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Abstract

We consider the problem to transport resources/mass while abiding by constraints on the flow through constrictions along their
path between specified terminal distributions. Constrictions, conceptualized as toll stations at specified points, limit the flow-
rate across. We quantify flow-rate constraints via a bound on a sought probability density of the times that mass-elements cross
toll stations and cast the transportation scheduling in a Kantorovich-type of formalism. Recent work by our team focused on
the existence of Monge maps for similarly constrained transport minimizing average kinetic energy. The present formulation in
this paper, besides being substantially more general, is cast as a (generalized) multi-marginal transport problem – a problem of
considerable interest in modern-day machine learning literature and motivated extensive computational analyses. An enabling
feature of our formalism is the representation of an average quadratic cost on the speed of transport as a convex constraint
that involves crossing times.
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1 Introduction

Recent years have witnessed the rapid development
of the Monge-Kantorovich Optimal Mass Transport
(OMT) theory, driven by a plethora of applications from
computer vision to geophysics and from thermodynam-
ics to economics and many more. The basic problem
that dates back to the 18th century is that of optimizing
with respect to suitable transportation costs the sched-
ule for transporting mass to meet supply and demand.
This problem has been of such importance that brought
the Nobel prize to Leonid Kantorovich who in 1942
devised duality theory and linear programming for its
solution. Starting at the waning years of the 20th cen-
tury, contributions by Brenier, McCann, Otto, Gangbo,
Evans, Villani, and many others, sparked a new phase
of rapid development with significant inroads of OMT
as an enabling tool in mathematics and physics [19].

Imposition of physical constraints along the trans-
port has been studied by many authors in various
contexts. In particular, moment-type constraints were
considered in [14, Section 4.6.3], [4], a path-dependent
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cost has been studied in [2], [16, Section 4] as a way
to deal with congestion, while bounds on probability
mass-densities have considered in [11,15,5] for similar
purposes. In the present work we revisit a formulation
in our earlier work [17] that aims to limit flow-rate.
Specifically, we seek to transport mass through con-
striction points/tolls abiding by flow-rate bounds. This
earlier work proved the existence and uniqueness of
flux-limited Monge maps (scheduling maps) that effect
transport while minimizing the W2 Wasserstein length
of trajectories. In the present work, we take an alterna-
tive view by casting the problem in a Kantorovich-type
in the form of multi-marginal optimization. We note
that, while multi-marginal problems have been studied
for a while [12,10], issues related to computation for
large size problems continue to be of great interest to
the present day – we refer to [7,8,9] for structured multi-
marginal problems and to [13] for the computational
aspects of OMT in general.

The key idea in the present work for dealing with
flow-rate constraints is to seek a distribution for the
times of crossing the toll-stations, suitably bounded to
ensure meeting the constraints. Our choice for a cost to
be minimized is the mean-square of the velocity. This
choice effectively orders the flow, in that particles do not
overtake each other, and can be expressed as a convex
functional of the optimization variables. Moreover, this

Preprint submitted to Automatica 3 May 2023

ar
X

iv
:2

21
2.

14
50

9v
3 

 [
ee

ss
.S

Y
] 

 1
 M

ay
 2

02
3



cost can be conveniently decomposed into a sum of costs,
each engaging only space and timing variables that per-
tain to segments of the transport path. We ensure flux
constraints by imposing bounds on the variables rep-
resenting the time of toll-crossing. Under a fairly gen-
eral setting our formulation amounts to a multi-marginal
OMT problem with the time-crossing marginals as un-
known and constrained parameters of the problem.

Below, in Section 2 we discuss the formulation of
Monge-Kantorovich transport through tolls with flow-
rate constraint. In Section 3 we specialize to measures
with support on R and we highlight the nature of so-
lutions with representative examples. In Section 4, we
discuss two generalizations of the basic problem, the
first concerns partial transport through tolls where mass
needs only to clear certain tolls on the way to the re-
spective destination, while the second brings in a new
dimension to the transport problem by considering ar-
rival and departure times in the formulation.

