
Big Data Research 1 (2014) 52–65
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Efficient Indexing and Query Processing of Model-View Sensor Data in 

the Cloud ✩

Tian Guo a,∗, Thanasis G. Papaioannou b, Karl Aberer a

a EPFL, Switzerland
b Center for Research & Technology Hellas (CERTH), Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 July 2014

Keywords:
Big data
Index
Key-value stores
MapReduce
Approximation
Query optimization

As the number of sensors that pervade our lives increases (e.g., environmental sensors, phone sensors, 
etc.), the efficient management of massive amount of sensor data is becoming increasingly important. 
The infinite nature of sensor data poses a serious challenge for query processing even in a cloud 
infrastructure. Traditional raw sensor data management systems based on relational databases lack 
scalability to accommodate large-scale sensor data efficiently. Thus, distributed key-value stores in the 
cloud are becoming a prime tool to manage sensor data. Model-view sensor data management, which 
stores the sensor data in the form of modeled segments, brings the additional advantages of data 
compression and value interpolation. However, currently there are no techniques for indexing and/or 
query optimization of the model-view sensor data in the cloud; full table scan is needed for query 
processing in the worst case. In this paper, we propose an innovative index for modeled segments 
in key-value stores, namely KVI-index. KVI-index consists of two interval indices on the time and 
sensor value dimensions respectively, each of which has an in-memory search tree and a secondary list 
materialized in the key-value store. Then, we introduce a KVI-index–Scan–MapReduce hybrid approach 
to perform efficient query processing upon modeled data streams. As proved by a series of experiments 
at a private cloud infrastructure, our approach outperforms in query-response time and index-updating 
efficiency both Hadoop-based parallel processing of the raw sensor data and multiple alternative indexing 
approaches of model-view data.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in sensor technology have enabled the vast 
deployment of sensors embedded in user devices that monitor var-
ious phenomena for different applications of interest, e.g., air/elec-
trosmog pollution, radiation, early earthquake detection, soil mois-
ture, permafrost melting, etc. The data streams generated by a 
large number of sensors are represented as time series in which 
each data point is associated with a time-stamp and a sensor 
value. These raw discrete observations are taken as the first citizen 
in traditional relational sensor data management systems, which 
leads to a number of problems. On one hand, in order to perform 
analysis of the raw sensor data, users usually adopt other third-
party modeling tools (e.g., Matlab, R and Mathematica), which in-
volve of tedious and time-consuming data extract, transform and 
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load (ETL) processes [1]. Moreover, such data analysis tools are 
usually used for static data set and therefore cannot be applied 
for online processing of sensor data streams. On the other hand, 
unbounded sensor data streams often have missing values and un-
known errors, which also poses great challenges for traditional raw 
sensor data management.

To this end, various model-based sensor data management 
techniques [1–4] have been proposed. Model-view sensor data 
management leverage time series approximation and modeling 
techniques to segment the continuous sensor time series into dis-
joint intervals such that each interval can be approximated by a 
kind of model, such as polynomial, linear or SVD. These models, 
for all the intervals (or segment models), exploit the inherent cor-
relations (e.g. with time or among data streams) in the segments 
of sensor time series and approximate each segment by a certain 
mathematical function within a certain error bound [5–9]. Then, 
one can only materialize the models of the segments instead of 
the raw data and harvest a number of benefit:

First, model-view sensor data achieves compression over raw 
sensor data and therefore requires less storage overhead [10–12]. 
Second, due to the sampling frequency or sensor malfunction, 
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there may be some missing values at some time points. If one 
query involves such time points, then the relevant segment model 
can be used to estimate the values [10–12]. In some degree, 
model-view sensor data increases the data availability for query 
processing. Third, there usually exist outliers in raw sensor data, 
which has negative effect on the query results. Model-view sen-
sor data removes the outliers in each interval via the segment 
model and historical data on upper and lower data bounds, thereby 
diminishing the effect of outliers in query results. Fourth, regard-
ing the similarity search or pattern discovery in sensor time-
series mining, the segment-based time series representation is a 
powerful tool for dimension reduction and search space pruning 
[9,13,14].

However, proposed model-based sensor data management ap-
proaches mostly employ the relational data model and process 
queries based on materialized views [2,3] on top of the modeled 
segments of sensor data. Nowadays, the amount of data produced 
by sensors is exponentially increasing. Moreover, the real-time pro-
duction of sensor data requires the data management system to be 
able to handle high-concurrent model-view sensor data from mas-
sive sensors and this is difficult for traditional relational database 
to realize. To this end, recent prevalent cloud store and computing 
techniques provide a promising way to manage model-view sensor 
data [15–19].

The main focus of this paper is on how to manage the seg-
ment models of sensor data, namely model-view sensor data with 
the newly emerging cloud stores and computing techniques rather 
than how to explore more advanced sensor data segmentation al-
gorithms.

In our approach, we exploit key-value stores and the MapRe-
duce parallel computing paradigm [18,20], two significant aspects 
of cloud computing, to realize indexing and querying model-view 
sensor data in the cloud. We characterize the modeled segments 
of sensor time series by the time and the value intervals of each 
segment [16,17]. Consequently, in order to process range or point 
queries on model-view sensor data, our index in the cloud store 
should excel in processing interval data. Current key-value built-in 
indices do not support interval-related operations. The interval in-
dex for model-view sensor data should not only work for static 
data, but it should be dynamically updated based on the new 
arriving segments of sensor data. If traditional batch-updating or 
periodical re-building strategy was applied here [21,22], then the 
high speed of sensor data yielding might lead to a large size of 
the new unindexed data, even in short time periods and to signif-
icant index updating delay as well. As a result, the performance 
of queries involving both indexed and unindexed data would de-
generate greatly. Therefore, the interval index in the cloud store 
should be able to insert an individual new modeled segment in an 
online manner.

The contributions of this paper are summarized as follows:

• Innovative interval index: We propose an innovative interval 
index for model-view sensor data management in key-value 
stores, referred to as KVI-index. KVI-index is a two-tier struc-
ture consisting of one lightweight and memory-resident binary 
search tree and one index-model table materialized in the key-
value store. This composite index structure can dynamically 
accommodate new sensor data segments very efficiently.

• Hybrid model-view query processing: After exploring the 
search operations in the in-memory structure of the KVI-index 
for range and point queries, we introduce a hybrid query pro-
cessing approach that integrates range scan and MapReduce to 
process the segments in parallel.

• Intersection search: We introduce an enhanced intersection 
search algorithm (iSearch+) that produces consecutive results 
suitable for MapReduce processing. We theoretically analyze 
the efficiency of (iSearch+) and find the bound on the redun-
dant index nodes that it returns.

• Experimental evaluation: Our framework has been fully imple-
mented, including the online sensor data segmentation, mod-
eling, KVI-index and the hybrid query processing, and it has 
been thoroughly evaluated against a significant number of al-
ternative approaches. As experimentally shown based on real 
sensor data, our approach significantly outperforms in terms 
of query response time and index updating efficiency all other 
ones for answering time/value point and range queries.

