
Big Data Research 1 (2014) 52–65
Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Efficient Indexing and Query Processing of Model-View Sensor Data in

the Cloud ✩

Tian Guo a,∗, Thanasis G. Papaioannou b, Karl Aberer a

a EPFL, Switzerland
b Center for Research & Technology Hellas (CERTH), Greece

a r t i c l e i n f o a b s t r a c t

Article history:
Available online 11 July 2014

Keywords:
Big data
Index
Key-value stores
MapReduce
Approximation
Query optimization

As the number of sensors that pervade our lives increases (e.g., environmental sensors, phone sensors,
etc.), the efficient management of massive amount of sensor data is becoming increasingly important.
The infinite nature of sensor data poses a serious challenge for query processing even in a cloud
infrastructure. Traditional raw sensor data management systems based on relational databases lack
scalability to accommodate large-scale sensor data efficiently. Thus, distributed key-value stores in the
cloud are becoming a prime tool to manage sensor data. Model-view sensor data management, which
stores the sensor data in the form of modeled segments, brings the additional advantages of data
compression and value interpolation. However, currently there are no techniques for indexing and/or
query optimization of the model-view sensor data in the cloud; full table scan is needed for query
processing in the worst case. In this paper, we propose an innovative index for modeled segments
in key-value stores, namely KVI-index. KVI-index consists of two interval indices on the time and
sensor value dimensions respectively, each of which has an in-memory search tree and a secondary list
materialized in the key-value store. Then, we introduce a KVI-index–Scan–MapReduce hybrid approach
to perform efficient query processing upon modeled data streams. As proved by a series of experiments
at a private cloud infrastructure, our approach outperforms in query-response time and index-updating
efficiency both Hadoop-based parallel processing of the raw sensor data and multiple alternative indexing
approaches of model-view data.

© 2014 Elsevier Inc. All rights reserved.
1. Introduction

Recent advances in sensor technology have enabled the vast
deployment of sensors embedded in user devices that monitor var-
ious phenomena for different applications of interest, e.g., air/elec-
trosmog pollution, radiation, early earthquake detection, soil mois-
ture, permafrost melting, etc. The data streams generated by a
large number of sensors are represented as time series in which
each data point is associated with a time-stamp and a sensor
value. These raw discrete observations are taken as the first citizen
in traditional relational sensor data management systems, which
leads to a number of problems. On one hand, in order to perform
analysis of the raw sensor data, users usually adopt other third-
party modeling tools (e.g., Matlab, R and Mathematica), which in-
volve of tedious and time-consuming data extract, transform and

✩ This article belongs to Scalable Computing for Big Data.

* Corresponding author.
E-mail addresses: tian.guo@epfl.ch (T. Guo), thanasis.papaioannou@iti.gr

(T.G. Papaioannou), karl.aberer@epfl.ch (K. Aberer).
http://dx.doi.org/10.1016/j.bdr.2014.07.005
2214-5796/© 2014 Elsevier Inc. All rights reserved.
load (ETL) processes [1]. Moreover, such data analysis tools are
usually used for static data set and therefore cannot be applied
for online processing of sensor data streams. On the other hand,
unbounded sensor data streams often have missing values and un-
known errors, which also poses great challenges for traditional raw
sensor data management.

To this end, various model-based sensor data management
techniques [1–4] have been proposed. Model-view sensor data
management leverage time series approximation and modeling
techniques to segment the continuous sensor time series into dis-
joint intervals such that each interval can be approximated by a
kind of model, such as polynomial, linear or SVD. These models,
for all the intervals (or segment models), exploit the inherent cor-
relations (e.g. with time or among data streams) in the segments
of sensor time series and approximate each segment by a certain
mathematical function within a certain error bound [5–9]. Then,
one can only materialize the models of the segments instead of
the raw data and harvest a number of benefit:

First, model-view sensor data achieves compression over raw
sensor data and therefore requires less storage overhead [10–12].
Second, due to the sampling frequency or sensor malfunction,

http://dx.doi.org/10.1016/j.bdr.2014.07.005
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
mailto:tian.guo@epfl.ch
mailto:thanasis.papaioannou@iti.gr
mailto:karl.aberer@epfl.ch
http://dx.doi.org/10.1016/j.bdr.2014.07.005
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2014.07.005&domain=pdf

T. Guo et al. / Big Data Research 1 (2014) 52–65 53
there may be some missing values at some time points. If one
query involves such time points, then the relevant segment model
can be used to estimate the values [10–12]. In some degree,
model-view sensor data increases the data availability for query
processing. Third, there usually exist outliers in raw sensor data,
which has negative effect on the query results. Model-view sen-
sor data removes the outliers in each interval via the segment
model and historical data on upper and lower data bounds, thereby
diminishing the effect of outliers in query results. Fourth, regard-
ing the similarity search or pattern discovery in sensor time-
series mining, the segment-based time series representation is a
powerful tool for dimension reduction and search space pruning
[9,13,14].

However, proposed model-based sensor data management ap-
proaches mostly employ the relational data model and process
queries based on materialized views [2,3] on top of the modeled
segments of sensor data. Nowadays, the amount of data produced
by sensors is exponentially increasing. Moreover, the real-time pro-
duction of sensor data requires the data management system to be
able to handle high-concurrent model-view sensor data from mas-
sive sensors and this is difficult for traditional relational database
to realize. To this end, recent prevalent cloud store and computing
techniques provide a promising way to manage model-view sensor
data [15–19].

The main focus of this paper is on how to manage the seg-
ment models of sensor data, namely model-view sensor data with
the newly emerging cloud stores and computing techniques rather
than how to explore more advanced sensor data segmentation al-
gorithms.

In our approach, we exploit key-value stores and the MapRe-
duce parallel computing paradigm [18,20], two significant aspects
of cloud computing, to realize indexing and querying model-view
sensor data in the cloud. We characterize the modeled segments
of sensor time series by the time and the value intervals of each
segment [16,17]. Consequently, in order to process range or point
queries on model-view sensor data, our index in the cloud store
should excel in processing interval data. Current key-value built-in
indices do not support interval-related operations. The interval in-
dex for model-view sensor data should not only work for static
data, but it should be dynamically updated based on the new
arriving segments of sensor data. If traditional batch-updating or
periodical re-building strategy was applied here [21,22], then the
high speed of sensor data yielding might lead to a large size of
the new unindexed data, even in short time periods and to signif-
icant index updating delay as well. As a result, the performance
of queries involving both indexed and unindexed data would de-
generate greatly. Therefore, the interval index in the cloud store
should be able to insert an individual new modeled segment in an
online manner.

The contributions of this paper are summarized as follows:

• Innovative interval index: We propose an innovative interval
index for model-view sensor data management in key-value
stores, referred to as KVI-index. KVI-index is a two-tier struc-
ture consisting of one lightweight and memory-resident binary
search tree and one index-model table materialized in the key-
value store. This composite index structure can dynamically
accommodate new sensor data segments very efficiently.

• Hybrid model-view query processing: After exploring the
search operations in the in-memory structure of the KVI-index
for range and point queries, we introduce a hybrid query pro-
cessing approach that integrates range scan and MapReduce to
process the segments in parallel.

• Intersection search: We introduce an enhanced intersection
search algorithm (iSearch+) that produces consecutive results
suitable for MapReduce processing. We theoretically analyze
the efficiency of (iSearch+) and find the bound on the redun-
dant index nodes that it returns.

• Experimental evaluation: Our framework has been fully imple-
mented, including the online sensor data segmentation, mod-
eling, KVI-index and the hybrid query processing, and it has
been thoroughly evaluated against a significant number of al-
ternative approaches. As experimentally shown based on real
sensor data, our approach significantly outperforms in terms
of query response time and index updating efficiency all other
ones for answering time/value point and range queries.

The remainder of this paper is organized as follows: Section 2
summarizes some related work on model-view sensor data man-
agement, interval index and index-based MapReduce optimization
approaches. In Section 3, we provide a brief description of sensor-
data segmentation, querying model-view sensor data and the ne-
cessity to develop interval index for managing model-view sensor
data in key-value stores. The detailed designs of our innovative
KVI-index and the hybrid query processing approach are discussed
in Sections 4 and 5 respectively. Then, in Section 6, we present
thorough experimental results to evaluate our approach with tradi-
tional query processing ones on both raw sensor data and modeled
data segments. Finally, in Section 7, we conclude our work.

