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Abstract

In relational databases, the full disjunction operator is an associative extension of the full
outerjoin to an arbitrary number of relations. Its goal is to maximize the information
we can extract from a database by connecting all tables through all join paths. The
use of full disjunctions has been envisaged in several scenarios, such as data integration,
and knowledge extraction. One of the main limitations in its adoption in real business
scenarios is the large time its computation requires. This paper overcomes this limitation
by introducing a novel approach parafd, based on parallel computing techniques, for
implementing the full disjunction operator in an exact and approximate version. Our
proposal has been compared with state of the art algorithms, which have also been re-
implemented for performing in parallel. The experiments show that the time performance
outperforms existing approaches. Finally, we have experimented the full disjunction as
a collection of documents indexed by a textual search engine. In this way, we provide a
simple technique for performing keyword search over relational databases. The results
obtained against a benchmark show high precision and recall levels even compared with
the existing proposals.
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1. Introduction

Due to their capability of managing and storing data in an effective and efficient way,
relational databases have been largely adopted in business applications. The relational
database design methodology, based on normal forms, assures data integrity and elimi-
nates redundancy by coding the information into a number of tables connected with each
other via foreign key relationships. Nevertheless, in several scenarios, the fragmentation
induced by the model may represent a big obstacle for a user to understand and work
with the entire database content. The universal relation assumption [1] allows users to
address this kind of problems, by treating data if it were all in a single relation over all
the attributes. The universal relation computation requires data in different relations to
be in some way integrated, and, to do it, users have to know how the tables are connected
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in the database. Let us suppose that we want to apply the universal relation assumption
to a database composed of two relations. The universal relation can be obtained through
a simple straightforward integration process that generates a relation schema composed
of the union of the attributes of the input relations. The universal relation is populated
by means of the application of the outerjoin operator (usually on the attributes either
sharing the same names – via natural outerjoins, or specified in the foreign key relations
– via equijoins), which avoids loss of data from the source tables.

The population of the universal relation of a database composed of several tables
requires particular attention. The ourterjoin operator is not associative: its application
may generate different results if we consider a different order in the tables involved in
the join paths. Moreover, there is not a unique order: the tables can be linked through
different paths and cycles may arise. Each path conveys different semantics and a cycle
can be transformed in a number of paths, one for each involved table.

The full disjunction [2] has been proposed to cope with these issues. It consists
of an associative extension of the full outerjoin to an arbitrary number of tables com-
pletely preserving the entire information content of the data source. This operator is
implemented by joining tuples over all possible paths connecting the database tables,
thus making its computation a critical task. As described in Section 4, a number of al-
gorithms implementing the operator have been proposed in the literature. Nevertheless,
they have proven to be inadequate in real scenarios for dealing with large data sources,
due to the execution time required.

The full disjunction is of paramount importance in all scenarios where a de-
normalization of relational databases completely preserving the information is needed.
The existing tools able to compute the full disjunction are not easily usable in real envi-
ronments, due to the computational complexity of the algorithms implemented and the
long execution times they require. If we were able to provide an efficient computation,
this would have a big impact in a large number of scenarios. A typical scenario is data
integration. Different databases can model the same real-world domain in different ways.
De-normalizing the data before the integration eases the process. Another interesting
scenario is provided by Data Mining and Machine Learning, where the input is typically
constituted by a single table. Data in relational databases has to be de-normalized to
be used with these approaches. The recent research focused on Big Data made available
efficient data abstractions/structures (e.g., RDD[3]) and MapReduce based frameworks
for supporting parallel computation on massive datasets (e.g., Apache Hadoop1, Apache
Spark2).

In this paper, we leverage such technical advances by introducing parafd (PAR-
Allel Full Disjunction): an approach providing an efficient implementation of the full
disjunction. Our proposal divides the computation into different phases: a) creation of a
database graph representing the database schema; b) computation of all spanning trees
over the database graph; c) computation of a full disjunction for each spanning tree;
and d) merging the full disjunctions by removing duplicated and subsumed items. The
advantages of this proposal mainly lie in the availability of optimized and low complexity
algorithms for spanning trees computation and in a novel parallel implementation of a
multi-relation hash star join algorithm able to reduce the overhead resulting from the

1http://hadoop.apache.org/
2http://spark.apache.org/
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distribution of data on the network. Moreover, there are scenarios where we do not need
a “complete” full disjunction including all combinations of tuples from the database ta-
bles, but only the most significant ones, according to some quality metrics. This would
reduce the computation time. parafd can be adapted for creating an approximate full
disjunction, thanks to the definition of a measure (based on the Pointwise Mutual Infor-
mation in our implementation) for identifying the “most significant” spanning trees, and
computing the full disjunctions associated to them only.

We performed a deep experimentation of parafd, by also comparing it against two
existing algorithms: IncrementalFD [4] and BiComNLOJ [5]. Since it could be un-
fair to compare parallel and sequential algorithms, we extended and reimplemented both
the approaches so that they can perform in parallel. Four variants of IncrementalFD,
with different levels of parallelization, are presented in Section 4. The experiments high-
light the efficiency of our proposal, reducing the time required for generating all full
disjunctions up to 4 magnitude orders. The effectiveness of parafd has been evaluated
in the challenging scenario of keyword search over relational databases. We considered
the full disjunction as a collection of documents (one for each tuple composing it) to
be indexed by a text retrieval engine. We experimented this search system with a well
known benchmark [6] obtaining results with high precision levels.

Summarizing, the main contributions of this paper are:

• the development and implementation of an algorithm based on spanning trees and
a parallel implementation of a multi-relation hash join algorithm for computing the
full disjunctions of a database;

• the re-design of the IncrementalFD and BiComNLOJ algorithms to be able to
perform in parallel. Four implementations of IncrementalFD, with different levels
of parallelism, are described and evaluated in the paper;

• a technique for computing an approximate full disjunction, i.e., a full disjunction
with only the most significant tuples, according to a quality measure;

• a deep experimentation of the approaches with real and large datasets showing that
parafd outperforms the state of the art.

The rest of this paper is organized as follows: Sections 2 and 3 formally define the
full disjunction operator and introduce parafd for its computation. In Section 4, we
describe two main existing techniques for computing the full disjunction and introduce
four parallel implementations. Related work is discussed in Section 5. The experimental
evaluation is presented in Section 6 and finally in Section 7 we sketch out some conclusion
and future work.

2. Preliminaries

The full disjunction is an associative extension of the outerjoin [2]. Approaches aiming
to maximize the capability of joining pieces of data from different relations built full
disjunctions upon natural outerjoins [7, 4, 5] (i.e., equijoin on common attributes). In
this paper, we extend those papers by introducing a definition of full disjunction based
on equijoins between foreign and primary keys. In this way, we take only into account
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the connections between the tables introduced by the database designer, thus preserving
the original semantics of the data3.

Let us consider a relational database with n relations R = {R1, ..., Rn}, where each
relation Ri has a schema sc(Ri) composed of pi attributes Ri.A1, ..., Ri.Api

, a primary
key PK ⊆ sc(Ri) and possibly multiple foreign keys FK ⊆ sc(Ri) referring to other
relations.

The schema of R, denoted sc(R), is the union of the schemas sc(Ri) of relations in
R. The schema graph of R, denoted Gsc(R) = (V,E), is an undirected graph showing
connections between relations generated by foreign key relationships, where V and E are
the set of nodes and edges, respectively. There is a node for each relation Ri.

There is an edge e=(Ri, Rj) ∈ E between the nodes Ri and Rj , if the primary key
Ri.PK defined on Ri is referenced by the foreign key Rj .FK defined on Rj . Note that,
in general, there may be multiple edges between the same pair of nodes, generated by
different foreign keys on the same relations. For sake of simplicity, in the following, we
assume that only an edge is possible. We say that R is connected if Gsc(R) is connected.