The remainder of this paper is organized as follows: Section 2
summarizes some related work on model-view sensor data man-
agement, interval index and index-based MapReduce optimization 
approaches. In Section 3, we provide a brief description of sensor-
data segmentation, querying model-view sensor data and the ne-
cessity to develop interval index for managing model-view sensor 
data in key-value stores. The detailed designs of our innovative 
KVI-index and the hybrid query processing approach are discussed 
in Sections 4 and 5 respectively. Then, in Section 6, we present 
thorough experimental results to evaluate our approach with tradi-
tional query processing ones on both raw sensor data and modeled 
data segments. Finally, in Section 7, we conclude our work.

2. Related work

Time series segmentation is an important research problem 
in the areas of data approximation, data indexing and data min-
ing. A lot of work has been devoted to exploit different types 
of models to approximate the segments of time series, such that 
the pruning and refinement framework can be applied to this 
segment-represented time series for the pattern matching or sim-
ilarity search [9,13]. Some other researchers proposed techniques 
for managing the segment models that approximate sensor time 
series in relational databases. MauveDB designed a model-based 
view to abstract underlying raw sensor data; it then used models 
to project the raw sensor readings onto grids for query process-
ing [3]. As opposed to MauveDB, FunctionDB only materializes 
segment models of raw sensor data [2]. Symbolic operators are 
designed to process queries using models rather than raw sen-
sor data. However, both approaches in [3] and [2] do not take 
into account applying indices to improve query processing. More-
over, their proposed approach focuses on managing static dataset 
of time series rather than dynamic time series.

Also, each segment of time series could be characterized by its 
time and value intervals. Then, one should consider employing an 
interval index for processing queries over model-view sensor data. 
Two common used indices for interval data are segment tree [21]
and interval tree [23]. As for segment tree, it is essentially a static 
data structure that needs an initialization process to construct el-
ementary intervals based on the initial dataset [21]. Once a new 
interval outside of the domain of current segment tree arrives, the 
elementary intervals should be rebuilt, which is not suitable for 
the real time nature of sensor data streams [21]. Regarding the in-
terval tree, individual interval is not divided and replicated during 
the insertion phase as in the segment tree and therefore the stor-
age overhead is linear to the number of intervals to index [23–25]. 
However, it is a memory-oriented structure.

Some efforts [22,23,26,27] have also been done to external-
ize these in-memory index data structures. The relational interval 
tree (RI-tree) [26] integrates interval tree into relational tables and 
transforms interval queries into SQL queries on tables. This method 
makes efficient use of built-in B+-tree indices of RDBMS. Neverthe-
less, in this paper, we aim to design an interval index structure for 
model-view sensor data that is compatible with key-value stores 
and distributed query processing in the cloud.
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In [28], they proposed an approach that enables key-value 
stores to support query processing of multi-dimensional data via 
integrating space filing order into row-keys, which is not fit for in-
terval data. An index for multi-dimensional point data is proposed 
in [29] based on P2P overlay network, which is a different underly-
ing architecture from our adopted key-value store. The latest effort 
to develop interval indices in the cloud utilizes MapReduce to con-
struct a segment tree materialized in the key-value store [22]. This 
approach outperforms the interval query processing provided by 
HBase (http://hbase.apache.org/) and Hive (http://hive.apache.org/). 
However, the segment tree utilized in [22] is essentially a static 
index, as is also the case with [21]. Therefore, an index re-
building phase needs to be periodically executed to include new 
data.

MapReduce parallel computing is an effective tool to process 
large scale of sensor data in cloud stores, but conventional MapRe-
duce always conducts trivial full scan on the whole data set for 
the queries of any selectivity [19]. In order to enable MapReduce 
and indices to collaborate for query processing, many researchers 
proposed to integrate index techniques into MapReduce framework 
to avoid full data scan for low-selective queries [30–34]. One prior 
work is to construct a B+-tree over static data set in a distributed 
file system (e.g. HDFS) and materialize the index also in HDFS [34]. 
Then, the query processor can process this index file, which in-
volves of multiple MapReduce jobs to access different layers of the 
tree and therefore is not efficient enough [34]. Moreover, the pro-
posed HDFS based B+-tree is only effective for point data rather 
than interval data [34].

The authors in [31] integrate indices into each file split of the 
data file in HDFS, such that mappers can use the indices to only 
access predicate-qualified data records in each split. In [32], in-
dices applicable to queries with predicates on multiple attributes 
were developed by indexing different record attributes in differ-
ent block replicas of data files. These two kinds of index access 
methods in MapReduce are both on record-level. If we integrate 
an interval index into each file split guided by this direction, 
the MapReduce data preparation, starting overhead and Mapper 
waves are actually not decreased much and therefore the per-
formance does not significantly improve. On the other hand, the 
update in one file split requires to rebuilt the whole local index 
of the split thereby having high latency for segment insertions. In 
[33], a split-level index is designed to decrease MapReduce frame-
work overhead. As compared to above record-level indices in [31,
32], split-level indices eliminate irrelevant file splits before launch-
ing mappers, and the data transferring and starting up overheads 
are further decreased. This kind of approach is more efficient for 
decreasing the map function invocations via overriding the data 
reader of MapReduce [31,32], as compared to record-level opti-
mizations.

3. Overview of model-view sensor data management

In this section, we discuss certain important issues for manag-
ing model-view sensor data in a key-value store. First, we explain 
what is model-view sensor data. Then, we discuss possible storage 
schemas for model-view sensor data and explain the necessity to 
develop a special index for it in key-value stores. Last, we describe 
the query types of our focus and some particular techniques for 
processing model-view sensor data queries.

3.1. Sensor time series segmentation

Sensor time series segmentation is a type of algorithms that 
fragment a time series stream into disjoint segments, and then 
approximate each data segment by a mathematical function or 
model, such that a specific error bound is satisfied [5–9]. Query 
Algorithm 1: Sensor time series segmentation.
Input: vt , t , /* value and associated time point of one sensor reading */

error_bound
1 begin
2 if currentSeg_error(anchor, t) < error_bound then
3 seg[anchor,t] = segmentModel(vanchor, . . . , vt);
4 /* approximate the sensor values between the time range [anchor, t]

with the specified type of model (e.g., constant, linear, polynomial, 
etc.) */

5 else
6 lt = anchor;
7 lr = t − 1;
8 SegMaterialization(seg[anchor,t])
9 /* output this new produced segment seg[anchor,t] for materialization 

*/
10 anchor = t;

Table 1
Symbol list.

Symbol Semantics

lt Beginning timestamp of one segment model
rt Ending timestamp of one segment model
lv Minimum value of one segment model’s value range
rv Maximum value of one segment model’s value range
pi

0 . . . pi
n Coefficient of each item in polynomial model

processing can then be performed on the materialized segments 
instead of the raw sensor data, as in [2]. Sensor data segmentation 
and modeling algorithms have been extensively studied in [4–9].

As segmentation algorithms are not the focus of this paper, we 
only present a general framework in Algorithm 1 for online time 
series segmentation [7], which is used in the dataset preparation 
phase of our sub-sequential experimental evaluation in Section 6. 
Table 1 summarizes the list of symbols that we employ for model 
segments.

