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Abstract 

DNA methylation is a well-studied genetic modification crucial to regulate the functioning of the genome. Its alterations play 

an important role in tumorigenesis and tumor-suppression. Thus, studying DNA methylation data may help biomarker 

discovery in cancer. Since public data on DNA methylation become abundant – and considering the high number of 

methylated sites (features) present in the genome – it is important to have a method for efficiently processing such large 

datasets. Relying on big data technologies, we propose BIGBIOCL an algorithm that can apply supervised classification 

methods to datasets with hundreds of thousands of features. It is designed for the extraction of alternative and equivalent 

classification models through iterative deletion of selected features.  

We run experiments on DNA methylation datasets extracted from The Cancer Genome Atlas, focusing on three tumor types: 

breast, kidney, and thyroid carcinomas. We perform classifications extracting several methylated sites and their associated 

genes with accurate performance (accuracy>97%). Results suggest that BIGBIOCL can perform hundreds of classification 

iterations on hundreds of thousands of features in few hours. Moreover, we compare the performance of our method with 

other state-of-the-art classifiers  and with a wide-spread DNA methylation analysis method based on network analysis. 

Finally, we are able to efficiently compute multiple alternative classification models and extract - from DNA-methylation 

large datasets - a set of candidate genes to be further investigated to determine their active role in cancer. BIGBIOCL, results 

of experiments, and a guide to carry on new experiments are freely available on GitHub at 

https://github.com/fcproj/BIGBIOCL. 

 

Keywords: classification; machine learning; DNA methylation; cancer; disease diagnostic predictive models; algorithms and techniques to 

speed up the analysis of big medical data. 
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1 Introduction  

Tumor, or neoplasm, is a mass of tissue originated from an abnormal and 

uncontrolled division of eukaryotic cells. When tumoral cells invade and 

destroy surrounding tissues, the tumor is malignant and it is called 

cancer. According to the World Health Organization 

(http://www.who.int/mediacentre/factsheets/fs297/en/), nearly one six of 

death are caused by cancer. Since cancer is one of the leading causes of 

mortality, it is worth noting that research to fully understand its 

mechanisms and discover new ways to prevent and to treat this disease is 

fundamental to the human race. Transformation of healthy cells to 

tumoral ones is a complex process resulting from the interaction of 

genetic factors with external agents, like viruses, chemicals and physical 

mutagens. In this context, the importance of DNA methylation in 

carcinogenesis is widely recognized (Baylin, 2005; De Carvalho et al., 

2012; Feinberg et al., 2006; Figueroa et al., 2008; Zhuang et al., 2002). 

DNA Methylation is one of the most intensely studied genetic 

modification in mammals involving reversible covalent alterations of 

DNA nucleotides (Bird, 2002). In particular, the enzyme DNA 

methyltransferase catalyzes the conversion of the cytosine (typically in a 

CpG site) to 5-methylcytosine, by adding a methyl group (CH3) to 

cytosine residues in the sequence. In normal cells, this conversion results 

in different interaction properties assuring the proper regulation of gene 

expression and of gene silencing (Baylin et al., 2001). In the haploid 

human genome there around 28 million of CpG sites in methylated or 

unmethylated state (Stevens et al., 2013). It is well-known that 

inactivation of tumor-suppressor genes may occur as a consequence of 

hyper-methylation within the gene regions and a large range of cancer-

related genes can be silenced by DNA methylation in different types of 

tumors. Moreover, a global hypo-methylation, which induces genomic 

instability, also contributes to cell transformation (Kulis et al. 2010). 

Thus, methylation corresponds to inactivity, but inactivity of a repressive 

factor means stimulation. This means that studying DNA methylation 

data to identify drivers in cancer is challenging.  

Another challenge is given by the reduction of the cost of data generation 

that, especially after the employment of Next-Generation Sequencing 

technologies (Weitschek et al., 2014), has made available an enormous 

amount of raw data. The availability of big datasets creates problems 

with the application of classical algorithms for data mining and analysis 

(Greene et al., 2014).  

In this work, we focus on the adoption of big data technologies for the 

application of classification algorithms on large DNA methylation 

datasets. Even if there are many different definitions of big data, “Big 

data refers to datasets whose size is beyond the ability of typical database 

software tools to capture, store, manage and analyze” (McKinsey Global 

Institute, 2012). This definition does not focus on specific data size, but 

on the technology we adopt to manage those datasets.  

We want to extract a set of genes that may play a role in a specific 

tumor by applying supervised learning methods to DNA methylation 

datasets with a large number of features (450 thousand CpG positions). 

We aim to compute many classification models containing genes by 

applying optimized supervised learning algorithms, like Decision Trees 

(Quinlan, 1993) and Random Forests (Breiman, 2001; Svetnik et al., 

2003). We rely on Apache Spark MLlib (Meng et al., 2016), running in 

standalone or cluster mode, in order to cope with performance. In fact, 

the largeness of the input dataset does not allow to analyze and process it 

in an acceptable time with non-big data technologies.  

