
Models and Practices in Urban Data Science at Scale

Marco Balduini1, Marco Brambilla1, Emanuele Della Valle1,
Christian Marazzi1, Tahereh Arabghalizi1, Behnam Rahdari1,

Michele Vescovi2
1Politecnico di Milano. Dipartimento di Elettronica, Informazione e Bioingegneria.

Via Ponzio, 34/5. I-20133 Milano, Italy.
{firstname.lastname}@polimi.it

2 SKIL Joint Open Lab – Telecom Italia. Via Sommarive 9, Povo, Trento, Italy
michele.vescovi@telecomitalia.it

Abstract

Cities can be observed through a broad set of sensing technologies, spanning
from physical sensors in the streets, to socio-economic reports, to other kinds
of sources that are able to represent the behaviour of the citizens and visitors,
such as mobile phone records, social media posts, and other digital traces.

In this paper, we propose a conceptual framework for putting at use this
variety of Big Data sources, with a unified approach that applies spatial and
temporal analysis over heterogeneous streams of data. We define spatial analysis
based on conceptual grids (made of cells) over the city space, and then we study:
the time series of signals both at grid and cell level; the correlation across signals
and across cells; the prediction of city dynamics based on multiple signals; and
the identifications of anomalies based on the difference between the observed
dynamics and their prediction.

To implement this model we propose a general architectural framework that
uses Big Data technologies (such as HDFS, YARN, HIVE, PIG, Cascalog, Spark,
Spark SQL, Spark Streaming and SparkR) and can be deployed in different
configurations based on different needs. By taking an inherent data science
approach to the problem we are able to address at scale: technical problems such
as heterogeneous time and space granularity of the data, as well as appropriate
interpretation of the results through tools that enable intuitive and immediate
visual perception of emerging patterns and dynamics.

We demonstrate feasibility, generality and effectiveness of our Urban Data
Science at scale approach through multiple use cases and examples taken from
real-world requirements collected in various cities and accounting for diverse
business and city needs.

Keywords: Smart City, Big Data, Social Media, Urban Computing, Urban
Sensing, Behavioural Analytics.
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1. Introduction

In the last years, cities became a sources of a variety of Big Data. Since
the mid 2000’s it was possible to observe the digital traces left by citizens and
visitors using mobile phone records and social media posts [1], but only recently
cities have been equipped with a broad set of sensing technologies that allow5

observing the physical behavior of citizens and visitors.
Thanks to Big Data technologies, we are now able to capture a sharper and

sharper picture of our cities and to track changes in their dynamics with seconds
of delay. And thanks to Data Science methods, we are now able to analyze
at scale both the digital reflections of our cities and their physical everyday10

businesses.

1.1. Context
Exploring cities of the 21st century offers a great opportunity to understand

the ever evolving modern society. In fact, cities are increasingly attracting new
people, with half of the world’s inhabitants living in urban areas [2]. Further-15

more, cities are not only physical centers but also virtual hubs, where individuals
and communities interact and exchange messages through social media[3]. As a
consequence of this dense network of interactions, a great amount of data, the
so called Big Data [4], can be tracked.

On the one hand, data created by the single identities of the city, i.e. inhab-20

itants, are available; on the other hand, we need to capture the big picture by
aggregating them. This situation allows us to observe both the activities at a
micro-societal level and to draw the main features that characterize the city at
a macro-societal level. Therefore, Big Data can be regarded as a lens to under-
stand cities, or, using the words by De Rosnay [5], Big Data is a macroscope –25

i.e., a tool for capturing complex systems – applied to the urban environment.
In this context, data visualization is a recognized method to directly inter-

act with data that allows to absorb more information easily, discover patterns
between business and operational activities, and identify emerging trends faster.
As such, it allows increasing the value detection and intake based on data in-30

sights, and therefore it must be considered since the early phases of the design,
thus improving the understanding of city events and phenomena.

1.2. Existing works
Urban computing [6] has clearly shown the huge opportunity for Big Data

research to exploit mobile phones data to get insights into urban dynamics and35

human activities. This type of data was used to estimate the density of crowd
and vehicles in urban regions [7, 8, 9, 10, 11] and to predict returning frequencies
to points of interest[12, 13]. When merged with other kind of information,
mobile phones data can reveal interesting insights for city dynamics and urban
monitoring [14, 15, 16, 17]40

Although mobile phones data is a priceless source to gather underlying pat-
terns of cities and their citizens, they hide some limitations since they can not
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reveal any information about people interests and thoughts. A parallel investig-
ation of social media steams has recently carried out by the research community
[18, 19, 20, 21, 22, 23, 24].45

However, only few research groups tried to tame the variety present in those
Big Data sources [25, 26]. This is exactly were our research began in 2013.
We have already published few specific papers on this topic [27, 28], but this is
the time we tell the full story in a comprehensive way and providing extensive
real-world evidence on the validity of the approach we propose.50

1.3. Objectives
In this paper, we aim at defining a high-level model, a method, and a

set of practices that allow us to represent the urban ecosystem in terms of
analysis and aggregations that improve decision making processes and deliver
added value to city stakeholders, spanning citizens, tourists and visitors, public55

officials, and businesses.
In order to obtain this: (1) we define a high-level semantic model of the

domain and a logical architecture that fits it; (2) we implement both of them in
a set of technical embodiments using Big Data technologies; and, then, (3) we
put them at work on concrete cases of urban data monitoring and computing60

using Data Science method at scale.
Thanks to this three–step–process, we obtain the following benefits:

• We have available a common set of conceptual assets (models) and tech-
nical assets (implementations) that can be reused across different scen-
arios.65

• We are able to integrate diverse city-wide data sources, with different
types of content, format, and time / space granularity.

• We enable different types of analysis and processing, spanning description,
prediction and anomaly detection.

• We allow accurate and intuitive visualization and navigation of the results,70

which are considered since the early phases of the design, thus improving
the understanding of city events and phenomena.

1.4. Research Problems
This paper will, therefore, address the research problems of:

RP1. defining a conceptual model as well as a logical architecture;75

RP2. defining appropriate technical instantiations of the above models;

RP3. assessing feasibility and effectiveness of those models and practices by
deploying them in real world scenarios.

The above research questions will be addressed taking into account the fol-
lowing requirements:80
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Req1. Enable aggregation, analysis and prediction over city-wide data streams
along space and time axes;

Req2. Enable integration of heterogeneous data sources, considering diverse
content types and (temporal and spatial) granularity;

Req3. Support intuitive and explanatory visualization and exploration of res-85

ults.

1.5. Structure of the paper
The remainder of the paper is organized as follows. Section 2 presents the

conceptual model at the core of our approach. Section 3 covers the different
methods we employ in our experiences. Section 4 describes the architectural in-90

frastructure that implements the proposed model. Section 5 extensively presents
our experiences in applying the conceptual model presented in Section 2, the
methods illustrated in Section 3 an the implementations described in Section 5
to perform Urban Data Science at scale. Section 6 presents the related work.
Finally, Section 7 concludes.95

2. Conceptual Framework

In this Section, in order to address the Research Problem RP1, we present a
conceptual model able to tame the variety of Big Data sources present in smart
cities.

One of the main assumptions of any smartcity approach is to work upon100

a layer of data collected from the city itself, describing its dynamics. The city
evolution can span multiple layers, from architecture to urban design, from pop-
ulation composition and migrations, to citizen behaviour and interests. Each of
these layers have a different dynamics and speed of change; therefore, it should
be monitored collecting different data sources and using multiple analysis tech-105

niques. For instance, people moving through a city to attend fashion shows
spread in different districts1 may leave little physical traces, but they may leave
large amounts of digital footprints that can be analysed to understand the dy-
namics of such a fashion-addicted crowd.

2.1. Intuition110

To this purpose, in our previous works [29], we proposed a conceptual frame-
work named FraPPE out of its four main concepts: Frame, Pixel, Place and
Event. FraPPE enables a high level view of the detection, understanding and
interpretation of city data. It uses a digital image processing metaphor (see
Figure 2) to track three main dimensions of analysis: space, time, and content.115

FraPPE assumes that the real world can be described as a bi-dimensional
space, where events happen in places over time. For instance, a user making a

1See http://fashionweekonline.com/
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Figure 1: A high-level view of FraPPE including 3 Frames made of 4 Pixels containing the
Places where the Events happen.

check-in on geo-located social network generates an event in a place. A taxi ride
generates a sequence of two events (a pick-up and a drop-off) in two distinct
places. A garbage collector truck generates a sequence of events around the city120

in different points in time, once for each trash bin it cleans up.
FraPPE proposes to capture the digital footprints of what happens in the

real-world as a sequence of frames. A grid sits between the physical world and
the frames of the film. It decomposes the physical world in cells, four in the
example. Each frame is, therefore, decomposed accordingly in pixels. The cells125

contains the places where events happens on different time. The events are
captured in the pixels of the frame at the time they happen. For instance, if
A is the place where a taxi picks up a person at time τn−1, an event can be
captured in the upper-left pixel of the frame sampled at τn−1.