This sensor time series segmentation program is invoked each 
time a new sensor reading comes. It first checks if the segment 
model over the sensor readings from the anchor time point to cur-
rent time, namely in range [anchor, t], satisfies the error bound. 
If yes, the current segment model is updated to seg[anchor,t] . If 
no, the current time t is supposed to be the starting point an-
chor of a new segment. Then, it outputs the segment seg[anchor,t−1]
for the materialization process for which our designed index ap-
proach is responsible. The segment seg[anchor,t−1] consists of the 
following information: time interval [lt, rt], value range [lv , rv ]
and model formula (for instance, it could be a sequence of co-
efficients for each item of one polynomial function). Under this 
framework, users can choose different categories of models to ap-
proximate the sensor data in segments. For instance, a time series 
shown in Fig. 1(a) is transformed into a sequence of linear func-
tions with time dimension as the independent variable, which is 
depicted in Fig. 1(b). The associated value range in Fig. 1(b) indi-
cates the values one segment model can cover within the time 
interval. Such set of functions, each with its associated [lt , rt]
and [lv , rv ] for the sensor data segments are referred to as the 
model-view sensor data over the original raw sensor data observa-
tions.

3.2. Storage model in key-value stores

3.2.1. HBase overview
A table in HBase consists of a set of regions, each of which 

stores a sequential range partition of the row-key space of the ta-
ble [18,20]. An HBase cluster consists of a collection of servers, 
called region servers, which are responsible for serving a subset of 
regions of one table. The key-based data access method of HBase 
is realized by a three layered B+ tree maintained among the nodes 
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Fig. 1. Model-view sensor data.

Fig. 2. Model-view sensor data in HBase key value store.
of HBase cluster. The two upper levels referred to as the ROOT and 
META regions are kept in the master node of an HBase cluster. The 
ROOT region plays the role of root node of one B+ tree, while the 
META table maintains a mapping of the regions of a table to region 
servers. The regions distributed among the other nodes constitute 
the lowest level of the B+-tree index and store the real data of a 
table. If a region’s size exceeds a configurable limit, HBase can dy-
namically split it into two sub-regions, which enables the system 
to grow dynamically as data is appended. Regarding a MapReduce 
job on a table in HBase, the number of mappers is equal by de-
fault to that of regions of the table to process, which means that 
each mapper processes one region, as shown in Fig. 2. The num-
ber of reducers is configurable programmatically. And HBase allows 
MapReduce to only process key-based table partitions of inter-
est, which can avoid trivial full-scan on a table for low-selective 
queries [18,20].

3.2.2. Interval-index in HBase
For the model-view sensor data in the key-value store, the time 

interval, the value range and the model formula (e.g. polynomial 
coefficients) can fully approximate one data segment. There are 
different possible ways to organize row keys and columns for stor-
ing and querying model-view sensor data.

One idea for storing segments in key-value stores could be to 
do it similarly to that of the raw sensor data management sys-
tem such as Open-TSDB [15], which takes the time interval of one 
segment as the row key (rk). As rows are sorted on the row key 
in the key-value store, the starting points of time intervals are 
in ascending order. Therefore, although for time range or point 
queries the query processor knows when to stop the scan, it still 
needs to start the scan from the beginning of the table each time. 
The same problem happens to the table with value intervals as 
row-keys. For instance, in Fig. 2, when the value range is the row-
key, the table is sorted according to the left boundaries of the 
value ranges of model-view sensor data. For a value query range 
[9.2, 10], we can make sure after the fourth segment, namely S2
with value range [9.9, 10.9], there is no qualified segment in the 
table. However, still scanning has to start from the beginning of 
the table, since the right boundaries of the value ranges are not in 
order.

In summary, simply incorporating time, value interval or model 
coefficients into the row-key cannot contribute to accelerating the 
query processing. A generic index in key-value stores specialized 
for model-view sensor data is imperative. Moreover, considering 
that model-view sensor data is produced in real-time, the index for 
model-view sensor data in key-value stores should be able to up-
date on the fly efficiently [20]. Since each segment of model-view 
sensor data is characterized by its time and value ranges, we will 
concentrate on employing interval index to index both the time 
and value dimension of one segment.

However, another issue for designing the interval index for 
model-view sensor data in key-value stores is where to materi-
alize the index. One possible way would be to store the index in 
separated files in the distributed file system (e.g. HDFS, etc.) on 
top of which the key-value store HBase is also built. In this ap-
proach, as in the work [34], each layer of the tree structure is 
stored in one file. Consequently, index searching needs to invoke 
multiple MapReduce jobs to iteratively process each level of the 
tree, which is not efficient. Another way is to integrate one index 
for each region to only index the local model-view sensor data 
in that region, such that mappers can first load the index to lo-
cate desired data in that region and then access it. However, this 
kind of approach does not decrease data preparation and starting 
overhead of MapReduce for the whole table, since still all the re-
gions of the table are initialized to be processed by MapReduce 
[31,32]. Our proposed key-value based interval index (described in 
the next section) steps out of above ideas and takes advantage of 
both the in-memory and key-value parts to improve the query pro-
cessing.
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Fig. 3. Two-tier structure of KVI-index.
3.3. Querying model-view sensor data

Much work has been devoted to pattern discovery for time se-
ries data, but in this paper, we focus on the following four types 
of fundamental queries on model-view sensor data.

• Time point query: return the value of one sensor at a specific 
time point.

• Value point query: return the timestamps when the value of 
one sensor is equal to the query value. There may be multiple 
time stamps of which sensor values satisfy the query value.

• Time range query: return the values of one sensor during the 
query time range.

• Value range query: return the time intervals of which the 
sensor values are within the query value range. There may 
be multiple time intervals of which sensor values satisfy the 
query value range.

The generic process to query model-view sensor data queries 
comprises the following two steps:

• Searching of qualified segments: The qualified segments are 
the segments whose time (resp. value) intervals intersect the 
query time (resp. value) range or point. This step should make 
use of an interval index to locate all the qualified modeled 
segments in the segment model store.

• Model gridding: Qualified segments are too abstract and a fi-
nite set of data points are more useful as query results for 
end-users [2]. Therefore, model gridding is another necessary 
process [2,3]. Model gridding applies three operations to each 
qualified segment: (i) It discretizes the time interval of the 
segment at a specific granularity to generate a set of time 
points. (ii) It generates the sensor values at the discrete time 
points based on the model that approximates the segment. 
(iii) It filters out the sensor data that does not satisfy the query 
predicates. The qualified time or value points that result from 
gridding all qualified modeled segments are returned as query 
results.

As shown in Fig. 1(c), segment one S1 is found as one qualified 
segment for time query range [10, 70], model-gridding discretizes 
the time interval of S1 and evaluates the values at each time point. 
Then, the qualified time-value pairs constitute the query results.