M.NATION M.ORG M.CITYORG

MEMBERSHIP

S.NAME S.CONTINENT S.CAPITAL

STATE

C.NAME C.ALTITUDE

CITY

Italy FAO Rome

Germany FAO Rome

Germany ESA NULL

Uganda IGAD NULL

Italy Europe Rome

Germany Europe Berlin

Uganda Africa NULL

Rome Low

Berlin Low

Sestriere High

e3: M.CITYORG = C.NAME

e1: M.NATION = S.NAME e2: S.CAPITAL = C.NAME

m0

m1

m2

m3

s0

s1

s2

c0

c1

c2

(a) Content of the tables

STATE CITY

MEMBERSHIP

e1 e3

e2

(b) Schema
graph

FD({C,S,M})

{c0, s0, m0}

{c0, s0, m1}

{c0, s1, m1}

{c1, s1, m1}

{c1, s1, m2}

{s2, m3}

{c2}

fd0

fd1

fd2

fd3

fd4

fd5

fd6

(c) Full disjunc-
tion

M.NATION M.ORG M.CITYORG S.NAME S.CONTINENT S.CAPITAL C.NAME C.ALTITUDE

Italy FAO Rome

Germany FAO Rome

Germany FAO Rome

Germany FAO Rome

Italy Europe Rome

Italy Europe Rome

Germany Europe Berlin

Rome Low

Rome Low

Rome Low

Germany Europe Berlin Berlin Low

Germany ESA NULL Germany Europe Berlin Berlin Low

Uganda IGAD NULL Uganda Africa NULL NULL NULL

NULL NULL NULL NULL NULL NULL Sestriere High

(d) Full disjunction relation

Figure 1: The running example

Example 1: Figure 1(b) is the schema graph of the database in Figure 1(a) adopted as a
running example. It provides details about countries which are members of organizations
located in cities. Its structure is composed of three tables: City (C), State (S) and
Membership (M). The connections between the tables are coded in the database through
primary / foreign key relationships.

The relational model allows users to merge data from different relations through the
join operator. The j oining tree of tuples is the data structure that has been introduced
in the literature [8] to represent tuples connected by a join operation.

3Note that, by introducing proper join conditions, our formalization can be used to represent full
disjunctions based on natural outerjoins.
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Definition 1 (Joining trees of tuples). Given a database R = {R1, ..., Rn} with
schema graph Gsc(R) = (V,E), a joining tree of tuples JT is a tree of tuples where each
edge (ti, tj) in JT , with ti ∈ Ri and tj ∈ Rj satisfies two properties: (1) e = (Ri, Rj) ∈ E,
and (2) (ti, tj) ∈ Ri./Rj. The set of tuples of JT is denoted by Tuples(JT ).

Join consistent and connected tuple sets are joining trees of tuples that do not contain
more than one tuple from the same table. These are the building block components of
the full disjunction.

Definition 2 (Join consistent and connected tuple set). Given a database R
= {R1, ..., Rn} with schema graph Gsc(R), a tuple set of R is any set of tuples T =
{t1, ..., tm} consisting of at most one tuple from each relation (hence m ≤ n).

We say that T is join consistent and connected if there exists a joining tree JT such
that Tuples(JT ) = T , i.e., the set of tuples of JT coincides with T . We denote as
JCC(T ) a set of tuples T is join consistent and connected.

Example 2: With reference to the database shown in Figure 1(a) with schema graph
in Figure 1(b), the tuple set T0={c0, s0,m0} is join consistent: in this case there are 3
joining trees whose nodes coincide with T0: {(c0, s0), (s0,m0)}, {(c0, s0), (c0,m0)} and
{(m0, s0), (c0,m0)}; T1={c1, s1,m1} is also join consistent: in this case there exists only
the joining tree {(c1, s1), (s1,m1)} whose nodes coincide with T1; on the other hand,
T2={c2, s1,m1} is not join consistent since (c2, s1) 6∈ C./S.

Definition 3 (Full Disjunction). Let R be a set of relations. The full disjunction of
R, denoted FD(R), is the set of all tuple sets T of R, such that (1) T ∈ JCC(T ), and
(2) T is maximal, that is, there is no join consistent and connected tuple set of R that
properly contains T .

The full disjunction is a set of tuple sets, having each item the same schema, regardless
the tuple sets it involves. Let us consider a join consistent and connected tuple set T
of R, and denote embedR(T ) the tuple that is obtained by firstly joining tuples of T
and then adding columns with null values for the remaining attributes of sc(R). More
formally, embedR(T ) is the tuple t over sc(R), such that for all attributes A of sc(R),
if T contains a tuple t′ with the attribute A, then t[A] = t′[A]; otherwise, t[A] = ⊥.
embedR(t) is a shorthand notation for embedR({t}).

Definition 4 (Full Disjunction Relation). The full disjunction relation of R, denoted
FDR(R), is the relation on sc(R) obtained as {embedR(T ) | T ∈ FD(R)}.

Example 3: Table 1(c) shows the full disjunction of the running example database, i.e.
the possible “combinations” of the data in the original table according to the foreign
key relationships. Note that only the identifiers of the tuples in the original tables are
provided. Table 1(d) reports the full disjunction relation, where the tuple identifier used
in Table 1(c) are substituted with the real tuples or null values if missing.

In the following, we will adopt the term full disjunction to refer also to its transfor-
mation in full disjunction relation.
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3. The parafd Approach

The parafd process is based on the idea that the full disjunction of a set of relations
R is obtainable as the union of the full disjunctions of all possible spanning trees4 of its
schema graph Gsc(R). This result, which is formally demonstrated in Section 3.1, allows
us (1) to compute the full disjunction through the simple application of the full outerjoin
operator; and (2) to split the computation process in a number of steps that can be
executed in parallel (see Section 3.2).

3.1. Computing a Full Disjunction through Spanning Trees

In this section we show that the full disjunction of a set of relations R with schema
graph Gsc(R) can be obtained by the combination of the full disjunctions computed for
each possible spanning tree of Gsc(R), after the removal of the tuple sets that have been
already generated by other spanning trees or are contained in other tuple sets. Moreover,
we show that the full disjunction of a spanning tree can be computed by means of the
full outerjoin operator.

To implement this procedure, we need to extend the full disjunction definition to be
applied to schema subgraphs.

Definition 5 (Full Disjunction of a Schema Subgraph). Let R be a set of relations
with schema graph Gsc(R). Given a connected subgraph SG = (VSG, ESG) of Gsc(R), the
full disjunction of the set of relations VSG is called full disjunction of SG and denoted
by FD(SG).

The subsumption operator [2] allows us to remove duplicated and contained tuple
sets.

Definition 6 (Subsumption). Given two tuple sets T ′ and T , we say that T ′ subsumes
T if and only if T ′ ⊇ T . The unary subsumption operator ↓ denotes the removal of
subsumed tuple sets from a set of tuple sets X :

↓X = {T ∈ X |6 ∃T ′ ∈ X : T ′ ⊇ T} (1)

Example 4: In the example of Figure 1, we can build the following three spanning
trees: ST1 = (R, {e1, e2}), ST2 = (R, {e2, e3}), ST3 = (R, {e1, e3}). It is easy to
verify that {c0, s0,m0} is in both FD(ST1) and FD(ST2), while {c1, s1,m1} ∈ FD(ST1)
but {c1, s1,m1} 6∈ FD(ST2) (since (c1,m1) 6∈ C 1 M). Moreover, FD(ST2) contains
the tuple set {c1, s1} ∈ FD(ST2) which is subsumed by {c1, s1,m1}. Then, to obtain
FD(R) starting from the full disjunction of its spanning trees we need to eliminate such
subsumed tuple sets as stated by the following theorem.

Based on Definitions 5 and 6, Theorem 1 demonstrates how we can compute the full
disjunction of a set of relations by means of the spanning trees computed on its schema

4A spanning tree ST of Gsc(R) is a subgraph of Gsc(R), which has all vertices covered with minimum
possible number of edges.
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graph.