A previous classification study on DNA methylation (Danielsson et al., 

2015) proposed MethPed, a tool for the identification of pediatric 

tumors. Researchers built the classification model behind MethPed from 

DNA methylation datasets with 450 thousand of features. They firstly 

applied a large number of regression algorithms to select a subset of 

features with the highest predictive power; then, they adopted Random 

Forests to build the classification model. On the contrary, we want to 

apply classification algorithms to the entire dataset in order to obtain a 

large number of CpG sites and their associated genomic locations. 

Another study (Akalin et al., 2012) described methylKit, an R package 

for the analysis of DNA methylation data. This package adopts an 

unsupervised machine learning approach, working on unlabeled data. 

methylKit works in-memory and, even if it is multi-threaded, its 

execution is limited to a single machine. On our side, we want to 

perform supervised machine learning on a cluster of computational 

nodes, in order to be able to scale with the increasing dimension of input 

data. 

The algorithm proposed in our study is inspired by CAMUR for being 

applied to large input datasets. CAMUR (Classifier with alternative and 

multiple rule-based models) is a classification method that iteratively 

computes a rule-based classification model, eliminates from the input 

dataset combinations of extracted features, and repeats the classification 

until a stopping condition is verified (Cestarelli et al., 2016). The result 

of a CAMUR computation is a set of classification models. CAMUR 

worked on RNA sequencing cancer datasets with around 20 thousand 

features. In this work, we design and develop BIGBIOCL, a multiple 

tree-based classifier, to analyze DNA methylation datasets with more 

than 450 thousand features (Pidsley R. et al., 2013). Our goal is to 

extract candidate methylated sites and their related genes in few hours.  

2 Methods 

In our experiments on the application of big data technologies to the 

classification of large DNA methylation datasets, we consider three types 

of cancer: the Breast Invasive Carcinoma (BRCA), the Thyroid 

Carcinoma (THCA), and the Kidney Renal Papillary Cell Carcinoma 

(KIRP). We develop BIGBIOCL in order to run an iterative 

classification algorithm in big data environments, to achieve efficient 

supervised learning, and to extract multiple classification models. Then, 

we test our algorithm both in a single-machine and in a Hadoop YARN 

cluster.  

2.1 Datasets 

The Cancer Genome Atlas (TCGA) is a project started in 2005 and 

maintained by the National Cancer Institute and National Human 

Genome Research Institute (Weinstein et al., 2013).  The TCGA is a 2.5 

petabytes public dataset widely used in scientific research. Searching 

“The Cancer Genome Atlas” on PubMed reveals more than 2,500 

articles in the last 5 years. The TCGA dataset contains the genomic 

characterization of over 30 types of human cancer (Tomczak et al., 

2015) from more than 11,000 patients. The dataset includes cancer 

genome profiles obtained from several NGS methods applied to patient 

tissues, like RNA sequencing, Array-based DNA methylation 

sequencing, microRNA sequencing, and many others (Hayden 2014, 

Weitschek et al., 2014, Shendure, J. et. al 2008) .  

In our work, we focus on DNA methylation data. In particular, we 

consider profiles obtained using the Illumina Infinium Human DNA 

Methylation 450 platform (HumanMethylation450), which provides 

quantitative methylation measurement at CpG site level (Sandoval et al., 

2011). HumanMethylation450 allows assessing the methylation status of 

more than 450 thousand CpG sites (Dedeurwaerder et al., 2014), 

producing large datasets to be analyzed and interpreted. Even if 

HumanMethylation450 datasets can be useful for large-scale DNA 

methylation profiling, they raise problems of efficient data processing. 

http://www.who.int/mediacentre/factsheets/fs297/en/


 

Consequently, we decide to explore the adoption of big data technologies 

and infrastructures to enable the possibility of efficiently applying 

machine learning algorithms to such large datasets. We rely on the latest 

TCGA data release available at The Genomic Data Commons data 

sharing platform (https://gdc.nci.nih.gov/). 

In our experiments, we use the beta value as an estimate of DNA 

methylation level. Beta value (Du P. et al., 2010) is defined as the ratio 

of the methylated allele intensity and the overall intensity (i.e. the sum of 

methylated and unmethylated allele intensities): 

βn =
max(Methn,0)

max(Methn,0)+max(Unmethn,0)+ε
 (1) 

where 𝑀𝑒𝑡ℎ𝑛 is the nth methylated allele intensity, 𝑈𝑛𝑚𝑒𝑡ℎ𝑛is the nth 

unmethylated allele intensity, and𝜀 is a constant offset used to regulate 

the beta value where both intensities are low. It is worth noting that beta 

value is a continue variable in the range [0, 1], where 0 means no 

methylation and 1 full methylation.  

