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Abstract 

With the emerging technologies and all associated devices, it is predicted that massive amount of data will be created in the next few years – 

in fact, as much as 90% of current data were created in the last couple of years – a trend that will continue for the foreseeable future. Sustainable 

computing studies the process by which computer engineer/scientist designs computers and associated subsystems efficiently and effectively 

with minimal impact on the environment. However, current intelligent machine-learning systems are performance driven – the focus is on the 

predictive/classification accuracy, based on known properties learned from the training samples. For instance, most machine-learning-based 

nonparametric models are known to require high computational cost in order to find the global optima. With the learning task in a large dataset, 

the number of hidden nodes within the network will therefore increase significantly, which eventually leads to an exponential rise in compu-

tational complexity. This paper thus reviews the theoretical and experimental data-modeling literature, in large-scale data-intensive fields, 

relating to: (1) model efficiency, including computational requirements in learning, and data-intensive areas’ structure and design, and intro-

duces (2) new algorithmic approaches with the least memory requirements and processing to minimize computational cost, while maintain-

ing/improving its predictive/classification accuracy and stability.  

Keywords: big data; green computing; efficient machine learning; computational modeling   

1. Introduction 

Today, it’s no surprise that reducing energy costs is one of 

the top priorities for many energy-related businesses. The 

global information and communications technology (ICT) in-

dustry that pumps out around 830 Mt carbon dioxide (CO2) 

emission accounts for approximately 2 percent of the global 

CO2 emissions [1]. ICT giants are constantly installing more 

servers so as to expand their capacity. The number of server 

computers in data centers has increased sixfold to 30 million 

in the last decade, and each server draws far more electricity 

than its earlier models [2]. The aggregate electricity use for 

servers had doubled between the years 2000 and 2005 period, 

most of which came from businesses installing large numbers 

of new servers [3]. This increase in energy consumption con-

sequently results in higher carbon dioxide emissions, and 

hence causing an impact on the environment. Furthermore, 

most of these businesses, especially in an uncertain economic 

climate are placed under the pressure to reduce their energy 

expenditure in order to remain competitive in the market [4].  

With the emerging of new technologies  and all associated 

devices, it is predicted that there will be as much data created 

as was created in the entire history of planet Earth [5]. Given 

the unprecedented amount of data that will be produced, col-

lected and stored in the coming years, one of the technology 

industry’s great challenges is how to benefit from it. During 

the past decade, mathematical intelligent machine-learning 

systems have been widely adopted in a number of massive 

and complex data-intensive fields such as astronomy, biology, 

climatology, medicine, finance and economy. However, cur-

rent intelligent machine-learning-based systems are not in-

herently efficient or scalable enough to deal with large vol-

ume of data. For example, for many years, it is known that 

most non-parametric and model-free approaches require high 

computational cost to find the global optima. With high-di-

mensional data, their good data fitting capacity not only 

makes them more susceptible to the generalization problem 

but leads to an exponential rise in computational complexity. 

Designing more accurate machine-learning systems so as to 

satisfy the market needs will hence lead to a higher likelihood 

of energy waste due to the increased computational cost. 

Nowadays, there is a greater need to develop efficient in-

telligent models to cope with future demands that are in line 

with similar energy-related initiatives. Such energy-efficient-

oriented data modeling is important for a number of data-in-

tensive areas, as they affect many related industries. Design-

ers should focus on maximum performance and minimum en-

ergy use so as to break away from the traditional’ performance 

vs. energy-use’ tradeoff, and increase the number and diver-

sity of options available for energy-efficient modeling. How-

ever, despite the fact that there is a demand for such efficient 

and sustainable data modeling methods for large and complex 

data-intensive fields, to our best knowledge, only a few of 

these literatures have been proposed in the field [6][7].  

This paper provides a comprehensive review of state-of-
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the-art sustainable/energy-efficient machine-learning litera-

tures, including theoretical, empirical and experimental stud-

ies pertaining to the various needs and recommendations. Our 

objective is to introduce a new perspective for engineers, sci-

entists, and researchers in the computer science, and green 

ICT domain, as well as to provide its roadmap for future re-

search endeavors. 