Theorem 1: Given a database R = {R1, ..., Rn} with schema graph Gsc(R), and ST the
set of all spanning trees of Gsc(R), the full disjunction FD(R) can be obtained as:

FD(R) =
y ⋃
ST∈ST

FD(ST ) (2)

Proof. The proof proceeds by demonstrating that the right-hand side (RHS) of Equation
2 includes only tuples satisfying both the properties required to be a full disjunction for
R (see Definition 3). Then we demonstrate that it is not possible that a tuple set which
is part of the full disjunction of R is not contained in RHS of Equation 2.

A tuple set T ∈ RHS of Equation 2 is a join consistent and connected tuple set. First
of all, T is an element of a full disjunction. Then, by definition, T is a join consistent
and connected tuple set. Moreover, each tuple set T is maximal since the subsumption
operator removes contained tuple sets.

Finally, we prove by reductio ad absurdum that it cannot exist a tuple set T ∈ FD(R)
such that T 6∈ RHS. But if T ∈ FD(R), there exists by construction at least a spanning
tree ST of Gsc(R) such that T ∈ FD(ST ). But ST should be in ST , otherwise there
would exist a spanning trees of Gsc(R) which is not part of the set of all spanning tree of
Gsc(R).

In the rest of this subsection we synthesize the technique for computing the full
disjunction of a tree, introduced in [5]. Let us use R1 1 R2 to denote the full outerjoin
of R1 and R2. Full outerjoin is not associative: different execution orders generate
different results. Left-deep outerjoins allow us to introduce a specific order.

Definition 7 (Left-deep Outerjoin). The left-deep outerjoin of (R1, . . . , Rn), denoted
by 1 (R1, . . . , Rn), is defined as follows: 1 (R1, R2)=(R1 1 R2), and, recursively, for
n > 2, 1 (R1, R2, R3, . . . , Rn)= 1 (R1 1 R2, R3, . . . , Rn).

Given a connected set of relations R = {R1, ..., Rn}, a connected-prefix ordering of
R is an ordering R1, ..., Rn such that {R1, ..., Ri} is connected for all 1 ≤ i ≤ n. The
Proposition 3.1. given in [5] shows that when the scheme graph is a tree, a connected-
prefix ordering yields a left-deep outerjoin that is equivalent to the full disjunction. We
can apply this result to a spanning tree: given R = {R1, ..., Rn}, let ST = (V,E) be a
spanning tree of R. If R1, ..., Rn is a connected-prefix ordering of ST , then FD(ST ) = 1

(R1, . . . , Rn).

Example 5: With reference to the spanning tree ST1 = (R, {e1, e2}), where e1 = (M, S)
and e2 = (C, S) the full disjunction relation FD(ST1) can be obtained by computing one
of the following two outerjoin sequences: (C 1 S) 1 M and (M 1 S) 1 C.

3.2. Full Disjunction of a Spanning Tree: Computation by Hash Star Join

We showed in the previous section that the computation of full disjunction of a set of
relations R with schema graph Gsc(R) can be decomposed in a number of computations,
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one for each spanning tree we can build over the schema graph Gsc(R). We then showed
that we can use a full outerjoin sequence to compute the full disjunction of a spanning
tree.

In this section, we introduce an efficient way to compute full outerjoin sequences
that are based on a novel parallel algorithm for performing hash star joins and that is
described in Algorithm 3. This algorithm can efficiently perform multi-relation joins, by
reducing the communication costs.

To be able to apply the hash star join, we introduce Theorem 2, where we show how
to model the spanning trees as sets of star trees. Given the schema graph Gsc(R), let TR a
tree of Gsc(R). Let TR? be the star subtree obtained as a subgraph of TR by considering
as center vertex the vertex of TR with maximum degree5: TR? = (Rc, {Rs

1, . . . , R
s
n}),

where Rc is the center vertex and Rs
i ,∀i = 1, . . . , n, are the adjacent satellite vertices.

Theorem 2: Given the schema graph Gsc(R), let TR be a tree of Gsc(R). Then:

FD(TR) =

{
FD(TR?) if TR coincides with TR?

FD(Γ(TR, TR?)) otherwise
(3)

where Γ(TR, TR?) is the tree defined as follows

1. removing the star subtree TR? from TR

2. adding the relation R? = FD(TR?) to TR and, for each edge (Rs
i , R) ∈ TR involv-

ing a satellite Rs
i , adding a corresponding edge (R?, R) to TR.

Proof. The proof is based on the fact that Equation 3 generates a connected-prefix or-
dering of the vertices of TR; therefore, by applying the aforementioned Proposition 3.1
given in [5], the full disjunction can be computed as a left-deep outerjoin sequence. First
of all, for a star tree TR? = (Rc, {Rs

1, . . . , R
s
n}), it is trivial to prove that Rc, Rs

1, . . . , R
s
n

is a connected-prefix ordering of {Rc, Rs
1, . . . , R

s
n}, for any ordering of satellite vertices

{Rs
1, . . . , R

s
n}. Then, by iteratively applying the tree contraction defined by the Γ()

function, we obtain a connected-prefix ordering of TR.
Let us show this result intuitively with the example in Figure 2, where we consider,

on the left, a tree TR1 with 12 vertices denoted by 0, 1, . . . , 11. TR?
1 is the star subtree

of TR1 with center vertex 0 and satellite vertices {1, 2, 3, 4, 5}, then we obtain TR2 =
Γ(TR1, TR

?
1), where R?

1 = FD(TR?
1). TR?

2 is the star subtree with center vertex R?
1 and

satellite vertices {6, 8, 10}, then we obtain TR3 = Γ(TR2, TR
?
2), where R?

2 = FD(TR?
2).

TR?
3 is the star subtree with center vertex R?

2 and satellite vertices {7, 9, 11}: since
TR?

3 = TR3 the process stops. It is trivial to prove that 0, 1, 2, 3, 4, 5 is a connected-
prefix ordering of the vertices of TR?

1. It is also trivial to prove that 0, 1, 2, 3, 4, 5, 6, 8, 10
is a connected-prefix ordering of the union of the vertices of TR?

1 and TR?
2, since, for

each edge (Rs
i , R) ∈ TR1 involving a satellite Rs

i , of TR?
1, a corresponding edge (R?

1, R)
to TR?

2 is added. In the same way, 0, 1, 2, 3, 4, 5, 6, 8, 10, 7, 9, 11 is a connected-prefix
ordering of the union of the vertices of TR?

1, TR?
2 and TR?

3, i.e., of the vertices of TR1.

5Random choice in case of a tie.
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Figure 2: Example of application of the Theorem 2

Algorithm 1: ComputeFD - Full Disjunction of a database

Input : A database R with schema graph G
Output: The full disjunction of R

1 X ← ∅;
2 ST ← GetSpanningTrees(G);
3 foreach ST ∈ ST do
4 X ← X ∪ ComputeFD ST (ST );

5 FD ← SubsumptionOperator(X );
6 return FD;

Example 6: The big picture of the parafd approach is shown in Figure 3: the span-
ning trees of a database schema graph are computed. We obtain the full disjunction of
each spanning tree through the application of Hash Star Joins. The full disjunction of
the database is generated by collecting the results obtained for each spanning tree and
removing subsumed elements.

3.3. parafd implementation

Algorithm1 shows the implementation of parafd. It takes as input a database R
with schema graph G and it computes its full disjunction. First of all, the set X that will
contain the resulting full disjunction (line 1) is initialized. Then, it computes all spanning
trees from the input schema graph by means of the GetSpanningTrees function (line
2), which is described in Section 3.3.1. The full disjunction of each spanning tree is
then computed (lines 3-4). This computation is performed by the function ComputeTS
which is described in Section 3.3.2. At the end of the iteration, X will contain the full
disjunction computed for each spanning tree (line 4). The full disjunction FD of R is
finally generated by removing duplicated and subsumed tuple sets from TS (line 5) and
is returned as output (line 6). A description of the tuple set subsumption process is
provided in Section 3.3.3.
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Figure 3: parafd applied to the running example

3.3.1. Computation of spanning trees over a schema graph

The computation of all spanning trees of a graph is a problem that has been already
addressed in the literature. Among the existing solutions, we adopted the algorithm pre-
sented in [9], based on backtracking and depth-first search, which runs in O(V +E+V N)
time, where V , E, and N are the number of vertices, edges, and spanning trees, respec-
tively. Since in the real databases the number of tables and foreign keys relationships is
limited, generating and computing the spanning trees is a feasible approach.