As a frame is the the time-varying representation of a grid, a sequence of130

frames composes the film of the evolution of a physical portion of the world
over time. In Figure 2, the past frames, which refer to the time interval τn−1,
τn−2,..., τn−m are on the right, the current frame (for the time interval τn) is in
the center, and the next empty frames (ready to capture the digital footprints of
what happens in the real-world at time τn+1, τn+2, etc.) are on the left. Going135

back to the previous example on a taxi-ride, the current frame captures in the
lower-right pixel the drop-off event that occurs in B at τn.

Notably, multiple frames can be simultaneously captured at different rate in
order to track the changes of the real-world at different time granularity. For
instance, let us assume we want to know if there is an extraordinary usage of the140

parking lots in a given part of a city. A frame captured every hour can be used
to calculate the average number µ and the standard deviation σ of occupied
parking lots in such a given part of a city, while a frame captured every 5
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minutes can be used to measure the current number of parking lots. Assuming
that the distribution of the number of parching lots follows a Gaussian process,145

we can determine if there is an extraordinary usage of the parking lots by i)
computing the z-score of x – i.e., if x is the current number of occupied parking
lots, the z-score of x is (x− µ)/σ – and ii) checking if it is greater than 2.

2.2. Formalising the Model
We now proceed with the extension of the original FraPPE and with its150

formalization as a UML model. In particular, Figure 2 depicts a UML rep-
resentation of the extended version of the FraPPE model. We elaborated this
extended version specifically for this paper. As highlighted by the different col-
ors, this extended version of FraPPE is organised in four different interconnected
parts: the green one is related to space, the yellow one to time, the red one to155

content and the blue one to provenance.
The space-related part includes the classes Grid, Cell and Place. A

Grid can cover a portion of the world and it contains a variable number of
Cells. A Cell represents a restricted portion of the space and it contains
Places. A Place is a point of interest with unique geographical coordinates.160

The relationship contains between the three spatial objects is transitive. If
a grid contains a cell that contains a place, then the place is in the grid.
The within relationship is the inverse of contains and allows the backward
navigation of the chain.

The classes Frame, Pixel and Event describe the temporal dimension of165

the framework. The time-varying object are connected by the same properties
as the spatial ones. The transitive contains property allows walking the con-
nection chain from the frame to the event, contrariwise the within property
guides the application from an event to a frame through a pixel.

Notably, the time-varying element has an exclusive relationship with its spa-170

tial counterpart, but a geographical object can be connected to multiple time-
varying object. For instance, being a pixel the time-varying representation of a
cell, while Pixel refers to a single cell, the cell can be referred by multiple
pixels over time.

In the proposed conceptual model, the content can be associated to the time-175

varying classes and carries information that represents a measure of intensity of
the tracked phenomena. At event level the content can be Original or Aug-
mented. The original content represents a simple measure or description of
a phenomenon, while any enrichment of an original content produce an aug-
mented content. The content related to Pixel or Frame is Synthetic and it is180

derived by processing event-related contents.
The last part of FraPPE conceptual framework is related to provenance.

FraPPE distinguishes between two types of frames: the CapturedFrames and
the SyntheticFrames. The former one contains a pixel for every considered
cell and represents a non-filtered collection of all the digital footprints found in185

the real-world. Different CapturedFrames can refer to different images of the
observed phenomena at the same samplingTime. The latter one is generated
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Figure 2: The extended version of the FraPPE model, represented as a colored UML diagram
highlighting space-, time-, content-, and provenance- related concepts.

by a Synthetize activity on two or more frames. The Synthetize activity can
be a filter, or an aggregation of values of pixels across different frames. Other
kinds of Activities cover creation, capturing, and augmentation of content.190

Each activity is performed by a HumanAgent or by a SoftwareAgent. For
a complete algebra of further possible actions, you can refer to [30].

FraPPE is also formalized using the OWL 2 Web Ontology Language2 and
reusing GeoSparql [31] as geographical data model, the Time [32] and Event
ontologies [33]) as time/event vocabularies, and PROV-O [34] as provenance195

ontology. The resulting vocabulary is published in Linked Open Vocabular-
ies3 [35].

2https://www.w3.org/TR/owl2-overview/
3http://lov.okfn.org/dataset/lov/vocabs/frappe
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3. High Level Methods

In our Urban Data Science at Scale approach, we consider three dimensions
of analysis over city-wide Big Data: space, time, and content analysis. In this200

section we summarize the methods we use for defining each analysis dimension.

3.1. Space Analysis
The first dimension of interest in city analysis is space. Therefore, we focus

on analyzing events, people presence and flow, content and opinion sharing, or
any other type of phenomena (like electrical consumption, traffic, economical205

value) with respect to the spatial distribution and spreading, also considering
its dynamics in time. The spatial dimension is the most complex to deal with,
in terms of coping with heterogeneity of the measured variables. Indeed, in
smartcity context, the data sources may vary a lot: some information may
refer to specific geographical points (geo-coordinates), some others may refer to210

venues or locations (restaurants or other public or private spaces), while others
can provide information referring to broad areas, possibly with different size and
shape. Any analysis considering two or more different data sources need to keep
this into account. This is one of the main reasons why in Section 2 we defined
the concepts of Grid and Cell. The second reason for this is the contribution this215

gives to the understandability and navigability of geographical-based content.
In practice, it’s important to clarify that these concepts can be instantiated

in multiple ways: we may define different types of grids and cells, based on the
specific data sets and on the analysis needs. We identify three main categories
of grids:220

• Regular squared grid: a regular grid dividing the physical space in cells
that are uniform for shape, size, and positioning. For instance, in many
of our experience around the city of Milan, we defined a grid of 100 x 100
cells, each cell having a size of 250 x 250 meters.

• Irregular grid with official business-driven meaning: a grid of cells225

that are different in shape, size and orientation based on some official
definition (e.g., the boroughs or zones of a city) or based on some business
specification (e.g., the commercial areas of the city). An example of this
can be the official city districts defined by the municipality or the areas
where a large event is located.230

• Irregular grid with data-driven definition: a grid of cells defined
bottom-up based on the domain data available or on partial analysis and
aggregations already performed on them. Some examples include the areas
served by different electricity substations, the mobile phone cell coverage4,

4In cellular networks, the telecommunication service is provided by a altitude of base
stations distributed across the served area. Each base station services a limited portion of
space, called âĂĲcell coverage area, which is irregular and based on technical infrastructure
and geo-physical features of the terrain and buildingsâĂİ.
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or the areas where mobile phone presence can be clustered with sufficient235

precision with respect to the location of the antennas.

Another important feature of the grid is the coverage of the area of interests.
We can define grids with total coverage or partial coverage of the area.
Typically, regular grids tend to feature total coverage, while irregular ones,
especially when defined starting from business requirements, may offer only a240

partial coverage of the area.
Over the above defined concepts of grid and cells, we identify the following

types of relevant analysis categories:

1. Dispersion: studying the spatial distribution of locations of events or
concepts, in particular with respect to the deviation from purely random245

configuration. This can be achieved with measures such as the Gini coef-
ficient, or the weighted cell coverage.

2. Distance and relation to places: studying the spatial relation of events
with respect to a set of given locations (e.g., stores or venues for specific
happenings such as fashion shows). This is covered by simple measures250

such as the average Euclidean distance between event and location, or the
average Manhattan distance over the grid cells.

3. Correlation: studying the relevant correlations between different signals
along the space dimension, i.e., within and across cell.

4. Prediction: defining predictive analytics within or across cell.255

3.2. Time Analysis
Temporal analysis focuses on the study of the evolution and spreading of

signals captured by pixels, which refers to cells, over time in different frames,
e.g. measuring how fast information about an event propagates on geo-located
social media. The goals of temporal analysis can be diverse. We identify the260

following types of relevant analysis categories:
1. Description: consisting in defining the signal captured by pixel-level

contents as time series.
2. Correlation: studying the temporal correlation between different time

series and infer common behaviours and dynamics of cities.265

3. Prediction: allowing generating temporal prediction over observed or cor-
related phenomena.

4. Anomaly detection: identifying discrepancies between expected tem-
poral behaviours and actual happenings.

5. Causality: determining possible causality relations between different events.270

3.3. Combined Time and Space Analysis
Given the basic space and time analysis aspects described below, the sub-

sequent level of interest is the combined analysis along both directions together.
The definition of the concepts of Frame and Pixel in our conceptual model spe-
cifically aim at this type of analysis. We combine techniques described in the275

previous sections for running analysis across time and space.

9



For instance, in case of anomaly detection we can extend the method dis-
cussed by defining the standard behaviour and anomaly index by time slot and
by city pixel instead of time slot only.

Furthermore, one can define time series of values that are aggregated or280

calculated on geographical basis. For instance, we can define the time series of
the values of the Gini Index or of the average distance of events from a set of
given venues, and then analyze them along the temporal axis.