 This paper is organized as follows. Section 2 introduces 

the different large-scale data-intensive areas and discusses 

their structure and nature, including the relation between data 

models and their characteristics. Section 3 discusses the is-

sues in current intelligent data modeling for sustainability and 

gives recommendations. Section 4 concludes the paper. 

2. Big data challenge 

e-Science areas are typically data-intensive in that the 

quality of their results improves with both quantity and qual-

ity of data available. However, current intelligent machine-

learning systems are not inherently efficient enough which 

ends up, in many cases, a growing fraction of this quantity 

data unexplored and underexploited. It is no small problem 

when existing methods fail to capture such data immensity. 

When old concepts fail to keep up with change, traditions and 

past experience become inadequate guide for what to do next. 

Effective understanding and the use of this new wealth of raw 

information pose a great challenge to today’s green engi-

neers/researchers. It should be noted that the scope of the re-

view is limited to the analytical aspects of science areas using 

immense datasets, and the methods for reducing computa-

tional complexity in distributed or grid-computing environ-

ment is excluded. 

2.1. Geo, climate and environment 

There are many recent examples that can illustrate the tre-

mendous growth in scientific data generation in the literature. 

It is estimated that there are thousands of wireless sensors cur-

rently in place, which generates about a gigabyte of data per 

sensor per day [8]. Such sensors measure and record sensory 

information about the natural environment at a joint spatial 

and temporal dimensions that has never previously been pos-

sible. This environmental information is gathered by sensors 

via its sensing devices that are attached to small, low-power 

computer systems with digital radio communications. The 

sensor nodes self-organize itself into a network to deliver, and 

perhaps process the collected data to a base station, where it 

can be made available to the users through the Internet. These 

sensors generate several petabytes of data per year and deci-

sions need to be taken in real time as to how much data to 

analyze, how much to transmit for further analysis.  

Besides the environmentalists, a similar challenge facing 

the climatologists, meteorologists, and geologists today is 

also making sense of the vast and continually increasing 

amount of data generated by the earth observation satellites, 

radars, and high-throughput sensor networks. The World Data 

Centre for Climate (WDCC) is the world-largest climate data 

repository, and is also known to have the largest database in 

the world [9]. The WDCC archives 340 terabytes of earth sys-

tem model data and related observations, and 220 terabytes of 

data readily accessible on the web including information on 

climate research and anticipated climatic trends, as well as 

110 terabytes (or 24,500 DVD’s) worth of climate simulation 

data. The WDCC data is accessible by a standard web-inter-

face (http://cera.wdc-climate.de). These data are increas-

ingly available in many different formats and have to be in-

corporated correctly into the various climate change models. 

Timely and accurate interpretation of these data can provide 

advance warnings in times of severe weather changes, hence 

enabling corresponding action to be taken promptly so as to 

minimize its resulting catastrophic damage. 

2.2. Bio, medicine, and health 

Biological data has been produced at a phenomenal rate 

due to the international research effort called the Human Ge-

nome Project. It is estimated that the human genome DNA 

contains around 3.2 billion base (3.2 gigabase) pairs distrib-

uted among twenty-three chromosomes, which is translated 

to about a gigabyte of information [10]. However, when we 

add the gene sequence data (data on the 100,000 or so trans-

lated proteins and the 32,000,000 amino acids), the relevant 

data volume can easily expand to an order of about 200 giga-

byte [11]. Now, by including also the X-ray/NMR spectros-

copy structure determination of these proteins, the data vol-

ume will increase dramatically to several petabytes, and that 

is assuming only one structure per protein. 

As of December 2014, the GenBank repository of nucleic 

acid sequences contained above 178 million entries [12] and 

the SWISS-PROT database (inc. both UniProtKB/Swiss-Prot, 

UniProtKB/TrEMBL) of protein sequences contained about 

18 million entries [13][14]. On average, these databases are 

doubling in size in every 15 months. This is further com-

pounded by data generated from the myriad of related projects 

that study gene expression, that determines the protein struc-

tures encoded by the genes, and that details how these pro-

teins interact with one another. From that, we can begin to 

imagine the enormous amount and variety of information that 

is being produced every month.  