3.3.2. Computation of the full disjunction of a spanning tree

Algorithm 2: ComputeFD ST - Full Disjunction of a Spanning Tree

Input : A spanning tree ST .
Output: The full disjunctions of ST .

1 do
2 X ← StarGraph(ST );
3 RX ← HashStarJoin(X);
4 ST ← Γ(ST,RX);

5 while ST is not a single vertex;
6 return RX;

Algorithm 2 shows the implementation of the function ComputeFD ST for computing
the full disjunction FD generated by a spanning tree ST , on the basis of Equation 3.
This process starts with the identification of a star graph X in ST (line 2). Then, the
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procedure HashStarJoin, described in Algorithm 3, computes the full disjunction of X
(line 3). Line 4 builds the new spanning tree to be evaluated by means of the Γ function
defined in Theorem 2. The process iterates until ST is constituted of a single vertex only
(line 5). Finally, the full disjunction is returned (line 6).

Performing efficiently a join operation in a distributed environment is usually a critical
task. Communication costs represent the main bottlenecks because the computation
time is usually less expensive than the time required for data distribution/shuffling. The
Hash Star Join technique is similar to SHJ proposed in [10] (see related work section)
for joining in a parallel/cluster architecture the fact table of a data warehouse system
with its corresponding dimensions. The distribution of the data to be joined is done
by applying a shipping function that decides the host cluster of each record in a table.
The shipping function is applied to a column (partitioning key) of the table to partition.
When performing a join operation, if the joining key is the same as the partitioning key
used for both input tables, then the join can be locally executed within each cluster. In
the other case, the join operations need for a re-partitioning of the data.

The strategy adopted for partitioning the tables is crucial for obtaining high time
performance computations. In our Hash Star Join approach, we would like to exploit the
fact that adjacent vertices in a star tree can share the same joining key with the center
vertex and thus all the related joins can be performed locally within a cluster. Based
on this consideration, the idea is to analyze the join associations existing between the
input tables and perform their partitioning based on the most frequent join attributes.
This lead to a specific execution order of the join operations that maximizes the tables
involved in each operation, and reduces the amount of data to transmit over the network.

The principle behind the standard hash join is to limit the number of total com-
parisons: only the tuples that fall in the same bucket are checked if they are joined
consistent. In our implementation the main changes made to this basic logic are: (a)
creation of a distributed hash table, that allows us to parallelize for each bucket the join
computation among different processes (b) involvement of an arbitrary number of tables
and (c) application of the outerjoin operator within a bucket.

Algorithm 3: HashStarJoin
Input : A star tree ST with center in relation Rk and adjacent relations AdjRk

.
Output: A set of tuple sets representing the full disjunction FD∗ of X.

1 FD∗ ← ∅;
2 SubStars← ClusterByFK(AdjRk

);
3 foreach subStar ∈ SubStars do
4 P ← PartitionTablesByFK(subStar);
5 map p ∈ P
6 R(p)← LeftDeepOuterJoin(subStar(p))

7 FD ←
⋃

p R(p);

8 FD∗ ← FD∗ 1 FD;

9 return FD∗;

Algorithm 3 shows the procedure for generating the sets of tuple sets from a star
graph centered in Rk and with satellite relations AdjRk

. We start initializing the set
FD∗ that will contain the resulting FD (line 1). In line 2, given a star tree ST in input,
the function ClusterByFK finds a sequence of subStars SS1, ...SSn such that, for each
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SSi, the vertices share the same joining key, and SSi has more vertices than SSi+1.

Example 7: If we consider the star tree ST2 (see Example 4) with City as center
vertex, the sequence is just SS1 = ST2. The reason is that both the adjacent vertices
Membership and State share the City joining key. If we consider the star tree ST3 with
Membership as center vertex, the sequence is SS1 = {M,C} and SS2 = {S,C} as the
there is no a common join attribute.

Then, the algorithm iterates over the obtained sequence of subStars (lines 3-8). At
each iteration a set Substar is extracted from SubStars. This set of tables is then
partitioned through a hash function that is applied to the most common attribute in
their join associations. According to this partition schema, we distribute the tuples
to different nodes. Tuple sets are thus computed separately by each node through a
MapReduce process6 (lines 5-6). For each partition the LeftDeepOuterjoin operator
joins the tuples following a left outerjoin sequence. When all nodes have completed
the computation, the results are collected and stored in FD (line 7). This operation
terminates the elaboration of the current cluster of relations. Finally, the tuple sets
computed from the current cluster are merged with the results of the previous clusters
via the full outerjoin operator (line 8). All tuple sets are then returned as output (line
9).

In this perspective, computing the full disjunction for each spanning tree in isolation,
as done by Algorithm 2, can be computationally very expensive. Spanning trees can differ
with each other by few edges, and running several times join operations on the same tree
portions results in a number of overlapping full disjunctions and an unjustified increase
in the overall execution time of the algorithm. To address this issue, we implemented a
mechanism for storing the tuple sets generated by sequence of edges of the spanning trees
to be able to retrieve and reuse them if the same tree portion is navigated in another
computation.

Example 8: Consider the tree shown in Figure 4(b), where the city node has state,
membership as adjacent nodes. The join attributes between each pair of tables to be
combined by the full outerjoin operator are a) S.capital → C.name belonging to the
tables state and city; b) M.cityorg → C.name belonging to the tables member-
ship and city . C.name is an attribute common to both the join associations. This
information is exploited to perform a single partition of the three tables considered.

3.3.3. Generating the full disjunction

Our technique for removing subsumed tuple sets relies on a set-trie data structure [11]
to store the full disjunction produced by each spanning tree. A set-trie is an extension of
a trie [12] which, in addition to simply verifying the membership of an element within it,
supports search operations on subsets and supersets. In particular, set-tries use prefixes
of common elements to index the elements thus enabling the efficient identification of
their subsets / supersets. The complexity of these operations is O(c ∗ |set|), where |set|
represents the size of the input, and c is a constant.

6Note that the map operator in Algorithm 3 represents the map method in a mapreduce programming
model. The operations performed by the map will be executed in parallel by a mapper for each data
partition. For sake of simplicity we omitted to explicit in the algorithm the reduce process since it has
been implemented with an identity function.
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Algorithm 4: RemoveSubsumed
Input : A set of tuple sets TS.
Output: A set of tuple sets TS?, with no subsumed items.

1 P ← Coverage(TS);
2 TS? ← ∅;
3 map p ∈ P
4 Qmax ← ∅;
5 for T ∈ p do
6 Qmax.add(T );

7 TriepSET ← ∅;
8 while Qmax.isNotEmpty() do
9 T ← Qmax.pop();

10 if T 6⊆ T
′
, T

′ ∈ TriepSET then
11 TriepSET .add(T );

12 TS? ←
⋃

p TriepSET ;

13 return TS?;

Algorithm 4 shows the functionality implemented for removing subsumed tuple sets.
In line 1 the Coverage function is applied for computing a specific covering set C of
TS (i.e., a collection of subsets of TS whose union is TS) such that, for each tuple t
of TS, there is a (unique) item of C containing all and only the tuple sets with t. This
operation can be easily done with a MapReduce implementation. Then, in parallel for
each partition7 (lines 3-11), the constituting tuple sets are extracted and sorted by size in
descending order in the Qmax priority queue (lines 4-6). The tuple sets are progressively
indexed in a set-trie (line 7) for being analyzed as possible results. Lines 8-11 exploit
the set-trie to verify if tuple sets are subsumed. If the tuple set is not contained in any
previous full disjunction (line 10), it is inserted in the set-trie (line 11). Finally, full
disjunctions computed in each partition are merged and returned (lines 12-13).