2 Monge-Kantorovich transport through tolls

We consider the classical optimal mass transport
problem with a quadratic cost, albeit with a flow-rate
constraint on the flow across tolls at specified locations.
Specifically, we consider distributions µ, ν, that are as-
sumed throughout as being probability measures (i.e.,
with mass normalized to 1), and seek a transportation
plan from one to the other. The “starting” distribution
µ represents the mass of a single commodity that needs
to be transported accordingly and matches the demand
that is specified by ν. Along the way, the mass has
to clear tolls abiding by corresponding constraints on
throughput.

Let us first review the classical Monge-Kantorovich
optimal mass transport with a quadratic cost (on Rn).
The Monge formulation of transport seeks a transporta-
tion map T : x 7→ y = T (x) so as to minimize the
transportation cost functional

J(T ) =

∫
Rn

‖T (x)− x‖2µ(dx),

over the choice of T , subject to the transportation map T
pushing the starting to the target distribution, i.e., µ to
ν. We denote this by writing T]µ = ν. As it is standard,
the notation ] denotes the “push forward,” meaning that
for any Borel set S ⊂ Rn, µ(T−1(S)) = ν(S).

In general, such a map T may not always exist. The
Kantorovich relaxation seeks instead a measure π on the
product space Rn×Rn so that the marginals on the two
components coincide with µ, ν, while π minimizes the
functional

J(π) =

∫
Rn×Rn

‖y − x‖2π(dx, dy).

The measure π is referred to as coupling of the two
marginal distributions.

Assuming that µ is absolutely continuous with den-
sity ρ0 then the optimal transport map T always exists
and is unique [19, Theorem 2.12], and the optimal cost
is the minimal of

J(∂tX) :=

∫ 1

0

∫
Rn

(
∂tXt(x)

)2
ρ0(x)dxdt, (1)

for X : [0, 1] × Rn → Rn such that 1 X0]ρ0 = ρ0 and
X1]ρ0 = ν. That is, the minimization is over velocity
fields ∂tX, for flowsX that corresponds the starting and
ending marginal densities. It turns out that the optimal
flow is effected by

Xopt
t (x) = x+ t

(
T (x)− x

)
,

for T the optimal transport map. The minimal value of
these functionals is designated as the Wasserstein dis-
tance W2

2 (µ, ν) [18].

One observes that, in (1), what is actually being min-
imized is the average kinetic energy (modulo a factor of
2), as the transport takes place over the interval [0, 1]. In
general, having dµ = ρ0dx and carrying out the trans-
port over the interval [0, tf ],

W2
2 (µ, ν)= J(∂tX

opt
t )

=

∫ tf

0

tf

∫
Rn

(
∂tX

opt
t (x)

)2
ρ0(x)dxdt

=

∫ tf

0

∫
Rn

‖T (x)− x‖2

tf
ρ0(x)dxdt

since ∂tX
opt
t (x) =

(
T (x)− x

)
/tf , recovering J(T ) for

the optimal transport map. Most importantly, the av-
erage kinetic energy can also be written, for the relaxed
Kantorovich formulation, as

W2
2 (µ, ν) =

∫ tf

0

∫
Rn×Rn

‖y − x‖2

tf
π(dx, dy)dt.

The derivation is immediate since
∫ tf

0
dt = tf . The ex-

pression helps highlight the average kinetic energy as the
minimal of the convex cost ‖y−x‖2/tf , when transport-
ing mass from x to y over a time interval of duration tf .

We are now in a position to formulate the analogue
of the Monge-Kantorovich problem for the case where the
mass needs to clear tolls, initially a single toll, at specified
locations and with a bound on the flow-rate.

We first assume that a single toll is located at ξ and
that mass flowing through cannot exceed a given flow-
rate r. Thus, the flow-rate through the toll must satisfy

σ(t) ≤ r.