3.4. Content Analysis
As mentioned in the conceptual model section, content can be associated to285

an event and thus indirectly to the time and space of the happening, and carries
information that represent a measure of intensity of a tracked event. Thus, we
aim to analyze synthetic content to extract contextual and behaviour knowledge
about what and how users share about an event. Therefore, according to the
FraPPE framework, at time τn an event E is held in the place P, in the cell C290

contained in the grid G; C is related to the pixel P and G is captured by the
frame F. For instance, in case of social media sources, the content consists of
the social message M that is related to the event E (the posting of the content),
and is described by a set of properties, including text, photos, and metadata.

We introduce two different approaches for content analysis. In the first295

approach, the Original content is made of text and hashtags. This content
can be analyzed and used for profiling social media users who are engaged in
the event. In the second approach, an Augmented content can be created by
using concept and feature extraction techniques from the shared photos for the
purpose of more complex analysis about the event and its attendees.300

The analyzed content could consist of different media types including text,
image, video, etc. that also contain low-level information about the event like
location, time, related social users and so forth. From such content we can
extract low-level features such as color schema for images or n-gram distribu-
tion for text. For instance, we can use the main color schema in photos related305

to an event to verify the correctness of the estimated location of that event.
Furthermore, we can also extract high-level features like number of people
and their demographics in a photo, list of existing concepts that are represented
in a photo or a video (using deep learning techniques) or semantic entities from
text using ontology-based matching.310

3.5. Real-time vs. periodic vs. a-posteriori
One important aspect in big data analysis problems is the time at which the

analysis is run and the results are produced. This is a crucial point that combines
business requirements and technical constraints associated to the amount of
information to process and the computational power availability.315

In the experiments presented in Section 5 as well as in the architecture
presented in Section 4, we distinguish among three different methods for differ-
ent purposes and stakeholders: (i) real-time, i.e., continuous collection, aug-
mentation and synthesis of data followed by immediate analysis and result dis-
play; (ii) periodic, i.e. continuous collection, augmentation and synthesis of320
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data followed by periodic analysis, with arbitrary, but known, temporal lag be-
fore result rendering; and (iii) a-posteriori, i.e., ad-hoc analyses performed
after the completion of the phenomenon.

In general, real-time analysis was preferred in public space installations with
public, animated visualization of results, where it is necessary to engage the325

audience in front of the installation itself (e.g., letting them see the photos
they posted on Instagram). Periodic analysis is useful to compare a recent past
against a historical collection of data. We used it to allow a user to visually
detect patterns, e.g., a security officer that needs to track the movements of
large crowds entering or exiting a large venue. The a-posteriori is useful for all330

those stakeholders that needs to perform analysis without knowing in advance
the frequency. This can be useful to plan services for the urban environment
or scheduling events, campaigns and commercial offers that suit the need of
citizens.

4. Principles, Logical Architecture and Implementations335

In this section, we present three guiding principles that we elicit from out
implementation experience. We elaborate on how to model abstract operations
that manipulate information in accordance with those principles. We illustrate
our architecture at a logical level and we shortly discuss how the requirements
on vertical and horizontal scalability condition the implementation choices.340

4.1. Principles
In our case studies, we noticed that we always deal with information that

changes (Velocity). Data can come from different sources that vary in format
(Variety) and size (Volume), but it always flows continuously. Even what we
normally call static data, e.g., a city street grid, is not immutable over time, it345

slowly evolves.
Based on this observation, we can state our first principle: (P1) everything

is a data stream. According to this principle, a system built on our architecture
must indifferently ingest data with different velocities from any sources and of
any size. All the incoming information is modeled as a generic data stream S,350

i.e., a potentially unbounded sequence of timestamped data items (di, ti):

S = (d1, t1), (d2, t2), . . . , (dn, tn), . . . ,

where di can be any data type in any format, ti ∈ N is the associated time
instant and, for each i, it holds ti ≤ ti+1 [36]. For instance, the movements of
a car is a fast data stream where di records the identity, the positions and the
speed of the car and the distance between two subsequent observations can be355

seconds. On the other side, the evolution of a city road is a slowly evolving data
stream, where for instance di may record the addition of a bike lane to a road;
in this case, the distance between two subsequent observations can be days or
months.
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Figure 3: Overview of CQL class of operators

The continuous nature of data streams requires a system built on our ar-360

chitecture to implement our second principle: (P2) Continuous Ingestion. The
data input is continuously captured by the system and, once arrived, it is marked
with an increasing timestamp. Notably, some data sources may natively include
their own timestamping too (which we call application timestamp).

Our last principle is motivated by the variety of the input data, and we365

define it as (P3) Lazy transformation: a system inspired by our architecture
operates on the data in its original format as long as it can, and it transforms
it only if really needed. Indeed, operations like projections, filters or aggrega-
tions can operate on generic data without requiring to cast all data in a single
format (e.g., the relational one). Therefore, for those operations we can delay370

transformations. Contrariwise, a join operation on data of different data format
(e.g., a CVS table and a JSON tree), normally, first requires to cast data in
a common format (e.g., the relational one) and then perform the join. Even
if most of the operations do not require a preventive data transformation, the
results are often in a different format if compared to the input. This implies375

that inside the operators the data are transformed and typed, e.g. grouping and
counting any data type will always generate a relational table with two columns:
the identifier of the group and the result of the count.

Generic Functions [37] represents the natural abstraction to model at high
level the operations that manipulate information in accordance with our three380

principles. The data items di flowing on a data stream S can be modeled in
terms of types to-be-specified-later ; it can be, indifferently, an instance of a tree
in a JSON document or in an XML document, a set of tuples in CSV or in
parquet format, or a graph in RDF.

Figure 3 shows the three classes of operators that we propose. They are385

inspired by the CQL stream processing model [38]. Let us denote with T a
generic type to-be-specified-later, with S〈T 〉 a generic data stream and with
I〈T 〉 a collection of instantaneous generic data items (e.g., an a-temporal table,
a document, or a graph that is normally manipulated by relational, document
or graph databases). Three classes of operators allow to move from generic390

data streams to instantaneous generic collection an vice versa. The operators
in the class stream-to-instantaneous S2I〈T 〉 transform a portion of a potentially
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Figure 4: Overview of the general architecture of the system

infinite generic data stream S〈T 〉 into a finite collection of instantaneous generic
data items I〈T 〉, e.g. Window Operator [39] can extract a part of a stream based
on time or number of items.395

The operators in the class instantaneous-to-instantaneous I2I〈T , T ′〉 trans-
form I〈T 〉 into another I′〈T ′〉. Physical operators of this class deal with the
different data format, e.g., xQuery operators process XML, SQL operators pro-
cess relational table, SPARQL operators process RDF graph, etc. Notably, T
and T ′can be different types, but they can also be of the same type. For in-400

stance, a filter on a table, on a tree or on a graph extract tuples, sub-trees
or sub-graphs maintaining the original data type. Contrariwise, as we noticed
above, a count aggregation transform the original data type into a table.

The operators in the class instantaneous-to-stream I2S〈T 〉 act on I〈T 〉 to
create a new S′〈T 〉. Those operators are used to emit as a new flow of data the405

results over time of I2I〈T , T ′〉 operators. The new stream S′〈T 〉 can contain all
the items produced by the I2I〈T , T ′〉 (namely, R-stream), only the new items
in I〈T 〉 that were not in the previous I〈T 〉 (namely, I-stream) or only the items
that were in the previous I〈T 〉, but not in the new I〈T 〉 (namely, D-stream).

4.2. Logical Architecture410

Figure 4 shows our logical architecture. Information enters from the left and
exits to the right. A system, built in accordance with our logical architecture,
operates on the data in three phases. It continuously captures data over time
(phase 1). It enriches, manipulates and transforms captured data (phase 2) in
order to synthesize the data that it analyses (phase 3) to offer results to its415
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users. This architecture is variety proof, i.e., it can accept data in any format,
and velocity first, i.e., it can handle input data streams regardless the incoming
rate.

During the Continuous Capturing Phase the data, which continuously flows
in, is just marked with a timestamp, i.e., following the Lazy Transformation420

principles, it is captured in its original form independently from its complexity.
We recommend to treat Volume as orthogonal to Variety and Velocity by re-
quiring a system that implements this phase to be partition tolerant by choosing
the best partition strategy (see Section 4.3).

For the Augmentation and Synthesis Phase, we recommend to use a lambda425

architecture5 with a Batch Layer and a Speed Layer. The former operates over
all the data captured in the previous phase, i.e. C1, C2, Cn−1, while the latter
takes in account only the most recently captured information, i.e. Cn.