2. Related work

Time series segmentation is an important research problem
in the areas of data approximation, data indexing and data min-
ing. A lot of work has been devoted to exploit different types
of models to approximate the segments of time series, such that
the pruning and refinement framework can be applied to this
segment-represented time series for the pattern matching or sim-
ilarity search [9,13]. Some other researchers proposed techniques
for managing the segment models that approximate sensor time
series in relational databases. MauveDB designed a model-based
view to abstract underlying raw sensor data; it then used models
to project the raw sensor readings onto grids for query process-
ing [3]. As opposed to MauveDB, FunctionDB only materializes
segment models of raw sensor data [2]. Symbolic operators are
designed to process queries using models rather than raw sen-
sor data. However, both approaches in [3] and [2] do not take
into account applying indices to improve query processing. More-
over, their proposed approach focuses on managing static dataset
of time series rather than dynamic time series.

Also, each segment of time series could be characterized by its
time and value intervals. Then, one should consider employing an
interval index for processing queries over model-view sensor data.
Two common used indices for interval data are segment tree [21]
and interval tree [23]. As for segment tree, it is essentially a static
data structure that needs an initialization process to construct el-
ementary intervals based on the initial dataset [21]. Once a new
interval outside of the domain of current segment tree arrives, the
elementary intervals should be rebuilt, which is not suitable for
the real time nature of sensor data streams [21]. Regarding the in-
terval tree, individual interval is not divided and replicated during
the insertion phase as in the segment tree and therefore the stor-
age overhead is linear to the number of intervals to index [23–25].
However, it is a memory-oriented structure.

Some efforts [22,23,26,27] have also been done to external-
ize these in-memory index data structures. The relational interval
tree (RI-tree) [26] integrates interval tree into relational tables and
transforms interval queries into SQL queries on tables. This method
makes efficient use of built-in B+-tree indices of RDBMS. Neverthe-
less, in this paper, we aim to design an interval index structure for
model-view sensor data that is compatible with key-value stores
and distributed query processing in the cloud.

54 T. Guo et al. / Big Data Research 1 (2014) 52–65
In [28], they proposed an approach that enables key-value
stores to support query processing of multi-dimensional data via
integrating space filing order into row-keys, which is not fit for in-
terval data. An index for multi-dimensional point data is proposed
in [29] based on P2P overlay network, which is a different underly-
ing architecture from our adopted key-value store. The latest effort
to develop interval indices in the cloud utilizes MapReduce to con-
struct a segment tree materialized in the key-value store [22]. This
approach outperforms the interval query processing provided by
HBase (http://hbase.apache.org/) and Hive (http://hive.apache.org/).
However, the segment tree utilized in [22] is essentially a static
index, as is also the case with [21]. Therefore, an index re-
building phase needs to be periodically executed to include new
data.

MapReduce parallel computing is an effective tool to process
large scale of sensor data in cloud stores, but conventional MapRe-
duce always conducts trivial full scan on the whole data set for
the queries of any selectivity [19]. In order to enable MapReduce
and indices to collaborate for query processing, many researchers
proposed to integrate index techniques into MapReduce framework
to avoid full data scan for low-selective queries [30–34]. One prior
work is to construct a B+-tree over static data set in a distributed
file system (e.g. HDFS) and materialize the index also in HDFS [34].
Then, the query processor can process this index file, which in-
volves of multiple MapReduce jobs to access different layers of the
tree and therefore is not efficient enough [34]. Moreover, the pro-
posed HDFS based B+-tree is only effective for point data rather
than interval data [34].

The authors in [31] integrate indices into each file split of the
data file in HDFS, such that mappers can use the indices to only
access predicate-qualified data records in each split. In [32], in-
dices applicable to queries with predicates on multiple attributes
were developed by indexing different record attributes in differ-
ent block replicas of data files. These two kinds of index access
methods in MapReduce are both on record-level. If we integrate
an interval index into each file split guided by this direction,
the MapReduce data preparation, starting overhead and Mapper
waves are actually not decreased much and therefore the per-
formance does not significantly improve. On the other hand, the
update in one file split requires to rebuilt the whole local index
of the split thereby having high latency for segment insertions. In
[33], a split-level index is designed to decrease MapReduce frame-
work overhead. As compared to above record-level indices in [31,
32], split-level indices eliminate irrelevant file splits before launch-
ing mappers, and the data transferring and starting up overheads
are further decreased. This kind of approach is more efficient for
decreasing the map function invocations via overriding the data
reader of MapReduce [31,32], as compared to record-level opti-
mizations.

3. Overview of model-view sensor data management

In this section, we discuss certain important issues for manag-
ing model-view sensor data in a key-value store. First, we explain
what is model-view sensor data. Then, we discuss possible storage
schemas for model-view sensor data and explain the necessity to
develop a special index for it in key-value stores. Last, we describe
the query types of our focus and some particular techniques for
processing model-view sensor data queries.

3.1. Sensor time series segmentation

Sensor time series segmentation is a type of algorithms that
fragment a time series stream into disjoint segments, and then
approximate each data segment by a mathematical function or
model, such that a specific error bound is satisfied [5–9]. Query
Algorithm 1: Sensor time series segmentation.
Input: vt , t , /* value and associated time point of one sensor reading */

error_bound
1 begin
2 if currentSeg_error(anchor, t) < error_bound then
3 seg[anchor,t] = segmentModel(vanchor, . . . , vt);
4 /* approximate the sensor values between the time range [anchor, t]

with the specified type of model (e.g., constant, linear, polynomial,
etc.) */

5 else
6 lt = anchor;
7 lr = t − 1;
8 SegMaterialization(seg[anchor,t])
9 /* output this new produced segment seg[anchor,t] for materialization

*/
10 anchor = t;

Table 1
Symbol list.

Symbol Semantics

lt Beginning timestamp of one segment model
rt Ending timestamp of one segment model
lv Minimum value of one segment model’s value range
rv Maximum value of one segment model’s value range
pi

0 . . . pi
n Coefficient of each item in polynomial model

processing can then be performed on the materialized segments
instead of the raw sensor data, as in [2]. Sensor data segmentation
and modeling algorithms have been extensively studied in [4–9].

As segmentation algorithms are not the focus of this paper, we
only present a general framework in Algorithm 1 for online time
series segmentation [7], which is used in the dataset preparation
phase of our sub-sequential experimental evaluation in Section 6.
Table 1 summarizes the list of symbols that we employ for model
segments.

This sensor time series segmentation program is invoked each
time a new sensor reading comes. It first checks if the segment
model over the sensor readings from the anchor time point to cur-
rent time, namely in range [anchor, t], satisfies the error bound.
If yes, the current segment model is updated to seg[anchor,t] . If
no, the current time t is supposed to be the starting point an-
chor of a new segment. Then, it outputs the segment seg[anchor,t−1]
for the materialization process for which our designed index ap-
proach is responsible. The segment seg[anchor,t−1] consists of the
following information: time interval [lt, rt], value range [lv , rv]
and model formula (for instance, it could be a sequence of co-
efficients for each item of one polynomial function). Under this
framework, users can choose different categories of models to ap-
proximate the sensor data in segments. For instance, a time series
shown in Fig. 1(a) is transformed into a sequence of linear func-
tions with time dimension as the independent variable, which is
depicted in Fig. 1(b). The associated value range in Fig. 1(b) indi-
cates the values one segment model can cover within the time
interval. Such set of functions, each with its associated [lt , rt]
and [lv , rv] for the sensor data segments are referred to as the
model-view sensor data over the original raw sensor data observa-
tions.

3.2. Storage model in key-value stores

3.2.1. HBase overview
A table in HBase consists of a set of regions, each of which

stores a sequential range partition of the row-key space of the ta-
ble [18,20]. An HBase cluster consists of a collection of servers,
called region servers, which are responsible for serving a subset of
regions of one table. The key-based data access method of HBase
is realized by a three layered B+ tree maintained among the nodes

http://hbase.apache.org/
http://hive.apache.org/

T. Guo et al. / Big Data Research 1 (2014) 52–65 55
Fig. 1. Model-view sensor data.

Fig. 2. Model-view sensor data in HBase key value store.
of HBase cluster. The two upper levels referred to as the ROOT and
META regions are kept in the master node of an HBase cluster. The
ROOT region plays the role of root node of one B+ tree, while the
META table maintains a mapping of the regions of a table to region
servers. The regions distributed among the other nodes constitute
the lowest level of the B+-tree index and store the real data of a
table. If a region’s size exceeds a configurable limit, HBase can dy-
namically split it into two sub-regions, which enables the system
to grow dynamically as data is appended. Regarding a MapReduce
job on a table in HBase, the number of mappers is equal by de-
fault to that of regions of the table to process, which means that
each mapper processes one region, as shown in Fig. 2. The num-
ber of reducers is configurable programmatically. And HBase allows
MapReduce to only process key-based table partitions of inter-
est, which can avoid trivial full-scan on a table for low-selective
queries [18,20].

