 −0.6044

]
,

K31 =
[
−0.4124 −0.5761

]
,K32 =

[
−1.0548 −0.4989

]
,K33 =

[
−0.9970 −0.5116

]
.

(15)
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Figure 2: Level sets for the obtained Lyapunov functions W (x) for different graph orders l in Example 3.
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Figure 3: Level set of W (x), one trajectory of the closed-loop system, and the controller used at each point.

find the Lyapunov function W (x) = minı̂∈⟨3⟩2{x⊤Pı̂x}, which guarantees a decay rate of γ = 0.7536, defined
by the matrices Pı̂, for ı̂ ∈ ⟨3⟩2 in (14). The obtained controller gains are given in (15).

In Fig. 3 we have plotted the 1-level set of W (x), and one closed-loop trajectory, starting at the initial
condition x0 = [0.4 1.4]⊤ and following a periodic switching sequence σ = {1, 2, 3, 1, 2, 3 . . . }. As previously
illustrated, the level set of W (x) correspond to the union of the level sets of the multiple Vı̂, ı̂ ∈ ⟨3⟩2.
Recalling Definition 3, the cones defining the partition associated to the piecewise linear feedback map Φ in
Proposition 3 are defined by the argmin among a set of quadratic functions, see (8). That is, in such cones,
the minimum is attained for the same s ∈ S = ⟨3⟩2, i.e. W (x) = Vs(x) is achieved. For example, the black
cone in Fig. 3 represents the cone where the value of W (x) coincides with V33(x). Whenever the state x
belongs to this cone, the controller gain K33 is activated. For the plotted trajectory, only three controllers
have been active, namely K13, K21, and K33. However, the state can fall within different cones where other
controller gains will be activated for different initial conditions and switching signals. In conclusion, from
a geometric perspective, an increase in the graph order l tends not only to refine the level set of W (x) but
also to produce more cones so that different controller gains better adapted to certain regions of the state
space are used, thus producing an improved control law.

11



4 Mode-Dependent Case

In this section we provide our main stabilization results in the mode-dependent case.

4.1 Piecewise Linear Mode-Dependent Feedbacks

In this subsection, adapting the proof technique of Proposition 3, we propose conditions depending on a
graph structure, leading to piecewise-linear mode-dependent feedback gains. To this aim, we require an
additional property on the underlying graphs, and we thus introduce the following definition.

Definition 8 (Deterministic Graph) A graph G = (S,E) on ⟨M⟩ is said to be deterministic if, for all
a ∈ S and i ∈ ⟨M⟩ there exists at most one b ∈ ⟨M⟩ such that e = (a, b, i) ∈ E.

Proposition 4 Consider M ∈ Z+, a set F = {(Ai, Bi) ∈ Rn×n × Rn×m | i ∈ ⟨M⟩} and a complete and
deterministic graph G = (S,E) on ⟨M⟩. Suppose there exist {Ps}s∈S ⊂ Sn×n

+ , {Ks,j}(s,j)∈S×⟨M⟩ ⊂ Rm×n

such that
(Ai +BiKa,i)

⊤Pb(Ai +BiKa,i)− Pa ≺ 0, (16)

∀e = (a, b, i) ∈ E. Then, the piecewise linear maps Φi(x) := Kγ(x),i x, for i ∈ ⟨M⟩, exponentially stabilize
system (3)(in the mode-dependent sense of Definition 2) where γ : Rn → S is any function satisfying

γ(x) ∈ argmin
s∈S

{x⊤Psx}, ∀ x ∈ Rn,

and for which the functions Φi : Rn → Rm are piecewise linear.