The final Analysis phase can exploit, based on the information need of the
user, indifferently various part of the upstream architecture. The Batch Layer430

can be used alone for periodic and post-hoc analysis, or in support of the Speed
Layer for analysis that needs to compare the most recent data with the histor-
ical one. Nevertheless, the speed layer, can be independently used to perform
instantaneous analysis. Let us make this more clear with an example. A taxi
company can exploit the Batch Layer, to synthesize statistics about the cost and435

the duration of all the rides captured so far in a city. An a-posteriori analysis
of those statistics can determine a complete origin-destination matrix for the
taxi rides, i.e., a distribution of durations and prices of all possible routes from
any point to any other point in the city. At the same time, the taxi company
can exploit the Speed Layer to determine the current most profitable routes440

using with the latest incoming data. The comparison between the latest price
of the rides (computed in the Speed Layer) with the information in the origin-
destination matrix (computed in the Batch Layer), can be useful to foil a fraud.
Two more layers compose the proposed architecture: The Common Abstraction
layer and the Provenance Logging layer. The former logically contains the ab-445

straction used to model or manipulate data. For example, the user should be
able declare how to augment captured data with identifiers that refer to FraPPE
abstractions like Cell or Frame. Moreover, the user should be able to model its
computation flows using the class of operators discuss above. The Provenance
Logging layer contains all the artifact useful to document data lineage and to450

log the system actions in accordance with concepts in the Provenance fragment
of FraPPE . As explained in Section 5, this information is useful during the
interpretation an analysis.

4.3. Implementation
In our experience, the most important characteristic of an implementation455

of our architecture is its cost effectiveness. In the following, we discuss three

5https://www.manning.com/books/big-data
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Figure 5: Overview of Natron

alternative implementations (i, ii and iii) where the nature of the data, in par-
ticular the Volume, and the scalability requirement of the system shape the
specific implementation of the presented logical architecture.

An ad-hoc implementation (i) results suitable in all the cases where the460

amount of data is small and the cost of a complex infrastructure is unaffordable.
In this situation, there is no need for scalability and the final artifact can be
developed in any language or using any framework, e.g. Python or Java. If
the amount of data grows, a scalability requirement arises. An ad-hoc solution
results hard to be cost effective, if compared to a more generic and reusable465

implementation. Conscious that distribution and parallelization does not pay
at all scales [40], we developed a vertically scalable (ii) single thread system,
namely Natron , that results cost effective for a medium amount of data: it is
designed to have very low entry cost for low volumes (around 0,03 € per MB
per minute6). Moreover, it is pluggable and extensible, in order to be used in470

different situations. Once the data amount grow above tens of MB per minute,
in order to remaining cost effective, it is better to switch to implementations
based on big data technologies (which grow linearly in the amount of data) and
meet the need of (iii) horizontal scalability.

In the next three sections, we present Natron and two big data implement-475

ations of our architecture based on Hive7 and Spark8.

4.3.1. Vertically Scalable Implementation - Natron
A single thread implementation, such as Natron , represents the best way

to deal with continuously flowing data characterized by medium Volume, high
Variety and very high Velocity. Natron is implemented following the principles480

discussed in previous sections, i.e., it continuously ingests streaming data rep-
resented as a time-stamped data items that are typed, only when needed. The
typing is declared as an annotation to the captured information.

Figure 5 depicts on overview of the Natron internals. The Receivers (I2S〈T 〉
operators based on the data source) allow ingesting external data streams, and485

push the data on the Generic Stream Bus. Data items remain in their original
form, only the ingestion time is added, as recommended by Principle P3; we

6To determine this price we run experiments on Azure using F4S v2. For more
information visit: https://docs.microsoft.com/en-us/azure/virtual-machines/windows/
sizes-compute

7https://hive.apache.org
8https://spark.apache.org
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Figure 6: Example of Natron pipeline

postpone the transformation as long as possible in the process. The Processors,
e.g. an Information Flow Processor as Esper9, listen to one or more streams
S〈T 〉, compute different operations and produce a new stream S′〈T ′〉. Trans-490

lators allow Natron producing in output the streams in multiple formats and
represent the implementation of S2I〈T 〉 operators. In Natron , the window
operator can be implemented in two different ways: either using the ingestion
timestamp added during the Continuous Capturing Phase, or using an applica-
tion timestamp, e.g. a time mark added during the Augmentation & Synthesis495

Phase referring to the notion of Frame in the Common Abstraction Layer. Fig-
ure 6 presents a simple pipeline implemented in Natron to demonstrate the
capability of the framework to deal with generic data coming from multiple
sources and to perform transformations at various level. The data flowing into
the system in the form of two streams of data, a stream of trees, i.e. S1, a500

stream of relational observations, i.e. S2.
s e l e c t ∗ from Event . win : t ime batch (40 s e c )
output every 20 s e c

Listing 1: EPL query to window generic stream

Both of them are windowed through a simple EPL10 query presented in
Listing 1. The window operator, i.e. a S2I operator implement in O1 and O2,505

exploits using Esper11 and transform the stream of generic data items into a
collection of data items maintaining the original data format. The downstream
operators, namely O3 and O4 I2I operators, perform projection and filter on
generic data and finally typify the data items to prepare the Join operation.

9http://www.espertech.com/
10https://docs.oracle.com/cd/E13157_01/wlevs/docs30/epl_guide/overview.html
11http://www.espertech.com/esper/
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{
” data ” : [{

” id ” : ”1” ,
” l a t ” : 45 .806171 ,
” lon ” : 9 .086754 ,
” count ” : 20

}
]

}

Listing 2: Wxample of I2 data
510

Table 1: O5 operator template and query for the mapping
Triple Template Source Query

[S] :count [O]

for $data in collection(”data”)
let $S := $data.id
let $O := $data.count
return $S : $O

Listing 2 presents an example of data contained in the I2 collection. Table 1
depicts the mapping (Triple Template column) and the query (Source Query
column) exploited by the operator O5 to transform the trees into relational
table. The value of S and O are extracted from the query on the trees. The
query in our implementation is written in JSONiq12, a query and processing515

language designed for JSON. The results of the mapping in the example is a
triple 1 :count 20 The operator O5 transform the data in order to ease the join
operation performed by the O6 operator.

SELECT ? s ?o
WHERE {? s : count ?o}520

Listing 3: SPARQL query to query the graph data from the join operation

The join produces data items in the form of complex graphs that can be
queried by the operator O7 using the Sparql13 query presented in Listing 3. The
final operator O8 transform the Instantaneous data items into a new stream of
relational table, i.e. S3.

4.3.2. Horizontally Scalable Implementations525

When scaling to large volume is required, a single thread implementation is
at risk of loosing cost effectiveness because, even if the entry cost is much lower
than a Big Data implementation, its costs grows exponentially in the size of the
data. Therefore, an horizontally scalable solution, using big data technology,
represents a good choice. In our work, we employed two different solutions530

respectively based on Spark [41] and Hive [42].

12http://www.jsoniq.org
13https://www.w3.org/TR/sparql11-overview/
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Spark. We propose a system developed using Spark Streaming14, an exten-
sion of Spark that enables the development of stream ready application. Spark
Streaming implements I2S〈T 〉 operator, i.e. it allows continuous data inges-
tion from many different sources, and classic S2I〈T 〉 operators, e.g. window.535

Moreover, its Dataframe APIs allow implementing the complete stack of layers
of the proposed architecture.

va l itemsCounts = inputStream . groupBy (
window ( $” t s ” , ”40 seconds ” , ”20 seconds ”) ,
$”Agg( Count ) ”540

) . count ( )
Listing 4: Example of Window operator in Spark

The Spark Streaming based system is able to implement the Window op-
erator by exploiting the ingestion time, added to the data once entering the
system, i.e. during the Continuous Capturing phase. Listing 4 presents the
code to compute the aggregation Agg(Count), representing the amount of the545

data items that entered the system in the last 40 seconds, using a window that
slides every 20 seconds.

Hive. Hive is a Big Data warehouse solution and is not originally ready for
managing streaming data. The ingestion phase is implemented exploiting big
data components to save the time varying data into a compatible format for550

Hive, e.g. Parquet. During this first phase, the system adds the ingestion
timestamp, i.e. ts, to each incoming data. The components involved in this
phase are multiple and represents I2S〈T 〉 operators, i.e. the real time ingestion
phase of the data from external sources, and S2I〈T 〉 operators, i.e. the save
operation of the new stream to static files on HDFS support. The Augmentation555

and Synthesis Phase is implemented exploiting Hive query capabilities in order
to enrich incoming data and transform it using FraPPE Commons Abstractions,
e.g. adding a reference to FraPPE Frame that groups the data items by time
and space. The components involved in this phase represent I2I〈T 〉 operators.
The Analysis phase exploits Hive query to offer results to the final user.560

Let us now focus on the window operator in Hive. Differently from Spark,
the window operator is not natively supported due to the batch nature of the
framework. However, if we augment the data items with a frame ID during
the Augmentation and Synthesis Phase, tumbling windows can be implemen-
ted grouping by Frame ID, while more complex windows, e.g., sliding windows565

involving multiple Frames, can be implemented using the Hive Window15.
Figure 7 shows a simple example of a chain of operations that ingest a data

stream, augment it with a Frame ID and simulates a tumbling window that
counts the number of data items per frame. I1 represents the data saved on

14https://spark.apache.org/docs/latest/streaming-programming-guide.html
15https://cwiki.apache.org/confluence/display/Hive/LanguageManual+

WindowingAndAnalytics
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Figure 7: Example of data operation using hive

HDFS during the ingestion phase. I1 is in form of a table containing various570

attributes and the ingestion timestamp ts. The data is augmented using a query
that uses a User Defined Function (UDF) to attach a Frame ID based on the
ts. Such an UDF takes is configured passing the opening time t0 of the first
window, and the length of a Frame ω. In the example t0 = 0 and ω = 20. The
Frame groups the data items in windows and enables operation on time-varying575

data in a batch oriented system such as Hive. I2 represents the augmented
data. The Window Based Operation exploits the Frame ID to perform a simple
count aggregation by applying a Group by on the Frame ID. I3 represents the
aggregated data.

