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Abstract

The increasing presence of geo-distributed sensor networks implies the gen-

eration of huge volumes of data from multiple geographical locations at an

increasing rate. This raises important issues which become more challenging

when the final goal is that of the analysis of the data for forecasting purposes

or, more generally, for predictive tasks. This paper proposes a framework which

supports predictive modeling tasks from streaming data coming from multiple

geo-referenced sensors. In particular, we propose a distance-based anomaly

detection strategy which considers objects described by embedding features

learned via a stacked auto-encoder. We then devise a repair strategy which

repairs the data detected as anomalous exploiting non-anomalous data mea-

sured by sensors in nearby spatial locations. Subsequently, we adopt Gradient

Boosted Trees (GBTs) to predict/forecast values assumed by a target variable

of interest for the repaired newly arriving (unlabeled) data, using the original

feature representation or the embedding feature representation learned via the

stacked auto-encoder. The workflow is implemented with distributed Apache

Spark programming primitives and tested on a cluster environment. We per-

form experiments to assess the performance of each module, separately and in a

combined manner, considering the predictive modeling of one-day-ahead energy
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production, for multiple renewable energy sites. Accuracy results show that the

proposed framework allows reducing the error up to 13.56%. Moreover, scala-

bility results demonstrate the efficiency of the proposed framework in terms of

speedup, scaleup and execution time under a stress test.

Keywords: Anomaly Detection, Data Repair, Geo-distributed Big Data,

Spatial Autocorrelation, Neural Networks, Gradient-boosting.

1. Introduction

Nowadays, we are witnessing the continuous growth of geo-distributed sen-

sor networks in many application domains such as climate monitoring, ecolog-

ical modeling, traffic data analysis, energy consumption/production monitor-

ing. These geo-distributed sensor networks produce huge volumes of data at5

increasing rate. Managing and processing such data, generated from multiple

geographical locations, raises important issues which become much more chal-

lenging when the final goal is that of the analysis of the data for forecasting

purposes or, more generally, for predictive modeling.

One of the most recurrent problems in predictive modeling tasks involving10

sensor data is the presence of noise in the data. In fact, data acquired by the

sensors may not be transmitted due to technical problems or may be affected

by measurement errors. Semi-supervised approaches [1] respond to the need

to work with missing or unlabelled data, while outlier detection [2] approaches

respond to the need to identify data that significantly deviates from the expected15

trend.

However, such approaches are not particularly well-suited to online learn-

ing contexts with data coming in the form of streams from multiple sites. In

addition, existing online predictive modeling approaches do not address the

problem of missing or noisy data, but assume that data measured by sensors20

are free from anomalies. Hence, there is a clear separation between anomaly

detection or repair approaches, and predictive modeling approaches. In this

paper we present a framework that can handle these tasks simultaneously, that
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is, detecting anomalous data, repairing it and predicting values for a variable

of interest and a time horizon of interest, in the context of online learning with25

data coming from multi-site geo-localized sensor data.

The contributions presented in this paper can be summarized as follows:

• i) An anomaly detection technique based on the distance between objects

described by embedding features learned via a stacked auto-encoder;

• ii) A repair module which repairs the data detected as anomalous ex-30

ploiting non-anomalous data measured by the sensors in nearby spatial

locations;

• iii) A prediction module which leverages Gradient Boosted Trees (GBTs)

to predict values assumed by a target variable of interest for the repaired

newly arriving (unlabeled) data, with an input space that is described35

either by the original feature representation or the embedding feature

representation learned via the stacked auto-encoder;

The anomaly detection task we consider is unsupervised and the anomalies

we consider in this paper are contextual and based on a local context [3]. That

is, anomalies are identified on a single geographic position on the basis of a40

comparison with the time series of data observed at that location (context). We

will also show that our method provides reliable predictions in case of diffused-

context contextual anomalies, where the context includes near-by geographic

locations, in addition to time series of data observed at that location. We resort

to stacked auto-encoders [4] because of their recognized ability to learn to recon-45

struct a given input representation with a low reconstruction error [5] and to be

used for feature extraction [6]. In fact, the hidden levels of their architecture are

usually defined with a lower number of neurons, thus representing a reduced di-

mensionality representation of the inputs, while the output level returns vectors

of the same number of features of input data. This characteristic has been ex-50

ploited to perform anomaly detection [7] [8] [9] relying on reconstruction error.

The general idea behind this approach is that if the auto-encoder is trained with
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non-anomalous data, obtaining a high reconstruction error for a new instance

at testing time means that it belongs to a different distribution than that of the

non-anomalous instances, therefore it can be labeled as anomalous.55

The feature extraction capability of auto-encoders, which allows to obtain a

feature space of reduced dimensionality (see [6] and [10]) is preserved in deep

neural networks such as stacked auto-encoders, as shown in recent works [11]

[12]. In deep neural networks, hidden layers can be thought of latent structures

incorporating features of increasing levels of abstraction, learned from unlabeled60

data. The whole set of hidden layers thus constitute a feature hierarchy of

increasing complexity.

Both capabilities of Stacked auto-encoders are exploited in the framework

we propose in this paper for learning embedding features and for data repair.

Moreover, the individual components of the framework (auto-encoder training,65

anomaly detection, data repair, feature extraction, prediction) have been imple-

mented in accordance with the distributed programming primitives for Apache

Spark, with the purpose of enabling large-scale data processing in cluster com-

puting [13], as well as to take advantage of data locality in geo-distributed sensor

networks.70

The paper is structured as follows. Section 2 reviews related work in the

literature. Section 3 presents the proposed methods for each single task con-

sidered in our framework. Section 4 describes the experimental setting, the

datasets and the experimental results. Finally, we draw the main conclusions

and give directions for further work in Section 5.75

2. Related Work

Our work is rooted in sensor data analysis and, more specifically, in anomaly

detection, data repair and predictive modeling for sensor (network) data.

In anomaly detection, anomalies are classified in three categories: point

anomalies, contextual anomalies and collective anomalies [14]. In this paper we80

focus on contextual anomalies, where the main goal is to identify anomalous
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data instances with respect to usual data coming from a specific context, which

depends on the specific problem and structure of the data analyzed (e.g. spatio-

temporal context).

One example of contextual anomaly is an abrupt value measurement ob-85

served in a temperature time series. More generally, it looks clear that contex-

tual anomalies are naturally present in scenarios where spatio-temporal data

are generated, as already explored in previous studies [15] [16] [17]. Contex-

tual anomaly detection can be carried out with supervised, semi-supervised

and unsupervised methods [14]. Despite the abundance of approaches based90

on classical supervised machine learning based models such as neural networks

and support vector machines, unsupervised methods are of particular interest in

many real-world scenarios where labels are missing. This problem is particularly

important in the context of streams of sensor data, when anomaly detection has

to be performed in real-time.95

In this scenario, auto-encoders and stacked auto-encoders have demonstrated

superior performance for different problems in the recent literature [5] [8] [9] [18].

This is theoretically justified since auto-encoders are able to construct represen-

tations with a low reconstruction error, based on non-linear combinations of

input features [4].100

Although auto-encoders have seen particular interest for anomaly detection

from images [9] and videos [18], in this work we adopt such models and in-

vestigate their effectiveness for the detection of abrupt changes in multivariate

time-series data.

Concerning data repair approaches for sensor data, although there is much105

interest motivated by the opportunity to improve the accuracy of predictive

models, the approaches available in the literature are still at an initial stage with

respect to the emerging and increasingly complex applications. Some approaches

rely on smoothing the time series, by a linear interpolation/regression-based

mechanism [19]. The study in [20] proposes an approach for cleaning RFID110

data in a mobile environment based on Bayesian inference, whereas the authors

in [21] propose a method applied to photovoltaic data, which recognizes three

5



types of outliers and repairs the time series with a time transform function

which considers the rated capacity of a PV station. However, the major issue of

smoothing approaches is that they also affect correct data points, compromising115

the overall data quality.

Other algorithms in the literature exploit the violation graph approach,

which is based on user-defined rules, to perform data cleaning, such as the

equivalence class algorithm [22] or the holistic data cleaning algorithm [23]. In

[24], a stream data cleaning system for categorical and numerical data is pro-120

posed, which relies on compact data structures to maintain the necessary state

to repair data. Dirty data are repaired using the concept of distributed violation

graph, which is an extension of the violation graph approach, aimed to improve

the scalability performances.