3.4. Approximating the full disjunction

There are scenarios where the computation of the complete set of full disjunctions
is not needed. In these situations, approximating the complete set of tuples in a full
disjunction with the most “meaningful” ones decreases the computation time with some
loss of information.

The selection of an approximate set of full disjunction is based on the analysis of
the spanning trees. In particular, we adopted the Pointwise Mutual Information as the
measure for weighting the edges of a graph and implemented a well-known Algorithm
([13]) for computing the top-k maximum cost spanning trees.

Pointwise Mutual Information (PMI) has been largely applied in computer science
and it provides a correlation measure between two entities, evaluating their probability
of joint occurrence in the hypothesis of absence and presence of statistical dependence.

The database research community typically relies on PMI-based measures to weight
the cohesion of tables connected via foreign keys in a database [14, 15].

7As in Algorithm 3 the reduce process is not represented since implemented through an identity
function
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(a) Weighted schema
graph

(b) Maximum span-
ning tree

(c) Minimum spanning
tree

Figure 4: Running example schema graph and some derived spanning trees

Example 9: In Figure 4(a) the edges of the schema graph representing our running
example are weighted according to PMI values. Note that the values show high cohesion
between the tables state - city and a lower cohesion between the couple of tables
city - membership and state - membership. The maximum and minimum spanning
trees are shown in Figures 4(b) and 4(c).

4. Reference techniques for computing the full disjunction

This section provides an overview of two main techniques for computing full dis-
junctions proposed in the literature: IncrementalFD [4] and BiComNLOJ [5]. These
techniques have been extended in this paper to perform with equijoins (in the original
papers they have been designed to work with natural joins) and with parallel computing
techniques (4 variations of IncrementalFD have been developed). These techniques are
used in Section 6 as a baseline for evaluating parafd.

4.1. IncrementalFD

IncrementalFD [4] performs an incremental computation of full disjunction. It iter-
ates over all the tables and, for each of them, it computes a number of tuple sets which
are “candidate” to belong to the full disjunction: given a table R in a set of relations R,
the candidate full disjunction for R is the subset of FD(R) that contains tuple sets with
a tuple from R. Candidate tuple sets do not contain subsumed items (i.e., tuple sets are
already maximal), then their simple union generates the resulting FD(R).

The candidate full disjunctions are computed by means of two processes: the extension
operation that takes a connected and join consistent tuple set and adds a series of tuples
from the tables which have not been already used, thus creating another connected and
join consistent tuple set, and the variation operation that generates connected and join
consistent tuple sets by substituting a tuple in a connected and join consistent tuple set
with another tuple from one of the tables that have already been examined.

Algorithm 5 provides more details on IncrementalFD. In line 1 FD, the set that
will contain the resulting full disjunctions, is initialized. Line 2 shows that the process
iterates over all the tables. For each table Ri, Incomplete, the variable that stores the
tuple sets under development, is initialized. Then, in line 6, the Algorithm iteratively
extracts a tuple set T from Incomplete and applies the extension and variation processes.
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Algorithm 5: IncrementalFD (adapted from [4])

Input : A database R.
Output: The full disjunction of R.

1 FD ← ∅;
2 for Ri ∈ R = {R1, ..., Rn} do
3 Incomplete← ∅;
4 for tij ∈ Ri do
5 Incomplete.add({tij});
6 for T ∈ Incomplete do
7 if T is not maximal then
8 T ← EXTENSION(T );

9 V AR(T )← VARIATION(T );
10 for T ′ ∈ V AR(T ) do
11 if T’ contains a tuple from Ri then
12 if T ′ 6∈ TS then
13 Incomplete.add(T ′);
14 if T’ is superset of an S ∈ Incomplete then
15 Incomplete.remove(S);

16 FD ← FD ∪ T ;

17 return TS;

The extension process consists in adding to the current tuple set T a series of tuples
belonging to database tables which have not been already used to form T (otherwise
Definition 2 would be violated). The resulting tuple set has to be connected and join
consistent.

The variation process aims to discover other tuple sets involving the same tables
as the current T . To do it, a scan on all database tables (excepting Ri) is performed to
find possible tuples to substitute with the ones in the current tuple set, and generating
new connected and join consistent tuple set.

Each tuple set obtained by the variation process is evaluated to be a possible item in
the full disjunction. This happens when (lines 11-13) they a) contain a tuple belonging
to Ri, b) have not already been generated and c) do not correspond to a connected and
join consistent super-set of an already generated full disjunction. In this latter case, a
replacement of the low cardinality tuple set with T ′ is needed (lines 14-15).

Once an item has been submitted to the variation task, its elaboration is considered
as completed, and it is added to the final results of the algorithm.

Example 10: Figure 5 shows a simple example of the application of the Algorithm
to the running example. The algorithm starts the iteration with the State table by
inserting all its tuples in the Incomplete variable (lines 2-5). The maximal extension of
the first tuple s0 is computed and a variation process is applied to the resulting tuple
set (lines 6-9, see Step 2 in the Figure). The algorithm proceeds by evaluating if the
variation can be considered as a full disjunction (lines 10-15). A similar extension and
variation process is applied to the other tuples s1 and s2 as shown in the Figure. Notice
that the extension {s2,m3} is maximal even if it does not include any tuple of the City
table. Nevertheless, it will not generate any variation (see the empty set).
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Figure 5: Candidate full disjunction of State

4.2. The BiComNLOJ approach

BiComNLOJ [5] is an approach for the full disjunction computation that exploits
the concept of polynomial delay. This concept requires that the time interval between
the production of two successive solutions varies in a polynomial manner with respect to
the size of the input data, thus assuring high performance. In particular, BiComNLOJ
consists of two main components: one for the calculation of sequences of left deep outer-
joins in an acyclic graph (NestedLoopOuterJoin - NLOJ) and one for the calculation
of full disjunctions in a general graph which has a quadratic delay (PDelayFD). These
components were initially assembled to compute the full disjunctions according to the
following steps:

1. calculation of the biconnected components of the schema graph

2. calculation of the full disjunctions for each biconnected component using the PDe-
layFD algorithm

3. combination of the full disjunctions deriving from each biconnected component
through the execution of the NLOJ algorithm respecting a specific order

This computational schema however does not guarantee a polynomial delay execution as
the time needed to produce the full disjunction for a single biconnected component is
exponential. In order to achieve the polynomial delay property the combination of the
intermediate full disjunction produced by the different biconnected components, through
the NLOJ algorithm, is progressively executed. Firstly, the full disjunction deriving from
the first biconnected component is computed. Then, starting from these results, the full
disjunction items of the second biconnected component are then computed, and so on.
In order to guarantee the correctness of the combination process a specific order must be
used: this is called “strong connected-prefix order”, and it imposes that two successive
biconnected components have to be connected by a connecting relation. This is a relation
that either appears in both the biconnected components or is directly connected, through
a join condition, with a relation of the previous biconnected component. This new
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Figure 6: Table-driven naive parallelization

execution flow provides a method for full disjunction computation that is compliant with
the polynomial delay property.

4.3. Parallelizing the IncrementalFD algorithm

The logic of the IncrementalFD algorithm can be easily parallelized as it con-
sists of several independent computations operating on data of significant dimensions
(e.g., multiple database tables). This section introduces four approaches to parallelize
IncrementalFD by means of a map reduce strategy.