5. Experiences580

In this section, we report a subset of the analyses we run on different real–
world scenarios. We selected those experiences because they are diverse and
cover different business needs, cities, stakeholders, and adopted techniques. We
classify them in two categories: 1) large–scale events, like the Milano Design
Week, the Milano Fashion Week, the universal exposition of Milan 2015 (namely,585

EXPO 2015 ) and; and 2) longitudinal studies, respectively of a touristic city
(namely, Como), of a business metropolis (namely, Milano) and of an open-space
art event (namely, The Floating Piers by Christo and Jeanne-Claude).

In all these cases, we apply our conceptual model and describe the feasibility
and advantages of the approach. Along the discussion, we will also present some590

representative visualizations that let the reader perceive the intuitiveness of the
communication permitted by our framework. For each case, we report one or
more of the analyzed dimensions.

Table 2 provides an overview of the experiences that we discussed in the
remainder of the section. It highlights the complementarity of the difference595

experiences w.r.t. the different methods we discussed in Section 2 as well as its
comprehensiveness in terms of the requirements presented in Section 1. Req1
– aggregation, analysis and prediction along space and time – and Req2 –
integration of heterogeneous data sources, considering diverse content type and
(temporal and spatial) granularity – are directly depicted as annotations to the600

various columns. The claim that all our experiences satisfy Req3 – intuitive
visualisation and exploration of results – is, instead, directly reported in the
examples and illustrated in the figures included in the remainder of this section.
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5.1. Milan Design Week
This section reports our experience in monitoring Milan Design Week in605

Milano, Italy, across three editions, in three different years (2013, 2014 and
2016), with particular attention to the so-called FuoriSalone, a set of more than
1,200 events spread all over the city. The aim of the project was to feel the
pulse of the city during the event. At this purpose we based our work on a set
of integrated systems developed by Politecnico di Milano and TIM – Telecom610

Italia allowing fusion and visualization of social media streams and privacy-
preserving aggregates of Call Data Records from the mobile phone network. In
2016 edition we have been able to collect further information coming from the
official mobile app of the event, used by around 25,000 visitors.

We divided Milan in 10,000 cells using a grid of 100 x 100 cells. Each cell615

has a size of 250 x 250 meters. We considered three sources of events at places:
mobile phone calls/sms/internet-accesses, geo-referenced micro-posts related to
the Milan Design Week and the 1,200 long-lasting events that are organised
in 600 places spread around Milan during the Design Week. We captured a
frame every 15 minutes. In each frame and for each pixel, we count the amount620

of mobile phone calls, text messages, Internet accesses (namely, mobile phone
volume), the amount of the micro-posts on social networks related to the Milan
Design Week, the number of Milan Design Week events, and the top hashtags
used in each pixels.

The analysis of mobile phone data is based on CDR (Call Data Record)625

analysis. CDRs are generated by telecommunication networks to log the activity
of the users, associated to a cell. Every mobile phone cell has a unique identifier,
the Cell Global Identity (CGI). The CGI is characterized by the country, the
Mobile Network Operator (MNO), the Location Area of the cell, the latitude
and longitude of the barycenter of the cell and of the antenna, the distance630

between barycenter and antenna, and other properties.
Telco Big Data can provide a very relevant and dynamic overview of presence

of people in the context of a specific city or territory, aggregated at the level of
the single cell tower. However, since building and morphology of the territory
impact on the effectiveness of the cells, the CDR information can describe the635

city’s dynamics at the macro level but it cannot be used to precisely represent
such dynamics at the micro level, e.g. input/output flows into one specific street
or square.

The CDR analysis based on FraPPE requires to map each CGI to the cells
of the grid, by assigning a coverage percentage to each cell. Then, anonymized640

CDRs are aggregated by CGIs and on time–slots of 15 minutes using privacy–
preserving methods and are mapped to the pixel of the corresponding frame
using the percentages.

Once this mapping to FraPPE was completed, we analysed 2 months of
CRDs from Milan to build two Gaussian models for each cell: one grouping645

the frames by working days, and one grouping them by week-end days. 1.92
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millions Gaussian models were built16. During the Milan Design Week 2013
and 2014, we analysed in real-time approximately 172 Mln calls/sms/internet-
accesses by aggregating them for each pixel and for each frame and by computing
how anomalous they are comparing each of them against the predictions of650

the Gaussian models built at set-up time. The anomaly index is obtained by
computing how far the number of calls/sms/internet-accesses (which we refer as
n) is from the average behaviour (which we refer as avg), keeping into account
the computed standard deviation (which we refer as std). The formula to obtain
the anomaly index can be compactly written as:655

2Φavg,std2(n)− 1

where 2Φavg,std2 is the cumulative distribution function of a Gaussian ran-
dom variable with mean avg and variance std2. Anomalies are identified by
filtering all the records with an anomaly index greater than a given threshold.

As detailed in [28], the anomalous pixels correspond with high precision to
pixels in which events of the Milan Design Week are happening. This allows660

us to provide experimental evidence for validating the hypothesis that the ex-
tra 400,000 people that come to Milano for the Design Week generate extra
calls/sms/internet-accesses from the cells that contain the 600 locations of the
1,200 Milan Design Week events.

To process social streams, we used an evolution of Streaming Linked Data665

(SLD) framework [24] to tame velocity and variety simultaneously, namely
Natron . The original data stream are injected in Natron in Activity Stream 2.0
format17. Natron semantically augments them using a custom Named Entity
recognition and linking solution tailored on Milan Design Week [43]. A continu-
ous query captures a frame every 15 minutes counting the number of distinct670

hashtags and semantic entities present in the geo-referenced microposts for each
pixel. The results of this continuous query is a stream modelled in FraPPE .

As illustrated in Figure 8.(a) a (partial) semantic explanation of the mobile
anomalies, can be attempted aggregating the top-10 hashtags used in those
pixels. For instance, in Brera district the Italian hashtag of Milan Design Week675

(i.e., Fuorisalone) emerges. However, this technique is not dependable. For
instance, in Tortona district also the hashtags of a popular TV shows (i.e.,
Amici, a popular Italian TV show) and its protagonists (e.g., Emma) appear.
Once again, the solution is in the ability to compare the current top hashtags
against the those predicted by a statistical model. This allows highlighting only680

the emergent hashtags of this frame for the selected pixels (see Figure 8.(b)).
As one can expect, the simple Gaussian model used for the mobile activity

is not appropriate to predict hashtag usage. We found, instead, that an Holt-
Winter method can be used [44] to predict the usage over time of a specific
hashtag (e.g., #milan). In order to use Holt-Winter, we built synthetic frames685

164 frames per hour X 24 hours X 2 day types (working and weed-end days) X 10.000 pixels.
17http://www.w3.org/TR/activitystreams-core/

22

http://www.w3.org/TR/activitystreams-core/


(a) (b)

Figure 8: Social media used to explain the reason of anomalous peaks of presence in some
pixels: (a) shows the most popular hashtags used in the anomalous pixels during Milan Design
Week, whereas (b) highlights the emergent hashtags, i.e., the non predicted ones. While the
generic most popular tags contains also hashtag about a popular TV show (i.e., Amici or
Emma), the emergent hashtags are those of Milan Design Week.

that aggregate the captured frames in five parts of a day (i.e., 2am-7am, 7am-
11am, 11am-2pm, 2pm-7pm and 7pm-2am). Moreover, as for the CDRs, we
distinguished between working days and week-ends. This approach allowed to
build effective predictive models for hashtags about the point of interest of Milan
and about popular TV shows. Figure 9 illustrates how this method detects the690

anomalous usage of #milan during the Milan Design Week, which is highly
correlated to the usage of #mdw – the official hashtag of Milan Design Week.