4. Key-value interval index

We will first present the design of the two-tier model index on 
key-value stores and then we will discuss the updating algorithm 
of the model index.
4.1. Structure of KVI-index

As each segment of model-view sensor data has a specific time 
and value range, instead of indexing the mathematical functions 
of segments, our idea is to take the time and value intervals as 
keys to index each segment, which allows the index to directly 
serve the queries proposed in Section 3. We propose the key-value 
represented interval index (KVI-index) to index time and value 
intervals of model-view sensor data. For a segment in Fig. 3(c), 
the time and value intervals are respectively indexed by the KVI-
index, as depicted in Figs. 3(a) and (b). Our KVI-index adopts the 
idea from interval tree, since in-memory interval tree’s primary–
secondary structure is convenient for externalization to the key-
value store [26]. Furthermore, the searching and scanning algo-
rithm of the interval tree is suitable for the MapReduce computing 
paradigm.

Our KVI-index is a novel in-memory and key-value compos-
ite index structure. The virtual searching tree (vs-tree) resides in 
memory, while an index-model table in the key-value store is de-
vised to materialize the secondary structure (SS) of each node in 
vs-tree.

4.1.1. In-memory structure
The in-memory virtual searching tree (vs-tree) is a standard bi-

nary search tree shown in Fig. 3(a). Each time (or value) interval is 
registered on only one node of vs-tree: the one with which the in-
terval first overlaps along the searching path from root. This node 
is defined as the registration node τ for this interval. Each node 
of vs-tree has an associated secondary structure (SS), materialized 
in the key-value store, which stores the substantial information of 
the modeled segments registered at this node.

We apply space-partition strategy for vs-tree. The height of the 
vs-tree is denoted by h. We set the value of leftmost leaf node 
as 0. For negative sensor data values, we use simple shifting to 
have the data range start from 0 for convenience. Then, the do-
main of the vs-tree is [0, R] and R = 2(h+1) − 2. The value of root 
node is r = 2h − 1. During the whole life of KVI-index, only the 
root value r is kept, since, due to the lightweight computability 
of the space-partition, the value of each node in the searching 
path from the root to the node that has the queried point or 
interval can be calculated in run time. All the operations on vs-
tree are performed in memory and are thus very efficient. As the 
domains of time and value of the sensor data are different, two 
vs-trees one for times and another for values are kept in mem-
ory simultaneously for answering time and value queries respec-
tively.

4.1.2. Index-model table
Our novel index-model composite storage schema enables one 

table not only to store the modeled segments, but also to materi-
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Algorithm 2: Time (or value) KVI-index updating.
Input: [lv , rv ], [lt , rt ], /* value and time intervals of one modeled segment
Mi , r /* Mi denotes the coefficients of the modeled segment

1 begin
2 /* dynamic domain expansion
3 if (rt > R) then
4 r = 2�log(rt +2)�−1 − 1 /* expand to new root value

5 /* registration node search
6 node = 2�log rt �+1 − 1;
7 h = log(node) − 1;
8 while (h ≥ 0) do
9 if (lt ≤ node and rt ≥ node) then

10 break; /* node is the registration node

11 else
12 if (lt > node) then
13 node = node + 2h ;

14 if (rt < node) then
15 node = node − 2h ;

16 h = h − 1;

17 /* materialized into the index-model table.
18 if the SS of node has been initialized then
19 rowkey = 〈node|lt |rt 〉;

20 else
21 rowkey = 〈node|α〉;

22 insert [lv , rv ], [lt , rt ], Mi into the table.

alize the structural information of the vs-tree, i.e., the SSs for each 
tree node.

The index-model table is shown in Fig. 3(b). Each row corre-
sponds to only one modeled segment of sensor data, e.g., the data 
segment shown in the black dotted rectangle in Fig. 3(c). A row 
key consists of the node value and the interval of an indexed 
modeled segment at that node. The time interval, value interval 
and the model coefficients are all stored in different columns of 
the same row. And the SSs of each node correspond to a con-
secutive range of tuples in the index-model table. For instance, 
the rows corresponding to the SSs of node 1, node 5 and node 
13 in vs-tree are illustrated in Fig. 3(b). Analogously, we have two 
index-model tables that correspond to time and value vs-trees re-
spectively.

4.2. KVI-index updates

The complete modeled segment updating algorithm of KVI-
index is shown in Algorithm 2. It includes two processes:

(1) Registration node searching: locate the node τ at which one 
time (value) interval [lt , rt] should be registered.

(2) Materialization of modeled segments: construct the row-key 
based on the τ and materialize one modeled segment’s in-
formation into the columns of the corresponding row.

4.2.1. Registration node searching (rSearch)
This algorithm first involves a domain-expansion process to dy-

namically adjust the domain of the vs-tree according to the specific 
domain of the sensor data. Then, the registration node can be 
found on the validated vs-tree.

Lemma 1. For a modeled segment Mi with time (value) interval 
[lt, rt] (resp. [lv , rv ]), its registration node lies in a tree rooted at
2�log(rt+2)�−1 − 1.

Proof. The domain of one tree rooted at 2�log(rt+2)�−1 − 1 is 
[0, 2�log(rt+2)� − 2]. As 2�log(rt+2)� − 2 ≥ 2log(rt+2) − 2 = rt , the reg-
istration node of interval [lt, rt] must be in a tree rooted at 
2�log(rt+2)�−1 − 1. �
Fig. 4. Registration node searching of KVI-index.

Lemma 2. For a modeled segment Mi with time (value) interval (lt, rt), 
if the right end-point rt satisfies rt > R, the domain of vs-tree needs to 
expand.

Proof. The current vs-tree’s height is h and lt ≤ r, the interval 
[lt, rt] rides over the root node r. Assume that we do not ex-
pand the domain and hang [lt, rt] on r. When a new model 
M j with a time (or value) interval [l′t , r′

t] (or [l′v , r′
v ]) and l′t > R

comes, the root value has to increase to r′ = 2�log r′
t+2�−1 − 1

(resp. r′ = · · ·) as [l′t , r′
t] (resp. [l′v , r′

v ]) intersects no node of cur-
rent vs-tree. Then between r and r′ , there is one node with value 
2(h+1) − 1. The interval (lt , rt) is stored at node r = 2h − 1 and 
rt > 2(h+1) − 2 ⇒ rt ≥ 2(h+1) − 1, therefore registering the in-
terval [lt, rt] on node r contradicts with the interval registration 
rule. �

Using Lemmas 1 and 2, KVI-index is able to dynamically decide 
when and how to adjust the domain [0, R] of vs-tree. The complete 
rSearch can be illustrated by Fig. 4. When model1 is to be inserted, 
the vs-tree rooted at node7 is still valid. model1 is registered at 
node5. However, when model2 arrives, its right end-point, i.e., 16, 
exceeds the domain [0, 14]. The vs-tree is expanded having 15 as 
new root and the new extended domain is the area enclosed by 
the dotted block in Fig. 4. Then, the sub-sequential model2 and 
model3 can be updated successfully.