Table 1. Datasets used in this study 

Dataset Number of Samples Number of Features 

BRCA 897 485,512 

THCA 571 485,512 

KIRP 321 485,512 

 

We focus on three DNA methylation datasets extracted from TCGA: 

BRCA, THCA, and KIRP (Table 1). For each dataset, we filter the input 

data matrix to cope with missing values and to exclude control cases 

(this is important to reduce the classification task to binary classification, 

having only tumoral and normal cases). The final data matrix (Table 2) 

has the following structure: 

 Rows represent samples, i.e. the profile of a patient tissue. The first 

row is the header, so it contains column names. 

 The first column contains ID of samples. The last column is the 

category, specifying if the sample is “tumoral” or “normal”. 

 All other columns represent CpG sites, and the corresponding cells 

contain the beta value for the CpG site. We use the Illumina 450k 

manifest to know where a CpG site is located and which gene 

corresponds to it. The manifest is available on Illumina website 

(https://support.illumina.com/array/array_kits/infinium_humanmet

hylation450_beadchip_kit/downloads.html). 

 Missing values are encoded with the question mark. 

Table 2. Structure of the DNA methylation data matrix extracted from 

TCGA 

Sample ID  cg13869341   …  cg00381604   Class 

TCGA-A7-A0DC-11 0.971644 … 0.017485 Tumoral 

TCGA-BH-A0BV-11A 0.925557 … ? Normal 

TCGA-BH-A0DZ-11A 0.907020 … 0.019204 Tumoral 

2.2 Supervised Learning 

The goal of our study is to develop an iterative algorithm that can 

efficiently extract a set of genes from large DNA methylation cancer 

datasets. The first step is the application of a supervised learning method 

(Tan et al., 2005; Weitschek et al., 2014). This is possible because the 

datasets used in this study (Table 1) are labeled datasets, i.e., we know if 

each tissue belongs to the ‘normal’ or ‘tumoral’ category. Using a 

labeled dataset (or a part of it) as a training set, the supervised learning 

algorithm infers some hypothesis from the features and builds a 

classification model, which is simply a function that assigns a category 

to a sample. We perform tests with both Decision Trees (Quinlan, 1993) 

and Random Forests (Breiman, 2001; Svetnik et al., 2003). Then, we 

extract CpG sites (features) from the classification model and the 

corresponding genes. The list of genes extracted from a classification 

model is part of the output of our algorithm. In fact, as we explain in the 

next section, our algorithm runs many iterations, and the overall result is 

the union of the results of each iteration. It is important to highlight that 

we are not interested in the decision model to classify new data (even if 

this would be possible), but to extract a list of candidate genes that may 

play a role in cancer.  

Decision Trees are used for recursive binary partitioning of the feature 

space. Starting from the root, which contains the entire training dataset, 

Decision Trees are built by splitting the dataset into distinct nodes, where 

a node defines the probability of a point to be of a certain category. The 

final prediction is the label of the final leaf node reached during the 

decision process. Decision Trees are smooth to understand and they 

allow validating the model with statistical tests (like entropy or 

information gain). Unfortunately, it is easy to create a tree that overfits 

the input data. In addition, since Decision Trees use a greedy algorithm, 

the optimal tree is sometimes not found. 

Random Forests solve many problems of Decision Trees, especially 

when applied to very large datasets. Random Forests run many Decision 

Trees in parallel and they fit well with big data technologies and map-

reduce algorithms, since data can be split on different machines. There 

are two points of randomness that reduce the possibility of overfitting 

and over generalization. First of all, each tree is created from a random 

selection of N data points from the training set. Then, during the decision 

process of a specific tree, there is a random selection of M features from 

the global set of features. For all those reasons, while both Decision 

Trees and Random Forests are explored, the final implementation of 

BIGBIOCL is based on Random Forests. 

2.3 BIGBIOCL: a multiple tree-based classifier for big 

biological data 

CAMUR (Cestarelli et al., 2016) is a supervised method that can extract 

alternative and equivalent classification models from a labeled dataset 

(Weitschek, 2016). CAMUR adopts an iterative feature elimination 

technique: it uses the supervised RIPPER algorithm (Cohen, 1995) to 

compute a rule-based classification model, iteratively eliminates 

combinations of features that appear in the model from the input dataset, 

and performs again the classification until a stopping condition is 

verified. Once a feature is eliminated from the dataset, it can be 

reinserted in the next iteration (loose execution mode) or discarded 

forever (strict execution mode). CAMUR has been successfully applied 

to RNA-sequencing data (Cestarelli et al., 2016) extracted from TCGA, 

and evaluated on Gene Expression Omnibus (GEO) datasets. Datasets 

used in CAMUR tasks contained at most 30 thousand of features and a 

thousand of samples. When trying to apply CAMUR to DNA 

methylation datasets, which contain hundreds of thousands of features, 

the algorithm suffers of memory and execution time problems.  