Over the past decade, the health sector has also evolved 

significantly, from paper-based systems to largely paperless 

electronic systems. Many countries’ public health systems are 

now providing electronic patient records with advanced med-

ical imaging media. In fact, this has already been imple-

mented by more than 200 American hospitals, and the days of 

squinting to decipher a doctor’s untidy scrawl on a handwrit-

ten prescription will soon be a thing of the past in Canada and 

many other countries too [15].  

InSiteOne is one of the leading service providers in offer-

ing data archiving, storage, and disaster-recovery solutions to 

the healthcare industry. Its U.S. InSiteOne’s archives include 

almost 4 billion medical images and 60 million clinical stud-

ies, in a coverage area of about 800 clinical sites [16]. The 

combined annual total of its radiological images exceeds 420 

million and this number is still increasing at an approximate 

http://cera.wdc-climate.de/
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rate of about 12% per year. There are about 35,500 radiolo-

gists currently practicing in the U.S [17]. Each image will typ-

ically constitute several megabytes of digital data and is re-

quired to be archived for a minimum of five years. ESG (En-

terprise Storage Group) forecasts medical image data in North 

America will grow to more than 35 percent per year and will 

reach nearly 2.6 million terabytes by 2014 [18]. It is also 

worthwhile to note that for the digital health data, its integrity 

and security issues are of critical importance in the field. For 

instance, for the former, data compression techniques may not 

be used, in many cases, as they may distort the data; and for 

the latter, the confidentiality of patient data is clearly cardinal 

in order to foster public confidence in such technologies. 

2.3. Stars, galaxies, and the universe 

The digital data volume from the stars, galaxies and uni-

verse has multiplied over the past decade due to the rapid de-

velopment of new technologies such as new satellites, tele-

scopes and other observatory instruments. Recently, the Visi-

ble and Infrared Survey Telescope for Astronomy (VISTA) 

[19] and the Dark Energy Survey (DES) [20] – the largest 

universe survey projects initiated by two different consorti-

ums of universities, from the U.K., and from the U.S., are ex-

pected to yield databases of 20–30 terabytes in size in the next 

decade. 

According to DES, its observatory field is so large that a 

single image will record data from an area of the sky 20 times 

the size of the moon as seen from the earth [20]. The survey 

will image 5000 degrees of the U.S. southern sky and will 

take about five years to complete. As for VISTA, its perfor-

mance requirements were so challenging that it peaks at 55 

megabytes/second data rate with a maximum of 1.4 terabytes 

of data per night [19]. But, these are now fairly commonplace. 

Many other astro-scientific databases, such as the Sloan Dig-

ital Sky Survey (SDSS) are already terabytes in size [21] and 

the Panoramic Survey Telescope-Rapid Response System 

(Pan-STARRS) is expected to produce a science database of 

more than 100 terabytes in size for the next five years [22]. 

Likewise, the Large Synoptic Survey Telescope (LSST) is 

producing 30 terabytes of data per night, yielding a total da-

tabase of about 150 petabytes [23]. As the data produced by 

the new telescopes are expected to come to the Internet, this 

picture will change radically.  

Many believe that the massive data volume and the ever 

increasing computing power will dramatically change the 

way in how conventional science and technology are con-

ducted. We believe that this surge in data will open up and 

challenge further research in each field, hence, instigating the 

search for new approaches. Likewise, such challenge needs to 

be addressed in the area of intelligent information science as 

well. 

3. Sustainable data modeling and efficient learning 

With consideration of the large influx of data, it is defi-

nitely necessary to improve the way in how conventional 

computational/analytic data models are designed and devel-

oped. Sustainable data modeling can be defined as a form of 

data modeling technology, aimed to make sense of the large 

amount of data associated in its own field, by discovering pat-

terns and correlations in an effective and efficient way. Sus-

tainable data modeling specifically focuses on 1) maximum 

learning accuracy with minimum computational cost, and 2) 

rapid and efficient processing of large volumes of data. Sus-

tainable data modeling seems to be ideal because of its ease 

in which large quantities of data are handled efficiently as 

well as its associated cost reduction observed in many cases. 

In a wider perspective, it entails a data-modeling revolution 

in e-sciences. In fact, these newly designed sustainable data 

models will effectively cope with the above data issues and, 

as a result, bring about benefits to the various e-science areas. 