The rSearch process can be further optimized via adaptively 
adjusting the starting point based on the interval to index. In 
this way, rSearch does not need to always search from root 
node, thereby shortening the length of searching path. Based on 
Lemma 1, for one interval (lt, rt), we can start to search for reg-
istration node from node r0 = 2�log tr�+1 − 1 rather than root node 
r, which can be referred to Line 7 in Algorithm 2. Also, the nodes 
outside of sub-domain [0, 2�log tr+1�+1 − 2] of vs-tree will not be-
come the registration node, because the interval (tl, tr) does not 
intersect with them. For example, the model4 in Fig. 4. The adap-
tive searching finds that the subtree rooted at node 7 is the min-
imum one covering model4’s interval [9, 14]. Therefore, node 7 is 
the starting point for registration node searching and the length of 
searching path is only 1.

4.2.2. Materialization of modeled segment
When materializing model Mi into the SS of a node τ , the row-

key may be chosen in two ways:

• Upon initialization of the SS of node τ : when no modeled seg-
ment has been stored at τ ’s SS, the row key is chosen as 〈τ , α〉
for model Mi . Here, α is a postfix of row key to indicate that 
this row is the starting position of τ ’s SS in the table.

• Upon updating the SS of node τ : when the SS of τ has already 
been initialized, the time interval [lt , rt] (resp. [lv , rv ] for value 
interval) to be indexed will be incorporated into the row key, 
i.e., 〈τ , lt , rt〉 (resp. 〈τ , lv , rv〉 in the index-model table for val-
ues). In this way, different modeled segments stored in the 
same SS of a node do not overwrite each other.



58 T. Guo et al. / Big Data Research 1 (2014) 52–65
Fig. 5. Modeled segment materialization of KVI-index.

The selection of specific α should make sure that the binary 
representation of 〈τ , α〉 is in front of any other 〈τ , lt , rt〉. This 
design is useful for query processing. For instance, if the query pro-
cessor requires to access all the modeled segments stored at regis-
tration node 5, then we know that all the corresponding modeled 
segments lie in the rows within the row-key range [〈5, α〉, 〈6, α〉). 
For example, take the model1 and model2 in Fig. 5. First, the KVI-
index checks whether the starting modeled segments of node5 and 
node15, namely rows with key 〈5, α〉 and 〈15, α〉, exist. Then, the 
row key 〈5, 4, 6〉 is constructed for model1 as the SS of node5 has 
been initialized, whilst KVI-index constructs the row key 〈15, α〉
for model2.

4.2.3. Complexity analysis
In this section, we analyze the computational and communi-

cation complexities of updating operation of KVI-index. The com-
plexity analysis of KVI-index includes in-memory and key-value 
part.

• In-memory
The rSearch on vs-tree can run within O (log(R)) time. The 
space expansion costs O (1) time. Only the root value r of vs-
tree is kept in memory. The values of other nodes on vs-tree
can be calculated due to the computability of vs-tree’s space-
partition. Therefore, the space complexity of vs-tree is O (1).

• In key-value store
The update operation on vs-tree does not generate any net-
work I/O cost. For an n-th order polynomial model of one 
sensor data segment, (2 + n) put operations are conducted to 
materialize one model. Therefore, the time complexity is O (1)

in terms of network I/O, as n is constant. Moreover, one seg-
ment model’s time (or value) interval and coefficients are only 
materialized once into the index-model table, thus the space 
cost is O (N) for time (or value) index.

5. Query processing via KVI-index and MapReduce

For querying model-view sensor data, the searching process of 
qualified modeled segments (defined in Section 3) in KVI-index in-
cludes two steps:

• Intersection and point search: The intersection search on vs-tree
is used for range queries, while point search is employed for 
point queries. They are responsible for collecting the nodes 
that accommodate qualified modeled segments in their sec-
ondary structures SSs.

• Modeled-segment filtering: Due to the rule for interval registra-
tion at the nodes of the vs-tree, the SS of a node may contain 
some intervals irrelevant to queried range or point. In KVI-
index, the SSs of all nodes found by the search operation are 
accessed to filter out unqualified segments.
Algorithm 3: iSearch+ of vs-tree.
Input: time query range [lt , rt ], root value r
Output: node set S0 and D

1 begin
2 /* construct S0
3 node = r; h = log(r) − 1;
4 while (h ≥ 0) do
5 if (lt ≤ node and rt ≥ node) then
6 break; /* node is the registration node

7 else
8 S0 = S0 ∪ node
9 if (lt > node) then

10 node = node + 2h ;

11 if (rt < node) then
12 node = node − 2h ;

13 h = h − 1;

14 /* construct D.
15 ls = 2�log(lt )� , rs = R − 2�log(R−rt )� , D = [ls, rs]

After the above two steps, model gridding component fetches 
the coefficients of each qualified modeled segment and performs 
gridding. Next, we first describe an enhanced intersection search 
algorithm on vs-tree that benefits KVI–Scan–MapReduce query pro-
cessing, introduced later in this section. We then present the point 
search algorithm on vs-tree. Subsequently, we introduce our novel 
hybrid KVI–Scan–MapReduce query processing. Last, we theoreti-
cally analyze the enhanced intersection search algorithm of KVI-
index.

5.1. Intersection and point search

5.1.1. Enhanced interval intersection search
Algorithm 3 presents the iSearch+ . Given a time (resp. value) 

range query [lt, rt], iSearch+ first calls the rSearch to find the reg-
istration node τ of [lt , rt]. The nodes on the searching path from 
the root node to the one preceding τ form a node set denoted 
by S0. The iSearch+ stops at the node, which is closest to the left-
end point lt . All the nodes along the left-descending path form a 
node set, denoted by Sl , while the node with the minimum value 
in this path is denoted by ls . Analogously, Sr is the node set from 
the right-descending path and rs is the node with the maximum 
value in this path. Any node outside the range [ls, rs] and the set 
S0 does not have any qualified modeled segments.

The traditional intersection search would return the node set 
C = S0 ∪ Sl ∪ Sr ∪ [lt, rt] for further modeled-segment filtering 
and gridding. Our iSearch+ outputs the discrete node set S0 and 
a consecutive range of nodes D = [ls, rs]. For example, take the 
range query in Fig. 6(a). node7 is the registration node of query 
range [6, 10]. The traditional iSearch returns the discrete node sets 
shown in the solid boxes of Fig. 6(a), while our iSearch+ returns 
a range of nodes [3, 11] and S0 = {15}. We will see how the 
output of iSearch+ benefits the hybrid query processing later in 
Section 5.2.

5.1.2. Point search
We denote the point search by sSearch as it functions as the 

stabbing search of interval tree. The sSearch is a binary search 
that records the nodes along the descending path. We present the 
sSearch in Fig. 6(a). For example, when querying the sensor value 
of time point 24, the node set S0 = {15, 7, 11, 9, 10} is returned 
by sSearch. Since there is no split searching, as in iSearch+ , only 
one node set is produced here. We denote this node set by S0
as well, so as to facilitate the description of the hybrid KVI–Scan–
MapReduce query processing that follows next.
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Fig. 6. Workflow of KVI–Scan–MapReduce approach. (a) iSearch+ and sSearch. (b) SS location distribution for the range query. (c) Hybrid processing.
5.2. KVI–Scan–MapReduce query processing

The conventional clustered index for one-dimensional data can 
exactly locate a consecutive range of qualified data. Then, the 
query processor just needs to do range scan on these qualified 
data. However, as for querying model-view sensor data, the chal-
lenge is how to tackle the large amount of segment models from 
the SSs distributed across the index-model table. We first ana-
lyze the location distribution of the SSs of the nodes found by 
iSearch+ and sSearch in the index-model table. The characteristics 
of this distribution inspired us to propose the hybrid KVI–Scan–
MapReduce query processing approach.