3.2.2. Interval-index in HBase
For the model-view sensor data in the key-value store, the time

interval, the value range and the model formula (e.g. polynomial
coefficients) can fully approximate one data segment. There are
different possible ways to organize row keys and columns for stor-
ing and querying model-view sensor data.

One idea for storing segments in key-value stores could be to
do it similarly to that of the raw sensor data management sys-
tem such as Open-TSDB [15], which takes the time interval of one
segment as the row key (rk). As rows are sorted on the row key
in the key-value store, the starting points of time intervals are
in ascending order. Therefore, although for time range or point
queries the query processor knows when to stop the scan, it still
needs to start the scan from the beginning of the table each time.
The same problem happens to the table with value intervals as
row-keys. For instance, in Fig. 2, when the value range is the row-
key, the table is sorted according to the left boundaries of the
value ranges of model-view sensor data. For a value query range
[9.2, 10], we can make sure after the fourth segment, namely S2
with value range [9.9, 10.9], there is no qualified segment in the
table. However, still scanning has to start from the beginning of
the table, since the right boundaries of the value ranges are not in
order.

In summary, simply incorporating time, value interval or model
coefficients into the row-key cannot contribute to accelerating the
query processing. A generic index in key-value stores specialized
for model-view sensor data is imperative. Moreover, considering
that model-view sensor data is produced in real-time, the index for
model-view sensor data in key-value stores should be able to up-
date on the fly efficiently [20]. Since each segment of model-view
sensor data is characterized by its time and value ranges, we will
concentrate on employing interval index to index both the time
and value dimension of one segment.

However, another issue for designing the interval index for
model-view sensor data in key-value stores is where to materi-
alize the index. One possible way would be to store the index in
separated files in the distributed file system (e.g. HDFS, etc.) on
top of which the key-value store HBase is also built. In this ap-
proach, as in the work [34], each layer of the tree structure is
stored in one file. Consequently, index searching needs to invoke
multiple MapReduce jobs to iteratively process each level of the
tree, which is not efficient. Another way is to integrate one index
for each region to only index the local model-view sensor data
in that region, such that mappers can first load the index to lo-
cate desired data in that region and then access it. However, this
kind of approach does not decrease data preparation and starting
overhead of MapReduce for the whole table, since still all the re-
gions of the table are initialized to be processed by MapReduce
[31,32]. Our proposed key-value based interval index (described in
the next section) steps out of above ideas and takes advantage of
both the in-memory and key-value parts to improve the query pro-
cessing.

56 T. Guo et al. / Big Data Research 1 (2014) 52–65
Fig. 3. Two-tier structure of KVI-index.
3.3. Querying model-view sensor data

Much work has been devoted to pattern discovery for time se-
ries data, but in this paper, we focus on the following four types
of fundamental queries on model-view sensor data.

• Time point query: return the value of one sensor at a specific
time point.

• Value point query: return the timestamps when the value of
one sensor is equal to the query value. There may be multiple
time stamps of which sensor values satisfy the query value.

• Time range query: return the values of one sensor during the
query time range.

• Value range query: return the time intervals of which the
sensor values are within the query value range. There may
be multiple time intervals of which sensor values satisfy the
query value range.

The generic process to query model-view sensor data queries
comprises the following two steps:

• Searching of qualified segments: The qualified segments are
the segments whose time (resp. value) intervals intersect the
query time (resp. value) range or point. This step should make
use of an interval index to locate all the qualified modeled
segments in the segment model store.

• Model gridding: Qualified segments are too abstract and a fi-
nite set of data points are more useful as query results for
end-users [2]. Therefore, model gridding is another necessary
process [2,3]. Model gridding applies three operations to each
qualified segment: (i) It discretizes the time interval of the
segment at a specific granularity to generate a set of time
points. (ii) It generates the sensor values at the discrete time
points based on the model that approximates the segment.
(iii) It filters out the sensor data that does not satisfy the query
predicates. The qualified time or value points that result from
gridding all qualified modeled segments are returned as query
results.

As shown in Fig. 1(c), segment one S1 is found as one qualified
segment for time query range [10, 70], model-gridding discretizes
the time interval of S1 and evaluates the values at each time point.
Then, the qualified time-value pairs constitute the query results.

4. Key-value interval index

We will first present the design of the two-tier model index on
key-value stores and then we will discuss the updating algorithm
of the model index.
4.1. Structure of KVI-index

As each segment of model-view sensor data has a specific time
and value range, instead of indexing the mathematical functions
of segments, our idea is to take the time and value intervals as
keys to index each segment, which allows the index to directly
serve the queries proposed in Section 3. We propose the key-value
represented interval index (KVI-index) to index time and value
intervals of model-view sensor data. For a segment in Fig. 3(c),
the time and value intervals are respectively indexed by the KVI-
index, as depicted in Figs. 3(a) and (b). Our KVI-index adopts the
idea from interval tree, since in-memory interval tree’s primary–
secondary structure is convenient for externalization to the key-
value store [26]. Furthermore, the searching and scanning algo-
rithm of the interval tree is suitable for the MapReduce computing
paradigm.

Our KVI-index is a novel in-memory and key-value compos-
ite index structure. The virtual searching tree (vs-tree) resides in
memory, while an index-model table in the key-value store is de-
vised to materialize the secondary structure (SS) of each node in
vs-tree.

4.1.1. In-memory structure
The in-memory virtual searching tree (vs-tree) is a standard bi-

nary search tree shown in Fig. 3(a). Each time (or value) interval is
registered on only one node of vs-tree: the one with which the in-
terval first overlaps along the searching path from root. This node
is defined as the registration node τ for this interval. Each node
of vs-tree has an associated secondary structure (SS), materialized
in the key-value store, which stores the substantial information of
the modeled segments registered at this node.

We apply space-partition strategy for vs-tree. The height of the
vs-tree is denoted by h. We set the value of leftmost leaf node
as 0. For negative sensor data values, we use simple shifting to
have the data range start from 0 for convenience. Then, the do-
main of the vs-tree is [0, R] and R = 2(h+1) − 2. The value of root
node is r = 2h − 1. During the whole life of KVI-index, only the
root value r is kept, since, due to the lightweight computability
of the space-partition, the value of each node in the searching
path from the root to the node that has the queried point or
interval can be calculated in run time. All the operations on vs-
tree are performed in memory and are thus very efficient. As the
domains of time and value of the sensor data are different, two
vs-trees one for times and another for values are kept in mem-
ory simultaneously for answering time and value queries respec-
tively.

4.1.2. Index-model table
Our novel index-model composite storage schema enables one

table not only to store the modeled segments, but also to materi-

T. Guo et al. / Big Data Research 1 (2014) 52–65 57
Algorithm 2: Time (or value) KVI-index updating.
Input: [lv , rv], [lt , rt], /* value and time intervals of one modeled segment
Mi , r /* Mi denotes the coefficients of the modeled segment

1 begin
2 /* dynamic domain expansion
3 if (rt > R) then
4 r = 2�log(rt +2)�−1 − 1 /* expand to new root value

5 /* registration node search
6 node = 2�log rt �+1 − 1;
7 h = log(node) − 1;
8 while (h ≥ 0) do
9 if (lt ≤ node and rt ≥ node) then

10 break; /* node is the registration node

11 else
12 if (lt > node) then
13 node = node + 2h ;

14 if (rt < node) then
15 node = node − 2h ;

16 h = h − 1;

17 /* materialized into the index-model table.
18 if the SS of node has been initialized then
19 rowkey = 〈node|lt |rt 〉;

20 else
21 rowkey = 〈node|α〉;

22 insert [lv , rv], [lt , rt], Mi into the table.

alize the structural information of the vs-tree, i.e., the SSs for each
tree node.