1 Following a common abuse of notation, for simplicity, we
write interchangeably the density ρ0 and measure µ, and
allow the notation to be understood from the context.
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The flow-rate represents the mass density over time as
the mass is transported through the toll, i.e., σ(t)dt rep-
resents mass that clears the toll in the interval [t, t+dt].

The insight that allows us to formulate optimal trans-
port through toll(s) as a multi-marginal optimal trans-
port problem is to view the as-yet-undermined mass den-
sity σ(t) as a time marginal distribution, together with
the specified spatial initial and final marginals µ(dx)
and ν(dy). Thereby, the Kantorovich formulation of the
problem seeks a coupling π(dx, dy, dt) between the two
given marginals µ(dx), ν(dy), and the sought marginal
σ(t)dt, that specifies the portion of mass at [x, x + dx],
heading towards [y, y + dy], is transported through the
toll in the interval [t, t+ dt].

In light of the coupling between a starting point x
at time τ = 0, location of the toll ξ that mass is to be
transported at time τ = t, and terminal destination y to
arrive at τ = tf , the average kinetic energy 2 over the
segment τ ∈ [0, t] is minimized when particles travel at
constant velocity (ξ − x)/t, and thus, equal to∫ t

0

‖(ξ − x)/t‖2dτ = ‖ξ − x‖2/t.

Likewise, the average kinetic energy over the remaining
interval [t, tf ] is ‖y − ξ‖2/(tf − t). Thus, we arrive at
the formulation of our first problem.

Problem 1 Given probability measures µ, ν and r > 0,
determine a probability measure π(dx, dy, dt) on Rn ×
Rn × [0, tf ] that minimizes∫∫∫

x,y,t

(
‖ξ − x‖2

t
+
‖y − ξ‖2

tf − t

)
π(dx, dy, dt), (2)

subject to the marginals
∫∫
y,t
π(dx, dy, dt) = µ(dx) and∫∫

x,t
π(dx, dy, dt) = ν(dy), and the flow-rate constraint∫∫

x,y
π(dx, dy, dt) ≤ rdt.

Throughout, notation as in
∫∫
x,y

π(dx, dy, dt), indi-

cates integration over the space of the variables that are
subscribed to the integral.

Note that the above formulation allows mass that
is initially concentrated x and is heading towards the
same terminal destination y, to split and transport over
different paths clearing the toll at different times t, as
prescribed by the coupling, in order to abide by the im-
posed bound on flow-rate. This will necessarily be the
case when µ assigns finite mass at a point (contains Dirac
deltas or singular part, in higher dimensions).

A somewhat more ambitious scheduling may require
optimizing the average kinetic energy, from a starting
measure µ to the terminal ν, clearing two or multi-
ple tolls in succession. For the case of two tolls, define
π(dx, dy, dt1, dt2) as the coupling of mass at x heading to

2 The average kinetic energy is often referred to as action
integral in physics.

y that clears the tolls at times t1, t2, respectively, where
0 ≤ t1 ≤ t2 ≤ tf . The coupling, as before, is a probabil-
ity measure that specifies the respective amount of mass
that is transported as prescribed.

The problem with two or multiple tolls is analogous
to Problem 1. For instance, in the case of two tolls, the
cost cξ1,ξ2 to be minimized over the choice of admissible
couplings is∫∫∫∫

x,y,t1,t2

(
‖ξ1 − x‖2

t1
+
‖ξ2 − ξ1‖2

t2 − t1
+
‖y − ξ2‖2

tf − t2

)
π.

Admissibility of π amounts to consistency with the
problem data, i.e., it amounts to satisfying the usual
marginal constraints on x and y, as well as the flow-
rate constraints

∫∫∫
x,y,t2

π(dx, dy, dt1, dt2) ≤ r1dt1 and∫∫∫
x,y,t1

π(dx, dy, dt1, dt2) ≤ r2dt2.