5.2.1. SS location distribution
There are two cases for the SS distribution in the index-model 

table, described below.

• S0: The SSs of S0 are non-consecutive and sparsely distributed 
in the index-model table. The node value is the primary part 
of the row-key; thus, the distance between SSs of S0 depends 
on the numerical difference of node values. As S0 includes 
the nodes from root node to the one preceding the τ , the 
intra-distances between any consecutive nodes in S0 are 2h−i , 
where i = 0, . . . , h − dτ is the position of the node in the 
descending search path S0 and dτ is the depth of τ . Obvi-
ously, the intra-distances in S0 are greater than those for other 
nodes below τ in the search path.

• D: The SSs of [ls, rs] are clustered around the ones of [lt , rt] in 
the index-model table. The SSs of [lt , rt] are all adjacent in the 
index-model table. The SSs of [ls, rs] are bounded by those of 
the sub-tree rooted at τ and the nodes in [ls, rs] are a superset 
of the nodes in [lt , rt]. The deeper the registration node τ is 
located, the tighter the set of the SSs of [ls, rs] over those of 
[lt , rt].

For example, take the time (or value) query range [6, 10] in 
Fig. 6(a). The registration node is node7. Then, S0 = {15} and 
D = [3, 11]. The sub-tree rooted at node7 covers the node range 
E = [0, 14] and D ⊂ E . From Fig. 6(b), the SSs of D are clustered 
around those of [6, 10] and bounded by the SSs of E . However, 
node15’s SS is located far away from those of [3, 11].

If SSs of S0 and D are processed via straightforward random 
access and range scan provided by key-value stores, the entire 
modeled-segment filtering and gridding processes are conducted 
locally at the application side. For a table of multiple or hundreds 
of GBs, the communication and computation costs are prohibitively 
high for the application side even for low-selective queries.

The modeled segment filtering–gridding processing matches 
MapReduce’s filtering-aggregation paradigm. Considering the re-
search results from [31–33], for CPU non-intensive workload, I/O 
cost, network latency and starting-up overhead of mappers are 
dominant in the execution time of MapReduce programs. If the 
SSs of S0 and D are all processed by MapReduce, a lot of time 
is wasted for mappers that process irrelevant SSs in the index-
model table. This is because MapReduce will access the continuous 
regions of the table including the SSs of nodes between the S0
and D due to the sequential data feeding mechanism in the map-
ping phase. For example, in Fig. 6(b), the SSs of D = [3, 11] and 
S0 = {15} are distant in the table. Hence, MapReduce will launch 
many unnecessary mappers for the irrelevant SSs of nodes between 
11 and 15, in order to process the SSs of S0 and D.

5.2.2. Hybrid model filtering and gridding
As discussed above, simply using range scan or MapReduce 

to process SSs are both problematic. Our idea is to design a hy-
brid KVI–Scan–MapReduce paradigm that combines range scan and 
MapReduce for processing SSs, as follows:

• (1) S0: the height of vs-tree is bounded by log(R), and thus 
the amount of computation on S0 is limited. As the SSs of S0
are sparsely distributed in the index-model table and each SS
of S0 can be considered to be a small range of clustered index, 
the random-access- and range-scan-based model filtering and 
gridding is suitable.

• (2) D = [ls, rs]: the successive range [ls, rs] delimits a tight 
boundary of the sub-index-model table over the relevant SSs 
that are suitable for processing with MapReduce.

This hybrid paradigm eliminates the Map-phase processing of 
SSs of irrelevant nodes between S0 and D and the nodes between 
the elements of S0. Moreover, it is non-intrusive for both the key-
value store and MapReduce. Regarding the time (or value) point 
query, it only produces the node set S0 without D, hence, only 
range-scan-based model filtering and gridding is needed.

Suppose that the number of reducers is P and each reducer is 
denoted by 0, . . . , P − 1. For range queries, the partition function 
f is used to assign the qualified modeled segments into different 
reducers. It is designed on the basis of query time (resp. value) 
range [lt , rt] (resp. [lv , rv ]) and the time (or value) interval [li, ri]
of each modeled segment i. The idea is that each of the reducers 
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is in charge of one even sub-range rt−lt
P . Such a partition function 

f is given in Eq. (1).

f (ri) =
{

lt ≤ ri ≤ rt
⌊

(ri−lt )∗P
rt−lt

⌋
ri ≥ rt P − 1

(1)

The functionalities of mappers and reducers are depicted in de-
tail below.

• Mapper: Each mapper gets the time (resp. value) interval 
[li, ri] of one modeled segment i to check whether it inter-
sects with the query time (resp. value) range. For the qualified 
modeled segments, the intermediate key is derived by the par-
tition function f (ri). The model coefficients 〈p1

i , . . . , p
n
i 〉 are 

the value part of the intermediate key-value pair.
• Reducer: One reducer receives a list of qualified modeled 

segments 〈p1
0, . . . , p

n
0〉, 〈p1

1, . . . , p
n
1〉, . . . . For each modeled seg-

ment 〈p1
i , . . . , p

n
i 〉, the reducer invokes a model-based gridding 

function to compute discrete values as query results.

Regarding the scan-based model filtering and gridding, as SSs 
in S0 are located in different regions of the index-model table, the 
query processor makes use of thread pool to process each SS of 
S0 in parallel. Fig. 6 shows the workflow of the hybrid KVI–Scan–
MapReduce approach. For a time (or value) range query [6, 10], 
iSearch+ constructs the node set S0 = {15} and D = [3, 11]. Then, 
the SSs of the nodes in D are sent to MapReduce. The SS of node15, 
enclosed by the bottom dot-dashed block, is processed via range 
scan.

5.3. Theoretical analysis

One point to carefully consider is that iSearch+ may generate 
redundant nodes, because the iSearch+ aims to find a tight and 
consecutive range of SSs for MapReduce. For instance, in Fig. 6(a), 
the SS of node4 is not accessed by the iSearch+ , but is in the sub-
table processed by MapReduce.

Theorem 1. For a range query [lt, rt], the redundant nodes in [ls, rs]
returned by iSearch+ are bounded.