Some of the excellent examples are well discussed in Patnaik 

et al., Sundaravaradan et al., and Marwah’s article [24–27]. 

Hence, in this section, we will give a few recommendations 

to green engineers/researchers on a few key mechanics of the 

sustainable data modeling.  

3.1. Ensemble models 

One of the key success elements of sustainable data mod-

eling is to maintain or improve its performance while signifi-

cantly reducing its computational cost. Recent data-modeling 

research has shown that ensemble methods have gained much 

popularity as they often perform better than individual models 

[28][29]. Ensemble method uses multiple models to obtain 

better performance than those that could be obtained from any 

of the constituent models [29][30]. However, it can result in 

significant increase in computational cost. If the model deals 

with large-scale data, model complexity and computational 

requirements will grow exponentially. An example of such 

ensemble model is the Bayes classifier [31]. In Bayes classi-

fier, each hypothesis is given a vote proportional to the likeli-

hood that the training dataset would be sampled from a sys-

tem if that hypothesis was true. To facilitate the training data 

of finite size, the vote of each hypothesis is also multiplied by 

the prior probability of that hypothesis. The Bayes classifier 

is expressed as follows:

 



Hh

iiijCc

i

j
hPhTPhcPy )()|()|(maxarg , 

where y is the predicted class, C is the set of all possible clas-

ses, H is the hypothesis space, P refers to a probability, and T 

is the training data. As an ensemble, the Bayes classifier rep-

resents a hypothesis that is not necessarily in H. The hypoth-

esis represented by the Bayes classifier, however, is the opti-

mal hypothesis in ensemble space (the space of all possible 

ensembles consisting only of hypotheses in H).  

Considering the problem of numerical weather prediction, 

ensemble predictions are now commonly made at most of the 

major operational weather prediction facilities worldwide 

[32], including the National Centers for Environmental Pre-

diction, U.S., the European Centre for Medium-Range 
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Weather Forecasts (ECMWF), the United Kingdom Met Of-

fice, Metro France, Environment Canada, the Japanese Mete-

orological Agency, the Bureau of Meteorology, Australia, the 

China Meteorological Administration, the Korea Meteorolog-

ical Administration, and CPTEC, Brazil. 

3.2. Model complexity problem 

Bayes estimation techniques have been well-adopted in 

general intelligent data modeling because they provide a fun-

damental formalism for combining all the information avail-

able, with regards to the parameters to be estimated, with op-

timized time complexity [33].  

One of the most serious problems in Bayes nonparametric 

learning models is its high-algorithmic complexity and exten-

sive memory requirements, especially for the necessary quad-

ratic programming in large-scale tasks. As a nonparametric 

Bayes classifier extracts worst-case example x and uses sta-

tistical analysis to build a classifying model, any learning al-

gorithm that examines every attribute values of every training 

example must have at least the same or worse complexity [33]. 

Many applications of machine learning deal with problems 

where both the number of features i as well as the number of 

examples xi is large. Linear Support Vector Machines are 

among the most prominent machine-learning techniques for 

such high-dimensional and sparse data. In this article, we use 

two machine-learning models as examples to be semiparam-

eterized. In other words, the two models are to be modified to 

be more efficient and fast computationally. The time com-

plexity of the Bayes and SVMs are well discussed in Elkan’s 

and Joachims’ article respectively [34][35].  

3.3.  Local learning strategy 

Yoo et al. have proposed two different support-vector-

based efficient ensemble models that have shown to reduce 

its computational cost while maintaining its performance [36]. 

Their novel learning technique has proven to be successful by 

other similar studies [7]. With a nonparametric model, a 

unique model must be constructed for each test set, which will 

significantly increase its computational complexity and cost.  