We remark that flow-rate constraints can be time-
varying without any significant overhead in the dif-
ficulty of the problem. Specifically, in the condition∫∫
x,y

π(dx, dy, dt) ≤ rdt the flow-rate bound can be

specified by a time-dependent density r(t) that regulates
permissible throughput at different times. Evidently, the
bound could also be a measure, but this is deemed of
minimal practical relevance and not followed here.

Our first technical result establishes in a straightfor-
ward manner existence of solutions.

Proposition 1 (Existence) Provided rtf > 1, Prob-
lem 1 admits a (minimizing) solution π.

Proof: Denoting with σ(t) the mass density that
crosses the toll at time t, as before, the transport of
the total mass through the toll over the interval [0, tf ]
subject to σ(t) ≤ r, requires that

1 =

∫ tf

0

σ(t)dt ≤
∫ tf

0

rdt = rtf ,

Thus, rtf ≥ 1 is a necessary condition 3 . The space of
admissible measures π in Problem 1, i.e.,

Π =

{
π ∈ P

(
Rn,Rn, [0, tf ]

)
|
∫∫

y,t

π(dx, dy, dt) = µ(dx),∫∫
x,t

π(dx, dy, dt) = ν(dy),

∫∫
x,y

π(dx, dy, dt) ≤ rdt
}

3 The case rtf = 1 is only feasible in the non-generic situ-
ation where max Support(µ) = 0 = min Support(ν). In gen-
eral, when e.g., max Supp(µ) < 0, the “rightmost” mass on
the support of µ must be transported with infinite velocity
so as to allow σ(t) = 1/tf over [0, tf ] for the total mass to
have enough time to be transported through. Such limiting
cases are non-physical, leading to diverging transportation
cost, and thereby excluded.

3



is non-empty. It is also compact for the weak topology
as it is tight and closed for the narrow convergence. In-
deed, the set of coupling measures between a finite num-
ber of probability measures is tight [16, Theorem 1.4],
and each of the three constraints in Π is closed for the
narrow convergence. Then, as the cost function (inte-
grand in (2)) is lower semi-continuous, we have the ex-
istence of a minimizer. To see that Π is non-empty, we
postulate a uniform distribution on the crossing times,
u = (1/tf )dt, and couplings π̃xt, π̃ty that are consistent
with the marginals (µ, u) and (u, ν), respectively. Then,
the existence of an element π̃ ∈ Π with marginals∫

y

π̃(dx, dy, dt) = π̃xt, and

∫
x

π̃(dx, dy, dt) = π̃yt,

is guaranteed by the gluing lemma [18, page 11]. �

Note that the convexity of the cost is not used in
the proposition. We next consider whether the optimal
solution is unique. We first discuss the special case where
n = 1. Moreover, for this case where locations on the
underlying space can be ordered (e.g., from left to right),
we assume that the toll sits between the two distributions
µ, ν, specifically that the support of µ is to the left of
ξ and that the support of ν is to the right. Without
loss of generality, we let ξ = 0 and we thus consider the
following problem.

Problem 1′ (Simplification) We consider probabil-
ity measures µ, ν on R, with support on [−M, 0) and
(0,M ] for sufficiently large M , respectively. Let r, tf > 0
such that rtf > 1. Determine a probability measure
π(dx, dy, dt) as the minimizer of∫∫∫

x,y,t

(
x2

t
+

y2

tf − t

)
π(dx, dy, dt)

subject to the flow-rate constraint
∫∫
x,y

π(dx, dy, dt) ≤
rdt, and the marginals

∫∫
y,t
π(dx, dy, dt) = µ(dx) and∫∫

x,t
π(dx, dy, dt) = ν(dy).

We begin with a technical lemma that establishes a
correspondence between the time and location of mass
as this is transported past the toll. A schematic that
exemplifies the statement of the lemma below is shown
in Fig. 1.