In this work we propose BIGBIOCL, a JAVA command-line software 

that is inspired by CAMUR to enable the efficient management and 

classification of large datasets. BIGBIOCL adopts big data solutions and 

introduces many innovations to CAMUR: 

https://gdc.nci.nih.gov/
https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
https://support.illumina.com/array/array_kits/infinium_humanmethylation450_beadchip_kit/downloads.html
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 BIGBIOCL is based on MLlib, the Apache Spark’s scalable 

machine learning library. The adoption of Apache Spark allows 

executing the algorithm on Hadoop YARN (Vavilapalli et al. 

2013) cluster, with the possibility to parallelize the machine 

learning task on several machines.  

 Even if both Decision Trees and Random Forests have been tested, 

the final implementation of BIGBIOCL is based on Random 

Forests. One of the reasons is that, Random Forests naturally fit 

with parallel computation, since each node of a cluster can 

compute a different tree of the forest and send the result back to a 

master node.  

 BIGBIOCL, following the CAMUR method, iteratively computes 

a Random Forest model. After each iteration, BIGBIOCL 

permanently removes all features that appear in the computed 

model from the input dataset, and not only combinations of them. 

This approach is similar to the CAMUR loose execution mode, but 

removing all extracted features makes the entire process lighter 

since there is no more the need to compute the power set at each 

iteration. Obviously, having hundreds of thousands of features 

guarantees that a relevant number of alternative classification 

models are still extracted, as we show in the next section.  

BIGBIOCL iterative procedure stops when the reliability of the 

classification model is below a given threshold, or when a maximum 

number of iterations has been reached. Both stopping conditions must be 

specified by the user as command-line parameters. We use the  

F-measure to evaluate the accuracy of classification models. The  

F-measure is defined as the weighted harmonic mean of precision (P) 

and recall (R). We decide to equally weight precision and recall, 

obtaining the formula: 

F − measure =
2PR

𝑃+𝑅
 (2) 

It is worth noting that F-measure is high when both precision and recall 

are high. Precision and recall are defined in terms of true positive TP (the 

number of samples that are assigned to a category and that belong to that 

category), false positives FP (the number of samples not belonging to a 

category but assigned to that category), and false negatives FN (the 

number of samples belonging to a category but not assigned to that 

category): 

P =
TP

𝑇𝑃+𝐹𝑃
 ; R =

TP

𝑇𝑃+𝐹𝑁
 (3) 

When the iterative algorithm stops, the software collects the list of 

features that appear in all computed classification models. Since features 

are CpG sites that are located in different genomic regions, we use a 

mapping file for discovering the gene where a CpG site is located (see 

section 2.1 for further details). The software can therefore derive a list of 

candidate genes as final output of the computation, associating them to 

the tumor under study. Extracted genes can then be explored and 

evaluated by biologists to investigate their role in cancer. Obviously, 

BIGBIOCL can be applied also to different datasets. In fact, it is not 

limited to DNA methylation data, but it works on any input dataset 

having the structure illustrated in Table 2.  

3 Results 

In this section, we discuss the path that led to the Random Forests 

implementation of BIGBIOCL, providing statistics about experiments 

and a discussion about results. All our experiments refer to the datasets 

listed in Table 1. 

First of all, we tried to use CAMUR in strict mode to extract 

candidate genes from the BRCA dataset. As we have previously noted, 

CAMUR works properly with TGCA RNA-sequencing data, where the 

number of features is around 30 thousand. The BRCA dataset - stored in 

a 6.5GB text file - includes more than 450 thousand of features and 

CAMUR cannot manage such amount of data. The experiment was 

executed using the workstation described in Table 3, allocating 22GB of 

RAM and 7 cores to the Java Virtual Machine (JVM). After 16 minutes, 

CAMUR ran out of memory. 

Table 3. Workstation used for experiments 

Parameter Value 

Architecture x86 

CPU Intel(R) Core(TM) i7-4790 CPU @ 3.60GHz 

Number of CPUs 8 

RAM 24GB 

OS CentOS Linux release 7.3.1611 

Java Version Oracle jdk1.8.0_131 

Afterwards, we executed several experiments, relying on Apache Spark 

MLlib: 

(1) Single iteration of Decision Trees. We ran Decision Trees in 

Spark local mode, in order to evaluate results and performance. 

(2) Single iteration of Random Forests. We ran Random Forests in 

Spark local mode, in order to compare results and performance 

with Decision Tree experiments. 

(3) Execution of Linear Support Vector Machines (SVMs) and 

Naïve Bayes. We ran SVMs and Naïve Bayes in Spark local 

mode to compare the accuracy of Random Forests results with 

other classification methods.  

(4) BIGBIOCL: this is the Random Forest iterative algorithm (with 

feature deletion) implemented with big data technologies. The 

algorithm was tested both in Spark local mode and on Apache 

Hadoop YARN multi-node cluster. 