The index-model table is shown in Fig. 3(b). Each row corre-
sponds to only one modeled segment of sensor data, e.g., the data
segment shown in the black dotted rectangle in Fig. 3(c). A row
key consists of the node value and the interval of an indexed
modeled segment at that node. The time interval, value interval
and the model coefficients are all stored in different columns of
the same row. And the SSs of each node correspond to a con-
secutive range of tuples in the index-model table. For instance,
the rows corresponding to the SSs of node 1, node 5 and node
13 in vs-tree are illustrated in Fig. 3(b). Analogously, we have two
index-model tables that correspond to time and value vs-trees re-
spectively.

4.2. KVI-index updates

The complete modeled segment updating algorithm of KVI-
index is shown in Algorithm 2. It includes two processes:

(1) Registration node searching: locate the node τ at which one
time (value) interval [lt , rt] should be registered.

(2) Materialization of modeled segments: construct the row-key
based on the τ and materialize one modeled segment’s in-
formation into the columns of the corresponding row.

4.2.1. Registration node searching (rSearch)
This algorithm first involves a domain-expansion process to dy-

namically adjust the domain of the vs-tree according to the specific
domain of the sensor data. Then, the registration node can be
found on the validated vs-tree.

Lemma 1. For a modeled segment Mi with time (value) interval
[lt, rt] (resp. [lv , rv]), its registration node lies in a tree rooted at
2�log(rt+2)�−1 − 1.

Proof. The domain of one tree rooted at 2�log(rt+2)�−1 − 1 is
[0, 2�log(rt+2)� − 2]. As 2�log(rt+2)� − 2 ≥ 2log(rt+2) − 2 = rt , the reg-
istration node of interval [lt, rt] must be in a tree rooted at
2�log(rt+2)�−1 − 1. �
Fig. 4. Registration node searching of KVI-index.

Lemma 2. For a modeled segment Mi with time (value) interval (lt, rt),
if the right end-point rt satisfies rt > R, the domain of vs-tree needs to
expand.

Proof. The current vs-tree’s height is h and lt ≤ r, the interval
[lt, rt] rides over the root node r. Assume that we do not ex-
pand the domain and hang [lt, rt] on r. When a new model
M j with a time (or value) interval [l′t , r′

t] (or [l′v , r′
v]) and l′t > R

comes, the root value has to increase to r′ = 2�log r′
t+2�−1 − 1

(resp. r′ = · · ·) as [l′t , r′
t] (resp. [l′v , r′

v]) intersects no node of cur-
rent vs-tree. Then between r and r′ , there is one node with value
2(h+1) − 1. The interval (lt , rt) is stored at node r = 2h − 1 and
rt > 2(h+1) − 2 ⇒ rt ≥ 2(h+1) − 1, therefore registering the in-
terval [lt, rt] on node r contradicts with the interval registration
rule. �

Using Lemmas 1 and 2, KVI-index is able to dynamically decide
when and how to adjust the domain [0, R] of vs-tree. The complete
rSearch can be illustrated by Fig. 4. When model1 is to be inserted,
the vs-tree rooted at node7 is still valid. model1 is registered at
node5. However, when model2 arrives, its right end-point, i.e., 16,
exceeds the domain [0, 14]. The vs-tree is expanded having 15 as
new root and the new extended domain is the area enclosed by
the dotted block in Fig. 4. Then, the sub-sequential model2 and
model3 can be updated successfully.

The rSearch process can be further optimized via adaptively
adjusting the starting point based on the interval to index. In
this way, rSearch does not need to always search from root
node, thereby shortening the length of searching path. Based on
Lemma 1, for one interval (lt, rt), we can start to search for reg-
istration node from node r0 = 2�log tr�+1 − 1 rather than root node
r, which can be referred to Line 7 in Algorithm 2. Also, the nodes
outside of sub-domain [0, 2�log tr+1�+1 − 2] of vs-tree will not be-
come the registration node, because the interval (tl, tr) does not
intersect with them. For example, the model4 in Fig. 4. The adap-
tive searching finds that the subtree rooted at node 7 is the min-
imum one covering model4’s interval [9, 14]. Therefore, node 7 is
the starting point for registration node searching and the length of
searching path is only 1.

4.2.2. Materialization of modeled segment
When materializing model Mi into the SS of a node τ , the row-

key may be chosen in two ways:

• Upon initialization of the SS of node τ : when no modeled seg-
ment has been stored at τ ’s SS, the row key is chosen as 〈τ , α〉
for model Mi . Here, α is a postfix of row key to indicate that
this row is the starting position of τ ’s SS in the table.

• Upon updating the SS of node τ : when the SS of τ has already
been initialized, the time interval [lt , rt] (resp. [lv , rv] for value
interval) to be indexed will be incorporated into the row key,
i.e., 〈τ , lt , rt〉 (resp. 〈τ , lv , rv〉 in the index-model table for val-
ues). In this way, different modeled segments stored in the
same SS of a node do not overwrite each other.

58 T. Guo et al. / Big Data Research 1 (2014) 52–65
Fig. 5. Modeled segment materialization of KVI-index.

The selection of specific α should make sure that the binary
representation of 〈τ , α〉 is in front of any other 〈τ , lt , rt〉. This
design is useful for query processing. For instance, if the query pro-
cessor requires to access all the modeled segments stored at regis-
tration node 5, then we know that all the corresponding modeled
segments lie in the rows within the row-key range [〈5, α〉, 〈6, α〉).
For example, take the model1 and model2 in Fig. 5. First, the KVI-
index checks whether the starting modeled segments of node5 and
node15, namely rows with key 〈5, α〉 and 〈15, α〉, exist. Then, the
row key 〈5, 4, 6〉 is constructed for model1 as the SS of node5 has
been initialized, whilst KVI-index constructs the row key 〈15, α〉
for model2.

4.2.3. Complexity analysis
In this section, we analyze the computational and communi-

cation complexities of updating operation of KVI-index. The com-
plexity analysis of KVI-index includes in-memory and key-value
part.

• In-memory
The rSearch on vs-tree can run within O (log(R)) time. The
space expansion costs O (1) time. Only the root value r of vs-
tree is kept in memory. The values of other nodes on vs-tree
can be calculated due to the computability of vs-tree’s space-
partition. Therefore, the space complexity of vs-tree is O (1).

• In key-value store
The update operation on vs-tree does not generate any net-
work I/O cost. For an n-th order polynomial model of one
sensor data segment, (2 + n) put operations are conducted to
materialize one model. Therefore, the time complexity is O (1)

in terms of network I/O, as n is constant. Moreover, one seg-
ment model’s time (or value) interval and coefficients are only
materialized once into the index-model table, thus the space
cost is O (N) for time (or value) index.

5. Query processing via KVI-index and MapReduce

For querying model-view sensor data, the searching process of
qualified modeled segments (defined in Section 3) in KVI-index in-
cludes two steps:

• Intersection and point search: The intersection search on vs-tree
is used for range queries, while point search is employed for
point queries. They are responsible for collecting the nodes
that accommodate qualified modeled segments in their sec-
ondary structures SSs.

• Modeled-segment filtering: Due to the rule for interval registra-
tion at the nodes of the vs-tree, the SS of a node may contain
some intervals irrelevant to queried range or point. In KVI-
index, the SSs of all nodes found by the search operation are
accessed to filter out unqualified segments.
Algorithm 3: iSearch+ of vs-tree.
Input: time query range [lt , rt], root value r
Output: node set S0 and D

1 begin
2 /* construct S0
3 node = r; h = log(r) − 1;
4 while (h ≥ 0) do
5 if (lt ≤ node and rt ≥ node) then
6 break; /* node is the registration node

7 else
8 S0 = S0 ∪ node
9 if (lt > node) then

10 node = node + 2h ;

11 if (rt < node) then
12 node = node − 2h ;

13 h = h − 1;

14 /* construct D.
15 ls = 2�log(lt)� , rs = R − 2�log(R−rt)� , D = [ls, rs]

After the above two steps, model gridding component fetches
the coefficients of each qualified modeled segment and performs
gridding. Next, we first describe an enhanced intersection search
algorithm on vs-tree that benefits KVI–Scan–MapReduce query pro-
cessing, introduced later in this section. We then present the point
search algorithm on vs-tree. Subsequently, we introduce our novel
hybrid KVI–Scan–MapReduce query processing. Last, we theoreti-
cally analyze the enhanced intersection search algorithm of KVI-
index.