4.3.1. Table-driven naive parallelization

This approach is a direct variant of the IncrementalFD algorithm, where the first
iteration over the database tables (see line 2 of Algorithm 5) is executed in parallel. In
this way, the approach simultaneously performs the creation of “candidate” full disjunc-
tion relations starting from the different tables. The parallelism adopted here is mainly
applied at a “code level”: the algorithm does not change, but it is the flow of execution
that has been altered by inserting multiple workers operating simultaneously to perform
parallel “candidate” full disjunction generation. Once the generation phase is completed,
a deduplication task is performed to remove repeated tuple sets. The whole approach
and the deduplication task can be easily implemented adapting the IncrementalFD al-
gorithm implementation into a MapReduce architecture, where the map task consists
in a “candidate” full disjunction discovery process (there is a mapper for each table)
and the reduce task directly removes the duplicated tuple sets in order to produce full
disjunction.

Example 11: Figure 6 exemplifies our approach. For each table, a map task performing
the extension and the variation processes is created. In this way, all tuple sets originating
from that table are computed. Then, a reducer task responsible for the removal of
duplicated items is executed. The remaining tuple sets compose the full disjunction.

4.3.2. Two-phase computation

The idea behind this variation is to divide the process for generating the full dis-
junction into two phases parallelized via a MapReduce implementation as shown in Fig-
ures 7(a) and 7(b). The first phase implements the functionalities introduced in lines
2-8 of Algorithm 5. A mapper is initialized for each relation, with the goal of generating
the first set of tuple sets. The subsequent reducers remove the duplications. The second
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(a) Full Disjunction Generation - First Phase: Extension Process

(b) Full Disjunction Generation - Second Phase: Variation Process

Figure 7: The MapReduce phases of Checkpoint-based version

phase implements the rest of Algorithm 5, mainly by applying the variation process to
the tuple sets given as input and generating the rest of the full disjunctions. Moreover,
the data are in the second phase uniformly distributed to the mappers to optimize the
process execution.

This approach largely improves the previous table-driven naive parallelization.
Firstly, the duplicated tuples sets generated by the first phase are removed before the
variation process is applied, thus avoiding the creation of tuple sets to be later on re-
moved. Then, the uniform redistribution of the initial data to the mappers in the second
phase optimizes the performances by balancing the workload of the workers executing
the variation process. Finally, the algorithm implements a parallel and progressive mech-
anism for generating the full disjunction. The tuple sets resulting from the first phase
constitute a preliminary result that the user can exploit in advance.

Example 12: One of the advantages introduced with the subdivision of the execution
flow into two steps is the ability of removing duplicated tuple sets early, at the end
of the first MapReduce task, thus generating an initial set of full disjunction relations.
Figure 8 shows the application of the deduplication process to tables State and City
of the running example. The first map tasks apply the extension process to the initial
tuples. Duplicates are removed by the first reduce tasks. Then, a second MapReduce
cycle applies the variation process and removes the duplicates.
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Figure 8: Two Phase Computation approach applied to the running example

Figure 9: Block variation process applied to the running example

4.3.3. Block-based parallelization

The Block-based parallelization improves the performance of the approach by opti-
mizing the execution of the variation process. Given a tuples set, the variation process
replaces its composing tuples with other tuples belonging to the same tables. This task
can be optimized if we are able to work on multiple tuple sets simultaneously. In this
way, the cache usage is optimized and the total execution time decreases.

Therefore, the Block-based parallelization implements a change in the logical data
unit processed by the algorithm, by grouping all tuples sets generated from the same
tables in the previous extension block and computing the variation of the entire group.

Example 13: Let us consider the three tuple sets generated by the extension task on
the tuples of the State table: (1) {c0, s0, m0}, (2) {c0, s1, m1} and (3) {s2, m3}. The
variation process will scan all tuples of the City and Membership tables to generate
possible variations. Figure 9 shows the process and the results obtained, where the
columns represent the input tuple sets and the row the possible variations. The Figure
shows that only two valid results are generated: {c0, s0, m1} and {c1, s1, m1}. The other
cases generate tuple sets which are not connected and join consistent. Note that when
the variation tuple is already included in the considered tuple set no variation operation
is applied (“n.a.” in Figure).

4.3.4. Checkpoint-based version

The block-based version can generate workload imbalance among the workers. To
provide a partial solution to this issue, a checkpoint system has been implemented to
periodically interrupt the execution of the workers, collect the results produced up to that

19



point and produce a new distribution of the data. The frequency of the re-balancing
is established as proportional to the number of new full disjunction discovered with
respect to the number of tuple sets taken in input by the considered worker. When the
difference between these two dimensions exceeds a fixed threshold the checkpoint system
is triggered.

5. Related Work

Section 4 has introduced the main existing techniques for computing the full dis-
junction of a relational database. In this section, we introduce other related work on
the available technologies for supporting parallel computing, and some approaches for
performing the join in distributed and parallel frameworks.

5.1. Technology supporting parallel computing

Recently, a large number of technologies and paradigms have been developed to ef-
ficiently manage high data volumes with reduced costs. MapReduce [16] was a first
product developed to address the emergence of the high scalability and flexibility re-
quirements imposed by large amounts of data. Its main advantage was its ability to
hide implementation details in a parallel environment through the adoption of a dis-
tributed programming paradigm based on two primitive functions: Map and Reduce. Its
simplicity, flexibility and fault tolerance have immediately made it a tool of paramount
importance for managing large amounts of data. Several implementations of its paradigm
have been developed. Among them, the most used is Apache Hadoop8. However, this
model has shown some limitations. The main significant ones are: a) the use of a non-
declarative programming paradigm based on its two primitives only, b) the inability to
exploit the advantages deriving from the structured organization of some information,
i.e., all data have to be organized in a key-value form, and c) the adoption of a rigid
dataflow articulated in fixed phases such as reading data from a distributed file system,
applying a MapReduce job and storing the results in a distributed file system. Within an
iterative logic, the repeated application of a sequence of MapReduce jobs involves, due
to the lack of storage of an intermediate state, intense use of I/O operations that can
easily degrade performance. In response to these needs, new approaches have been intro-
duced. Apache Hive9 and Apache Pig10 were the first tools integrating the MapReduce
paradigm into a declarative logic, similar to the SQL one. Several wrappers have also
been introduced to use structured data with a schema instead of key-value pairs. Finally,
several frameworks have been created to achieve high performance even in the presence of
iterative and interactive data processing. Apache Spark11 represents the major exponent
of this category of frameworks. It provides the most complete, reliable and performance
solution. Thanks to an in-memory computing model, in fact, it is up to 100 times faster
than Apache Hadoop and supports structured data analysis based on a declarative logic.

8http://hadoop.apache.org/
9https://hive.apache.org/

10https://pig.apache.org/
11http://spark.apache.org/
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5.2. Join in a distributed environment

The join operator is a useful tool to integrate information from different data sources.
Its operation, however, does not fit well in a distributed scenario where the information
to be integrated can be divided between different nodes and therefore its integration
requires high network traffic.

Parallel join processing originates from the work on the early parallel database sys-
tems, such as Bubba [17], PRISMA/DB [18] and GAMMA [19], where hash-based par-
titioning was used to distribute the join argument to multiple machines in a cluster.
Evaluating a multi-join query via hashing in parallel over a shared-nothing environment
has also been investigated in the literature. Different parallel processing strategies such
as left-deep and right-deep [20], segmented right-deep[21], zigzag tree [22] and other
variations [23] have been proposed. However, most of them report their results based on
simulations, while we report our results based on a working distributed system.

Within a MapReduce framework, the join operation can be performed in two different
ways: Map-side join and Reduce-side join [24]. The first family of joins includes Map-
Merge joins and Broadcast joins. According to the first approach, the tables to be
integrated are already partitioned in the distributed file system on the join key and a
merge phase is applied through Map functions. The broadcast join instead exploits the
possibility of replicating and storing in the memory of each mapper the table of smaller
size in order to carry out the comparisons of joins more efficiently. In the Reduce-side
joins, the most common strategy is the repartition join [25], which labels, in the map
phase, the tuples according to the provenance table, partitions the tuples based on the
join key and performs the tuple comparison in the reduce phase. This corresponds to
the application of a standard hash join in a distributed environment. Although other
MapReduce join approaches have been proposed, such as Map-Reduce-Merge [26] and
Map-Join-Reduce [27], many implementations provided by higher-level systems built
above MapReduce, like the Hadoop-based systems and those integrated within Apache
Spark, are available. However, these systems provide implementations that can work
only with two tables [28]. Therefore, the application of an integration task by joining n
data sources, which represents the typical scenario with the full disjunction, is divided
into several phases. Concurrent join [29] and Scatter-Gather-Merge [28] algorithms have
been proposed to efficiently implement star joins.