Apache Spark local mode is a non-distributed single-JVM configuration 

that allows Spark to run all its execution components (i.e. driver, 

executor, scheduler, and master) in the same JVM. In local mode, the 

default parallelism is the number of threads specified as command line 

parameter. Table 4 and Table 5 show the configuration and results of 

experiments with a single iteration of Decision Trees in the same 

workstation used for testing CAMUR. In all our experiments we used 

70% of randomly sampled input data to build the model (training set), 

and 30% of data for the evaluation (test set). Results show that 

BIGBIOCL can manage large datasets with hundreds of thousands of 

features. 

Table 4. Configuration of Decision Tree experiments - Spark local 

mode (dataset: BRCA) 

ID  Memory Threads Max Depth Max Bins Impurity  

1 5 GB 4 5 16 Gini  

2 5 GB 4 5 32 Gini  

3 12 GB 7 5 32 Gini  

4 12 GB 7 10 32 Gini  

5 12 GB 7 5 8 Gini  

6 18 GB 7 5 128 Gini  

 



 

Experiments with Decision Trees demonstrate that we were able to 

classify large datasets, even using only 5 GB of memory. The execution 

time decreases drastically if the parameter max bins is reduced. Even if 

execution time seems to be acceptable (the algorithm terminates at most 

in one hour), some observations led us to test (and then adopt) Random 

Forests:  

 We could extract only few features from each execution of the 

algorithm. We are interested in identifying a set of candidate genes 

for a specific type of cancer, thus having more features would be 

preferable. 

 Decision Trees offer few possibilities of parallelization. This is 

important especially in the context of multiple iterations, where 

parallelization can reduce the overall execution time. On the other 

hand, Random Forests allow splitting the data on many machines, 

reducing the execution time of each iteration. 

Table 5.  Results of Decision Tree experiments described in Table 4 

ID Build Time Evaluation time F-Measure #Features  

1 37.7 min 17.5 min 98,51% 2  

2 OOM - - -  

3 66.23 min 1.96 min 98.76% 4  

4 67.96 min 1.92 min 99.20% 4  

5 9.6 min 1.92 min 98.03% 3  

6 OOM - - -  

This is Table shows the execution time and results of a single iteration of Decision 

Trees. The configuration adopted for each experiment is provided in Table 4. “ID” 

is the unique identifier for an experiment. “Build Time” is the time needed to build 

the classification model, while “Evaluation time” is the time for the evaluation of 

the model on test data (30% of input data). The accuracy of the model is given by 

the F-measure. The column “#Features” represents the number of features that 

appear in the classification model, i.e. the CpG loci that can be extracted. “OOM” 

means that the experiment ran out of memory. 

Table 6 and Table 7 show results of some experiments with Random 

Forests. Overall, a single execution of Random Forests performs 

definitely better than a single execution of Decision Trees. Even if 

experiment 7 produced a result in more than one hour and a half, 

experiment 8 shows that increasing the memory from 5 GB to 12 GB 

dramatically improves the execution time. To build the model, 

experiment 8 required 38.5% of the time of the equivalent experiment 

with Decision Trees (ID=3). In addition, Random Forests produce more 

features, which is important to identify more genes that may play a role 

in cancer.  

Table 6. Configuration of Random Forest experiments - Spark local 

mode (dataset: BRCA) 

ID  Memory Threads Max Depth Max Bins #Trees Impurity  

7 5 GB 7 5 16 5 Gini  

8 12 GB 7 5 16 5 Gini  

9 12 GB 7 5 16 10 Gini  

Table 7.  Results of Random Forest experiments described in Table 6 

ID Build Time Evaluation time F-Measure #Features  

7 1 h 35 min 20.37 min 98,92% 33  

8 25.53 min 1.73 min 98.47% 40  

9 28.87 min 1.97 min 98.83% 77  

Additional experiments with other methods for large-scale 

classification tasks, i.e. Support Vector Machines (SVMs) and Naïve 

Bayes, justify the adoption of Random Forests in the final 

implementation of BIGBIOCL. Comparing Tables 7 and 9, we observe 

that experiments with SVMs show greater execution times than 

experiments with Random Forests. Even varying the amount of RAM 

(from 5GB to 18GB), execution time of SVMs does not change. In 

addition, while F-Measures of Tables 7 and 9 are comparable, SVMs do 

not provide a human interpretable model that we can use to create a list 

of candidate genes. We have also performed experiments with 

multinomial Naïve Bayes, but F-Measures were much lower and we 

could not rely on a human interpretable model to extract relevant 

features. 

Table 8. Configuration of SVM experiments - Spark local mode 

(dataset: BRCA) 

ID  Memory Threads 
Regularization  

method 

Regularization  

parameter 
#Iterations  

SVM1 12 GB 7 L2 1.0 100  

SVM2 12 GB 7 L2 1.0 200  

SVM3 12 GB 7 L1 0.1 100  

SVM4 12 GB 7 L1 0.1 200  

Table 9.  Results of SVM experiments described in Table 8 

ID Execution Time F-Measure  

SVM1 2 h 03 min 98.95%  

SVM2 3 h 32 min 98.74%  

SVM3 1 h 40 min 95.46%  

SVM4 1 h 19 min 99.16%  

 

For comparing the performance of our algorithm with a sequential 

implementation of Decision trees and Random Forest classifiers, we 

decided to run the classification analyses by adopting the Weka software 

package (Hall et al., 2009). The amount of memory we had to allocate 

was 24GB in order to permit the execution of the sequential algorithms.  