During the Milan Design Week, using Natron to compare those models with
the observed usage of an hashtag, we were able to detect in real-time emerging
hashtags. Figure 9 illustrates how the extra usage of #milan is correlated to695

the appearance of the official hashtag of Milan Design Week (i.e., #mdw).
Using the analyses described above, CitySensing identifies pixels where people

is talking about Milan Design Week. As detailed in [28], those pixels are not
as numerous as those identified as anomalous using the CDRs. However, they
match with almost absolute precision the pixels in which Milan Design Week700

events happen. The most interesting finding is that almost all those pixels are
contained in mobile anomalous ones. This provides further experimental evid-
ence to validate the hypothesis that the anomalies observed in the CDRs are
caused by the people coming to Milan for the Design Week.

The particular scheduling and geographical organization of the events of705

FuoriSalone, the informal happenings of the Milano Design Week, with most of
the events concentrated in some specific areas of the city, enable also to perform
analysis with irregular grid, based on the official areas of Fuorisalone. An
examples of analysis performed on this grid is shown in Figure 10, that represents
the results of a semantical analysis on the text of tweets related to each area710

of Fuorisalone. We collect for each (irregular) pixel the tweets geolocated in
some place of the cell and the tweets that speaks about the events contained
in the pixel, and we perform on them a semantical text analysis in order to
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Figure 9: Highlighting of anomalies in hashtag usage: The hashtag #milan is used more
often during the Milan Design Week. Forecasting the #milan time-series using Holt-Winter
method, we were able to identify the anomalous usage, which is highly correlated to the usage
of #mdw – the official hashtag of Milan Design Week.

Figure 10: Share of positive and negative sentiment calculated for posts associated to the
different MDW cells.

extract the sentiment polarity of the text. Then we filtered neutral tweets and
we compare the number of positive and negative tweets in each pixel in order715

to show, for each daily frame, which pixels (that corresponds to an official area
of Fuorisalone) are most successful according to the opinions of social network
users.

During the 2016 edition of the event we had the opportunity to collect data
coming from an additional relevant source: the official App of Fuorisalone. In720

particular, we had access to the GPS position of places where the users open
the App and the events inserted in the agenda on the App. In this context, we
apply the method of squared grid tessellation of the city, in order to analyze
the correlation between couple of different signals.

We showed the correlation between the use of the App and the number of725

Fuorisalone events. To do so, we consider as events the use of the App in a
place, that generates a GPS record, and the scheduled event of MDW with
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(a) (b)

(c) (d)

Figure 11: (a) Number of Mobile app GPS observations collected in one day inside each square
of the grid (red dots) correlated with the number of events of Milano Design Week scheduled
for the same day in the same square. (b) Correlation between GPS observations (red dots)
and geolocated posts on social networks (blue dots) inside each square. The localization of
the five largest groups of European and US visitors (c) and Italian visitors (d).

their place that users put in their agenda. We aggregate on pixels and we
captured daily frames as shown in in Figure 11(a).

Another available source of events is the geolocated activity on the public730

social networks: we collect the Twitter and Instagram posts geolocated in the
places contained in each cell and we aggregate them in the same pixels of
GPS observation events, as shown in Figure 11(b). Both frames show the
increasing of the events in the areas of the Fuorisalone.

Another interesting use case is represented by the analysis of the proven-735

ance of the visitors during the Milano Design Week. In order to estimate the
provenance of the visitors we used GPS information collected by the Official
App, extracting the GPS position of the first observation logged for each user
before the days of the MDW, assuming that the users download the App before
they arrives in Milano (so, probably, at home). Using appropriate shape files it740

is possible to map each GPS location to a Country in the world, obtaining the
provenance of the user.
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(a) Density of posts (b) Granger Causality tests result

Figure 12: (a) Geographical dispersion over the cells of physical events (red stars) and density
of social media activity (blue); (b) Granger causality test curves between physical events and
social media response of each brand during the MFW, clustered by similarity of behaviour.

Mapping the GPS observation events in the grid of pixels it is possible
to visualize for each daily frame and for each people group what are the most
popular areas of the city. Figure 11 (c) shows the localization of the five largest745

groups of European foreign visitors and United States visitors. Figure 11 (d)
shows the region of provenance of Italian visitors and their distribution in the
events.

5.2. Milan Fashion Week
This experience deals with the problem of understanding the social media750

response and the associated physical presence to a scheduled and popular real
world event, the Milano Fashion Week (MFW) occurred from the 24th to the
29th February of 2016, analysing the behaviour of users who re-acted (or pro-
acted) in relationship with each specific fashion show during the week. MFW
represents the most important meeting between market operators in the Italian755

fashion industry. Out of the 170 shows, we are interested only in the catwalk
shows, which are the core of the fashion week. The whole set of catwalks includes
a total of 73 brands; among them, 68 brands organise one single event, 4 brands
organise 2 events, and 1 brand organises 3 events.

We initially extracted posts by invoking the social network APIs of Twitter760

and Instagram; for identifying the social reactions to MFW, we used a set of 21
hashtags and keywords provided by domain experts in the fashion sector, i.e.,
researchers of the Fashion in Process group (FIP) of Politecnico di Milano.18

We focused on 3 weeks: the one before, the one after and the one of the event.
In this way, we collected 106K tweets (out of which only 6.5% geolocated) and765

556K Instagram posts (out of which 28% geolocated); eventually, we opted for
considering only Instagram posts, as they represent a much richer source for

18http://www.fashioninprocess.com/
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the particular domain of Fashion with respect to Twitter [45, 46]. Figure 12 (a)
shows the map representing the geographical distribution of events (represented
by red stars) and post density using a synthesized frame where the pixel are770

darker where the density is higher.
Our first goal is to perform a temporal analysis aiming at characterizing

the time at which social media respond to the events which appear in the official
calendar and are linked to specific brands. Informally, we observe either peaks
of reactions which then quickly disappear, or instead slower reactions that tend775

to remain observable for a longer time. Estimating the time latency of social
responses to events is important for the brands, which could plan reinforcement
actions more accurately, essentially by adding well-planned social actions so as
to sustain their social presence over time. We run Granger causality for each
brand to compare the physical events and the social media reaction, and then780

we clustered the brand by similarity of the Granger curves. Figure 12(b) shows
the clusters of Granger causality curves of the brands.

Our second goal was to analyse the geographical dispersion of social
media response. We have two different spatial signals: (1) the calendar events;
and (2) the volume of social media posts on the Web with geographical inform-785

ation attached, i.e., latitude and longitude. Given these two signals, several
features can be computed in order to describe the spatial dispersion of posts
following an event.

Following the FraPPE approach, we built a grid of cells above the area of
Milano city, and assigned each post to the appropriate cell. The grid has a790

square shape, with sides of 10km, divided into 20 rows and 20 columns, for a
total of 400 cells of 500m× 500m.

According to the FraPPE model, an event E may be organized by a brand B
at time τn, hosted in the place P , located the cell C of the grid G. C is related
to the pixel P and G is captured by the frame F . A user U may contribute with795

some original content M (e.g., Instagram post), related to the event E, which in
turn is going to be augmented by an automated enriching and analysis process
that may add entities, as well as extract visual properties (color, pattern, ...)
and concepts (objects, people, ...) from posted images.

We computed pixel level synthesis of the collected contents. We named Alive800

pixels those where the percentage of posts shared in the considered time-window
is more than 1% of the total number of posts in the frame in the same time-
window. We named Active pixels those where the percentage of posts shared
in the considered time-window is more than 10% of the total number of posts
in the frame. We named Strongly Active pixels those where the percentage of805

posts shared in the considered time-window more than 20% of the total number
of posts in the frame.

We computed the number of alive, active and strongly active cells for all
brands; we also computed the differences between subsequent durations (e.g.
3h - 6h) by counting how many cells changed their state.810

We then computed different measures that reflect the dispersion of the social
media signal over time, using: Gini coefficient, Average distance of the social
media signals from the event location, and the number of alive, active and
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strongly active cells.
By observing the behaviour of pixels, we noted that:815

• As we increase the width of the time-window, the number of alive pixels
also increases. On the other way, the number of active and strongly active
pixels is floating in the range from 1 to 3, with very few brands reaching
4 active pixels.

• At the start of the event, posts are shared near the event location, but820

as we look at the bigger picture, including 24 hours or even the entire
period of 24 days, the average distance is increasing, showing the growing
dispersion of the social signal.

• The Gini coefficient proves how the concentration of the social signal
remains always high, due also to the fact that the low percentage of users825

that allows Instagram to geo-tag their own photo is reducing the number of
authors implied in this study, and so the few authors with high volumes of
posts generated are biasing the results. However, looking at the Gini alive
coefficient, that refers to the Gini coefficient computed only over the pixels
that result alive for at least one brand in the specific time-window, we can830

see a weak smoothing of the concentration strength with the increasing of
the time-scope.

5.3. Como SC2

Como Smart City for Smart Citizens (Como SC2) is a big-data integration
project started in 2016 involving, along with other partners, Municipality of835

Como, Politecnico di Milano and TIM-Telecom Italia, that represents a pilot in
the Smart City context. The purpose of the project is to create a system for
integration, analysis and interpretation of the large amount and heterogeneous
data coming from different sources, in order to understand the urban dynamics
and support the decision making process of the Public Administration.840

We analyzed the dynamics of mobile phone traffic (preventively anonym-
ized and aggregated, according to privacy-preserving policies) in different areas
of the city.