Proof. First of all, since G is complete and deterministic, for any a ∈ S and any i ∈ ⟨M⟩, there exists
a unique b ∈ S such that e = (a, b, i) ∈ E and thus the notation Ks,i is well posed; then the proof
fundamentally follows the structure of the proof of Proposition 3. Define Vs : Rn → R by Vs(x) = x⊤Psx,
function W (x) = mins∈S{Vs(x)} and fis : Rn → Rn by fis(x) = (Ai + BiKs,i)x, for any s ∈ S and any
i ∈ ⟨M⟩. Again, (16) implies that W : Rn → R is positive definite and radially unbounded, since Ps ≻ 0 for
all s ∈ S. With this notation, condition (16) implies inequalities (9), and thus, following the reasoning of
proof of Proposition 3, we prove that the function W : Rn → R is a Lyapunov function for the closed-loop
system x(k + 1) =

(
Aσ(k) +Bσ(k)Kγ(x(k)),σ(k)

)
x(k) for any σ : N → ⟨M⟩, concluding the proof. □

Next, we present necessary and sufficient LMI conditions ensuring (16).

Lemma 2 Conditions (16) are satisfied if and only if there exist {P s}s∈S ⊂ Sn×n, {Ks,i}s∈S,i∈⟨M⟩ ⊂ Rm×n

such that the LMIs [
P b (AiP a +BiKa,i)

⋆ P a

]
≻ 0, ∀ e = (a, b, i) ∈ E, (17)

are feasible. Matrices {Ps}s∈S ⊂ Sn×n, {Ks}s∈S ∈ Rm×n satisfying (7) are then given by defining Ps = P−1
s

and Ks,i = Ks,iP
−1
s .

Proof. The proof follows the same steps of the proof of Lemma 1 and is thus omitted. □
Similar to the Section 3, we are going to introduce below the equivalent LMI conditions for the class

of De-Bruijn graphs of order l ∈ ⟨M⟩, denoted by Hl(M), which are complete and deterministic, recall
Definition 7.

Corollary 2 (De Bruijn: Mode-Dependent Case) Consider M ∈ Z+, a set F = {(Ai, Bi) ∈ Rn×n ×
Rn×m | i ∈ ⟨M⟩} and any l ∈ N. Suppose there exist {P ı̂}ı̂∈⟨M⟩l ⊂ Sn×n, {K ı̂,h }ı̂∈⟨M⟩l,h∈⟨M⟩ ∈ Rm×n such

that, ∀ı̂ = (i1, . . . , il) ∈ ⟨M⟩l and ∀h ∈ ⟨M⟩, the inequalities[
P (h,̂ı−) (AhP ı̂ +BhK ı̂,h)

⋆ P ı̂

]
≻ 0, (18)
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hold, where ı̂− = (i1, . . . , il−1) ∈ ⟨M⟩l−1. Then, the feedbacks maps Φh(x) := Kγ(x), h x, x ∈ Rn, h ∈ ⟨M⟩,
where Kı̂,h = K ı̂,hP

−1
ı̂ exponentially stabilize system (3) where γ : Rn → ⟨M⟩l satisfies

γ(x) ∈ argmin
ı̂∈⟨M⟩l

{x⊤Pı̂x}

with Pı̂ = P−1
ı̂ and for which the functions Φh : Rn → Rm are piecewise linear. Moreover, W (x) :=

minı̂∈⟨M⟩l{x⊤Pı̂x} is a Lyapunov function for the closed-loop system (6).

Proof. The proof is obtained by applying Proposition 4 and Lemma 2 to the graph Hl(M) introduced in
Definition 7. □

Remark 4 (Relations with Gain-Scheduling Stabilization of LPV)
As highlighted in Remark 3, the robust stabilization problem for switched systems studied in Section 3 is
equivalent to robust stabilizability for LPV systems (4). Unfortunately, this is not the case for the mode-
dependent stabilization problem studied in this section. Indeed, in (Blanchini et al., 2007, Example 4.1) it is
shown that, given M ∈ Z+ and a set F = {(Ai, Bi) ∈ Rn×n×Rn×m | i ∈ ⟨M⟩}, mode-dependent stabilizability
of (3) is strictly weaker than mode-dependent (in this literature, a.k.a. gain-scheduling) stabilizability of (4).
Then, Proposition 4 cannot be applied directly for (4). On the other hand, in the particular case B1 = · · · =
BM ∈ Rn×m i.e. when the input matrix does not depend on the mode, mode-dependent stabilizability of (4)
and mode-dependent stabilizability of (4) are indeed equivalent (see (Blanchini et al., 2007, Proposition 2)),
and thus Proposition 4 can be applied to the (more general) class of LPV systems. △