To reduce the computational cost, they have thus proposed 

to partition the training samples into clusters, with that, build 

a separate local model for each cluster – this method is called 

local learning. A number of recent works have demonstrated 

that such a local learning strategy is far superior to that of the 

global learning strategy, especially on data sets that are not 

evenly distributed [37–40]. If a local-learning method is 

adopted in the decision function of a nonparametric classifier 

(i.e., the general regression network), it will allow for the 

classifier to be semiparameterized. Its semiparametric ap-

proximation can be expressed as follows: 







 iZ

j

j

T

ji

T

i
i

xxxxcxcx
Z

1
22 2

)()(
exp

2

)()(
exp


, 

where xi is a training vector for class i in the input space, 
is a single learning or smoothing parameter chosen during the 

network training, and Zi is a number of input training vectors 

xi associated with its center ci. In nonparametric classification, 

many different types of radial basis functions can be chosen 

in place of the Gaussian function. The radial basis function, 

used in many cases, is actually a spherical kernel function, 

which is specifically used for nonparametric function estima-

tion. If the number of training samples approaches infinity, 

the nonparametric function estimation hence becomes no 

longer dependent on the parameters of the radial basis func-

tion, however, for finite training samples, we can always ob-

serve some forms of dependency on the radial basis function 

parameters. 

The local learning strategy provides more dependence on 

the radial basis function parameters than that of a nonpara-

metric model because the local learning model is a semipara-

metric approximation of a nonparametric/global learning 

model. In other words, in semiparametric modeling, model 

assumptions gets stronger than those of nonparametric mod-

els, but are less restrictive than those of parametric model. In 

particular, this approximation avoids the practical disad-

vantages of nonparametric methods at the expense of in-

creased risk of specification errors. Semiparametric models 

that are based on local learning help not only in reducing the 

model complexity but also in finding the optimal tradeoff be-

tween the parametric and nonparametric models – so as to 

achieve both low model bias and variance [41]. In short, it can 

therefore take on the inherent advantage of both the models 

while reducing its computational requirements effectively.  

3.4.  Semiparametric approximation 

The above examples can be seen as a spherical function 

mixture model with data-directed center vector allocation. 

That is because the relative widths of the spherical functions 

at each center are directly proportional to the relative number 

of training vectors associated with each center. Many differ-

ent types of computational local models, and the diverse se-

lection method of the yi and the grouping of the associated 

input vectors in each class i can be used for the global model 

semiparametric approximation. 

The local learning strategy provides a reasonable approxi-

mation since xi are sufficiently close in the input vector space. 

In that case, they can be adequately represented by a single 

center vector ci in that local space. In the case of Support Vec-

tor Regression (SVR), the ci vectors can be derived from ei-

ther the k-means or the codebook theory. In SVR, where the 

two classes are not separable, they map the input space into a 

high-dimensional feature space (where the classes are linearly 

separable), using a nonlinear kernel function. The kernel 

function calculates the scalar product of the images of two 

examples in the feature space.  

Given a n-dimensional input vector, xi=(x1,x2,…,xn) with 

two labels, yi{+1, –1} where i=1,2,...,N, the hyperplane de-

cision function of the binary SVR with kernel method is: 


















 





11
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and the quadratic program is given as: 

maximize 





1,1

),(
2

1
)(

ji

jijiji

i

i xxkyyaaaaW  ,   

subject to 0ia , ,,...,1 i  and 





1

,0
i

ii ya   

where   is the number of training patterns, ai is the parame-

ters of SVR, K (.,.) is a spherical (nonparametric) kernel func-

tion, and b is the bias term. In the above case, the local model 

can be constructed from k-means clustering. The objective 

function of the k-means clustering can be expressed as fol-

lows:   

ZC ,
min   

   


k

j

n

i

k

j

n

i

ijijiji yZRCXZ
1 1 1 1

,

2

2,
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where Xi is the ith row of the similarity matrix , Cj is a 1  m 

row vector representing the centroid of the jth cluster, R is a 

non-negative scaling parameter, and 𝑍𝑖𝑗 ∈ {0,1} is an element 

of the cluster membership matrix, whose value is equal to one 

if the ith source vector belongs to the jth cluster, and zero if 

otherwise. The first term in the objective function corre-

sponds to a cluster cohesion measure. The minimization of 

the above equation would ensure that the training vectors in 

the same cluster have highly correlated similarity vectors. The 

second term measures the skewness of class distribution in 

each cluster. The minimization of this term would ensure that 

each cluster contains a balanced number of positive and neg-

ative estimation vectors. The cluster centroid C and cluster 

membership matrix Z are estimated iteratively as follows:  

 We fix the cluster centroids and use them to deter-

mine the cluster membership matrix. 