Lemma 1 (Monotonicity) Let cxt := x2

t , with
(x, t) ∈ [−M, 0)× (0, tf ], and µ, σ measures with support
on [−M, 0) and (0, tf ], respectively, with σ(t)dt abso-
lutely continuous with respect to the Lebesgue measure.
The minimizer of the Kantorovich problem

min
π

∫∫
cxtπ,

where π represents a coupling of the two marginals
µ(dx), σ(t)dt, is unique with support on the graph of a
non-increasing function TX (t).

Proof: We first observe that for any two pairs x, x′ ∈
[−M, 0) and t, t′ ∈ (0, tf ] for which 0 > x > x′ ≥ −M
and tf ≥ t > t′ > 0, it holds that

x2

t
+

(x′)2

t′
>
x2

t′
+

(x′)2

t
.

The ordering in this inequality characterizes cxt as be-
ing quasi-monotone, in the language of [1], see also [14,
Section 3.1].

It follows from [19, Theorem 2.18, and Remark 2.19]
that the optimal coupling π exists and is given by the
monotone rearrangement of µ, σ, that is, for a suitable
function TX (t)∫ 0

TX (t)

µ(dx) =

∫ t

0

σ(s)ds.

Since TX (t) < 0, it is non-increasing (and is constant on
time-intervals that correspond to possible Dirac compo-
nents of µ). This completes the proof. �

For similar reasons, the cost cyt (with t ∈ (0, tf ] and
y ∈ (0,M ], and M as in Problem 1′) is quasi-monotone.
Hence, once again, for a suitable function TY(t),∫ M

TY(t)

ν(dy) =

∫ t

0

σ(s)ds,

for TY(t) > 0, so that TY(t) is non-increasing. In light of
the monotonicity of TX (t) and TY(t), we establish the
following proposition.

Proposition 2 (Uniqueness) Under the assumptions
of Problem 1′ the minimizer is unique. Moreover, there
are functions TX (t), TY(t) are monotonically non-
increasing such that

π = (TX , TY , Id)]σ,

where Id(t) = t is the identity map and σ(t)dt is an
absolutely continuous measure on [0, tf ] with σ(t) ≤ r.

Proof: Let π be a minimizer as claimed in Proposition
1, and let πxt :=

∫
y
π, πyt :=

∫
x
π, and σ :=

∫∫
xy
π. Since∫∫∫

x,y,t

cπ =

∫∫
xt

cxtπxt +

∫∫
yt

cytπyt,

πxt is a minimizer of
∫∫
xt
cxtπxt, and the same applies

to πyt. If this was not the case, there would be cou-
plings π̂xt, π̂yt with strictly lower costs

∫∫
xt
cxtπ̂xt, and∫∫

yt
cytπ̂yt. These two couplings share the same marginal

on the t-axis, namely,∫
x

π̂xt(dx, dt) =

∫
y

π̂yt(dy, dt) = σ(t)dt.
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Then, by the gluing lemma [18, page 11], there is a
coupling π̂ on R × R×[0, tf ] that agrees with the given
marginals and has a lower cost. Thus, both πxt, πyt are
optimal for the respective problems. We next argue that
σ is unique, and therefore, the conclusion follows by
Lemma 1.

To establish the uniqueness of the density on the t-
axis, assume that there are two different minimizers πa

and πb to start with. Then, as above, each gives rise to
a density on the t-axis, σa(t) and σb(t), respectively, as
well as corresponding marginals and maps (TX ,a, TY,a)
and (TX ,b, TY,b). Since both σa(t) and σb(t) satisfy the
constraint of being≤ r, so does any convex linear combi-
nation, say σ̄ = 1

2σ
a+ 1

2σ
b, and the convex combination

π̄ = 1
2π

a + 1
2π

b is also optimal. But then, the marginal

π̄xt = (TX ,a, Id)] 12σa + (T̂X ,b, Id)] 12σb

is supported on a set that is not the graph of a function 4 ,
unless of course TX = TX ,a = TX ,b. But if π̄xt is not
supported on a graph of a function, there exists a more
“economical” coupling with strictly lower cost, obtained
by monotone rearrangement of π̄xt. A similar statement
holds for π̄yt. This contradicts the nonuniqueness and
completes the proof. �

In the setting of Problem 1, when n > 1, the trans-
port cost of all mass that resides at a distance d = ‖x−ξ‖
is the same. Thus, the problem to transport through the
toll cannot distinguish equidistant points from the toll.
In this case where the distributions, µ, ν sit in Rn for
n ≥ 1, Proposition 1 and 2 can be readily extended as
the cost in Problem 1 only depends on the distance of the
points to ξ. Indeed, the problem is equivalent to solving
the 1-dimensional problem between µ̃, ν̃ the measures
such that for all A ⊂ R measurable set 5 ,

µ̃(A) =

∫
Rn

1{||x−ξ||∈A}µ(dx).

Therefore we have existence of a unique solution π̃ =
(TX , TY , Id)]σ to the 1-dimensional problem which gives
rise to solutions π to the n-dimensional problem in the
following way: For µx̃, νỹ the disintegrated measures [3]
such that

µ(dx) =

∫
µx̃(dx)µ̃(dx̃)

ν(dy) =

∫
νỹ(dy)ν̃(dỹ),

4 Note that π̄xt satisfies the marginal constraints since, by
virtue of TX

]σi = µ, for i ∈ {a, b}, TX
] 1
2
σa + TX

] 1
2
σb = µ. A

similar statement holds for the coupling π̄yt.
5 The notation 1S(x), or 1S for simplicity, signifies the in-
dicator function that takes the value 1 when x ∈ S and zero
otherwise.

the solutions π will be of the form

π(dx, dy) =

∫
πt(dx, dy)σ(t)dt

for πt any coupling 6 measure between µTX (t) and νTY(t).

Remark 1 (Generalization) A further interesting
generalization is when the toll through which the mass is
to be transported is no longer a point but a set T ⊂ Rn,
typically a curve or a manifold of higher dimension,
with a Hausdorff measure H(dz) integrating to 1. The
transport problem for such a situation becomes one of
minimizing

inf
π∈Π

∫ (
||x− z||2

t
+
||y − z||2

tf − t

)
π(dx, dy, dt, dz),

over couplings in

Π =

{
π ∈ P(Rn,Rn, [0, tf ], T ) |

∫∫∫
y,t,z

π = µ(dx),∫∫∫
x,t,z

π = ν(dy),

∫∫
x,y

π ≤ rdt⊗H(dz)

}
.

The term to the right of the last inequality, representing
the (normalized) Hausdorff measure of T can be further
suitably modified to account for preference/ease of trans-
porting through specific portions of the set T . Physically
such a problem may model flow through media, where T
represents porous section that the mass must go through,
from source µ to destination ν. Developing theory for this
generality is beyond the scope of the current paper. 2

3 Case studies: transport through tolls in 1D

We now present case studies that help visualize
the general scheme for Monge-Kantorovich transport
through tolls in R, that is, in dimension 1. Since the
formalism in Section 2 casts the problem as a multi-
marginal one, the coupling with marginal in 1D is al-
ready a measure in R3, with one of the axes the time that
mass crosses the toll. The computational aspects and the
code using the optimization toolbox-CVX [6] to conduct
all the experiments can be found at https://github.
com/dytroshut/OMT-with-Flux-rate-Constraint.

We discuss four examples that help visualize the ef-
fect flow-rate constraints and the nature and support of
the transportation coupling π.