Remark 5 (Comparison with Existing Results)
The LMIs conditions presented in Corollary 2 already appeared in Lee & Khargonekar (2009), in a slightly
different setting. Indeed, the authors of Lee & Khargonekar (2009) related the feasibility of the conditions
with the existence of controllers relying on the knowledge of past switching sequences, and thus it is required
that the controller store the past active modes. On the other hand, we generalize the results in Lee &
Khargonekar (2009) through Proposition 4 and Lemma 2, where we rely only on the assumption that a graph
is complete and deterministic to obtain LMI conditions assuring the existence of stabilizing piecewise linear
controllers. Thus, more general graphs other than De Bruijn ones employed in Corollary 2 can be used too,
potentially leading to more efficient results, given a particular system. On top of recovering the results of Lee
& Khargonekar (2009) in a more general setting, the graph-theory approach used here allows us to provide
piecewise linear controllers (along with min-of-quadratic Lyapunov functions) in a closed form without the
necessity of observing and storing the past active modes. For a more formal discussion on the relations
between graph-based stability conditions and conditions relying on past/future switching sequences, we refer
to (Della Rossa & Jungers, 2023). We point out that in Lee & Khargonekar (2009) a negative result is
proved: there exist mode-dependent feedback stabilizable systems of the form (6) for which there does not
exist a l ∈ N large enough such that the conditions in Corollary 2 are feasible. We do not report the proof
here; it can be found (Lee & Khargonekar, 2009, Theorem 27 & Example 28) and references therein. △

4.2 Example 5

Consider a four-mode, third-order system studied in Blanchini & Miani (2003) defined by B1 = B2 = B3 =
B4 = [0 0 0.3]⊤ and

A1 =

 1 .25 0
0.25 1 −0.2
0 0 −0.16

 , A2 =

 1 .25 0
0.25 1 −0.05
0 0 0.16

 ,

A3 =

 1 0.32 0
0.32 1 −0.05
0 0 −0.16

 , A4 =

0.32 0 0
0.32 1 −0.2
0 0 0.16

 .
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In Blanchini & Miani (2003), by using techniques based on polyhedral Lyapunov functions, a stabilizing
mode-dependent controller is provided, also providing an upper-bound on the decay rate for the closed loop,
given by γ = 0.96. Here we apply Corollary 2 with different graph orders l to relate to the minimum upper-
bound on the decay rate by using a similar modification to the LMIs (18) as in Example 3. The results are
illustrated in Table 3, showing that an increase in the order graph l allows smaller values of the decay rate
γ, i.e., improving the convergence speed of the arising closed-loop. The decrease in theoretical conservatism
comes at the cost of increasing the computational complexity, as an increase in l also generates an increase
in the number of variables of the LMIs in Corollary 2.

l = 0 l = 1 l = 2 l = 3 l = 4
min γ 0.9156 0.9058 0.9023 0.9009 0.9003

Table 3: Relation between minimum upper-bound on the decay rate γ and graph order l for Example 5.

5 Conclusions

We presented a graph-based construction of piecewise linear feedback controllers for discrete-time switched
linear systems. The chosen graph structure influences the resulting LMI conditions, providing the user
with flexible conditions in order to manage both numerical complexity and theoretical conservatism. The
proposed techniques were demonstrated both in the robust case, where no knowledge of the switching signal
is available, and in a mode-dependent case, where partial knowledge is utilized. The general graph framework
also allowed to recover and generalize several results that already appeared in the literature. Future work
will examine the conservatism introduced by different graph structures and broaden the scope of the method
to handle a wider range of switched or hybrid systems. This will include exploring nonlinear dynamics and
more complex switching situations.
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