The study in [25] considers speed constraints to recognize abnormal spikes of125

values in a stream, and proposes the median principle to repair abnormal data

by identifying the local optimum. The main limitation of constraints-based

approaches is the intrinsic dependence on constraints, which could be domain-

dependent and hard to define, especially in presence of concept drift. Moreover,

both smoothing and constraints-based approaches lack the exploitation of the130

spatial autocorrelation1 in data coming from geo-referenced sensors.

Shifting the focus on predictive models for streams of sensor data, a series of

approaches have been recently developed for solving analytic problems in differ-

ent domains. These approaches are, for instance, based on Bayesian regression

[27], time series classification via logistic models [28] and convolutional neural135

networks [29].

Considering, specifically, predictive approaches tailored for smart grids, one

of the most important predictive tasks is that of renewable energy forecasting

for a network of plants. In this context, machine learning approaches typically

1According to the Tobler’s first law of geography (1970), spatial autocorrelation is defined

as “everything is related to everything else, but near things are more related than distant

things” [26].
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aim to find a mapping between historical and forecasted variables [30] [31].140

Along the same stream of research, recently, there has been particular inter-

est among methods that carry out the predictive task for multiple plants at

the same time, with adaptive models that exploit the spatial information from

neighboring plants [32] [33]. This approach has been proved beneficial in terms

of predictive performance of the models. From the methodological perspective,145

some methods are based on neural networks [30], while others involve quantile

regression [34], Gaussian processes [35], vector autoregression (VAR) [32] [36]

or predictive clustering trees [33]. However, the recent adoption of Gradient

Boosted Trees (GBTs) has shown promising results, outperforming many other

approaches [37] [31].150

3. Method

The scenario considered in this work considers multivariate sensor data ob-

servations (e.g. temperature, pressure, humidity, etc.), also known as Geodata

streams, observed at regular time points, by sensors which are distributed in

different geographic locations. More formally: let P be the set of locations155

where sensors collect data and xt,p be the vector of observations at time t and

location p ∈ P . The multivariate geodata streams is then a sequence of sets

〈{x1,1, . . . , x1,|P |}, {x2,1, . . . , x2,|P |}, . . .〉. This definition extends to a multiva-

tiate context the definition of geodata stream provided in [38].

In this section we discuss in detail how the anomaly detection, repair, feature160

extraction and prediction tasks are performed on multivariate Geodata streams.

Each task is implemented with programming primitives in Apache Spark and,

thus, is carried out in a distributed manner, exploiting data locality on the

different nodes as much as possible.

3.1. Anomaly detection165

In our framework we consider stacked auto-encoders as a reference model

to carry out the anomaly detection task. Stacked auto-encoders are neural
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networks consisting of various layers, which aim to reconstruct input data with

the lowest possible reconstruction error. They can be considered in the branch

of deep neural networks, thus they benefit from a noteworthy expressive power.

In fact, the first layer of a stacked auto-encoder learns first level features (for

example, edges in a picture), while the second layer learns second-level features

(for example, edges occurring together to form contour or corner detectors), and

so on. In general, deeper layers of the stacked auto-encoder will learn higher-

level concepts. Each auto-encoder has an encoding function γ and a decoding

function δ such that:

γ : X → F , δ : F → X

γ, δ = arg min
γ,δ
‖X − δ(γ(X))‖2 (1)

A suitable way to learn a stacked auto-encoder consists in layer-wise back-

propagation learning. In this way, the first layer is learned supplying raw data,

which is transformed into new vectors (most often of lower dimensionality with

respect to input data) using the activation function of the hidden neurons. Such

vectors will represent the training data for the second layer, and the output of170

this layer will be a second level encoding of the input data. This process can be

repeated to learn deeper layers. The final layer of the stacked auto-encoder can

be a layer of the same size of input data, if the purpose is that of reconstructing

the input, or a softmax layer, if the purpose is that of classification. Obviously,

in our case, the final layer represents the decoding stage and, thus, has the same175

size of the input layer. A representation of an auto-encoder and a stacked-auto

encoder is shown in Figure 1.

With one hidden layer, the encoding stage of an auto-encoder takes the input

x ∈ Rd = X and maps it to an hidden representation z ∈ Rp = F :

z = σ(Wx + b) (2)

Where σ is a sigmoid or a rectified linear unit activation function, W is a180

weight matrix and b is a bias vector.
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Figure 1: Architecture of a standard auto-encoder (left) and a stacked auto-encoder (right).

The decoding stage reconstructs x from z as:

x′ = σ′(W′z + b) (3)

such that the following loss is minimized:

L(x,x′) = ‖x− x′‖2 = ‖x− σ′(W′(σ(Wx + b)) + b′)‖2 (4)

In this study, we propose two approaches: the former is based on the recon-

struction error, whereas the latter is based on a k-Nearest Neighbors approach185

which works in the feature space defined by the deepest hidden layer of the

auto-encoder.

For the case of anomaly detection approach based on reconstruction error,

at each learning session, once the auto-encoder has been learned with training

instances, a maximum distance threshold is calculated. This threshold repre-190

sents a maximum error bound used to determine whether an instance belongs

to the normal data distribution, or not. More specifically, if an instance has a

reconstruction error greater than the threshold, it is considered as anomalous.
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It is noteworthy that the threshold depends on the data distribution of the

reconstruction errors. Since this distribution is subject to change over time,195

due to concept drift, we calculate this dynamically as: [e + 3 · σ], according

to a one-tailed 3-sigma rule [39], where e is the average reconstruction error of

training instances and σ is the standard deviation of such errors. This feature

can be of great practical value, since it is often difficult to select a distance

threshold a-priori which allows us to perform anomaly detection tasks with200

good constant performance over time. The pseudo-code of the algorithms for the

anomaly detection and automatic determination of the threshold are described

in Algorithm 1 and Algorithm 2, in which we resort to some basic functions not

described in the code:

• learn: Learns an auto-encoder model given a training dataset, a desired205

architecture, the maximum number of iterations allowed and the tolerance

threshold;

• encode: Given a pre-learned auto-encoder model and a new instance with

the feature representation of the original training dataset, it returns the

embedding version of the instance in the deepest hidden layer of the auto-210

encoder model;

The auto-encoder architecture adopted consists of two hidden layers. The

first one with a number of neurons equal to half the number of neurons of the

input layer (independent features), and a second hidden layer with half neurons

than the first hidden layer (see Figure 1).215

The distributed implementation of stacked auto-encoders for Apache Spark

adopted in this work is available at the following link: https://github.com/

avulanov/scalable-deeplearning. This implementation exploits, in addition

to the standard multilayer perceptron, new deep learning features that are still

not available in the official Spark MLlib library.220

For the latter alternative (k-Nearest Neighbors approach), once the auto-

encoder is learned with available instances, the average distance between each
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instance and the nearest k instances in the hidden layer is calculated. When

we have a new instance, this instance is encoded, and its average distance w.r.t.

the nearest k instances in the hidden layer is calculated. If this distance is225

greater than a previously defined threshold, then this instance is considered

as anomalous, otherwise it is considered as non-anomalous. This strategy is

represented graphically in Figure 2 and 3.

In this case, the maximum distance allowed to classify an instance as non-

anomalous is set equal to [d + 3 · σ], where d is the average of the distances230

observed between each training instance and the nearest instances in the em-

bedding, and σ is the standard deviation of the observed distances.

The distributed k-Nearest Neighbors implementation used in our framework

is available at the following link: https://github.com/saurfang/spark-knn.

It employs hybrid spill trees [40], a distributed data structure (variant of metric235

trees) for high-dimensional indexing, that allows to achieve high search effi-

ciency. This aspect is particularly suited to the problem of k-Nearest Neighbors

that, otherwise, could incur in computational bottlenecks.

The pseudo-code of the algorithms for the anomaly detection and automatic

determination of threshold are described in Algorithm 3 and 4, in which we240

resort to some basic functions not described in the code:

• getNeighbors: Given a pre-learned k-NN model and a new instance, it

returns its k-nearest instances;

• dist: Given two instances with the same feature representation, it returns

the Euclidean distance between the two vectors;245

3.2. Data repair

After identifying anomalous instances, by means of the anomaly detection

module, it is important to address the data repair issue, since noisy data could

affect the quality of subsequent tasks (e.g. prediction).