5.1. Intersection and point search

5.1.1. Enhanced interval intersection search
Algorithm 3 presents the iSearch+ . Given a time (resp. value)

range query [lt, rt], iSearch+ first calls the rSearch to find the reg-
istration node τ of [lt , rt]. The nodes on the searching path from
the root node to the one preceding τ form a node set denoted
by S0. The iSearch+ stops at the node, which is closest to the left-
end point lt . All the nodes along the left-descending path form a
node set, denoted by Sl , while the node with the minimum value
in this path is denoted by ls . Analogously, Sr is the node set from
the right-descending path and rs is the node with the maximum
value in this path. Any node outside the range [ls, rs] and the set
S0 does not have any qualified modeled segments.

The traditional intersection search would return the node set
C = S0 ∪ Sl ∪ Sr ∪ [lt, rt] for further modeled-segment filtering
and gridding. Our iSearch+ outputs the discrete node set S0 and
a consecutive range of nodes D = [ls, rs]. For example, take the
range query in Fig. 6(a). node7 is the registration node of query
range [6, 10]. The traditional iSearch returns the discrete node sets
shown in the solid boxes of Fig. 6(a), while our iSearch+ returns
a range of nodes [3, 11] and S0 = {15}. We will see how the
output of iSearch+ benefits the hybrid query processing later in
Section 5.2.

5.1.2. Point search
We denote the point search by sSearch as it functions as the

stabbing search of interval tree. The sSearch is a binary search
that records the nodes along the descending path. We present the
sSearch in Fig. 6(a). For example, when querying the sensor value
of time point 24, the node set S0 = {15, 7, 11, 9, 10} is returned
by sSearch. Since there is no split searching, as in iSearch+ , only
one node set is produced here. We denote this node set by S0
as well, so as to facilitate the description of the hybrid KVI–Scan–
MapReduce query processing that follows next.

T. Guo et al. / Big Data Research 1 (2014) 52–65 59
Fig. 6. Workflow of KVI–Scan–MapReduce approach. (a) iSearch+ and sSearch. (b) SS location distribution for the range query. (c) Hybrid processing.
5.2. KVI–Scan–MapReduce query processing

The conventional clustered index for one-dimensional data can
exactly locate a consecutive range of qualified data. Then, the
query processor just needs to do range scan on these qualified
data. However, as for querying model-view sensor data, the chal-
lenge is how to tackle the large amount of segment models from
the SSs distributed across the index-model table. We first ana-
lyze the location distribution of the SSs of the nodes found by
iSearch+ and sSearch in the index-model table. The characteristics
of this distribution inspired us to propose the hybrid KVI–Scan–
MapReduce query processing approach.

5.2.1. SS location distribution
There are two cases for the SS distribution in the index-model

table, described below.

• S0: The SSs of S0 are non-consecutive and sparsely distributed
in the index-model table. The node value is the primary part
of the row-key; thus, the distance between SSs of S0 depends
on the numerical difference of node values. As S0 includes
the nodes from root node to the one preceding the τ , the
intra-distances between any consecutive nodes in S0 are 2h−i ,
where i = 0, . . . , h − dτ is the position of the node in the
descending search path S0 and dτ is the depth of τ . Obvi-
ously, the intra-distances in S0 are greater than those for other
nodes below τ in the search path.

• D: The SSs of [ls, rs] are clustered around the ones of [lt , rt] in
the index-model table. The SSs of [lt , rt] are all adjacent in the
index-model table. The SSs of [ls, rs] are bounded by those of
the sub-tree rooted at τ and the nodes in [ls, rs] are a superset
of the nodes in [lt , rt]. The deeper the registration node τ is
located, the tighter the set of the SSs of [ls, rs] over those of
[lt , rt].

For example, take the time (or value) query range [6, 10] in
Fig. 6(a). The registration node is node7. Then, S0 = {15} and
D = [3, 11]. The sub-tree rooted at node7 covers the node range
E = [0, 14] and D ⊂ E . From Fig. 6(b), the SSs of D are clustered
around those of [6, 10] and bounded by the SSs of E . However,
node15’s SS is located far away from those of [3, 11].

If SSs of S0 and D are processed via straightforward random
access and range scan provided by key-value stores, the entire
modeled-segment filtering and gridding processes are conducted
locally at the application side. For a table of multiple or hundreds
of GBs, the communication and computation costs are prohibitively
high for the application side even for low-selective queries.

The modeled segment filtering–gridding processing matches
MapReduce’s filtering-aggregation paradigm. Considering the re-
search results from [31–33], for CPU non-intensive workload, I/O
cost, network latency and starting-up overhead of mappers are
dominant in the execution time of MapReduce programs. If the
SSs of S0 and D are all processed by MapReduce, a lot of time
is wasted for mappers that process irrelevant SSs in the index-
model table. This is because MapReduce will access the continuous
regions of the table including the SSs of nodes between the S0
and D due to the sequential data feeding mechanism in the map-
ping phase. For example, in Fig. 6(b), the SSs of D = [3, 11] and
S0 = {15} are distant in the table. Hence, MapReduce will launch
many unnecessary mappers for the irrelevant SSs of nodes between
11 and 15, in order to process the SSs of S0 and D.

5.2.2. Hybrid model filtering and gridding
As discussed above, simply using range scan or MapReduce

to process SSs are both problematic. Our idea is to design a hy-
brid KVI–Scan–MapReduce paradigm that combines range scan and
MapReduce for processing SSs, as follows:

• (1) S0: the height of vs-tree is bounded by log(R), and thus
the amount of computation on S0 is limited. As the SSs of S0
are sparsely distributed in the index-model table and each SS
of S0 can be considered to be a small range of clustered index,
the random-access- and range-scan-based model filtering and
gridding is suitable.

• (2) D = [ls, rs]: the successive range [ls, rs] delimits a tight
boundary of the sub-index-model table over the relevant SSs
that are suitable for processing with MapReduce.

This hybrid paradigm eliminates the Map-phase processing of
SSs of irrelevant nodes between S0 and D and the nodes between
the elements of S0. Moreover, it is non-intrusive for both the key-
value store and MapReduce. Regarding the time (or value) point
query, it only produces the node set S0 without D, hence, only
range-scan-based model filtering and gridding is needed.

Suppose that the number of reducers is P and each reducer is
denoted by 0, . . . , P − 1. For range queries, the partition function
f is used to assign the qualified modeled segments into different
reducers. It is designed on the basis of query time (resp. value)
range [lt , rt] (resp. [lv , rv]) and the time (or value) interval [li, ri]
of each modeled segment i. The idea is that each of the reducers

60 T. Guo et al. / Big Data Research 1 (2014) 52–65
is in charge of one even sub-range rt−lt
P . Such a partition function

f is given in Eq. (1).

f (ri) =
{

lt ≤ ri ≤ rt
⌊

(ri−lt)∗P
rt−lt

⌋
ri ≥ rt P − 1

(1)

The functionalities of mappers and reducers are depicted in de-
tail below.

• Mapper: Each mapper gets the time (resp. value) interval
[li, ri] of one modeled segment i to check whether it inter-
sects with the query time (resp. value) range. For the qualified
modeled segments, the intermediate key is derived by the par-
tition function f (ri). The model coefficients 〈p1

i , . . . , p
n
i 〉 are

the value part of the intermediate key-value pair.
• Reducer: One reducer receives a list of qualified modeled

segments 〈p1
0, . . . , p

n
0〉, 〈p1

1, . . . , p
n
1〉, For each modeled seg-

ment 〈p1
i , . . . , p

n
i 〉, the reducer invokes a model-based gridding

function to compute discrete values as query results.

Regarding the scan-based model filtering and gridding, as SSs
in S0 are located in different regions of the index-model table, the
query processor makes use of thread pool to process each SS of
S0 in parallel. Fig. 6 shows the workflow of the hybrid KVI–Scan–
MapReduce approach. For a time (or value) range query [6, 10],
iSearch+ constructs the node set S0 = {15} and D = [3, 11]. Then,
the SSs of the nodes in D are sent to MapReduce. The SS of node15,
enclosed by the bottom dot-dashed block, is processed via range
scan.

5.3. Theoretical analysis

One point to carefully consider is that iSearch+ may generate
redundant nodes, because the iSearch+ aims to find a tight and
consecutive range of SSs for MapReduce. For instance, in Fig. 6(a),
the SS of node4 is not accessed by the iSearch+ , but is in the sub-
table processed by MapReduce.