We have identified seven city cells, according to the distribution of the phone
antennas and the characteristics of the area. We named those irregular, data-845

driven cells: historical city center, lakeside promenade, touristic areas outside
from the historical center, lake area, mountain area around the city, business
and universities area, industrial outskirts. The map in Figure 13 represents the
distribution of the seven cells.

Inside each area, we analyze the trend of mobile phone traffic capturing850

frames by day and by hour. Anonymized mobile phone data contains also
information about the SIM (like international dial-code) and demographics in-
formation about the owner of the SIM (like gender or age-range): these allows
us to perform analysis not only about the events of people presence but also
about the characteristics of people (event content).855
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Figure 13: The seven irregular data-driven cells based on mobile phone data that cover the
Como territory.

(a) (b)

Figure 14: (a)Number of foreign visitors per country per day in July in Como: Swiss, German,
and French are the most present in the weekends. (b) Number of foreign visitors per country
per day in Como from June to October. One can notice that Swiss visitors decrease sensibly
in September.

One example is the comparison between the number of visitors from neigh-
bouring countries of Italy. As one can see in Figure 14, Swiss people usually
come to Como for shopping on Saturdays in July while this trend dramatically
decreases in September.

Besides mobile phone data analysis, we instrumented in the Cathedral Square860

of Como (Piazza Duomo) with a set of IoT (Internet of Things) sensors
for counting people passing in the square. The installation of the IoT sensors
covers all the access to the square, and each sensor count how many people pass
from the access every minute and push the results in real-time to the collect
and visualization system.865

Starting from the collected data, and working at a sensible temporal aggreg-
ation (for example one frame per hour), it is possible to construct the average
trend of passages from and to the Duomo Square according to the day of the
week and the hour of the day. This average trend represents the starting point
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Figure 15: Patterns of people presence in Duomo Square on working days and weekends:
Tuesday, Thursday and Saturday are more crowded due to open market in the streets; Week
ends are extremely crowded (including Saturday night).

to analyze trending pattern and anomalies.870

Analyzing the data is possible to observe, at a high level, two different pat-
terns of people presence in Duomo Square: one for working days and one for
weekends, with a significant increase of people during Saturdays and Sundays,
with respect to working days. Figure 15 represents graphically these analyses.
More in details, it is possible to find some differences inside the two patterns. For875

example in week-ends clearly emerge a difference during the evenings: Saturday
evening shows a sort of persistence of people presence, while Sunday evening
appears more similar to working-day evenings. Another significant difference is
the increase of people presence on Tuesday and Thursday mornings, with re-
spect to the other working days. They are significant because the local market880

activities are organized in the square during such mornings.

5.4. Urbanscope
In this experiment [3], we build an analysis to understand multilingualism

in the city. We focused on Milano again, and we used Twitter to analyse the
language mix of the city and to capture language communities within the city885

neighbourhoods. We refer to language communities as those groups of individu-
als sharing either the language used on Twitter or the language of their country
of origin. We then compare these “digital” communities, discovered through
Twitter, with the real communities identified by the traditional census data.
Milan, a city which is increasingly becoming an international melting pot, is890

chosen as a case study for this work. We use quantitative tools to analyse the
micro-level data collected from individuals, but we also develop visual solutions
to show and navigate the aggregated results.

Two main data sources are identified as relevant for the study. The first
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(a)

(b)

Figure 16: (a) Density of multi-language tweets (excluding English and Italian) in Milan urban
area, on a grid where the cells are an irregular, business-driven total coverage of the area, as
specified by the official city districts (NILs); (a) anomaly detection on Twitter languages for
Italian, English and all the other languages.

dataset, provided by the Municipality of Milan19, describes the geographical895

zones (districts, officially named NILs20) in which the city is divided. The
NILs, in FraPPE terminology, are the cells of an irregular partial business-
driven grid in which the city is divided. This dataset provides demographic and
economic data for each NIL. The second dataset derives from Twitter. Twitter
is considered the most suitable source for the purpose of our analysis, since it is900

largely based on written text and features the option of geo-locating the posts
(although only a very limited share of users actually opt for using this feature).

For this study, we consider only the tweets geo-tagged within the boundaries
of the municipality of Milan for a period of 18 months (August 2014–December
2015). The language used in the tweets is part of the metadata of each tweet, as905

provided by Twitter API. Tweets containing words written in different languages
or whose language could not be detected are classified as “undefined language”
and are excluded from our dataset. The entire dataset contains 1,109,693 tweets,

19http://dati.comune.milano.it/
20NIL stays in Italian for Nuclei di Identità Locale. Translated in English, a NIL is an area

with a Local Identity.
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with 1,007,314 being associated to a defined language. There are 793,838 tweets
whose metadata position them precisely into one of the 88 NILs within the Milan910

municipality area, i.e., they are events captured by pixels corresponding to the
cells. We run three types of analyses: density analysis, anomaly detection, and
correlation with official census data. Figure (a) reports the density of languages
by NIL, while Figure (b) reports the anomalous presence of languages in the
different NILs in a given month.915

For the correlation with the census data, we considered the information for
the municipality of Milan, recorded at December 31st 2014. The official census
reported 253,334 foreign people residing in Milan, about 18.9% of the total
population. Among them, the largest community is that of Filipinos (41,237
people), followed by Egyptians (35,597 people), Chinese (25,928) and Peruvians920

(20,462). By running correlation analysis between census and Twitter language
data, we realized that only in some cases the language communities detected
through Twitter correspond to residents density in any given NIL. This is the
case for some of the Arabic and Spanish communities, while languages like Por-
tuguese, Dutch, Norwegian and Albanian are underexposed on Twitter, and925

others like Tagalog, Ukrainian and Romanian are overexposed. The most no-
ticeable overexposed languages in many areas are Arabic and Spanish. These
language communities might consist of those generations descending from North
African and South American immigrants in the 1980s and in the 1990s. In fact,
while the new generations have acquired Italian citizenship, they might have930

maintained a double language identity and might use their original language to
communicate within their community.

5.5. The Floating Piers
Our most recent studies [47, 48] exploit Instagram and Twitter datasets from

a famous art work called “The Floating Piers” that was created by the world-935

renowned artists Christo and Jeanne-Claude 21 and exposed to the public view
at the Lake Iseo in Italy, from June 18 through July 3, 2016. We extracted
the social media content relevant to the event, during a time period from June
10th to July 30th 2016, that contains 30,256 Instagram posts and 14,062 tweets,
using Twitter and Instagram APIs.940

With the aim of building prototypical profile of the visitors of the event, we
analysed the original content associated with each user in the dataset, including
the biography of the user who posted the content, the text of the post and
hashtags in order to explore the user behaviour and profile in various settings.
Furthermore, we automatically extract concepts and features from the photos945

and we use this augmented content to understand the users behaviour and the
event attendees’ demographics.

We run clustering of users based on their interests. Figure 17 reports the tag
clouds of the users in the three resulting clusters. As one can easily see, people
in first cluster mostly talk about Travel introducing themselves in their Twitter950

21http://christojeanneclaude.net/projects/the-floating-piers
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(a) Travel Lovers (b) Art Lovers (c) Tech Lovers

Figure 17: Word cloud representations for the three clusters of users engaged with the Floating
Piers case.

biography. People in second cluster are Art lovers and people in third cluster
state their positions as Technology fans and social media marketing addicted.

6. Related Work

The relevance of urban computing, or urban informatics, has been recognized
since long, as testified by the rich literature on the topic. A recent survey on955

urban sensing [6] clearly shows the huge opportunity for research to exploit
mobile phones data to get insights into urban dynamics and human activities.

One of the very common applications is to use CDRs to estimate the dens-
ity of crowd and vehicles in the different urban regions covered by the dataset
[7, 8]. Another example involves the detection of people habits. Ratti et al960

[49] present Mobile Landscape project, one of the first urban analysis based on
the geographical mapping of cell phone usage at different times of the day in
the metropolitan area of Milan. Becker et al. [9] capture key mobility patterns
within Morristown, NJ, by identifying users’ home and work locations from
CDRs. This information is particularly useful for urban managers and author-965

ities that are responsible for efficient public transportation systems. Also in [10]
the authors have tested the four Jacobs conditions that promote life in cities
by using CDRs and [11] quantifies the effects of ownership bias on mobility es-
timates by coupling two data sources from the same country. In other example
[11] combine CDR’s with other cellphone-related logs (e.g., tower pings, cellular970

handovers) in order to compare human mobility patterns derived from CDRs
vs. from the complete dataset.