 The revised cluster membership matrix is used to up-

date the centroids. – repeated until the algorithm 

converges to a local minimum.  

To compute the cluster membership matrix Z, we trans-

form the original optimization problem, using k slack variable 

tj, into: 

tZ ,
min   
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if the cluster membership matrix is obtained, the cluster cen-

troid Cj is updated based on the following: 

Nj
Z

XZ
CXQ

n

i ji

n

i iji
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To construct a semiparametric model, we substituted Qi (X) 

for each training sample xi used in the SVR decision function. 

The new semiparametric model’s approximation is therefore 

expressed as: 

  







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and the quadratic program is given as: 

maximize 
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As mentioned, the local model can also be constructed 

from the principle of codebook [42]. In this case, its basic idea 

is to replace key values from an original multidimensional 

vector space with values from a discrete subspace of lower 

dimension. The lower-dimension vector requires less storage 

space and the data is thus compressed.  

Consider a training sequence consisting of M source vec-

tors, T={x1, x2, …, xm}. M is assumed to be sufficiently large, 

such that all the statistical properties of the source are cap-

tured by the training sequence. We assume that the source 

vectors are k-dimensional, Xm=(xm,1, xm,2, …, xm,k), 

m=1,2,…,M. These vectors are compressed by choosing the 

nearest matching vectors, and form a codebook comprising of 

the entire set of codevectors. N is the number of codevectors, 

C={c1,c2,…,cn} and each codevector is k-dimensional, 

cn=(cn,1,cn,2,…,cn,k), n=1,2,…,N. The representative codevec-

tor is determined to be the closest in Euclidean distance from 

the source vector. The Euclidean distance is defined by: 





k

j

ijji cxcxd
1

2)(),( , 

where xj is the jth component of the source vector, cij is the jth 

component of the codevector ci, Sn is the nearest-neighboring 

region associated with codevector cn, and the partitions of the 

whole region are denoted by P={S1,S2,…,SN}. If the source 

vector Xm is in the region Sn, its approximation can be denoted 

by Q(Xm)=cn, if Xm
Sn. The Voronoi region is defined by: 

,:{ ji

k

i cxcxRxV   for all }ij  , 

the training vectors falling into a particular region are approx-

imated by a red dot associated with that region (Fig. 1.).  

To find the optimal C and P, vector quantization uses a 

square-error distortion measure that specifies exactly how 

close the approximation is. The distortion measure is given as: 
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If C and P are solution parameters to the minimization prob-

lem, then it must satisfy two conditions: (1) nearest-neighbor 

and (2) centroid. The nearest-neighbor condition indicates 

that the subregion Sn should consist of all the vectors that are 

closer to cn than any of the other codevectors: 

 NncxcxxS nnn ,...,2,1,:
2

'

2
  , 

finally, the centroid condition indicates that the codevector cn 

can be derived from the average of all the training vectors in 

its Voronoi Region Sn: 

Nn
X

c

SnXm

SnXm m

n ,...,2,1,
1







 .

 

As Elkan’s discussed [34], the local learning techniques – 

use of cn vectors for building a local model – prove that any 

intelligent learning model that examines all the attribute val-

ues of every training example must have the same or worse 

complexity. In other words, such a local learning strategy is 

far more efficient than that of the global learning strategy, es-

pecially on a large volume of data problems [37–40]. 

Fig. 1. Two-dimensional (2D) vector quantization 

3.5. Deep learning 

Shallow learning models (e.g., SVM, MLP, and GMM) 

have been widely used in the literature to solve simple or 

well-constrained problems. However, their limited modeling 

and representational power do not support their use in solving 

more complex problem, such as natural language problems. 

In 2006, the so-called deep learning (a.k.a. Representation 

learning) has emerged as new area of ML research [43–45] 

that exploits multiple layers of information-processing in a 

hierarchical architecture for pattern classification and or rep-

resentation learning (e.g., Feed-forward neural networks) [46].  

The main advantage of deep learning is referred to the drasti-

cally increased chip processing abilities, the lowered cost of 

computing hardware, and the recent advances in ML. 