The running time of the sequential Random Forest on BRCA was 15.5 

minutes (model building and evaluation) setting the max bins to 2, the 

number of trees to 20, and the max depth to 5 obtaining an F-Measure 

value of 98.33%. Conversely, the Random Forest Apache Spark single 

node implementation with the same settings took 8 minutes with an  

F-Measure value of 99.81%. 

Moreover, when testing the sequential implementation of the Decision 

Tree results are even more noteworthy. A run of the sequential 

implementation with the same settings of experiment 5 in Table 4 did not 

compute a solution even after 20 days of computation, while the Apache 

Spark implementation terminated just in 10.5 minutes. Finally, it is 

worth noting that both Spark implementations need less memory (12GB 

and 18 GB) to perform the classification analyses. 

BIGBIOCL was tested both running Apache Spark in local mode and on 

Apache Hadoop YARN Cluster. Experiments with Hadoop Cluster were 

performed using PICO (http://www.hpc.cineca.it/hardware/pico), the 

latest Cineca’s Italian Supercomputing infrastructure for big data. PICO 

allows allocating computational nodes and memory on demand when 

running Hadoop jobs (Table 10). Experiments with Spark in local mode 

were conducted in the workstation described in Table 3. In both cases, 
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we used Apache Spark 2.1.1. BIGBIOCL implements the following 

iterative algorithm:  

 At each iteration, Apache MLlib Random Forests model is 

computed on the working dataset S. On a cluster, trees of the 

Random Forests can be computed in parallel on different nodes. 

 At iteration 0, S is equals to the input dataset. 

 After each iteration, the set of features F that appear in the 

computed model is removed from S. Thus, next iteration runs on 

the dataset{S − F}. 

 Once eliminated, features are never reintegrated in the working 

dataset S. 

 The algorithm terminates when F-measure on test data is below a 

threshold MF (parameter provided by the user) or the number of 

iterations is bigger than a threshold MI (in the rest of this article 

we consider𝑀𝐼 = 1000). 

Tables 11 and 12 show results of experiments running Spark in local 

mode. The input dataset is BRCA. As we can see, setting the F-measure 

threshold to 99%, BIGBIOCL ran 2 iterations in around one hour, 

extracting 224 candidate genes. Relaxing that constraint, we had more 

iterations and more candidate genes. When the F-measure threshold was 

set to 97%, BIGBIOCL executed 96 iterations, computing 5072 genes in 

less than 2 days. Experiments on Hadoop YARN Cluster are summarized 

in Tables 13 and 14. They were useful to evaluate how performance 

improves with parallelization on multiple computational nodes. Results 

are attractive. Experiment 16 (on Hadoop) corresponds to Experiment 12 

(Spark local mode) and its execution time was 22% of Experiment 12.  It 

is also interesting to note (Experiments 16 and 17) that increasing the 

number of working nodes of the cluster (so also the total number of 

CPUs) we got more iterations and more genes. 

We wish to highlight that all the extracted genes related to each tumor 

are available at supplementary data S1. Additionally, a comprehensive 

description of the experimentation is provided in the wiki of BIGBIOCL 

on GitHub. 

Furthermore, if we compare Experiment 18 (on Hadoop) with 

Experiment 13 (Spark local mode), we can notice again how the 

execution on a cluster outperforms the Spark local mode, both in terms 

of execution time and of number of features extracted. On average, 

running BIGBIOCL in Spark local mode requires around 1500 seconds 

to generate the classification model at each iteration, while using 3 

PICO’s nodes on Hadoop YARN cluster the average time to build a 

classification model is 330 seconds. 

Table 10. PICO’s hardware, used for experiments with Hadoop Cluster 

Parameter Value 

Total Nodes 66 

CPU Intel Xeon E5 2670 v2 @2.5Ghz 

Cores per node 20 

RAM per node 128 GB 

 

Tables 15 and 16 show results of some experiments with THCA and 

KIRP datasets. Experiments refer to the execution of BIGBIOCL in 

Spark local mode, using the workstation described in Table 3. On 

average, the time to build a classification model for the KIRP dataset is 

340 seconds, while for THCA this number increases to 945 seconds. 

This result is quite obvious, since THCA contains 571 samples, while 

KIRP only 321. What is interesting to note is that on THCA the 

algorithm stops after 7 iterations, while on KIRP after 34 iterations, even 

if the KIRP dataset contains less samples. This depends on the different 

distribution of beta values in the two datasets. 

For estimating the execution time of a sequential implementation of 

our algorithm, we can consider experiment number 17 (Tables 13 and 

14) whose execution time was 13 h 30 min. If we run the same number 

of iterations (i.e., 116) with the sequential implementation of Random 

Forest of the Weka software package, the execution time will be at least 

of 30 h (not taking into account potential overhead).  