Other studies focus on using CDR’s to track individuals motion patterns
like Gonzalez et al [12] characterized each individual by a time-independent
characteristic travel distance and a significant probability to return to a few975

highly frequented locations and Candia et al [13] investigate patterns of calling
activity at the individual level and show that the interevent time of consecutive
calls is heavy-tailed.
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Especially when merged with other kind of information, CDRs can reveal
interesting insights for city dynamics and urban monitoring. The platform built980

by Calabrese et al. [14] combines the users’ cellular data with the real-time
location of buses and taxis to model the car traffic in Rome. Krings et al [15]
instead express formal laws regulating the communication intensity between
pairs of cities in Belgium by exploiting the zip code information of customers.
Also Wesolowski et al [50] propose integration architecture to collect data and985

consolidate in the central DW from many different operational databases of
different telecom operators.

Quercia and his colleagues use CDRs to study human mobility related to
special planned events in Boston. In [16] the authors show that there is a high
correlation between the kind of event, e.g., sport, theater, music, family events,990

and the home location area of its attendees. In [17] they build a recommend-
ation system for social events and find out that the most effective algorithm
recommends those events that are popular among local residents.

In this work, we also investigate special events but, differently from [16, 51],
we do not require the events to be isolated in time and space.995

Although CDRs are a priceless source to gather underlying patterns of cities
and their citizens, they hide some limitations since they can not reveal any
information about people interests and thoughts. A parallel investigation of
social media steams has recently carried out by the research community as a
powerful mean to explore people opinions and preferences with regard to specific1000

venues in the city. Singh et al [18] introduce the concept of social pixel that
aggregates social interests of users about any particular theme and from any
particular location.

Sentiment analysis covers a wide range of applications in cities. Authors
in [19] propose a city sensing architecture from Twitter data to monitor user1005

opinions about events and topics. There are other works like [20, 21, 22] that ex-
amine temporal, spatial, and microeconomic patterns of human activities using
publicly available digital traces, such as social media data streams. Other ef-
forts [52, 53] analyze geo-located Twitter messages and geographical preferences
in order to predict global patterns of human mobility. Furthermore, [23, 24]1010

monitor, analyze, and assess city-scale events using the Streaming Linked Data
framework to process social data streams.

The exploration fields of the urban macroscope are infinite. Among all,
one of the feature of interest for policy makers and cities managers [54] is the
extremely diversified composition of the language mix, or multilingualism. This1015

interest is motivated by the increasing immigration flow towards cities [55],
which results in rapidly changing population density [56]. Multilingualism has
also a broad scope in academia. In particular, different papers approach the
issue of multilingualism from a historical perspective. [57], for example, analyses
the city of Singapore, [58] the city of New York, [59] develop a cross-linguistic1020

perspective on Gothenburg, Hamburg, The Hague, Brussels, Lyon and Madrid.
Moreover, [60, 61, 62] characterize cities and their neighborhoods from different
aspects namely safety, culture and demographics through social media networks
specifically Twitter. Authors in [63] present a tool called City Murmur with the
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aim to show how different media differently describe the urban space through1025

the attention that is payed on each street of a city. It wants to build a time-
based narration, an historical archive of media coverage of the urban space which
is able to reveal some hidden dynamics useful for city policy support, critical
media analysis, and sociocultural research.

In a nutshell, there has been a growing interest in exploiting CDRs and1030

social media streams to reveal emerging patterns within a city. However, the
joined use of both types of sources has not yet been carried out. In [27, 28]
we addressed this gap by presenting CitySensing, a system that fuses digital
footprints from both CDRs and social media.

In this regard, [25, 26] closely relate to our work by considering both kinds1035

of data. However, the authors analyze the two datasets in parallel and show
that the time series of phone communications and social activities related to the
same areas reveal a strong similarity. We instead investigate the importance of
using the two streams of data jointly together and use social streams to validate
key insights obtained with cellular data.1040

As a final remark, our additional exploitation of customer demographic data,
e.g., age and gender, already present in CDRs has never been used for urban
sensing and event management before.

7. Conclusion

In this paper, we proposed our approach for Urban Data Science at scale. It1045

is a multi-disciplinary approach that combines computer science, statistics, and
visual design disciplines together with domain expertise of stakeholders (city
administrators, event organizers, urban planners, resource managers) to find a
unifying framework for dealing with large scale data for city analytics.

In particular, we proposed a conceptual model (RP1) that was build by1050

extending the FrAPPE framework, which proved valid for describing real world
scenarios in the smart city context.

Table 3 presents in which experience the various FraPPE concepts were in-
troduced (the cells of the table whose background is filled in gray) and proposes
an analysis of how important they were in the various experiments. The basic1055

FraPPE concepts [29] were introduced during the Milan Design Week exper-
iences. The accent was on Place and Event. The Cells and the Pixel – its
time-variant counterpart – were important to bridge the gap between the ana-
lyzed data and the visual analytics we intend to enable [28]. The Grid and Pixel
– its time-variant counterpart – were useful as abstractions, but they did not1060

play a key role. The provenance of all steps of the analysis were documented
using the generic Action concept; captured and synthesized were only possible
value of an attribute of the action.

The Milano Fashion Week experience was key to extend the original FraPPE
with the concepts that allow describing the content as well as to extend FraPPE1065

with some provenance concepts. Specifically for this experience, we introduced
the distinction between original and augmented content at event-level. We also
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Table 3: A comparison of how the FraPPE concepts are used in the two large-scale events
of Milan Design Week (MDW) and Milan Fashion Week (MFW) as well as in the three
longitudinal analysis we performed in Milan, Como and for The Floating Pier (TFP). The
‘x’ symbols have the following meaning: xxx – key concept; xx – important concept; and x
– useful concept. The lack of stars means that the concept was not used. The gray cells
highlight when the concept was first introduced in FraPPE .

MDW MFW Milan Como TFP

Sp
at

ia
l Place xxx xxx xxx x x

Cell xx x xxx xx xx
Grid x x x xx xxx

Te
m

po
ra

l Event xxx xxx x x xx
Pixel xx x xxx xx
Frame x x x xx xx
- CapturedFrame xx xxx
- SynthetizedFrame xx xxx xx

C
on

te
nt

Content xxx x
- Event-level content xxx x x xxx

- Original content xxx x x xxx
- Augmented content xx xx x xx

- Pixel-level synthesis xxx xxx xxx x
- Frame-level synthesis xx xxx xx

P
ro

ve
na

nc
e Action x

- Capture x xx xx x
- Synthetize xx xx xx x
- Augment xx xx xx xx

perceived the need to model the content we connected to each pixels, namely
the pixel-level synthesis. We reflected this extension also in the provenance part
of FraPPE introducing the capture, the augment and the synthesize actions.1070

The longitudinal analysis, which we performed on Milan, Como and for The
Floating Pier open air art exhibition, served as validation for the extended ver-
sion of FraPPE . All the concepts were used in all deployments, although their
use and benefit depends on the different types of analysis performed. In the
Milan experience large emphasis was given to the cells (i.e., the NILs), the1075

pixels – their time-varying counterpart – and the pixel-level synthesis. In the
Como experience, more emphasis was posed on the grid, the frames – their time-
varying counterpart – and the frame-level synthesis, which was introduced in
FraPPE during this experience. Last but not least, the experience on the Float-
ing Piers demonstrated that crowd monitoring can be applied also to suburban1080

areas and that content shared by people varies based on the kind of medium
used (text or images) and is not necessarily coherent, therefore any analysis
needs to keep into account these discrepancies.

We also devised a logical architecture and a set of implementations (RP2) for
different scenarios and we deployed them in various settings (RP3). The exper-1085

iences reported demonstrate that we are able to addresses diverse data formats,
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as well as heterogeneous time and space granularity of the sources (req2). We
used our method for integrating those sources in a unified framework along
time, space (req2). Table 2 offers an at–a–glance view of the comprehensive
set of experiences that we conducted. Since all our solutions were aimed at city1090

stakeholders, we put a lot of effort in the valorization of the results through
intuitive and immediate visualization tools (req3). We showed the approach
at work on diverse city-scale problems, demonstrating its feasibility, generality
and effectiveness, and we discussed the value that could be obtained.

We are aware that our work has some limitations. First of all, it is extremely1095

hard to define the time and space granularity for the analysis. Different phe-
nomena are visible at different granularities and artifacts can be generated by
analyzing data at the wrong level. Moreover, we have only started exploring the
possible relationships between frames over time (e.g, see our experience on caus-
ality conducted during Milan Fashion Week). A richer time model can unveil1100

the possibility to capture relationships between events (e.g., simultaneity, asyn-
chronism, etc.). Last but not least, the strength of FraPPE – i.e., its high level
of abstraction – is also its weakness. FraPPE works well as unified modeling
framework, when the analysis pivots around contents generated at places during
events that need to be aggregated and compared other time and space. While,1105

in this paper, we supported with numerous experience our claim that FraPPE
supports those type of analysis, we recognize that more types of analysis exist.

Future and ongoing work consists in defining further scenarios and challenge
the approach with the additional requirements that arise from the limitations
we discussed in the previous paragraph.1110
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