Proof. Assume h to be the height of the registration node τ . Con-
sider the left-descending path from τ to the node l0 closest to lt . 
Let d be the depth from which the descending path turns right, 
namely the value w < lt of the current node. Then, based on the 
iSearch+ algorithm, w is the left boundary of accessed node range 
and w = τ − ∑d

i=1 2h−i .
For a certain value of d, the worst case happens when the de-

scending process continues to go right until reaching l0, as the 
nodes between w and l0 are all redundant ones. The number of 
nodes returned by iSearch+ under this case is given by:

U = τ −
(
τ −

d∑
i=1

2h−i

)
(2)

The nodes between τ and w are all included into the output 
range D of iSearch+ . The number of nodes returned by the con-
ventional iSearch is given by:

V = h − d +
{
τ −

(
τ −

d∑
i=1

2h−i +
h∑

i=d+1

2h−i

)}
(3)

Therefore, the number of redundant nodes returned by iSearch+
is given by:
f = U − V = d +
h∑

i=d+1

2h−i − h

= d + 2h−d − h − 1 (4)

Eq. (4) is a function of d and is monotonous decreasing in d’s 
domain [1, h]. Consequently, when d = 1, the function f reaches 
the maximum value, namely, the number of redundant nodes from 
iSearch+ attains the maximum value fmax that is given by:

fmax = 2h−1 − h. (5)

As the total number η of nodes of the sub-tree of the left child 
of τ is 2h − 1, hence

f ≤ 1

2
η − log(η + 1) + 1

2
. (6)

In summary, the total number of redundant nodes in the range 
[ls, rs] is bounded. �

The worst case happens when the endpoints lt and rt are 
the preceding and succeeding nodes of τ , namely lt = τ − 1 and 
rt = τ + 1. However, for most of the cases, the redundant nodes 
returned from iSearch+ are very limited.

6. Experimental evaluation

First, we compare model-view sensor data query processing 
with conventional one over raw sensor data. Then, we show 
that our KVI–Scan–MapReduce (KSM) approach outperforms other 
model-view sensor data querying approaches. Finally, we experi-
mentally explore the factors that affect the performance of KVI–
Scan–MapReduce.

6.1. Setup

We employ accelerometer data from mobile phones as sensor 
data set. The size of raw sensor data is 22 GB including 200 million
data points. After modeling, the modeled segments of the sensor 
data take 12 GB, while there are around 25 million modeled seg-
ments.

We developed our system using the versions of HBase and 
Hadoop in Cloudera CDH4.3.0. The experiments are performed on 
our own cluster that consists of 1 master node and 8 slaves. 
The master node has 64 GB RAM, 3 TB disk space (4 × 1 TB
disks in RAID5) and 12 cores, each of which is 2.30 GHz (Intel 
Xeon E5-2630). Each slave node has 6 cores 2.30 GHz (Intel Xeon 
E5-2630), 32 GB RAM and 6 TB disk space (3 × 2 TB disks). Nodes 
are connected via 1 GB Ethernet. In the experimental results, we 
refer to query selectivity as the ratio of the number of qualified 
modeled segments over that of total modeled segments.

The data set contains discrete accelerometer data from mobile 
phones and is a sequence of tuples each of which has one times-
tamp and three sensor values representing the coordinates. The 
size of the raw sensor data set is 22 GB including 200 million
data points. We simulate the sensor data emission, in order to 
segment and update sensor data into the KVM-index in an online 
manner. We implement an online sensor data segmentation com-
ponent [5] applying the PCA (piecewise constant approximation) 
[1], which approximates one segment with a constant value (e.g., 
the mean value of the segment). Since how to segment and model 
sensor data is not the focus of this paper, other sensor time series 
segmentation approaches could also have been applied here. Pro-
vided that the segments are characterized by the time and value 
intervals, our KVM-index and related query-processing techniques 
are able to manage them efficiently in the cloud. Finally, there 
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Fig. 7. Sensor data updating performance.

are around 25 million sensor data segments (nearly 15 GB) up-
loaded into the key-value store. Regarding the segment gridding, 
we choose 1 second as the time granularity which is application-
specific.

6.2. Index updating

Fig. 7 shows the average updating time of each segment and the 
average insertion time of each raw sensor data point during the 
data uploading phase. Both time and value index keep relatively 
stable updating efficiency. The updating of the value KVI-index is 
a little slower than the time KVI-index. As discussed before, since 
the domain of the value vs-tree is smaller than that of the time 
vs-tree, the value index performs more SS updating operations (dis-
cussed in Section 4.2) than the time index and therefore incurs 
more network I/O cost. The raw sensor data insertion is the fastest 
but the amount of data to update is much larger than model-
view approach. This is because model-view sensor data achieves 
data compression over the raw sensor data thereby decreasing the 
amount of data to upload.

6.3. Model-view sensor data vs. raw sensor data

We create two tables, which take the time-stamp and sensor 
value as the row-keys respectively, such that the query range or 
point can be used as keys to locate the qualified data points. Then, 
the query processor invokes the MapReduce to access the large 
size of data points for getting query results.

Figs. 8(a), (b) and (c) present the query response times for time 
range, value range and point queries respectively. As shown in 
Figs. 8(a) and (b), the model-view approach takes around 30% less 
time than the raw sensor data method for both time and value 
range queries. Although the raw sensor data based methods apply 
MapReduce to directly access the qualified tuples via the row-key 
based range scan, the amount of raw sensor data to process is 
much larger than that of the model-view approach. In Fig. 8(c), 
the processing time of the raw data based method is 2× less than 
that of the model-view one in time point queries, because the raw 
data method can use the query time point as index key to directly 
access the relevant data points, while our KSM requires to perform 
model filtering and gridding. For value point queries, the model-
Fig. 8. Query performance comparison of raw data and model-view approaches on range and point queries.
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Fig. 9. Query performance comparison of different model-view approaches. (a)–(c): time range queries, (d)–(g): value range queries.
view approach has nearly 3× less time than the raw data method. 
As, normally, there is a large size of data points with the queried 
value, MapReduce is used to access this qualified sensor data set. 
In the model-view approach, the point query processing only uses 
random access and range scan to get qualified modeled segments 
for gridding locally, and thus it saves the time on starting MapRe-
duce to access data.

6.4. Comparison of model-view approaches

There are four baseline approaches for querying model-view 
sensor data, namely:

MapReduce (MR). This approach utilizes MapReduce without 
support from any index. It always works on the whole index-model 
table to filter the qualified modeled segments in the mapping 
phase and perform the model gridding in the reduce phase.

Interval tree (IT). We implemented the traditional query process-
ing operations of the interval tree [23,26] by adding another table 
to store the SS of each node sorted by the right end-point of inter-
vals. Each index, time or value, has two associated tables. During 
the intersection or point search on vs-tree, the query processor 
decides which table to access based on the relation between the 
query range (or point) and the node value. In this way, the query 
processor can stop scanning once it encounters one unqualified 
modeled segment, due to the monotonicity of end-points of mod-
eled segments. IT makes use of random access and range scan to 
sequentially filter the qualified modeled segments and make grid-
ding locally.

MapReduce+KVI (MRK). The idea of MRK is to leverage KVI-index 
to avoid having MapReduce to process the whole table. In MRK, 
MapReduce is designed to work over one continuous sub-index-
model table including all the SSs of the accessed nodes in search 
operations. For instance, in Fig. 6(a), for a time (or value) range 
query [6, 10], MRK invokes MapReduce to work on the sub-table 
within the row-key range [〈3, α〉, 〈16, α〉]. The same idea applies 
for point queries. As compared to our hybrid KSM approach, MRK
is a lightweight indexing-MapReduce plan, as it processes many ir-
relevant SSs of nodes between S0 and D.