Theorem 1. For a range query [lt, rt], the redundant nodes in [ls, rs]
returned by iSearch+ are bounded.

Proof. Assume h to be the height of the registration node τ . Con-
sider the left-descending path from τ to the node l0 closest to lt .
Let d be the depth from which the descending path turns right,
namely the value w < lt of the current node. Then, based on the
iSearch+ algorithm, w is the left boundary of accessed node range
and w = τ − ∑d

i=1 2h−i .
For a certain value of d, the worst case happens when the de-

scending process continues to go right until reaching l0, as the
nodes between w and l0 are all redundant ones. The number of
nodes returned by iSearch+ under this case is given by:

U = τ −
(
τ −

d∑
i=1

2h−i

)
(2)

The nodes between τ and w are all included into the output
range D of iSearch+ . The number of nodes returned by the con-
ventional iSearch is given by:

V = h − d +
{
τ −

(
τ −

d∑
i=1

2h−i +
h∑

i=d+1

2h−i

)}
(3)

Therefore, the number of redundant nodes returned by iSearch+
is given by:
f = U − V = d +
h∑

i=d+1

2h−i − h

= d + 2h−d − h − 1 (4)

Eq. (4) is a function of d and is monotonous decreasing in d’s
domain [1, h]. Consequently, when d = 1, the function f reaches
the maximum value, namely, the number of redundant nodes from
iSearch+ attains the maximum value fmax that is given by:

fmax = 2h−1 − h. (5)

As the total number η of nodes of the sub-tree of the left child
of τ is 2h − 1, hence

f ≤ 1

2
η − log(η + 1) + 1

2
. (6)

In summary, the total number of redundant nodes in the range
[ls, rs] is bounded. �

The worst case happens when the endpoints lt and rt are
the preceding and succeeding nodes of τ , namely lt = τ − 1 and
rt = τ + 1. However, for most of the cases, the redundant nodes
returned from iSearch+ are very limited.

6. Experimental evaluation

First, we compare model-view sensor data query processing
with conventional one over raw sensor data. Then, we show
that our KVI–Scan–MapReduce (KSM) approach outperforms other
model-view sensor data querying approaches. Finally, we experi-
mentally explore the factors that affect the performance of KVI–
Scan–MapReduce.

6.1. Setup

We employ accelerometer data from mobile phones as sensor
data set. The size of raw sensor data is 22 GB including 200 million
data points. After modeling, the modeled segments of the sensor
data take 12 GB, while there are around 25 million modeled seg-
ments.

We developed our system using the versions of HBase and
Hadoop in Cloudera CDH4.3.0. The experiments are performed on
our own cluster that consists of 1 master node and 8 slaves.
The master node has 64 GB RAM, 3 TB disk space (4 × 1 TB
disks in RAID5) and 12 cores, each of which is 2.30 GHz (Intel
Xeon E5-2630). Each slave node has 6 cores 2.30 GHz (Intel Xeon
E5-2630), 32 GB RAM and 6 TB disk space (3 × 2 TB disks). Nodes
are connected via 1 GB Ethernet. In the experimental results, we
refer to query selectivity as the ratio of the number of qualified
modeled segments over that of total modeled segments.

The data set contains discrete accelerometer data from mobile
phones and is a sequence of tuples each of which has one times-
tamp and three sensor values representing the coordinates. The
size of the raw sensor data set is 22 GB including 200 million
data points. We simulate the sensor data emission, in order to
segment and update sensor data into the KVM-index in an online
manner. We implement an online sensor data segmentation com-
ponent [5] applying the PCA (piecewise constant approximation)
[1], which approximates one segment with a constant value (e.g.,
the mean value of the segment). Since how to segment and model
sensor data is not the focus of this paper, other sensor time series
segmentation approaches could also have been applied here. Pro-
vided that the segments are characterized by the time and value
intervals, our KVM-index and related query-processing techniques
are able to manage them efficiently in the cloud. Finally, there

T. Guo et al. / Big Data Research 1 (2014) 52–65 61
Fig. 7. Sensor data updating performance.

are around 25 million sensor data segments (nearly 15 GB) up-
loaded into the key-value store. Regarding the segment gridding,
we choose 1 second as the time granularity which is application-
specific.

6.2. Index updating

Fig. 7 shows the average updating time of each segment and the
average insertion time of each raw sensor data point during the
data uploading phase. Both time and value index keep relatively
stable updating efficiency. The updating of the value KVI-index is
a little slower than the time KVI-index. As discussed before, since
the domain of the value vs-tree is smaller than that of the time
vs-tree, the value index performs more SS updating operations (dis-
cussed in Section 4.2) than the time index and therefore incurs
more network I/O cost. The raw sensor data insertion is the fastest
but the amount of data to update is much larger than model-
view approach. This is because model-view sensor data achieves
data compression over the raw sensor data thereby decreasing the
amount of data to upload.

6.3. Model-view sensor data vs. raw sensor data

We create two tables, which take the time-stamp and sensor
value as the row-keys respectively, such that the query range or
point can be used as keys to locate the qualified data points. Then,
the query processor invokes the MapReduce to access the large
size of data points for getting query results.

Figs. 8(a), (b) and (c) present the query response times for time
range, value range and point queries respectively. As shown in
Figs. 8(a) and (b), the model-view approach takes around 30% less
time than the raw sensor data method for both time and value
range queries. Although the raw sensor data based methods apply
MapReduce to directly access the qualified tuples via the row-key
based range scan, the amount of raw sensor data to process is
much larger than that of the model-view approach. In Fig. 8(c),
the processing time of the raw data based method is 2× less than
that of the model-view one in time point queries, because the raw
data method can use the query time point as index key to directly
access the relevant data points, while our KSM requires to perform
model filtering and gridding. For value point queries, the model-
Fig. 8. Query performance comparison of raw data and model-view approaches on range and point queries.

62 T. Guo et al. / Big Data Research 1 (2014) 52–65
Fig. 9. Query performance comparison of different model-view approaches. (a)–(c): time range queries, (d)–(g): value range queries.
view approach has nearly 3× less time than the raw data method.
As, normally, there is a large size of data points with the queried
value, MapReduce is used to access this qualified sensor data set.
In the model-view approach, the point query processing only uses
random access and range scan to get qualified modeled segments
for gridding locally, and thus it saves the time on starting MapRe-
duce to access data.

6.4. Comparison of model-view approaches

There are four baseline approaches for querying model-view
sensor data, namely:

MapReduce (MR). This approach utilizes MapReduce without
support from any index. It always works on the whole index-model
table to filter the qualified modeled segments in the mapping
phase and perform the model gridding in the reduce phase.

Interval tree (IT). We implemented the traditional query process-
ing operations of the interval tree [23,26] by adding another table
to store the SS of each node sorted by the right end-point of inter-
vals. Each index, time or value, has two associated tables. During
the intersection or point search on vs-tree, the query processor
decides which table to access based on the relation between the
query range (or point) and the node value. In this way, the query
processor can stop scanning once it encounters one unqualified
modeled segment, due to the monotonicity of end-points of mod-
eled segments. IT makes use of random access and range scan to
sequentially filter the qualified modeled segments and make grid-
ding locally.

MapReduce+KVI (MRK). The idea of MRK is to leverage KVI-index
to avoid having MapReduce to process the whole table. In MRK,
MapReduce is designed to work over one continuous sub-index-
model table including all the SSs of the accessed nodes in search
operations. For instance, in Fig. 6(a), for a time (or value) range
query [6, 10], MRK invokes MapReduce to work on the sub-table
within the row-key range [〈3, α〉, 〈16, α〉]. The same idea applies
for point queries. As compared to our hybrid KSM approach, MRK
is a lightweight indexing-MapReduce plan, as it processes many ir-
relevant SSs of nodes between S0 and D.

Filter of key-value store (FKV). Some key-value stores such as
HBase provide a filter functionality to support predicate-based row
selection [20]. The filter transmits the filtering predicate to each
region server and then all servers scan their local data in paral-
lel. Afterwards, they return the qualified tuples. Our filter-based
query processing also works on the index-model table, as the fil-
tering predicates can be directly applied to the columns. The query
processor waits until all region servers finish scans and then it re-
trieves each returned qualified modeled segment to conduct grid-
ding locally.