Our first example is displayed in Fig. 1. The source
distribution is Dirac (i.e., concentrated at one point) lo-
cated at a point x < 0, the toll is located at ξ = 0,
and the terminal distribution is absolutely continuous
with respect to the Lebesgue with the density that has
support on {y ∈ R | y ≥ 0}. The figure highlights the

6 The coupling between µTX (t) and νTY (t) cannot be spec-
ified from the problem setting, since it does not affect the
cost.
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maps TX and TY that couple (x, t) and (y, t), respec-
tively, where t denotes the time that mass originally at
x crosses the toll on its way to location y. Both maps are
monotonically non-increasing.

Fig. 1. Illustration of solution to Problem 1: the maps TX (t),
TY(t) are monotonically non-increasing, the t-marginal den-
sity σ(t) is bounded by r.

In our second example, in Fig. 2, the marginals are
Gaussian mixtures. The flow is visualized via shadowing
the paths. Three instances of different bounds on flow-
rate are depicted, highlighting how the bound affects the
flow and the distribution of crossing times.

Our third example in Fig. 3 helps visualize the cou-
pling in R3 between (x, y, t), for smooth marginals; the
coupling is supported on a curve. In general, the mass on
this curve is not uniform and the density is depicted with
circles of suitable radius around corresponding points on
the curve. Couplings for two different values for accept-
able flow-rate are shown (r ∈ {1.5, 3}) and it is seen that
as r is decreased the t-density tends to become more
uniform.

Our fourth example is drawn with a sketch in Fig. 4a,
and a simulation of transport between two Gaussian
mixtures, through two tolls, in Fig. 4b. The tolls are po-
sitioned at ξ1 = −0.4 and ξ2 = 0.4. The density of the
respective times of crossing, t1 and t2, are bounded by
r1 = 1.5 and r2 = 3, respectively.

4 Concluding Remarks

The basic idea presented in this paper for dealing
with flow-rate constraints has been to introduce a time-
variable for when mass transits certain locations. Then,
the density of the corresponding marginal distribution,
quantifies the amount of mass clearing the toll over a
time interval, hence, flow-rate. Such a marginal distribu-
tion, as yet to be determined, represents a design param-
eters to be specified so as to meet flow-rate constraints.

(a) r =∞ (no flow-rate constraint)

(b) r = 2

(c) r = 1.2

Fig. 2. Case (a), having no flow-rate constraint at the
toll, corresponds to standard Monge-Kantorovich transport
with particles moving at constant speeds depending on ori-
gin/destination. Cases (b,c) depict the situation where a
flow-rate bound at the toll necessitates that mass is trans-
ported with different speeds at the two sides of the toll at
ξ = 0, so as to meet the imposed bound on the t-marginal.

Thereby, such problems can be cast in the form of multi-
marginal optimization.

We note that the present work builds on, and extends
our earlier study [17], where under strong regularity as-
sumptions on the marginals for the supply and demand,
we developed a Benamou-Brenier approach for Monge
transport through a single toll. In contrast to this earlier
work, the present formulation allows dealing with more
general measures and multiple tolls, and in addition, it
casts the problem as a linear program and allows effi-
cient approximation using e.g., entropic regularization
as in other timely multi-marginal optimization formula-
tions [7,9].

We conclude by showing how the basic framework
of utilizing marginals to quantify timing information,
applies to transportation problems with more compli-
cated structure. Specifically we discuss two cases. First
we explain the case where portion of the mass is not
constrained to clear the toll, and second, a case of how
ordering of arrival and departure times can be incorpo-
rated in the same framework.
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(a) r = 3

(b) r = 1.5

Fig. 3. Support of the coupling measure π(dx, dy, dt) on a
curve in R3; the density is depicted by circles of size propor-
tional to magnitude.

Fig. 5. Illustration of the optimal mass transport through
two successive tolls with separating mass.

For our first case, consider the schematic in Fig. 5
where a fraction of a source distribution µ needs to clear
two tolls, while the remaining fraction only needs to clear
a single toll, due to its relative position with respect to
the toll. For instance, in this one-dimensional schematic,
the source distribution µ is split by the toll at ξ1 into
µ+ := µ(x > ξ1) and µ− := µ(x < ξ1). Accordingly,
the target distribution ν needs to be split into ν+/−
corresponding to the two masses, m+/−, so that

T]µ = T ξ1,ξ2]µ−
+ T ξ2]µ+

= ν− + ν+,

(a) Schematic of transport through two tolls at ξ1, ξ2.