The need to integrate n tables represents also a typical scenario in the field of busi-
ness intelligence, where star queries require that a central table, i.e., the fact table, is
integrated with information extracted from other tables, i.e., the dimension tables. Most
of star query implementations [30] exploit the different dimensionality of the tables in-
volved (i.e., the fact table is typically greater than the dimension tables), therefore they
do not provide a generic strategy to operate. [10] introduces a technique called star hash
join (SHJ), which provides an optimization of a left-deep tree-shaped query plan applied
in a datawarehouse scenario. SHJ solves a problem similar to our implementation, but
applies a less efficient solution based on a sequence of joins. In particular, the dimension
tables are partitioned by their primary keys, and the fact table is partitioned by one of
its foreign keys. Hence, only one join between one dimension table and the fact table
may be performed locally within each cluster.
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6. Experimental evaluation

We conducted a large number of experiments to assess the quality of parafd. First of
all, we evaluated its time performance since efficiency is one of the main problems affect-
ing the existing algorithms. The experiments described in Section 6.1 demonstrate that
our implementation is usable in real scenarios. In Section 6.2 we tested the robustness
of parafd by varying the dimensionality of the input data and the number of join con-
nections. This evaluation confirms that our approach is scalable. Section 6.3 evaluates
our technique for approximating full disjunctions; The experiments show a reduction of
the time required for computing the approximation, and a limited loss of information.
Finally, in Section 6.4, we evaluated the effectiveness of parafd by experimenting the
full disjunction as a collection of documents for a text retrieval search engine.
Implementation, environment. We performed the experiments in a cluster of 6
virtual machines running Ubuntu 12.04. Each machine has 16 processors, 128 GB of
RAM and 1 TB of storage. We implemented parafd using the Python interface of the
Apache Spark framework.
Dataset descriptions. Three reference datasets [6] with complementary features have
been used in our experiments. The Internet Movie Database (IMDB12) is a database of
cinematographic data including more than 1.6 M tuples distributed in 6 relations and
with a total size of 459 MBs. Wikipedia dataset is a reduced version of the popular
encyclopedia including six relations, more than 200k tuples and a total size of 391 MBs.
Mondial13 is a small dataset with a size of 16 MBs, 17K tuples (two orders of magnitude
smaller than the IMDB dataset), but with a complex schema composed of 28 relations.
By virtue of these characteristics, Mondial represents a meaningful test for the valida-
tion of full disjunction algorithms whose complexity mainly depends on the high number
of data connections. IMDB can be thought as a typical business data source composed
of a large amount of data and a simple schema. Finally Wikipedia, containing the full
text of articles, is a good option for the validation of keyword search systems.

6.1. Efficiency of the approach

Three experiments have been performed to assess the efficiency of our approach. In
a first experiment, we compared the execution time of our approach with respect to the
existing algorithms and their parallelized versions described in Section 4. In a second
experiment, we evaluated parafd time performance on the three reference datasets.
Finally, we evaluated the hash star join implementation against the traditional left-deep
join technique.

The comparison of the performance of the existing strategies for computing full dis-
junction has been performed by considering three subsets of the Mondial database. Table
1 shows the results of this experiment; Column 1 reports the subset of tables of Mondial
used as configuration (input database), Column 2 reports the total number of tuples in
the database and Column 3 reports the resulting number of tuples in the full disjunction
of such database. For each data configuration, all proposed algorithms have been tested
and their execution times are reported. Note that the results reported for BiComNLOJ

12https://www.imdb.com/
13https://www.dbis.informatik.uni-goettingen.de/Mondial/
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Configuration
(Database R)

Input dim.
(no of tuples
of R)

Output dim.
(no of tuples
of FD(R))

Algorithm version
Average time (h)
and std

Mondial
limited to
is member,
organization,
country

8,399 8,021

Original IncrementalFD 11.42 (0.029)
Table-driven naive parallelization 6.50 (0.160)
Two-phase parallelization 2.23 (0.012)
Block-based parallelization 1.82 (0.037)
Checkpoint-based version 0.22 (0.005)
BiComNLOJ 1.65 (0.028)
PARAFD 0.024 (0.001)

Mondial
limited to
is member,
organization,
country, city

11,510 27,152

Original IncrementalFD 286.78 (4.709)
Table-driven naive parallelization 132.08 (2.256)
Two-phase parallelization 16.73 (0.084)
Block-based parallelization 8.89 (0.118)
Checkpoint-based version 3.24 (0.125)
BiComNLOJ 95.72 (1.584)
PARAFD 0.038 (0.001)

Mondial
limited to
is member,
organization,
country, city,
borders

11,830 96,964

Original IncrementalFD -
Table-driven naive parallelization -
Two-phase parallelization -
Block-based parallelization -
Checkpoint-based version 80.71 (0.017)
BiComNLOJ -
PARAFD 0.045 (0.001)

Table 1: Efficiency with fragments of the Mondial Database. A mark “-” is reported for experiments
not finished before the timeout (300 hours)

Data Input dimension Output dimension Average time (h)
source (tuples) (full disjunctions) and std
IMDB 1.6M 4508339 0.193 (0.086)
Mondial 17k 282111161 2.264 (0.091)
Wikipedia 200k 375712 0.215 (0.015)

Table 2: Efficiency of parafd in the reference datasets

refer to a parallelized version of the original algorithm we have implemented. To avoid
noise and bias generated by other running applications and network failures, we have
repeated the experiment 5 times for each algorithm. The table shows the average time
and in brackets the standard deviation. A mark “-” shows experiments that did not
finish before the timeout (300 hours).

The experiments show that parafd outperforms the existing techniques reducing the
time required for computing full disjunctions until 4 orders of magnitude. Moreover, our
implementation is the most scalable when the data increases. The time required has the
same order of magnitude for all configurations. This behavior is not shared by the other
techniques, where the times for completing the task largely varies with the input size. A
further evaluation of parafd scalability is proposed in Section 6.2.

In the second experiment we measured the time to compute full disjunctions in the
three reference datasets. As in the previous experiments, we repeated the computation
5 times to avoid bias. Table 2 shows the average time and the standard deviation
measured. Despite its small size (17k tuples), Mondial generated the largest number
of full disjunctions (more than 280 ∗ 106). This is due to the high number of foreign
keys that generate more than 4k spanning trees. Our approach is the only technique
among the ones tested able to compute this large number of full disjunctions (the other
approaches fail after 300 hours of computation).

Finally, we evaluated the efficiency of the hash join algorithm implemented in parafd.
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Left-deep
outerjoins (s)

Extended hash
join (s)

Time reduction (%)

Imdb 496.50 269.84 45.65
Wikipedia 541.06 300.35 44.49
Mondial 157.59 121.00 23.22

Table 3: Comparison of extended hash join and left-deep outerjoins

The experiment consisted in comparing the execution time required by our hash star join
algorithm to calculate the outerjoins between n relations with respect to the one required
by a sequence of left-deep outerjoins applied to respect the connected-prefix ordering. The
approaches have been evaluated on a single tree selected from the schema graphs of the
reference datasets. In particular, the schema graphs of the Imdb and Wikipedia datasets
generate only one tree. The spanning tree of maximum weight has been considered for
the Mondial schema graph. The results of this evaluation are reported in Table 3. The
hash star join technique performs better than a sequence of left-deep outerjoins: the
percentage reduction of the execution times varies from about 25% to 40%. Mondial
represents the dataset on which the performance of the proposed algorithm with respect
to the considered baseline is smaller. This result is motivated by the fact that this dataset
has a number of tuples and an overall size smaller compared to the other scenarios (see
the dataset descriptions at the beginning of Section 6). This feature influences the times
for data distribution among the cluster workers which impacts less on the entire process.