6.4.1. Range query
Figs. 9(a), (b) and (c) present the performance of time range

queries. As depicted in Fig. 9(a), KSM outperforms MR up to 3×
for the low-selective time range queries. As the query selectivity
increases, the amount of SSs for scan based processing decreases
and that for MapReduce approaches the entire table. Therefore, the
response time increases and approaches that of MR. The response
time of MR increases little. As increasing query selectivity leads to
ascending gridding workload in reduce phase, these results show
that the overhead from model gridding is not dominant in MR.
The response time of MRK is more than that of KSM, but less than
that of MR. As MRK utilizes the KVI-index to localize a consecutive
sub-index-model table covering all the SSs of nodes found by in-
tersection search, it processes fewer modeled segments than MR’s
full table scanning. Yet, as compared to KSM, MRK processes more

T. Guo et al. / Big Data Research 1 (2014) 52–65 63
redundant modeled segments. Moreover, as the sub-table in MRK
covers a large range, the processing time of MRK increases little
for low-selective queries.

Fig. 9(b) exhibits the performance of IT and FKV approaches. As
FKV needs to wait for each region server of HBase to finish the
local data scanning, its total response time is a little longer than
that of IT approach. They both consume much more time than all
MR, MRK and KSM, as they apply sequential accessing of modeled
segments.

We also analyze the number of modeled segments accessed by
each approach in Fig. 9(c). These experiments show how differ-
ent access methods of modeled segments affect the performance.
MR works on the entire table, thus, the number of accessed seg-
ments is the same. From the point of view of the application,
only qualified modeled segments are returned for gridding, thus
FKV processes no redundant modeled segments and consumes the
least amount of modeled segments. Since IT scans the SS of one
node until encountering an unqualified model, the total number
of accessed segments is a little larger than that of FKV. Our KSM
processes larger number of segments than both IT and FKV due
to the continuous and redundant range of SSs found by iSearch+ .
However, the results also verify our theoretical analysis that the
amount of redundant modeled segments is bounded. MRK accesses
more segments than IT, FKV and KSM, as it adds the SSs between
S0 and D to form a continuous sub-table for MapReduce. Refer-
ring to Fig. 9(a) and Fig. 9(b), although KSM approach consumes
more segments than IT and FKV, its hybrid paradigm is the most
efficient.

Figs. 9(d), (e) and (f) present the value range query perfor-
mance. The different query processing approaches exhibit similar
patterns as for the time range queries, so we skip the detailed
analysis.

6.4.2. Point query
The time and value point query processing performance are

shown in Fig. 10. IT wins both for time and value point queries.
The response time of KSM is a little greater than IT, but out-
performs the other approaches, because IT is able to access all
qualified modeled segments in one SS. However, the KSM scans
the whole SS entries of a node to find the qualified ones. Because
of the invocation of MapReduce and redundant modeled segments
in the sub-table, MRK takes more time than both IT and KSM. But,
as MRK does not work on the entire table as MR does, it takes
about 2× less time than MR. FKV consumes the most time as it
needs to wait for server-side full table scan before gridding op-
erations. Since the size of the domain of the sensor data values
is smaller than that of the time domain, nodes in value vs-tree
accommodate more modeled segments than time vs-tree nodes.
Thus, the response times of value point queries of IT, FKV and KSM
approaches are all more than those of time point queries. For MR
and MRK, the processing time differences between time and value
queries are insignificant, as the time spent on model filtering and
gridding is not dominant.

6.5. Insights into KVI–Scan–MapReduce

Section 6.5.1 discusses effect of the searching depth on the
performances of in-memory iSearch+ , sequential scan based and
MapReduce based model filtering and gridding. At last, we will
see the workload constitutions within the KVI–Scan–MapReduce
paradigm in Section 6.5.2.

6.5.1. Searching depth
In Figs. 11, 12 and 13, we present the results from time and

value range queries of 10% selectivity and 10% to 50% iSearch+
depth. The percentage of iSearch+ depth here means the ratio of
Fig. 10. Query performance of point queries.

Fig. 11. Effect on iSearch+ .

Fig. 12. Effect on sequential scan.

Fig. 13. Effect on MapReduce.

64 T. Guo et al. / Big Data Research 1 (2014) 52–65
Fig. 14. Query processing time constitution of time range queries.

Fig. 15. Query processing time constitution of value range queries.

registration node searching depth over the height of vs-tree in
iSearch+ . As iSearch+ depth increases, the number of SSs for range
scan based model processing increases. Therefore, the time con-
sumed by iSearch+ and range scan based model processing both
increases, shown in Figs. 11 and 12. As for the MapReduce part,
the deeper the level of registration node τ is, the smaller the space
covered by the sub-tree rooted at τ is. Then the range of SSs in D
is tighter over the range of SSs of query range and results in less
redundant SSs for MapReduce, which is theoretically analyzed in
Section 5.3. From Fig. 13, we can see a salient decreasing trend of
MapReduce processing time.

6.5.2. Workload constitution
This experiment aims to reveal how much time the KVI–Scan–

MapReduce spends on model gridding, which is a difference of
model-view approach from raw sensor data approach. Figs. 14
and 15 show the results from time and value range queries of se-
lectivity from 10% to 50%.

From Figs. 14 and 15, the time on model gridding accounts
for 1/3–1/2 of the total query processing time. As the majority
of gridding work is done in the reduce phase and the amount
of qualified segment models sent to reducers depends on the
query selectivity, the time spent on model gridding increases as
the query selectivity increases. If the model gridding can adapt to
users’ different requirements for query results, the performance of
the KVI–Scan–MapReduce scheme can be further optimized.

7. Conclusion

To the best of our knowledge, this is the first work to ex-
plore the key-value representation of an interval index for model-
view based sensor data management. Different from conventional
external-memory index structure with complex node merging and
split mechanisms, our KVI-index, resident partially in memory and
partially materialized in the key-value store, is easy to maintain
in the dynamic sensor data generation environment. Moreover, we
proposed a hybrid query processing approach, namely KVI–Scan–
MapReduce, integrating the KVI-index, range scan and MapReduce
for model-view sensor data in key-value stores. Extensive experi-
ments in a real testbed showed that our approach outperforms in
terms of query response time and index updating efficiency not
only query processing methods based on raw sensor data, but also
all other approaches considered based on model-view sensor data
for time/value range and point queries. As a future work, we plan
to explore how to process time and value composite queries and
join queries based on the KVI-index.

Acknowledgement

This work is supported by the European Commission (EC),
Project FP7-ICT-2011-7-287305 OpenIoT.

References

[1] S. Sathe, T.G. Papaioannou, H. Jeung, K. Aberer, A survey of model-based sen-
sor data acquisition and management, in: Managing and Mining Sensor Data,
Springer, 2013.

[2] A. Thiagarajan, S. Madden, Querying continuous functions in a database system,
in: SIGMOD, 2008.

[3] A. Deshpande, S. Madden, MauveDB: supporting model-based user views in
database systems, in: SIGMOD, 2006.

[4] T. Papaioannou, M. Riahi, K. Aberer, Towards online multi-model approximation
of time series, in: MDM, 2011.

[5] T. Guo, Z. Yan, K. Aberer, An adaptive approach for online segmentation of
multi-dimensional mobile data, in: Proc. of MobiDE, SIGMOD Workshop, 2012.

[6] H. Ding, G. Trajcevski, P. Scheuermann, X. Wang, E. Keogh, Querying and mining
of time series data: experimental comparison of representations and distance
measures, VLDB Endow. 1 (2008) 1542–1552.

[7] E. Keogh, S. Chu, D. Hart, M. Pazzani, An online algorithm for segmenting time
series, in: Proceedings of the IEEE International Conference on Data Mining,
ICDM 2001, IEEE, 2001, pp. 289–296.

[8] Y. Cai, R. Ng, Indexing spatio-temporal trajectories with Chebyshev polyno-
mials, in: Proceedings of the 2004 ACM SIGMOD International Conference on
Management of Data, ACM, 2004, pp. 599–610.

[9] Q. Chen, L. Chen, X. Lian, Y. Liu, J.X. Yu, Indexable PLA for efficient similarity
search, in: Proceedings of the 33rd International Conference on Very Large Data
Bases, VLDB Endowment, 2007, pp. 435–446.

[10] Saket Sathe, Thanasis G. Papaioannou, Hoyoung Jeung, Karl Aberer, A survey of
model-based sensor data acquisition and management, in: C.C. Aggarwal (Ed.),
Managing and Mining Sensor Data, Springer US, 2013.