Table 11. Configuration of BIGBIOCL experiments - Spark local mode 

(dataset: BRCA) 

ID  Memory Threads Max Depth Max Bins #Trees 
Stopping  

Condition 
 

10 18 GB 7 5 16 5 F-measure < 98%  

11 18 GB 7 5 16 10 F-measure < 98%  

12 18 GB 7 5 16 10 F-measure < 97%  

13 18 GB 7 5 16 20 F-measure < 99%  

Table 12.  Results of BIGBIOCL experiments described in Table 11 

ID Overall Time #Iterations #Features #Distinct Genes  

10 3 h 33 min 8 331 230  

11 13 h 16 min 26 2345 1460  

12 46 h 34 min 96 9780 5072  

13 1 h 2 min 2 329 224  

“Overall time” is the time to execute all iterations. For each iteration, execution 

time includes the time to build the model, the time to evaluate the model on test 

data, and the time to evaluate the model on training data. 

Table 13. Configuration of BIGBIOCL experiments - Hadoop YARN 

Cluster (dataset: BRCA) 

ID  #Nodes 
Mem 

per node 

CPU 

per node 

Max 

 depth 

Max  

bins 
#Trees 

Stopping  

Condition 
 

14 2 96 GB 20 5 16 5 F-measure < 98%  

15 2 96 GB 20 5 16 10 F-measure < 98%  

16 2 96 GB 20 5 16 10 F-measure < 97%  

17 3 96 GB 20 5 16 20 F-measure < 97%  

18 3 96 GB 20 5 16 20 F-measure < 99%  

“#Nodes” is the number of PICO’s nodes allocated to the execution of the 

experiment. For each working node, we specified an amount of memory (“Mem per 

node”) and the number of CPU (“CPU per node”).  

Table 14.  Results of BIGBIOCL experiments described in Table 13 

ID Overall Time #Iterations #Features #Distinct Genes  

14 28.58 min 4 165 123  

15 1 h 56 min 16 1352 907  

16 10 h 36 min 88 8722 4607  

17 13 h 30 min 116 24984 9539  

18 22.15 min 3 507 352  

 

 



 

Table 15. Configuration of BIGBIOCL experiments - Spark local mode 

(datasets: THCA and KIRP) 

ID  Memory Threads 
Max 

 depth 

Max  

bins 
#Trees 

Stopping  

Condition 
 

THCA 19 18 GB 7 5 16 5 F-measure < 97%  

KIRP 20 18 GB 7 5 16 5 F-measure < 97%  

Table 16.  Results of BIGBIOCL experiments described in Table 15 

ID Overall Time #Iterations #Features #Distinct Genes  

THCA 19 2 h 13 min 7 541 398  

KIRP 20 4 h 21 min 34 1215 852  

 

In order to compare our results with a wide-spread DNA methylation 

analysis method, we followed the procedure described in (Bartlett, et al. 

2014). We have computed all the pairwise Pearson correlation 

coefficients (PPCC) between all CpG islands in the three examined 

datasets (BRCA, KIRP, and THCA). The aim of this operation was to 

construct a correlation network for each tumor differentiating normal and 

tumoral tissues.  

To achieve this goal, a cleaning of the dataset was required. In 

particular, for each tumor, we have replaced the unavailable 

measurements in our datasets with the mean value computed on the 

known beta values. Additionally, because of the nature of this analysis, 

we have fixed a threshold at 0.9 on the correlation measure to identify 

the strong correlated CpG islands only. This means that, if the 

correlation between the island X and the island Y is greater than 0.9 (in 

module), an edge between X and Y will be inferred. 

It is worth noting that this kind of analysis was extremely time 

consuming due to the dimension of our datasets and due to the non-

parallel implementation of the method described in (Bartlett, et al. 2014), 

as shown in Table 17.  

Due to the small dimension of the inferred networks (Figure 1, 2, 3), 

any analytical method from network theory is useful, except in the case 

of KIRP (tumoral tissue) in which a quasi-clique is emerged (see Figure 

2). For this reason, we have considered all the CpG islands in our 

networks as relevant features to compare with the novel feature 

extraction method proposed in this paper. 

We mapped the extracted CpG islands to the genes and we 

investigated if they are equal to the ones computed by BIGBIOCL. 

Indeed, when analyzing BRCA we found that seven out of eight genes 

appear also in the results of BIGBIOCL (AGRN, ISG15, SAMD11, 

SDF4, SPICE1, TNFRSF18, TNFRSF4). For KIRP two out of six genes 

appear also in BIGBIOCL (ZNF132, SAMD11), while for THCA no 

common genes have been identified. For further details the reader may 

refer to supplementary material S2. We wish to highlight that our method 

BIGBIOCL extracts many novel genes, which represent additional 

knowledge with respect to standard correlation analysis. 