The approach proposed in this paper is to repair such anomalous instances250

by exploiting non-anomalous instances at nearby spatial locations. The moti-
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Figure 2: Anomaly detection (k-NN strategy): Learning phase.

Figure 3: Anomaly detection (k-NN strategy): Anomaly detection phase.

Data: TR : Training data

maxIter : Maximum iterations for auto-encoder training

tol : Max tolerance for auto-encoder training

model← learn(TR,maxIter, tol)

forall tr ∈ TR do

projTr = encode(tr,model)

recErr.add(MAE(tr, projTr))

end

avgRec = recErr.average()

stDevRec = recErr.stdDev()

thresh = avgRec+ (3 · stDevRec)

return model, thresh

Algorithm 1: Anomaly Detection Scheme (Reconstruction Error strategy):

Learning stage
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Data: TS : New data

model : Pre-learned auto-encoder model

thresh : Upper bound error threshold

forall ts ∈ TS do

projTs = encode(ts,model)

error = MAE(ts, projTs)

if error > thresh then

A.add(ts)

end

end

return A: Anomalous instances.
Algorithm 2: Anomaly Detection Scheme (Reconstruction Error strategy):

Detection stage

Data: TR : Training data

k : Number of neighbors

maxIter : Maximum iterations for auto-encoder training

tol : Max tolerance for auto-encoder training

model← learn(TR,maxIter, tol)

forall tr ∈ TR do

projTr = encode(tr,model)

trainEmb.add(projTr)

end

kNNmodel← kNNtrain(trainEmb)

forall e ∈ trainEmb do

eNB = getNeighbors(e, kNNmodel, k)

forall nb ∈ eNB do

distances.add(dist(e, nb))

end

end

avgDist = distances.average()

stDevDist = distances.stdDev()

thresh = avgDist+ (3 · stDevDist)

return model, kNNmodel, thresh

Algorithm 3: Anomaly Detection Scheme (k-NN strategy): Learning stage
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Data: TS : New data

k : Number of neighbors

model : Pre-learned auto-encoder model

knnModel : Pre-learned k-NN model

thresh : Upper bound error threshold

model← learn(TR,maxIter, tol)

forall ts ∈ TS do

projTs = encode(ts,model)

tsNB = getNeighbors(projTs, kNNmodel, k)

avgDistTS = 0.0

forall nb ∈ tsNB do

avgDistTS+ = dist(projTs, nb)

end

avgDistTS = avgDistTS
k

if avgDistTS > thresh then

A.add(ts)

end

end

return A: Anomalous instances.
Algorithm 4: Anomaly Detection Scheme (k-NN strategy): Detection stage

vations for this solution have roots in the concept of spatial autocorrelation.

Spatial autocorrelation is the correlation among the values of a single variable

(i.e., object property) strictly attributable to the relatively close position of

objects on a two-dimensional surface, introducing a deviation from the inde-255

pendent observations assumption of classical statistics [41]. Intuitively, it is

a property of random variables taking values, at pairs of locations a certain

distance apart, that are more similar (positive autocorrelation) or less similar

(negative autocorrelation) than expected for pairs of observations at randomly

selected locations [42]. Positive autocorrelation is common in geophysical phe-260

nomena where temperature, wind speed, irradiance, etc. are similar at close

locations.

For this purpose, we propose two data repair mechanisms:

• Non-selective: The entire instance xp,t (all features) is repaired by ex-

ploiting the non-anomalous instances of other spatial sites by a weighted265

average. The weight is defined by a pairwise closeness function (in km)

between the locations:
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x′(p,t) =

∑
p′∈N(p)

[
x(p′,t) ·

(
1− dist(p, p′)

maxDist(P )

)]
∑

p′∈N(p)

(
1− dist(p, p′)

maxDist(P )

) , (5)

where N(p) represents the subset of neighboring locations of p, for which

data instances are not detected as anomalous.

• Selective: For each feature v of an anomalous instance x, it is detected270

whether the observed value x(p,t)[v] is anomalous, querying for each site

the historical values of that particular spatial location at the same time

of the same month. Specifically, we consider for each plant p, the mean

vector x(p,·) and the standard deviation vector σ(p,·). If the value of the

feature v is out of the range [x(p,·)[v]−3 ·σ(p,·)[v], x(p,·)[v]+3 ·σ(p,·)[v]], the275

value of feature v is repaired by exploiting the value of the same feature

in the spatial locations p′ ∈ N(p), representing neighboring sites whose

instances have not been identified as anomalous at time point t. The

replaced value is calculated as a weighted average, where the weight is

defined by a pairwise closeness function (in km) between the locations:280

x′(p,t)[v]←

∑
p′∈N(p)

[
x(p′,t)[v] ·

(
1− dist(p, p′)

maxDist(P )

)]
∑

p′∈N(p)

(
1− dist(p, p′)

maxDist(P )

) (6)

3.3. Feature extraction

The framework, as already anticipated, allows us to extract features exploit-

ing exclusively the encoding function of the auto-encoder learned in the previous

steps. In more detail, given an auto-encoder with two hidden layers, the encod-

ing process allows us to encode the input data I, with |I| features, in a new285
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Figure 4: Example of geo-distributed locations with corresponding pairwise distances in kilo-

meters and closeness measure proposed for the data repair step (maxDist = 14 km).

feature space H1 of dimensionality |I|2 and, subsequently, in a new feature space

H2 of dimensionality |H1|
2 . This because in this study we exploit the second hid-

den layer of the stacked auto-encoder in order to achieve a new feature space at

a higher level of abstraction and reduced dimensionality than the input feature

representation. The main purpose is that of mitigating the collinearity effect290

between features [43] [44] and, consequently, improve prediction effectiveness.

The feature extraction step is represented in Figure 5. Section 4 includes a

comparison of results in terms of prediction error, using the original feature space

and the reduced feature space, obtained using the feature extraction module.

3.4. Prediction295

This module allows the prediction of a target variable of interest for new

data, given the independent (input) feature values, previously processed through

the anomaly detection, repair and, optionally, feature extraction processes. The

prediction of the target variable of interest is obtained for multiple geographical

locations and for multiple time points in the future. An example, taken for300

the experiments we present in Section 4, concerns the prediction of the energy

produced the next day by multiple renewable energy plants, given the forecasted
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Figure 5: Feature extraction process, performed using the encoding function of the trained

auto-encoder.

weather conditions of the day of interest. Data provided to the predictive module

can be represented according to the original feature space of the input data (as

depicted in Figure 6) or according to the embedding features extracted with the305

feature extraction module described above (as depicted in Figure 7).

In our framework, we adopt Gradient Boosted Trees (GBTs) as prediction

model, which is an ensemble of decision trees, iteratively learned minimizing

a loss function. At each iteration, the algorithm uses the current ensemble to

predict the target attribute value of each training instance, and then compares310

the prediction with the actual target attribute value. The dataset is then rela-

beled, according to a specified loss function, in order to help the next decision

tree improve the performance of the ensemble, taking into account previous

mistakes (poor predictions). In fact, after each iteration, GBTs reduce this loss

function on the training data. Like decision trees, GBTs present the advantage315

of handling categorical features. Moreover, they do not require normalization

for each data feature, and they are able to learn from non-linear interactions

between independent and dependent variables.

GBTs have been chosen since they demonstrated exceptional performances
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Figure 6: Proposed framework (basic formulation). At training time, a stacked auto-encoder

and Gradient Boosted Trees (GBTs) models are trained on historical data. When new data

arrive, the detection module performs anomaly detection on these data exploiting the learned

auto-encoder model and using either the reconstruction error strategy or the k-NN strategy.

The repair module performs data repair adopting either the non-selective or the selective

strategy. The repaired anomalous instances and the non-anomalous instances are joined and

given as input to the prediction module, which exploits the previously trained GBTs model

to extract predictions.

in predictive modeling tasks. This has been shown, in particular, also in the320

context of energy forecasting [37] [31], which is the reference use case considered

in this work. The distributed GBTs implementation used in this work is that

available in the Apache Spark Mllib library2.

3.5. Geo-distributed data processing

One important aspect in geo-distributed contexts is the consideration of how325

the data processing strategy affects the overall execution time of distributed

jobs, in presence of heterogeneous computational resources and network links.