6.2. Robustness of the approach

In this section we show the ability of our system to scale when the size of the data
increases. In a first experiment, we executed parafd on the reference datasets by varying
the number of active hosts within the considered cluster. The results are reported in
Figure 10(a), where for each cluster configuration, we show the execution times. We
observe that similar execution times are required in the IMDB and Wikipedia databases
(i.e., a minimum time of about 800 seconds with 6 active hosts and a maximum time
exceeding 4000 seconds with a single host), while Mondial shows the highest execution
times (i.e., about ten times higher). Then, in all scenarios, the execution times show
a fairly linear trend with respect to the growth of the number of active hosts. A more
intuitive representation of this trend is shown in Figure 10(b), where the speedup of our
approach is reported for the three datasets. As can be seen, only the execution times
obtained with 6 active hosts are slightly lower than an exact linear trend. This can
be explained considering that the times for the distribution of data between the hosts
increase.

In a second experiment we evaluated the execution time by varying the number of
joining tuples in the input tables. For this purpose, synthetic datasets consisting of 3
tables, with a cardinality of 100k tuples and different distributions of the join connections
were generated. In a first scenario we have evaluated the time performance with a
balanced dataset, when the tables are connected only via one-to-one relations. In the
other scenarios we built unbalanced distribution of joining tuples, where the cardinality of
the tuples involved in one of the foreign/primary key relations is lower than the remaining
two. In particular, each pair of tuples deriving from two over three tables was repeated
with probability 0.9 a number of times equal to 25, 50, 100, 250 and 500 respectively.
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Num.
hosts

IMDB
time (s)

Wikipedia
time (s)

Mondial
time (s)

1 4163.86 4475.78 38798.275
2 2430.33 2778.23 19140.744
3 1715.32 1775.54 13605.122
4 1276.07 1227.11 10583.29
5 911.55 971.89 8795.862
6 804.76 829.37 8215.42

(a) Comparison of execution
times with different number of
active hosts
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Figure 10: Scalability of the approach

Balanced
Unbalanced

25 50 100 250 500
FD count 100000 2041220 4060146 8125066 20322134 40624354
Time (s) 345.36 417.76 460.94 547.19 892.27 952.19

Table 4: Comparison of execution times with different number of join connections

Table 4 reports the number of full disjunction and the relative computation time for
each of the synthetic datasets. The first scenario produces a number of full disjunction
equal to the number of tuples of all three tables by construction. The time taken to
calculate the full disjunction in this scenario is about 5 minutes. With the increase in
the number of join associations between the tuples, the number of full disjunction also
grows proportionally, but it is possible to notice that the execution time remains quite
stable. It goes from 460.94 seconds to generate 40M full disjunction up to 952.19 seconds
for 406M full disjunction. This experiment shows that the developed approach is able to
scale even as the size of join connections between the tuples changes.

6.3. Effectiveness of the full disjunction approximation

This section shows the experiments performed to evaluate the efficiency and the effec-
tiveness of the technique for generating the approximated full disjunction. The efficiency
has been evaluated by considering four degrees of approximation (i.e. the full disjunction
is computed by considering 10%, 30%, 50%, 70% the overall number of spanning trees in
the dataset) and measuring the number of relations in each approximation and the time
required for their computation. Table 5 shows the results of our experiments executed
in Mondial: as expected the number of full disjunction relations and the time required
for their computation increases with the size of the approximation.

The ability of an approximating amount of relations in representing the entire full
disjunction has been evaluated by observing if attribute values represented by the full
disjunction relations are also existing in the approximated version. We tested the ap-
proach in three scenarios, where 100 attribute values, 100 pairs of values, and 100 triples
have been randomly extracted. We computed, for each scenario, the precision, i.e., the
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Approximation FDs Time (h)
10% 70467668 0.787
30% 126284216 1.264
50% 187699268 1.492
70% 217575090 1.639

Table 5: Efficiency of the approximated version of parafd

fraction of items that have been retrieved in the approximations, and the recall, i.e. the
fraction of full disjunction containing the items in the approximation with respect to the
full disjunction in the complete set. We performed the experiment by selecting a number
of levels of approximation. Table 6 shows the results obtained. The value in brackets is
the standard deviation. In all configurations high precision and recall levels are obtained.

10% 30%
Prec. Rec. Prec. Rec.

1 term 0.99 (0.10) 0.30 (0.22) 0.99 (0.10) 0.48 (0.24)
2 terms 0.98 (0.14) 0.28 (0.19) 0.98 (0.14) 0.48 (0.22)
3 terms 0.95 (0.22) 0.25 (0.13) 0.97 (0.17) 0.45 (0.15)

50% 70%
Prec. Rec. Prec. Rec.

1 term 0.99 (0.10) 0.71 (0.22) 0.99 (0.10) 0.79 (0.19)
2 terms 0.98 (0.14) 0.69 (0.21) 0.98 (0.14) 0.79 (0.16)
3 terms 0.98 (0.14) 0.67 (0.14) 0.98 (0.14) 0.77 (0.11)

Table 6: Effectiveness of the approximated version of parafd

6.4. A keyword search system on relational databases based on a full disjunction

In this section, we propose to consider the full disjunction as a collection of documents
to be indexed by a text retrieval system (i.e., Lucene14). In this way, we implement a
simple keyword search system on relational databases and we provide a measure of the
effectiveness of the full disjunction in a real and challenging scenario. We experimented
our idea against the benchmark proposed in [6], where IMDB, Wikipedia and Mondial
have been evaluated against 50 queries per source. The time required for indexing the
data and the average time, the standard deviation, the minimum and the maximum time
required to solve the queries is shown in Table 7. We observe that time required for
solving the queries in most of the cases makes the simple approach implemented able
to work real time with any optimization. Only in a few cases, the keyword queries are
complex and require a large time to be completed.

Figure 11 shows the average precision of the first answer returned by parafd, com-
pared with the other systems, in solving the keyword queries of the benchmark in the
three datasets. Our approach largely outperforms the other systems in the scenarios
related to the IMDb and Wikipedia datasets, and works as the best other approaches
in Mondial. The Mondial database schema is complex: the tables are connected via
a large number of paths that form cycles. The result is that the same tuple is repeated
more times in the full disjunction relations and the rank adopted by Lucene in some
cases is not consistent with the one expected by the user.

14https://lucene.apache.org/
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Dataset
Indexing Querying

Time (s)
Average time (s)

and std
Max time (s) Min time (s)

Mondial 22500 11.25 (30.17) 192.12 0.05
IMDb 11520 20.47 (42.61) 302.79 0.08

Wikipedia 1250 160.23 (127.72) 422.77 0.32

Table 7: Keyword search response times (in seconds)
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Figure 11: Average precision of the first answer of parafd compared with the benchmark [6]

7. Conclusion

In this paper we have presented parafd: a new approach, based on parallel com-
puting techniques, for generating the full disjunction of a relational database. The same
approach can also be used for obtaining an approximated full disjunction, where a limited
number of full disjunction from the complete set is computed. For comparing our proposal
with the state of the art, we have implemented IncrementalFD and BiComNLOJ , two
of the main algorithms available in the literature. The experiments demonstrate that
parafd time performance outperforms existing approaches. The effectiveness of the ap-
proximated version has been also experimented, and we showed that it provides a good
representation of the entire full disjunction. Finally, we have applied the full disjunction
as a collection of documents to be indexed and retrieved by a search engine. The idea
is to provide a basic answer to the problem of keyword search on relational database.
Our idea has been compared against an existing benchmark, obtaining results with high
recall and precision.
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