 

 

 

Figure 1. Inferred correlation network for the BRCA tumor 

Figure 2. Inferred correlation network for the KIRP tumor 

 

Figure 3. Inferred correlation network for the THCA tumor 
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Table 17. Computational time and inferred nodes and edges with the 

DNA methylation network correlation analysis (Bartlett, et al. 2014) 

implemented in JAVA and executed on the Microsoft Azure Cloud 

Computing environment using a dual core virtual processor with 14 GB 

RAM memory and Ubuntu Linux 17.04 operating system 

Disease Tissue Experiments Time Nodes Inferred edges  

BRCA 
normal 97 3d 20h 20m 5 5  

tumoral 798 18d 12h 57m 49 34  

KIRP 
normal 44 1d 17h 30m 0 0 

 

tumoral 275 8d 7h 34m 37 73 
 

THCA 
normal 55 2d 3h 44m 2 1 

 

tumoral 514 11d 1h 4m 21 14  

 

4 Discussion 

Our experiments demonstrate that BIGBIOCL can compute multiple 

classification models for datasets with hundred thousands of features in 

few hours. In addition, thanks to the possibility to execute the software 

on a Hadoop cluster, execution time can be reduced even by 75% 

compared to Spark local mode. Obviously, the possibility of the software 

to reach a high level of parallelism allows adding computational nodes to 

the cluster when the size of the input dataset explodes. The first 

parameter that can be tuned to improve the parallelism and performance 

is the number of trees of the Random Forests. This number should be 

increased only when there is an increment in the size of the input dataset. 

Increasing the number of trees causes an increase of the training time, 

which can be contained by adding more computational nodes to the 

cluster (in fact, trees can be computed in parallel in different nodes).  

We compared BIGBIOCL with standard DNA methylation network 

analysis and other supervised machine learning methods (i.e., SVM and 

Naïve Bayes) obtaining new knowledge in terms of extracted CpG sites 

and related genes. In fact, BIGBIOCL represents a novel approach to 

DNA methylation data classification. BIGBIOCL performs classification 

using the entire set of features in the input dataset, even when features 

are hundreds of thousands. This is made possible by the adoption of big 

data technologies for the computation of the classification model. Other 

tools work with a smaller set of features (Cestarelli et al., 2016), or 

reduce the number of features applying regression algorithms 

(Danielsson et al., 2015). 

Datasets used in our experiments were extracted from TGCA and 

obtained using the HumanMethylation450 platform. This platform 

provides beta values for more than 485,000 CpG loci. Even if there are 

more than 28 million of CpG loci in the human genome, data from 

HumanMethylation450 cover 99% of RefSeq genes, so it is a good 

starting point to identify drivers for cancer.  

In our work, we have provided a methodology and a software tool to 

analyze HumanMethylation450 data and even bigger datasets. Then, 

genes extracted from the execution of BIGBIOCL (available at 

supplementary data S1) can be used by biologists to determine their 

relevance in a given type of cancer. If we consider that there are around 

25 thousand of genes in human DNA, limiting their number allows 

focusing the attention of the researcher. Analyzing results of experiments 

on BRCA data, we can find some genes that are well known in literature 

for their role in breast cancer. For example, mutations of the tumor 

suppressor gene TP53 and of PIK3CA have been often associated with 

BRCA (Kim et al., 2017). In addition, both inherited and de novo 

mutations of BRCA1 and BRCA2 – which mainly cause inactivity of 

such genes - have been associated to patients with breast cancer (King  et 

al., 2013; Antonucci et al., 2017). A recent study (Tsai  et al. 2017) 

argues that up-regulation of the BDNF signaling pathway can be 

associated to triple negative breast cancer cells (i.e. cells that test 

negative for HER2, estrogen receptors, and progesterone receptors). We 

have obtained BDNF as result of several experiments (IDs 12, 15, 16, 

and 17). Furthermore, other genes that are considered high-confidence 

oncogenic candidates (Zheng et al., 2016) have been extracted with 

BIGBIOCL, as ALDH3A1, CLDN15, SFN, and ENDOD1. 

5 Conclusion 

In conclusion, BIGBIOCL can efficiently manage large datasets, 

iteratively building equivalent classification models, extracting features 

(genes in our experiments where features are CpG loci, but the algorithm 

can potentially be used with other data), and scaling up with the size of 

the input dataset. Then, results need to be further validated. The 

algorithm can be improved. It currently builds the classification model 

on 70% of input data, using 30% of data as test data (the F-measure on 

test data is used as stopping condition of the iterations). This choice was 

important during the development and the test of BIGBIOCL. In order to 

get more precise results and to avoid to loose information, the algorithm 

could build classification models on 100% of the input data. In addition, 

as already said, BIGBIOCL can be applied to other type of data, 

including other NGS experiments and even bigger datasets. Lastly, 

BIGBIOCL can be used as a component of a pipeline to give sense to 

raw data, reducing the entropy and focusing the attention on a smaller set 

of dimensions. 
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