Filter of key-value store (FKV). Some key-value stores such as 
HBase provide a filter functionality to support predicate-based row 
selection [20]. The filter transmits the filtering predicate to each 
region server and then all servers scan their local data in paral-
lel. Afterwards, they return the qualified tuples. Our filter-based 
query processing also works on the index-model table, as the fil-
tering predicates can be directly applied to the columns. The query 
processor waits until all region servers finish scans and then it re-
trieves each returned qualified modeled segment to conduct grid-
ding locally.

6.4.1. Range query
Figs. 9(a), (b) and (c) present the performance of time range 

queries. As depicted in Fig. 9(a), KSM outperforms MR up to 3×
for the low-selective time range queries. As the query selectivity 
increases, the amount of SSs for scan based processing decreases 
and that for MapReduce approaches the entire table. Therefore, the 
response time increases and approaches that of MR. The response 
time of MR increases little. As increasing query selectivity leads to 
ascending gridding workload in reduce phase, these results show 
that the overhead from model gridding is not dominant in MR. 
The response time of MRK is more than that of KSM, but less than 
that of MR. As MRK utilizes the KVI-index to localize a consecutive 
sub-index-model table covering all the SSs of nodes found by in-
tersection search, it processes fewer modeled segments than MR’s 
full table scanning. Yet, as compared to KSM, MRK processes more 
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redundant modeled segments. Moreover, as the sub-table in MRK
covers a large range, the processing time of MRK increases little 
for low-selective queries.

Fig. 9(b) exhibits the performance of IT and FKV approaches. As 
FKV needs to wait for each region server of HBase to finish the 
local data scanning, its total response time is a little longer than 
that of IT approach. They both consume much more time than all 
MR, MRK and KSM, as they apply sequential accessing of modeled 
segments.

We also analyze the number of modeled segments accessed by 
each approach in Fig. 9(c). These experiments show how differ-
ent access methods of modeled segments affect the performance. 
MR works on the entire table, thus, the number of accessed seg-
ments is the same. From the point of view of the application, 
only qualified modeled segments are returned for gridding, thus 
FKV processes no redundant modeled segments and consumes the 
least amount of modeled segments. Since IT scans the SS of one 
node until encountering an unqualified model, the total number 
of accessed segments is a little larger than that of FKV. Our KSM
processes larger number of segments than both IT and FKV due 
to the continuous and redundant range of SSs found by iSearch+ . 
However, the results also verify our theoretical analysis that the 
amount of redundant modeled segments is bounded. MRK accesses 
more segments than IT, FKV and KSM, as it adds the SSs between 
S0 and D to form a continuous sub-table for MapReduce. Refer-
ring to Fig. 9(a) and Fig. 9(b), although KSM approach consumes 
more segments than IT and FKV, its hybrid paradigm is the most 
efficient.

Figs. 9(d), (e) and (f) present the value range query perfor-
mance. The different query processing approaches exhibit similar 
patterns as for the time range queries, so we skip the detailed 
analysis.

6.4.2. Point query
The time and value point query processing performance are 

shown in Fig. 10. IT wins both for time and value point queries. 
The response time of KSM is a little greater than IT, but out-
performs the other approaches, because IT is able to access all 
qualified modeled segments in one SS. However, the KSM scans 
the whole SS entries of a node to find the qualified ones. Because 
of the invocation of MapReduce and redundant modeled segments 
in the sub-table, MRK takes more time than both IT and KSM. But, 
as MRK does not work on the entire table as MR does, it takes 
about 2× less time than MR. FKV consumes the most time as it 
needs to wait for server-side full table scan before gridding op-
erations. Since the size of the domain of the sensor data values 
is smaller than that of the time domain, nodes in value vs-tree
accommodate more modeled segments than time vs-tree nodes. 
Thus, the response times of value point queries of IT, FKV and KSM
approaches are all more than those of time point queries. For MR
and MRK, the processing time differences between time and value 
queries are insignificant, as the time spent on model filtering and 
gridding is not dominant.

6.5. Insights into KVI–Scan–MapReduce

Section 6.5.1 discusses effect of the searching depth on the 
performances of in-memory iSearch+ , sequential scan based and 
MapReduce based model filtering and gridding. At last, we will 
see the workload constitutions within the KVI–Scan–MapReduce 
paradigm in Section 6.5.2.

6.5.1. Searching depth
In Figs. 11, 12 and 13, we present the results from time and 

value range queries of 10% selectivity and 10% to 50% iSearch+
depth. The percentage of iSearch+ depth here means the ratio of 
Fig. 10. Query performance of point queries.

Fig. 11. Effect on iSearch+ .

Fig. 12. Effect on sequential scan.

Fig. 13. Effect on MapReduce.
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Fig. 14. Query processing time constitution of time range queries.

Fig. 15. Query processing time constitution of value range queries.

registration node searching depth over the height of vs-tree in 
iSearch+ . As iSearch+ depth increases, the number of SSs for range 
scan based model processing increases. Therefore, the time con-
sumed by iSearch+ and range scan based model processing both 
increases, shown in Figs. 11 and 12. As for the MapReduce part, 
the deeper the level of registration node τ is, the smaller the space 
covered by the sub-tree rooted at τ is. Then the range of SSs in D
is tighter over the range of SSs of query range and results in less 
redundant SSs for MapReduce, which is theoretically analyzed in 
Section 5.3. From Fig. 13, we can see a salient decreasing trend of 
MapReduce processing time.

6.5.2. Workload constitution
This experiment aims to reveal how much time the KVI–Scan–

MapReduce spends on model gridding, which is a difference of 
model-view approach from raw sensor data approach. Figs. 14
and 15 show the results from time and value range queries of se-
lectivity from 10% to 50%.

From Figs. 14 and 15, the time on model gridding accounts 
for 1/3–1/2 of the total query processing time. As the majority 
of gridding work is done in the reduce phase and the amount 
of qualified segment models sent to reducers depends on the 
query selectivity, the time spent on model gridding increases as 
the query selectivity increases. If the model gridding can adapt to 
users’ different requirements for query results, the performance of 
the KVI–Scan–MapReduce scheme can be further optimized.

7. Conclusion

To the best of our knowledge, this is the first work to ex-
plore the key-value representation of an interval index for model-
view based sensor data management. Different from conventional 
external-memory index structure with complex node merging and 
split mechanisms, our KVI-index, resident partially in memory and 
partially materialized in the key-value store, is easy to maintain 
in the dynamic sensor data generation environment. Moreover, we 
proposed a hybrid query processing approach, namely KVI–Scan–
MapReduce, integrating the KVI-index, range scan and MapReduce 
for model-view sensor data in key-value stores. Extensive experi-
ments in a real testbed showed that our approach outperforms in 
terms of query response time and index updating efficiency not 
only query processing methods based on raw sensor data, but also 
all other approaches considered based on model-view sensor data 
for time/value range and point queries. As a future work, we plan 
to explore how to process time and value composite queries and 
join queries based on the KVI-index.
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