[11] A. Bhattacharya, A. Meka, A. Singh, Mist: distributed indexing and querying in
sensor networks using statistical models, in: VLDB, 2007.

[12] A. Deshpande, C. Guestrin, S.R. Madden, J.M. Hellerstein, W. Hong, Model-
driven data acquisition in sensor networks, in: Proceedings of the Thirtieth In-
ternational Conference on Very Large Data Bases, in: VLDB Endowment, vol. 30,
2004, pp. 588–599.

[13] E. Keogh, K. Chakrabarti, M. Pazzani, S. Mehrotra, Locally adaptive dimension-
ality reduction for indexing large time series databases, SIGMOD Rec. 30 (2)
(2001) 151–162.

[14] J. Shieh, E. Keogh, iSAX: indexing and mining terabyte sized time series, in:
Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, ACM, 2008, pp. 623–631.

[15] OpenTSDB, http://opentsdb.net/, 2011.
[16] T. Guo, T.G. Papaioannou, K. Aberer, Model-view sensor data management in

the cloud, in: 2013 IEEE International Conference on Big Data, IEEE, 2013,
pp. 282–290.

[17] T. Guo, T.G. Papaioannou, H. Zhuang, K. Aberer, Online indexing and distributed
querying model-view sensor data in the cloud, in: The 19th International Con-
ference on Database Systems for Advanced Applications, 2014.

[18] F. Chang, J. Dean, S. Ghemawat, W.C. Hsieh, D.A. Wallach, M. Burrows, T. Chan-
dra, A. Fikes, R.E. Gruber, Bigtable: a distributed storage system for structured
data, ACM TOCS 26 (2008) 4.

[19] J. Dean, S. Ghemawat, MapReduce: simplified data processing on large clusters,
Commun. ACM 51 (2008) 107–113.

[20] L. George, HBase: The Definitive Guide, O’Reilly Media, Inc., 2011.
[21] C.P. Kolovson, M. Stonebraker, Segment indexes: dynamic indexing techniques

for multi-dimensional interval data, SIGMOD Rec. 20 (2) (1991).

http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736174686532303133737572766579s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736174686532303133737572766579s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736174686532303133737572766579s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib546869s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib546869s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4465736870616E6465s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4465736870616E6465s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib546861s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib546861s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F323031326164617074697665s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F323031326164617074697665s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib64696E67323030387175657279696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib64696E67323030387175657279696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib64696E67323030387175657279696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316F6E6C696E65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316F6E6C696E65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316F6E6C696E65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib63616932303034696E646578696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib63616932303034696E646578696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib63616932303034696E646578696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368656E32303037696E64657861626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368656E32303037696E64657861626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368656E32303037696E64657861626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib626F6F6B2D63686170746572s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib626F6F6B2D63686170746572s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib626F6F6B2D63686170746572s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4D495354s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4D495354s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465736870616E6465323030346D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465736870616E6465323030346D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465736870616E6465323030346D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465736870616E6465323030346D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316C6F63616C6C79s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316C6F63616C6C79s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B656F6768323030316C6F63616C6C79s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736869656832303038736178s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736869656832303038736178s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib736869656832303038736178s1
http://opentsdb.net/
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F323031336D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F323031336D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F323031336D6F64656Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F32303134s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F32303134s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67756F32303134s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368616E67323030386269677461626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368616E67323030386269677461626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6368616E67323030386269677461626C65s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465616E323030386D6170726564756365s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6465616E323030386D6170726564756365s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib67656F726765323031316862617365s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4B6F6C6F76736F6Es1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4B6F6C6F76736F6Es1

T. Guo et al. / Big Data Research 1 (2014) 52–65 65
[22] G. Sfakianakis, I. Patlakas, N. Ntarmos, P. Triantafillou, Interval indexing and
querying on key-value cloud stores, in: ICDE, 2013.

[23] L. Arge, J. Vitter, Optimal dynamic interval management in external memory,
in: 37th Annual Symposium on Foundations of Computer Science, 1996.

[24] R. Elmasri, G.T.J. Wuu, Y.-J. Kim, The time index: an access structure for tem-
poral data, in: VLDB, 1990.

[25] T. Bozkaya, Z.M. Özsoyoglu, Indexing valid time intervals, in: DEXA, 1998.
[26] H.-P. Kriegel, M. Pötke, T. Seidl, Managing intervals efficiently in object-

relational databases, in: VLDB, 2000.
[27] H.-P. Kriegel, M. Pötke, T. Seidl, Object-relational indexing for general interval

relationships, in: Advances in Spatial and Temporal Databases, Springer, 2001.
[28] S. Nishimura, S. Das, D. Agrawal, A.E. Abbadi, MD-HBase: a scalable multi-

dimensional data infrastructure for location aware services, in: MDM, 2011.
[29] J. Wang, S. Wu, H. Gao, J. Li, B.C. Ooi, Indexing multi-dimensional data in a
cloud system, in: SIGMOD, 2010.

[30] M.-Y. Iu, W. Zwaenepoel, HadoopToSQL: a MapReduce query optimizer, in: Eu-
roSys, 2010.

[31] J. Dittrich, J.-A. Quiané-Ruiz, A. Jindal, Y. Kargin, V. Setty, J. Schad, Hadoop++:
making a yellow elephant run like a cheetah (without it even noticing), VLDB
Endow. 3 (2010) 515–529.

[32] J. Dittrich, J.-A. Quiané-Ruiz, S. Richter, S. Schuh, A. Jindal, J. Schad, Only ag-
gressive elephants are fast elephants, VLDB Endow. 5 (2012) 1591–1602.

[33] M.Y. Eltabakh, F. Özcan, Y. Sismanis, P.J. Haas, H. Pirahesh, J. Vondrak, Eagle-
eyed elephant: split-oriented indexing in Hadoop, in: EDBT, 2013.

[34] H.-C. Yang, D.S. Parker, Traverse: simplified indexing on large map-reduce-
merge clusters, in: DASFAA, 2009.

http://refhub.elsevier.com/S2214-5796(14)00006-9/bib31363153504E5432303133s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib31363153504E5432303133s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib61726765313939366F7074696D616Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib61726765313939366F7074696D616Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib456C6D61737269s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib456C6D61737269s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib426F7A6B617961s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B72696567656C323030306D616E6167696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B72696567656C323030306D616E6167696E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B72696567656C323030316F626A656374s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6B72696567656C323030316F626A656374s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4E697368696D757261s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4E697368696D757261s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib57616E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib57616E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6975323031306861646F6F70746F73716Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib6975323031306861646F6F70746F73716Cs1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4469747472696368s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4469747472696368s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib4469747472696368s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib446974747269636832303132s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib446974747269636832303132s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib456C746162616B6832303133s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib456C746162616B6832303133s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib59616E67s1
http://refhub.elsevier.com/S2214-5796(14)00006-9/bib59616E67s1

	Efﬁcient Indexing and Query Processing of Model-View Sensor Data in the Cloud
	1 Introduction
	2 Related work
	3 Overview of model-view sensor data management
	3.1 Sensor time series segmentation
	3.2 Storage model in key-value stores
	3.2.1 HBase overview
	3.2.2 Interval-index in HBase

	3.3 Querying model-view sensor data

	4 Key-value interval index
	4.1 Structure of KVI-index
	4.1.1 In-memory structure
	4.1.2 Index-model table

	4.2 KVI-index updates
	4.2.1 Registration node searching (rSearch)
	4.2.2 Materialization of modeled segment
	4.2.3 Complexity analysis

	5 Query processing via KVI-index and MapReduce
	5.1 Intersection and point search
	5.1.1 Enhanced interval intersection search
	5.1.2 Point search

	5.2 KVI-Scan-MapReduce query processing
	5.2.1 SS location distribution
	5.2.2 Hybrid model ﬁltering and gridding

	5.3 Theoretical analysis

	6 Experimental evaluation
	6.1 Setup
	6.2 Index updating
	6.3 Model-view sensor data vs. raw sensor data
	6.4 Comparison of model-view approaches
	6.4.1 Range query
	6.4.2 Point query

	6.5 Insights into KVI-Scan-MapReduce
	6.5.1 Searching depth
	6.5.2 Workload constitution

	7 Conclusion
	Acknowledgement
	References