Although the focus of this paper is on the specific analytic scenario, inspired

2https://spark.apache.org/docs/latest/mllib-ensembles.html
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Figure 7: Proposed framework (including the feature extraction module). At learning time,

the stacked auto-encoder model is learned with historical training data and the Gradient

Boosted Trees (GBTs) model is trained on historical data in the feature space derived from

the embedding features of the auto-encoder model. The repair module performs data repair as

in the basic framework formulation. Once repaired instances are joined with non-anomalous

instances, the embedding feature representation of the data is derived exploiting the auto-

encoder model trained before. New data in the embedding feature representation is given

as input to the prediction module, which returns the predictions extracted by the previously

trained GBTs model.
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by the works in [45] and [46], we exploit data fragmentation as much as possible

in the deployment of our methodology. In this respect, we exploit one character-330

istic of our context, that is, the fact that data are directly observed by sensors

at each site, and at the same time granularity. This means that data partitions

are naturally balanced.

We now discuss the impact of data processing in the geo-distributed context

for each step of the methodology proposed.335

Considering the anomaly detection step, this is carried out on time-based

aggregated historical data (aggregation is performed at one hour granularity in

our experiments) collected on all geographical locations, hence the data required

for this step are obtained as the union of data partitions. However, this union is

only logical (see Figure 8). Technically speaking, the Spark DataFrame is built340

by considering data locality, that is, data are collected and processed by compu-

tational nodes “close” to sensors. The DataFrame, if used for training, is then

directly used for learning autoencoders. The same happens in the (anomaly)

detection step, which operates lazily in the Apache Spark framework, meaning

that it does into incur in data partition shuffle, which would result in a dramatic345

network overload.

As for data repair, in contrast with [45] and [46], where computation can be

carried out independently on different partitions, with a final aggregation step

on the top level cluster (the operations performed are: word count, inverted

index construction and arithmetic mean), our method introduces additional350

complexity in terms of the data required for performing the analytics task at

hand. More specifically, this step requires non-anomalous data observed in

multiple geographical locations, in order to repair anomalous data in a specific

location (see Formulas (5) and (6)). However, data repair is performed on new

data only and new data, as historical data, are aggregated at each location.355

For example, in the case study reported in Section 4, spot observations (1-15

minutes measurements) are averaged on a hourly basis and for each new day for

which we have to predict the produced energy, the repair step needs to process

24 instances for each location, which results in a light network traffic, and does
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not affect the overall execution time.360

As for the feature extraction step, the auto-encoder model trained during

the anomaly detection step is broadcast and available for all the computational

nodes. The model, which represents the only input to perform feature extrac-

tion, is a light-weight data structure of double precision weights. Thus, features

can be extracted locally on each location, without impacting in data transfer365

via the network infrastructure.

Finally, considering the predictive task, it exploits either repaired data in its

original feature representation, or repaired data obtained after feature extrac-

tion. The dataset required for this step is, as in the anomaly detection step, the

(logical) union of data partitions available on computational nodes. Similarly to370

the phase of stacked auto-encoders learning, the phase of GBTs learning (which

is distributed) uses a Apache Spark DataFrame which is built by considering

data locality. The same happens in the prediction step, which operates lazily

in the Apache Spark framework (this step only requires the usage of GBTs for

associating a prediction to a new example).375

4. Experiments

The datasets considered consist of a set of weather variables (such as tem-

perature, humidity, etc.) monitored at hourly granularity by sensors placed

on renewable energy plants, located in different geographical areas. Once the

weather observations (independent variables) of the testing day have been re-380

paired, the task consists in predicting the production of each renewable energy

plant for the next 24 hours, at a hourly granularity.

In this work, two datasets are considered: PV Italy and Wind NREL:

• PV Italy. The data are collected at regular intervals of 15 minutes (mea-

surements start at 2:00 and stop at 20:00 every day) by sensors located385

on 17 plants in Italy. The time period spans from January 1st, 2012 to

May 4th, 2014. More details about data preparation steps performed on

this dataset can be found in [33].
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Figure 8: Outline of the geo-distributed data processing environment with hierarchical model.
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• Wind NREL. This dataset was modeled by 3TIER using the Weather

Research & Forecasting (WRF) model (https://www.nrel.gov/wind/).390

Five plants with the highest rated production have been selected, ob-

taining the time series of wind speed and production observed every 10

minutes, for a time period of two years (from January 1st, 2005 to De-

cember 31st, 2006). Hourly aggregation was performed. The data was not

affected by outliers or missing values.395

For both the datasets the following input features are represented: latitude,

longitude of the i-th plant; day and hour, respectively; altitude and azimuth;

plant ID; weather parameters, such as ambient temperature, irradiance, pres-

sure, wind speed, wind bearing, humidity, dew point, cloud cover, descriptive

weather summary. Weather parameters are either measured (training phase) or400

forecast (testing phase).

Weather data are extracted from Forecast.io (http://forecast.io/), the

expected altitude and azimuth are extracted from SunPosition (http://www.

susdesign.com/sunposition/index.php), whereas the expected irradiance (PV

Italy dataset only) is extracted from PVGIS (http://re.jrc.ec.europa.eu/405

pvgis/apps4/pvest.php).

In order to evaluate the two anomaly detection strategies, the two data repair

strategies and the prediction module described above, experiments have been

conducted by injecting different levels of noise. We quantify noise according

to two dimensions: Instance Noise Rate (INR), which defines the rate of in-410

stances affected by noise in the data window considered, and Feature Noise Rate

(FNR), which defines the rate of features affected by noise for each anomalous

instance. We consider two configurations in order to evaluate the sensitivity of

the proposed framework with respect to different levels of noise:

• N1 = {INR = 0.25, FNR = 0.50};415

• N2 = {INR = 0.50, FNR = 0.50}.

The two perturbations are performed simultaneously. That is, in N1, 25%
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of instances have been perturbed on 50% of the features. The way noise is

introduced into data instances follows two different approaches: i) anomalies

with local context (default approach), which correspond to random selection of420

locations to be perturbed ii) anomalies with diffused context, which correspond

to anomalies introduced at a specific geographical area which contains several

sensors/locations. While the first approach corresponds to the main setting of

this study, the second case corresponds to diffused weather events and will be

discussed only in Section 4.4.425

This data perturbation is necessary in order to evaluate:

• Anomaly detection performances with the two strategies proposed in this

paper (Reconstruction Error based vs. k-NN based);

• Data repair performances with the two strategies (Non Selective vs Selec-

tive);430

• Predictive performance for the one-day-ahead renewable energy forecast-

ing task, exploiting two feature representations of data (original and ex-

tracted using auto-encoder models), assessing the contribution of the re-

pair step in terms of forecasting error reduction for the task at hand.

We conduct a sensitivity analysis considering three different sliding window435

sizes: 30, 60 and 90 days. For each dataset, we select randomly 10% of days,

which are considered as testing days. For each day, we train the model using

historical data (30, 60 or 90 days) preceding the testing day considered, and the

goal is to perform prediction on the current day.

In order to evaluate the effectiveness of our approach in terms of anomaly440

detection (also considering the impact on the subsequent repair and predictive

modeling tasks) we compared it with a baseline approach. The baseline ap-

proach considered in this work detects whether a data instance is anomalous,

based on the consensus of neighboring locations. In case the consensus exists,

the data instance will not be repaired, otherwise it will be subject to selec-445

tive repair. In principle, the main property of this (spatially-aware) baseline
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approach is that it is able to not consider as anomalous weather events that

do not significantly change the data distribution in the current location and in

nearby locations as well.

4.1. Anomaly detection450

The training procedure, which follows the minimization of the reconstruc-

tion error using training data (non-anomalous instances), stops if the maxi-

mum number of iterations is reached (800) or a stopping criterion is reached

(tol < 10e− 5).

Concerning the anomaly detection strategy based on k-Nearest Neighbors,455

we perform a grid search to identify the best value for the k parameter in the

following set of choices: k = {5, 10, 50, 100, 150, 200}. Anomaly detection results

in terms of Precision, Recall and F-Score using the reconstruction error strategy

and the k-NN strategy are reported in Table 1 and Table 2 (see Figures 9 and

10 from a more compact view).460

The performances of the anomaly detection module leveraging the k-Nearest

Neighbors (k-NN) strategy are more robust than the strategy based on recon-

struction error, especially as noise increases in input data. In particular, results

in terms of F-Score for the k-NN strategy are significantly better for the PV

Italy dataset, and slightly better for the Wind NREL dataset. Moreover, the465

k-NN strategy always outperforms the reconstruction error strategy in terms

of Recall, especially with high noise rate. It is important to highlight that low

Recall impacts in a high amount of false negatives, which affect the subsequent

repair step in the framework. More specifically, since the repair module needs

to exploit instances identified as non-anomalous in order to repair instances470

identified as anomalous, if an high number of anomalous instances are wrongly

classified as non-anomalous, this will reduce the repair capability for the anoma-

lous instances, resulting in a high repair error. Therefore, an anomaly detection

strategy with high Recall performances is strongly favorable in our scenario.