 Deep neural networks (DNNs) are multilayer networks 

with many hidden layers, whose weights are fully connected 

and often initialized or pretrained using stacked Restricted 

Boltzmann Machine (RBM) or Deep Belief Networks (DBMs) 

[46]. DBM is a pretraining unsupervised step that utilizes 

large amount of unlabeled training data for extracting struc-

tures and regularities in input features [47]. DBN not only 

uses a huge amount of unlabeled training data but also pro-

vides good initialization weights for DNN. Moreover, over-

fitting and underfitting problems can be tackled by using the 

pretraining step of DBN. DNN has shown great performance 

in recognition and classification tasks, including natural lan-

guage processing, image classification, and traffic flow detec-

tion [48]. However, DNN has high computational cost and 

difficult to scale [49]. DSN addresses the scalability problem 

of DNN, simple classifiers are stacked on top of each other in 

order to construct more complex classifier [50][51].  

New techniques used in Sections 3.3 and 3.4 could fit to 

the problems of DNN naturally. The decision function of 

DNN is as follows: 




k k

j

j
x

x
P

)exp(

)exp(
 , 

where Pj represents the class probability and xj and xk repre-

sent the total input to units j and k respectively. The cross en-

tropy is defined as follows: 


j

jj pdC )log( , 

where dj represents the target probability for output unit j, and 

Pj is the probability output for j after applying the activation 

function [52]. Now, the new semiparametric model’s approx-

imation is approximated as:  




k k

j

k k

j

x

x

c

c

)exp(

)exp(

)exp(

)exp(
, 

this approximation no longer extracts worst-case example x 

and is now able to reduce its complexity effectively. As in the 

local learning strategy, the model assumptions gets stronger 

than those of nonparametric models, but they are less restric-

tive than those of parametric model while reducing its com-

putational complexity significantly.  

3.6. Big data computing 

Big data computing systems fall into two major categories, 

based on how data is analyzed with regards to time constraint 

[53]. First, batch processing of large volumes of on-disk data 

with no time constraints (e.g., MapReduce and GraphLab). 

Second, streaming processing of in-memory data in real-time 

or short period of time (e.g., Storm, SAMOA) [54][55]. In 

[54], Huang and Li argued that next-generation computing 

systems for big data analytics need innovative designs in both 

hardware and software that would provide a good match be-

tween big data algorithms and the underlying computing and 
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storage resources. 

 There are several computing frameworks, e.g., Hadoop 

[56], SHadoop [57], ComMapReduce [58], Dryad [59], Pic-

colo [60], and IBM parallel machine learning toolbox, such 

systems have the capabilities to scale up machine learning. 

The combination of deep learning and parallel training imple-

mentation techniques provides potential ways to process Big 

Data [61]. Quoc V. Le et al. [62] consider the problem of 

building high-level, class-specific feature detectors from only 

unlabeled data. Experimental results reveal that it is possible 

to train a face detector without having to label images as con-

taining a face or not.  

K. Zhang and X. Chen [63] presented a distributed learn-

ing paradigm for the RBMs and the backpropagation algo-

rithm using MapReduce. The DBNs are trained in a distrib-

uted way by stacking a series of distributed RBMs for pre-

training and a distributed backpropagation for fine-tuning. 

Experimental results demonstrate that the distributed RBMs 

and DBNs are amenable to large-scale data with a good per-

formance in terms of accuracy and efficiency. 

4. Concluding Remarks 

In this review, we provided an overview of the current state 

of research in sustainable data modeling. In particular, we dis-

cussed its theoretical and experimental aspects in large-scale 

data-intensive fields, relating to: (1) model energy efficiency, 

including computational requirements in learning, and possi-

ble approaches, and (2) data-intensive areas’ structure and de-

sign, including the relation between data models and charac-

teristics, With the surge in e-science data, sustainable data 

modeling has been shown to offer a way forward due to its 

ease in handling large quantities of data. It is also envisaged 

that such data-modeling revolution can be readily extended to 

various areas in e-science. These newly designed sustainable 

data models will not only be able to cope with the emerging 

large-scale data paradigm, but also provide a means in max-

imizing its return for the various e-science areas. 
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