(b) Transport of Gaussian mixtures through two tolls with
density-bounds r1 = 1.5 and r2 = 3, at crossing times t1 and
t2, respectively.

Fig. 4. Schematic and simulation of 2-toll transport plans.

where T ξ1,ξ2 transports through two tolls whereas T ξ2

transports through a single toll. With the flow-rate con-
straints on crossing time marginals, the Kantorovich
formulation process is exactly as before, provided the
fractions of corresponding masses can be delineated.
For one-dimensional distributions, specifying the corre-
sponding portions is straightforward. In higher spatial
dimensions, when there is no clear separation as in
the one-dimensional schematic, the problem of select-
ing “what fraction of mass needs to clear what toll” is
coupled to the optimization problem and has a combi-
natorial nature.

For our second case, we bring in timing to priori-
tize departure and arrival, so as to meet objectives and
possibly mediate congestion along the flow. To see this,
we briefly discuss how to modify the standard Monge-
Kantorovich setting in which all particles/mass trans-
port at constant (that depends on the particle) speed
along geodesics from source x to destination y according
to the McCann flow

ρt =
[
(1− t)Id(x) + tTY(x)

]
]µ,

over the window t ∈ [0, 1] with transport map TY(x). For
simplicity we retain arrival time ta = 1, i.e., fixed, and
only allow the departure time td to vary. The marginal
distribution of td now represents a design parameter.
The formalism, once again, seeks a coupling measure π
that satisfies constraints and marginals. For simplicity,
we introduce the Monge transport map TY(x), to specify
the source-destination pairing. Then, the coupling of the
variables x, y, td gives that π = (Id, T td , TY)]µ. And, if

7



τ(t, x) denotes the portion of time that a particle at x is
“on the move,” i.e., τ(t, x) = (t − td(x))1{t>td(x)}, the
McCann’s displacement reads

ρt =
[
(1− τ(t, x))Id(x) + τ(t, x)TY(x)

]
]µ.

Figure. 6 shows an example where both departure and
arrival times are variables (td and ta, respectively), with
marginals selected to minimize a cost functional of the
form

∫∫∫∫
x,y,ta,td

c(x, y, ta, td)π(dx, dy, dta, dtd), with

cost c(x, y, ta, td) = td/x
2 +(y−x)2− ta/y2. This choice

ensures a natural order in departure and arrival 7 .
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Fig. 6. In earlier formulations, all particles/agents departed
at the same time t = 0 and arrived at the same time t = tf .
Here, besides meeting flow-rate constraints, we stratify de-
parture and arrival so that particles/agents closer to the
toll depart first, and arrive at the most distant target loca-
tion again first (as it would be natural for a convoy trans-
ferring goods). Departure and arrival rate bounds are set
to rd = 1.1 and ra = 5, respectively. Coupling measures
π(dx, dy), π(dx, dtd), and π(dy, dta) between timing variable
are computed; it is seen that these are supported on graphs of
maps (showing a monotonic correspondence). For instance,
π(dx, dtd) couples µ(dx) and σ(td), with σ(td) ≤ rd being
the departure-time marginal. Due to the monotonicity of the
cost c(x, td) = td/x

2, the coupling π(dx, dtd) indicates that
mass closer to the toll departs earlier, while abiding by the
departure rate bound rd. For the timing of arrival ta, prop-
erties of the coupling π(dy, dta) are completely analogous.

In closing, we mention that distributed flux con-
straints may fruitfully capture properties of matter
through which transport takes place, e.g., in transport
of pollutants through porous media. A generalization of
the framework herein to a distributed setting would be
desirable and at present open.
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