Concerning the configuration of the k parameter in the k−NN strategy, it475

can be observed that small values of k obtain the best results for the PV Italy
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Table 1: Anomaly detection results for the PV Italy dataset (anomalies with local context)

with the two variants of the proposed framework and the baseline method, using different

distance thresholds (T ∈ 15, 30, 45), considering varying noise rates and training window

sizes. Best results in terms of F-Score for each Window size configuration are marked in bold.

Noise rate Window size

{INR = 0.25, 30 days 60 days 90 days

FNR = 0.50}

Reconstruction Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

error variant 0.9923 0.7303 0.8364 0.9936 0.7288 0.8362 0.9919 0.7297 0.8356

k-NN variant Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

k=5 0.8765 0.8358 0.8458 0.8819 0.8434 0.8532 0.8729 0.8384 0.8471

k=10 0.8912 0.8254 0.8442 0.8962 0.8404 0.8563 0.8910 0.8373 0.8528

k=50 0.9248 0.7729 0.8250 0.9161 0.7948 0.8344 0.9118 0.7965 0.8337

k=100 0.9517 0.7528 0.8261 0.9323 0.7687 0.8260 0.9228 0.7711 0.8236

k=150 0.9651 0.7427 0.8277 0.9451 0.7553 0.8246 0.9349 0.7600 0.8229

k=200 0.9733 0.7365 0.8291 0.9543 0.7487 0.8256 0.9445 0.7537 0.8239

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.6787 0.5048 0.5008 0.6787 0.5048 0.5008 0.6787 0.5048 0.5008

T = 30 0.9814 0.7401 0.8336 0.9814 0.7401 0.8336 0.9814 0.7401 0.8336

T = 45 0.9997 0.7227 0.8379 0.9997 0.7227 0.8379 0.9997 0.7227 0.8379

Noise rate Window size

{INR = 0.50, 30 days 60 days 90 days

FNR = 0.50}

Reconstruction Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

error based 0.9877 0.4575 0.6084 0.9890 0.4562 0.6080 0.9886 0.4560 0.6080

k-NN based Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

k=5 0.8225 0.6996 0.7104 0.8271 0.7148 0.7245 0.8201 0.7134 0.7217

k=10 0.8392 0.6606 0.6826 0.8404 0.6881 0.7053 0.8375 0.6882 0.7041

k=50 0.8928 0.5504 0.6202 0.8741 0.5864 0.6389 0.8696 0.5909 0.6402

k=100 0.9315 0.5041 0.6076 0.9023 0.5382 0.6166 0.8928 0.5458 0.6185

k=150 0.9523 0.4832 0.6050 0.9200 0.5134 0.6085 0.9106 0.5221 0.6104

k=200 0.9644 0.4711 0.6045 0.9338 0.4988 0.6056 0.9238 0.5073 0.6069

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.7421 0.5788 0.6109 0.7421 0.5788 0.6109 0.7421 0.5788 0.6109

T = 30 0.9973 0.4462 0.6085 0.9973 0.4462 0.6085 0.9973 0.4462 0.6085

T = 45 1.0000 0.4448 0.6093 1.0000 0.4448 0.6093 1.0000 0.4448 0.6093
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Table 2: Anomaly detection results for the Wind NREL dataset (anomalies with local context)

with the two variants of the proposed framework and the baseline method, using different

distance thresholds (T ∈ 15, 30, 45), considering varying noise rates and training window

sizes. Best results in terms of F-Score for each Window size configuration are marked in bold.

Noise rate Window size

{INR = 0.25, 30 days 60 days 90 days

FNR = 0.50}

Reconstruction Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

error based 0.9962 0.7514 0.8554 0.9954 0.7539 0.8558 0.9955 0.7526 0.8555

k-NN based Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

k=5 0.8992 0.7790 0.8223 0.9050 0.7876 0.8285 0.9072 0.7888 0.8305

k=10 0.9289 0.7780 0.8340 0.9256 0.7855 0.8363 0.9301 0.7892 0.8401

k=50 0.9768 0.7586 0.8478 0.9585 0.7664 0.8421 0.9590 0.7700 0.8439

k=100 0.9930 0.7547 0.8548 0.9781 0.7559 0.8474 0.9772 0.7647 0.8503

k=150 0.9970 0.7526 0.8564 0.9874 0.7529 0.8511 0.9884 0.7581 0.8537

k=200 0.9982 0.7521 0.8568 0.9955 0.7543 0.8561 0.9928 0.7566 0.8553

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.9996 0.7505 0.8570 0.9996 0.7505 0.8570 0.9996 0.7505 0.8570

T = 30 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

T = 45 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

Noise rate Window size

{INR = 0.50, 30 days 60 days 90 days

FNR = 0.50}

Reconstruction Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

error variant 0.9933 0.5051 0.6651 0.9935 0.5058 0.6654 0.9931 0.5068 0.6656

k-NN variant Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

k=5 0.8705 0.5992 0.6669 0.8762 0.6120 0.6761 0.8673 0.6144 0.6754

k=10 0.9056 0.5789 0.6654 0.8993 0.5922 0.6711 0.8915 0.5963 0.6707

k=50 0.9650 0.5243 0.6603 0.9501 0.5413 0.6621 0.9370 0.5476 0.6600

k=100 0.9876 0.5100 0.6644 0.9766 0.5217 0.6643 0.9658 0.5301 0.6628

k=150 0.9947 0.5057 0.6661 0.9854 0.5147 0.6652 0.9801 0.5180 0.6640

k=200 0.9971 0.5031 0.6662 0.9898 0.5102 0.6654 0.9873 0.5122 0.6648

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.9979 0.5022 0.6663 0.9979 0.5022 0.6663 0.9979 0.5022 0.6663

T = 30 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667

T = 45 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667 1.0000 0.5000 0.6667
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dataset k = 5, 10). The same can be observed for the Wind NREL dataset,

but only with the high noise rate setting, whereas with smaller noise rate, high

values of k are preferred (k=200).

Tables 1 and 2 also report the comparison with the spatially-aware baseline480

method. The results obtained in terms of Precision, Recall and F-Score show

that our k-NN based anomaly detection approach performs favorably in terms of

F-Score in the majority of cases (9 of the 12 configurations obtained considering

the 2 datasets, the 3 window size values and the 2 noise rates). Moreover, it

is always capable to obtain a much higher Recall, which, as discussed before,485

is a highly preferred property. In fact, low Recall impacts in a high amount of

false negatives, which affect the subsequent repair step in the framework. These

results are motivated by two aspects: 1) Our method uses, as features, the

spatial coordinates of the considered sites, this means that spatial distance is still

(although indirectly) considered. 2) This analysis investigates the effectiveness490

of the anomaly detection step in presence of anomalies with local context in the

data; in Section 4.4, we will discuss the case of anomalies with diffused context.

4.2. Data repair

The results in Table 3 and Table 4 show the performances in terms of495

RMSE (Root Mean Square Error) and MAE (Mean Absolute Error) for the

non-selective and selective repair schemes, considering the best value of k ob-

tained for the anomaly detection task.

Comparing the results obtained with the two repair strategies we can see

that the selective repair strategy is capable to obtain a consistent margin of im-500

provement (lower RMSE) than the non-selective one for the PV Italy dataset,

and similar (or slightly better) performances for the Wind NREL dataset. The

motivation can be found in the higher degree of freedom of the selective ap-

proach, that can correct single feature values and does not try to repair the

whole data instance when some feature values are possibly correct.505
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Figure 9: Anomaly Detection accuracy results obtained with two variants (Reconstruction

Error and k-NN based) and two configurations of Instance Noise Rate (INR) and Feature

Noise Rate (FNR). The results are represented in terms of F-Score and Recall for the PV

Italy dataset (anomalies with local context). For k-NN based anomaly detection, the average

(with different values of k) is reported.

29



Figure 10: Anomaly Detection accuracy results obtained with two variants (Reconstruction

Error and k-NN based) and two configurations of Instance Noise Rate (INR) and Feature

Noise Rate (FNR). The results are represented in terms of F-Score and Recall for the Wind

NREL dataset (anomalies with local context). For k-NN based anomaly detection, the average

(with different values of k) is reported.
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Table 3: Repair results for the PV Italy dataset (anomalies with local context), carried out

with the two variants proposed, considering varying noise rates and training window sizes.

The best value of the k parameter in the anomaly detection task adopting the k-NN strategy

is depicted for each window size.

Noise rate Window size

{INR = 0.25, 30 days 60 days 90 days

FNR = 0.50}

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0406 0.0179 0.0393 0.0170 0.0401 0.0172

(best k) 5 10 10

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0329 0.0120 0.0334 0.0122 0.0344 0.0125

(best k) 5 10 10

Noise rate Window size

{INR = 0.50, 30 days 60 days 90 days

FNR = 0.50}

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0692 0.0292 0.0678 0.0294 0.0676 0.0294

(best k) 5 5 5

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0583 0.0204 0.0563 0.0198 0.0562 0.0198

(best k) 5 5 5
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Table 4: Repair results for the Wind NREL dataset (anomalies with local context), carried

out with the two variants proposed, considering varying noise rates and training window sizes.

The best value of the k parameter for the anomaly detection task adopting the k-NN strategy

is depicted for each window size.

Noise rate Window size

{INR = 0.25, 30 days 60 days 90 days

FNR = 0.50}

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0384 0.0155 0.0377 0.0153 0.0367 0.0150

(best k) 200 200 200

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0384 0.0155 0.0376 0.0152 0.0366 0.0149

(best k) 200 200 200

Noise rate Window size

{INR = 0.50, 30 days 60 days 90 days

FNR = 0.50}

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0553 0.0242 0.0533 0.0236 0.0521 0.0231

(best k) 5 5 5

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.0540 0.0226 0.0520 0.0220 0.0514 0.0217

(best k) 5 5 5
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4.3. One-day-ahead renewable energy forecasting

Results for the prediction task using Gradient Boosted Trees (GBTs) with

non repaired data, repaired data, and repaired data after feature extraction are

reported in Table 6 and 7 (see Figures 11 and 12 for a compact view).

The performance of GBTs for the multi-plant predictive modeling of one-day510

ahead energy production , using repaired data, allows the framework to gain, in

average, up to 4.98% in terms reduction of the prediction error (RMSE). This

improvement reaches 13.56% in the case of the embedding feature representa-

tion, when working on noisy testing data. In general, it can be observed that

the benefit of using the repair scheme, in terms of error reduction, increases515

when the noise rate increases.

The feature extraction strategy allows to achieve a consistent RMSE re-

duction with the Wind NREL dataset, on which the extracted feature space

performs better than the original feature space representation in all 12 configu-

rations, whereas on the PV Italy dataset it obtains better performances in just520

2 over 12 configurations.

In order to better clarify the real contribution of each single step of the

framework, in Table 5 we report the results of the Wilcoxon Signed Rank tests.

The results show that both the repair strategy and the feature extraction are

clearly beneficial.525

4.4. Anomalies with diffused context

In this section, we address a different scenario in which the anomalies are

not observed randomly and at a specific location, but contextually distributed

over a geographic area. This can happen in reality in presence of rare weather

events, such as windstorms, thunderstorms, etc. For this purpose, we intro-530

duced noise in the data, according to the “diffused” approach, that operates

in the following way: for each testing day, a number of instances are randomly

selected as seeds, and the instances observed at neighboring locations in the

same day and hour are perturbed. The features perturbed are the following:

temperature, windspeed, windbearing, pressure. In order to model anomalies,535
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once a seed is selected, the standard deviation observed for each feature in each

local neighborhood is calculated. Then, the standard deviation is multiplied

by a random factor between 4 and 8, and this amount is added to the value

observed at each plant of the local neighborhood. The process continues until

the desired instance noise rate is reached. Coherently with the setup defined for540

the anomalies with local context, we propose the same values for the instance

noise rate (INR) parameter: 0.25 and 0.50, corresponding respectively to 25%

and 50% of the instances.

The results in Table 8 and Table 9 show the results obtained with the

(spatially-aware) baseline method and our proposed method. For our method545

we use the anomaly detection strategy based on k-Nearest Neighbors, which is

the most robust according to the results reported in Section 4.1 (the best values

for the k parameter have been selected according to the grid search executed be-

fore). The results show that the baseline method for anomaly detection exhibits

the best performances in terms of F-Score in the majority of cases (10 of the550

12 configurations obtained considering the 2 datasets, the 3 window size values

and the 2 noise rates). Moreover, the baseline method is comparable to ours in

terms of Recall (in 7 cases out of the 12 configurations our method outperforms

the baseline in terms of recall).

This behavior of our approach (lower precision and comparable recall with555

respect to the baseline) is motivated by the fact that it is able to identify anoma-

lies with both local and diffused contexts, whereas the baseline is able to only

identify anomalies with a local context that are not anomalies in a diffused con-

text, resulting in a much more conservative approach for this specific dataset,

that contains artificially-generated contextual anomalies with diffused context.560

However, from a repair viewpoint, lower anomaly detection performances do

not necessarily mean worse predictions. In fact, the anomaly detection step of

our proposed method identifies anomalies with local context, and repairs them

exploiting normal instances observed in neighboring locations. Since in case

of anomalies with diffused context most of the data associated to neighboring565

locations are also likely to be considered anomalous, our approach prefers to be
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Pairwise comparison p-value winner

RMSE criterion

No repair vs Repair 1.82E-05 Repair

Repair vs Repair with Feature Extraction 1.29E-02 Repair with Feature Extraction

No repair vs Repair with Feature Extraction 8.55E-05 Repair with Feature Extraction

Table 5: Wilcoxon Signed Rank Tests (all datasets, anomalies with local context). Bold:

improvement is statistically significant when the p-value is smaller than 0.05.

conservative and not to replace values (due to absence of information).

This reflects on the experimental results obtained for the subsequent predic-

tion step reported in Table 10 and Table 11. In fact, comparing the two methods

used for the anomaly detection step, it is possible to observe that, even in those570

cases in which the baseline method outperforms our method in terms of F-Score,

our method exhibits the best predictive performance in terms of RMSE (in 11

out of 12 configurations, either adopting the simple repair scheme or the repair

scheme with feature extraction). Moreover, it is important to highlight that

the baseline method cannot offer feature extraction capabilities, considering its575

model-less nature. Especially for the Wind NREL dataset, taking advantage

of the feature extraction step leads to a consistent margin of improvement of

the predictive performance. The beneficial effect of the feature extraction step

is shown in Table 12, where we can see that our method with feature extrac-

tion significantly outperforms the spatially-aware baseline method. In the same580

table, we can see that without feature extraction the difference between our

method and the baseline method is not statistically significant.

Overall, the results demonstrate the robustness for predictive tasks of our

method also in case of anomalies with diffused context, although the method

we propose is not specifically designed for such specific type of anomalies.585

4.5. Scalability evaluation

In this section we introduce scalability results obtained with the PV Italy

dataset. The original version of the dataset (∼250K instances) has been hori-

zontally replicated by multiple factors (up to 512x), in order to test the perfor-
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Figure 11: One day ahead forecasting error obtained without repairing noisy data (No Re-

pair), after repair with Non-selective and Selective repair strategies (Repair), and performing

repair in combination with feature extraction (Repair + FE), considering two configurations

of Instance Noise Rate (INR) and Feature Noise Rate (FNR). Results are represented in terms

of RMSE for the PV Italy dataset (anomalies with local context).

Figure 12: One day ahead forecasting error obtained without repairing noisy data (No Re-

pair), after repair with Non-selective and Selective repair strategies (Repair), and performing

repair in combination with feature extraction (Repair + FE), considering two configurations

of Instance Noise Rate (INR) and Feature Noise Rate (FNR). Results are represented in terms

of RMSE for the Wind NREL dataset (anomalies with local context).
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Table 6: Prediction results for the PV Italy dataset (anomalies with local context) with the

different strategies proposed, considering varying noise rates and training window sizes. The

percentage of improvement of RMSE for the strategies involving repaired data is reported for

each configuration.

Noise rate Window size

{INR = 0.25, FNR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1330 0.0808 0.1297 0.0790 0.1287 0.0852

RMSE impr. 2.45% 3.17%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1330 0.0808 0.1290 0.0782 0.1274 0.0845

RMSE impr. 3.01% 4.15%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1349 0.0822 0.1291 0.0786 0.1339 0.0887

RMSE impr. 4.33% 0.75%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1349 0.0822 0.1282 0.0777 0.1315 0.0874

RMSE impr. 4.97% 2.50%

Noise rate Window size

{INR = 0.25, FNR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1295 0.0783 0.1263 0.0765 0.1269 0.0837

RMSE impr. 2.50% 1.98%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1295 0.0783 0.1256 0.0760 0.1267 0.0838

RMSE impr. 3.05% 2.14%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1315 0.0796 0.1254 0.0764 0.1293 0.0856

RMSE impr. 4.64% 1.67%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1315 0.0796 0.1251 0.0759 0.1279 0.0846

% impr. 4.87% 2.73%

Noise rate Window size

{INR = 0.25, FNR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1276 0.0778 0.1239 0.0757 0.1292 0.0869

RMSE impr. 2.90% -1.30%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1276 0.0778 0.1236 0.0754 0.1286 0.0864

RMSE impr. 3.15% -0.82%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1292 0.0790 0.1235 0.0755 0.1310 0.0880

RMSE impr. 4.44% -1.42%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.1292 0.0790 0.1228 0.0748 0.1297 0.0873

RMSE impr. 4.98% -0.40%
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Table 7: Prediction results for the Wind NREL dataset (anomalies with local context) with

the different strategies proposed, considering varying noise rates and training window sizes.

The percentage of improvement of RMSE for the strategies involving repaired data is reported

for each configuration.

Noise rate Window size

{INR = 0.25, FNR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3945 0.3087 0.3942 0.3085 0.3481 0.2824

RMSE impr. 0.07% 11.77%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3945 0.3087 0.3942 0.3085 0.3479 0.2823

RMSE impr. 0.06% 11.79%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4074 0.3169 0.4001 0.3117 0.3522 0.2859

RMSE impr. 1.79% 13.56%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4074 0.3169 0.4023 0.3127 0.3531 0.2863

RMSE impr. 1.26% 13.33%

Noise rate Window size

{INR = 0.25, FNR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3945 0.3082 0.3941 0.3079 0.3514 0.2889

RMSE impr. 0.09% 10.92%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3945 0.3082 0.3939 0.3078 0.3514 0.2890

RMSE impr. 0.13% 10.91%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4080 0.3169 0.3992 0.3103 0.3557 0.2923

RMSE impr. 2.16% 12.81%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4080 0.3169 0.4019 0.3125 0.3566 0.2926

% impr. 1.49% 12.59%

Noise rate Window size

{INR = 0.25, FNR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3948 0.3082 0.3938 0.3076 0.3665 0.3040

RMSE impr. 0.24% 7.16%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.3948 0.3082 0.3938 0.3076 0.3665 0.3040

RMSE impr. 0.24% 7.16%

Noise rate Window size

{INR = 0.50, FNR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Non-Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4081 0.3168 0.3986 0.3101 0.3673 0.3062

RMSE impr. 2.34% 9.99%

Selective RMSE MAE RMSE MAE RMSE MAE

repair 0.4081 0.3168 0.4004 0.3114 0.3696 0.3079

RMSE impr. 1.89% 9.44%
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Table 8: Anomaly detection results for the PV Italy dataset (anomalies with diffused context)

with the baseline method, using different distance thresholds (T ∈ 15, 30, 45) and the proposed

framework (Auto-Encoder model with 1 and 2 hidden layers), considering varying noise rates

and training window sizes. Best results in terms of Recall and F-Score for each Window size

configuration are marked in bold.

Noise rate Window size

{INR = 0.25} 30 days 60 days 90 days

k-NN based Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Proposed method (k=5) 0.8306 0.7509 0.7797 0.8411 0.7569 0.7882 0.8427 0.7618 0.7920

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.6005 0.5135 0.4906 0.6005 0.5135 0.4906 0.6005 0.5135 0.4905

T = 30 0.9604 0.8036 0.8662 0.9604 0.8036 0.8662 0.9604 0.8036 0.8662

T = 45 0.9905 0.7965 0.8778 0.9905 0.7965 0.8778 0.9905 0.7965 0.8778

Noise rate Window size

{INR = 0.50} 30 days 60 days 90 days

k-NN based Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Proposed method (k=5) 0.8246 0.6953 0.7295 0.8564 0.7163 0.7551 0.8455 0.7181 0.7514

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.6716 0.4994 0.5196 0.6717 0.4994 0.5196 0.6716 0.4994 0.5196

T = 30 0.8492 0.6932 0.7453 0.8492 0.6931 0.7453 0.8492 0.6932 0.7453

T = 45 0.9010 0.6760 0.7557 0.9010 0.6760 0.7557 0.9009 0.6759 0.7557

Table 9: Anomaly detection results for the Wind NREL dataset (anomalies with diffused

context) with the baseline method, using different distance thresholds (T ∈ 15, 30, 45) and the

proposed framework (Auto-Encoder model with 1 and 2 hidden layers), considering varying

noise rates and training window sizes. Best results in terms of Recall and F-Score for each

Window size configuration are marked in bold.

Noise rate Window size

{INR = 0.25} 30 days 60 days 90 days

k-NN based Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Proposed method (k=200) 0.9992 0.7508 0.8569 0.9925 0.7525 0.8539 0.9913 0.7567 0.8543

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.9980 0.7520 0.8566 0.9980 0.7520 0.8566 0.9980 0.7520 0.8566

T = 30 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

T = 45 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571 1.0000 0.7500 0.8571

Noise rate Window size

{INR = 0.50} 30 days 60 days 90 days

k-NN variant Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

Proposed method (k=200) 0.9961 0.5192 0.6788 0.9907 0.5250 0.6783 0.9804 0.5400 0.6811

Baseline method Precision Recall F-Score Precision Recall F-Score Precision Recall F-Score

T = 15 0.9864 0.5211 0.6755 0.9864 0.5211 0.6755 0.9864 0.5211 0.6755

T = 30 0.9903 0.5167 0.6757 0.9903 0.5167 0.6757 0.9903 0.5167 0.6757

T = 45 0.9977 0.5174 0.6790 0.9977 0.5174 0.6790 0.9977 0.5174 0.6790
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Table 10: Prediction results for the PV Italy dataset (anomalies with diffused context) with

the baseline method, using different distance thresholds (T ∈ 15, 30, 45) and the proposed

framework (Auto-Encoder model with 1 and 2 hidden layers), considering varying noise rates

and training window sizes. All the configurations use the best performing repair variant

(selective repair).

Noise rate Window size

{INR = 0.25} 30 days

No Repair Repair Repair + Feat.Extr.

RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.1366 0.0859 0.1429 0.0926 NA NA

Baseline method (T=30) 0.1366 0.0859 0.1368 0.0856 NA NA

Baseline method (T=45) 0.1366 0.0859 0.1365 0.0856 NA NA

Proposed method (k = 5) 0.1366 0.0859 0.1348 0.0841 0.1446 0.0945

Noise rate Window size

{INR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Baseline T=15 RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.1371 0.0865 0.1410 0.0909 NA NA

Baseline method (T=30) 0.1371 0.0865 0.1374 0.0862 NA NA

Baseline method (T=45) 0.1371 0.0865 0.1371 0.0865 NA NA

Proposed method (k = 5) 0.1371 0.0865 0.1350 0.0842 0.1463 0.0952

Noise rate Window size

{INR = 0.25} 60 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.1376 0.0845 0.1455 0.0920 NA NA

Baseline method (T=30) 0.1376 0.0845 0.1377 0.0847 NA NA

Baseline method (T=45) 0.1376 0.0845 0.1372 0.0842 NA NA

Proposed method (k = 5) 0.1376 0.0845 0.1376 0.0841 0.1377 0.0937

Noise rate Window size

{INR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.1379 0.0851 0.1431 0.0899 NA NA

Baseline method (T=30) 0.1379 0.0851 0.1387 0.0856 NA NA

Baseline method (T=45) 0.1379 0.0851 0.1383 0.0850 NA NA

Proposed method (k = 5) 0.1379 0.0851 0.1368 0.0841 0.1396 0.0943

Noise rate Window size

{INR = 0.25} 90 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.1355 0.0847 0.1424 0.0923 NA NA

Baseline method (T=30) 0.1355 0.0847 0.1355 0.0848 NA NA

Baseline method (T=45) 0.1355 0.0847 0.1349 0.0843 NA NA

Proposed method (k = 5) 0.1355 0.0847 0.1329 0.0830 0.1321 0.0882

Noise rate Window size

{INR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Baseline T=15 RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.1360 0.0850 0.1404 0.0901 NA NA

Baseline method (T=30) 0.1360 0.0850 0.1366 0.0852 NA NA

Baseline method (T=45) 0.1360 0.0850 0.1360 0.0850 NA NA

Proposed method (k = 5) 0.1360 0.0850 0.1337 0.0837 0.1331 0.0889
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Table 11: Prediction results for the Wind NREL dataset (anomalies with diffused context)

with the baseline method, using different distance thresholds (T ∈ 15, 30, 45) and the proposed

framework (Auto-Encoder model with 1 and 2 hidden layers), considering varying noise rates

and training window sizes. All the configurations use the best performing repair variant

(selective repair).

Noise rate Window size

{INR = 0.25} 30 days

No Repair Repair Repair + Feat.Extr.

RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.4433 0.3430 0.4431 0.3427 NA NA

Baseline method (T=30) 0.4433 0.3430 0.4433 0.3430 NA NA

Baseline method (T=45) 0.4433 0.3430 0.4433 0.3430 NA NA

Proposed method (k = 200) 0.4433 0.3430 0.4430 0.3428 0.3057 0.2433

Noise rate Window size

{INR = 0.50} 30 days

No Repair Repair Repair + Feat.Extr.

Baseline T=15 RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.4652 0.3626 0.4649 0.3625 NA NA

Baseline method (T=30) 0.4652 0.3626 0.4651 0.3624 NA NA

Baseline method (T=45) 0.4652 0.3626 0.4651 0.3625 NA NA

Proposed method (k = 200) 0.4652 0.3626 0.4654 0.3630 0.3227 0.2547

Noise rate Window size

{INR = 0.25} 60 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.4371 0.3371 0.4369 0.3368 NA NA

Baseline method (T=30) 0.4371 0.3371 0.4371 0.3371 NA NA

Baseline method (T=45) 0.4371 0.3371 0.4371 0.3371 NA NA

Proposed method (1 - k = 200) 0.4371 0.3371 0.4361 0.3359 0.3522 0.2797

Proposed method (k = 200) 0.4371 0.3371 0.4359 0.3362 0.3214 0.2553

Noise rate Window size

{INR = 0.50} 60 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.4589 0.3550 0.4581 0.3543 NA NA

Baseline method (T=30) 0.4589 0.3550 0.4584 0.3543 NA NA

Baseline method (T=45) 0.4589 0.3550 0.4584 0.3544 NA NA

Proposed method (k = 200) 0.4589 0.3550 0.4589 0.3549 0.3321 0.2651

Noise rate Window size

{INR = 0.25} 90 days

No Repair Repair Repair + Feat.Extr.

Baseline method (T=15) 0.4383 0.3389 0.4382 0.3386 NA NA

Baseline method (T=30) 0.4383 0.3389 0.4383 0.3389 NA NA

Baseline method (T=45) 0.4383 0.3389 0.4383 0.3389 NA NA

Proposed method (k = 200) 0.4393 0.3396 0.4390 0.3391 0.3179 0.2507

Noise rate Window size

{INR = 0.50} 90 days

No Repair Repair Repair + Feat.Extr.

Baseline T=15 RMSE MAE RMSE MAE RMSE MAE

Baseline method (T=15) 0.4563 0.3517 0.4549 0.3507 NA NA

Baseline method (T=30) 0.4563 0.3517 0.4552 0.3507 NA NA

Baseline method (T=45) 0.4563 0.3517 0.4553 0.3508 NA NA

Proposed method (k = 200) 0.4571 0.3526 0.4571 0.3524 0.3293 0.2594
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Pairwise comparison p-value winner

RMSE criterion

Repair (Baseline) vs Repair (Proposed) 0.6949 Repair baseline

Repair (Baseline) vs Repair + Feat.Extr. (Proposed) 0.0499 Repair + Feat.Extr. (Proposed)

Table 12: Wilcoxon Signed Rank Tests (all datasets, anomalies with diffused context). The

best performing configuration is selected for the Baseline method (T = 45). Bold: improve-

ment is statistically significant when the p-value is smaller than 0.05.

mances of our method with stress tests and speedup/scaleup tests.590

All the experiments have been conducted on a Azure HDInsight Spark cluster

consisting of one driver node (6 cores, 32GB RAM) and 6 worker nodes (8 cores

each, 192GB RAM in total) and SSD hard drives.

The running times, with the different samples, are shown in Fig. 13. The

results highlight the linear complexity of the anomaly detection algorithm con-595

sidering enough neighbors for each object in the embedding (k = 25). This is a

clear indication that the algorithm is not affected by computational bottlenecks

such as complex operations performed on the driver node.

The running times, when compared with the non-distributed approach, show

a significant reduction margin, which becomes increasingly higher as the number600

of instances to be processed increases. This aspect becomes clear when we

analyze speedup and scaleup results.

Figure 14 (left), reports the speedup factor obtained when processing up

to 32M instances with an increasing number of cores. Moreover, Figure 14

(right) shows the scaleup performances obtained with an increasing number of605

data instances and cores (2M - 8 cores, 4M - 16 cores, 6M - 24 cores, 8M - 32

cores, 10M - 40 cores, 12M - 48 cores). Both, speedup and scaleup curves are

quite close to the ideal curves (linear and constant curves, respectively). This

confirms that our anomaly detection method can be profitably used in a cluster

environment with large datasets.610

Finally, Figure 15 reports the execution time for the k-NN based anomaly

detection method (k = 25) observed with different levels of data parallelism,

that is, different number of partitions for the Spark dataset. The results show
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that the setting with 100 partitions is the best performing for our cluster con-

figuration.615

Figure 13: Stress test results (PV Italy dataset) for the k-NN based anomaly detection

method (k = 25).

4.6. Availability

The system and the datasets are available to replicate the experiments at

the following URL: http://www.di.uniba.it/~ceci/ad-repair-framework.

5. Conclusions

In this paper we presented a framework which supports predictive model-620

ing tasks involving streaming data coming from multiple geo-referenced sensors.

We have formulated a novel anomaly detection strategy which trains a stacked

auto-encoder using non-anomalous data and then compares the projections of

testing data (encoded data) in the auto-encoder embedding with their closest

projections. This strategy is capable to detect which instances are anomalies,625

adopting a distance-based approach and a dynamically learned threshold. More-

over, we proposed two repair schemes which, as new data arrive, automatically

and dynamically repair the instances identified as anomalies, adopting a spatial

weighting which simultaneously considers spatial autocorrelation from nearby
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Figure 14: Speedup and scaleup results (PV Italy dataset) for the k-NN based anomaly

detection method (k = 25).

Figure 15: Execution time for the k-NN based anomaly detection method (k = 25)

with different number of partitions for the Spark dataset. Results are obtained in

cluster mode with six worker nodes, using the 16M instances version of the dataset.
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locations. In addition, we carried out the predictive task using Gradient Boosted630

Trees with two different feature representations of the input data: the original

data representation, after the data repair procedure, and an embedding feature

space extracted from the auto-encoder embedding.

Experiments have been performed for the one-day-ahead predictive mod-

eling of energy production for multiple renewable energy sites, carried out on635

two datasets. The results have shown that adopting the framework proposed,

allows us to obtain up to 13.56% of RMSE reduction, compared to the baseline

scenario which directly applies the predictive model discarding the anomaly de-

tection and repair steps. This demonstrates that the combination of stacked

auto-encoder and Gradient Boosted Trees models, complemented with effective640

anomaly detection, data repair and feature extraction strategies, can be of valu-

able support for predictive modeling tasks in geo-distributed sensor networks.

As future work we aim to investigate the adoption of statistical indicators in

the learning process, in order to explicitly consider the spatial autocorrelation

phenomenon in the models. Moreover, we aim to extend the learning setting to645

multi-target regression to predict time series.
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