
Big Data Research 19–20 (2020) 100135

Contents lists available at ScienceDirect

Big Data Research

www.elsevier.com/locate/bdr

Automated Deployment of a Spark Cluster with Machine Learning

Algorithm Integration

A.M. Fernández, D. Gutiérrez-Avilés, A. Troncoso, F. Martínez–Álvarez ∗

Data Science and Big Data Lab, Pablo de Olavide University, ES-41013 Seville, Spain

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 November 2019
Received in revised form 5 April 2020
Accepted 26 April 2020
Available online 8 May 2020

Keywords:
Big data analytics
Apache Spark
Machine learning
Cluster deployment

The vast amount of data stored nowadays has turned big data analytics into a very trendy research
field. The Spark distributed computing platform has emerged as a dominant and widely used paradigm
for cluster deployment and big data analytics. However, to get started up is still a task that may
take much time when manually done, due to the requisites that all nodes must fulfill. This work
introduces LadonSpark, an open-source and non-commercial solution to configure and deploy a Spark
cluster automatically. It has been specially designed for easy and efficient management of a Spark cluster
with a friendly graphical user interface to automate the deployment of a cluster and to start up the
distributed file system of Hadoop quickly. Moreover, LadonSpark includes the functionality of integrating
any algorithm into the system. That is, the user only needs to provide the executable file and the number
of required inputs for proper parametrization. Source codes developed in Scala, R, Python, or Java can be
supported on LadonSpark. Besides, clustering, regression, classification, and association rules algorithms
are already integrated so that users can test its usability from its initial installation.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The era of Big Data [1] has changed the way that data are
stored and processed. The need for systems able to efficiently per-
form both actions has dramatically increased recently [2–4].

Although Spark is an open-source framework under the Apache
2.0 license, it was initially created and developed by the University
of California [5]. It provides an interface to deploy fault-tolerant
clusters for distributed computing based on the parallelization of
data and to develop software under the MapReduce paradigm [6].
It offers a new programming framework providing us two main
tools: on the one hand, a high level of abstraction of the MapRe-
duce paradigm allowing an easier way to develop distributed and
concurrent applications and, on the other hand, an interface to
deploy fault-tolerant clusters for distributed computing based on
the partition of data. The MapReduce paradigm [6], as mentioned
above, refers to two differentiated tasks: map and reduce. Map-
per tasks consist in the transformation of a dataset into another
one composed of tuples (pairs of key/value). Reducer tasks take
the output of previous mapper tasks and combine tuples to obtain
a smaller set of tuples.

* Corresponding author.
E-mail addresses: amfergom@alu.upo.es (A.M. Fernández), dgutavi@upo.es

(D. Gutiérrez-Avilés), atrolor@upo.es (A. Troncoso), fmaralv@upo.es
(F. Martínez–Álvarez).
https://doi.org/10.1016/j.bdr.2020.100135
2214-5796/© 2020 Elsevier Inc. All rights reserved.
Spark programming is focused on the use of a data structure
called Resilient Distributed Dataset (RDD) [7], which allows data
distribution across the nodes of a cluster. The primary program-
ming language supported by Spark is Scala, but it also supports
Java, R, or Python. Moreover, it can be used under different oper-
ating systems, such as Linux, MAC OS, or Windows.

For proper cluster management, Spark can make use of Apache’s
managers like YARN [8], Mesos [9], or even it can make use of
the native Spark manager (Standalone). As for the distributed data
storage, several implementations can be used as NoSQL databases
(Cassandra, MongoDB, or HBase, for example) or a cloud storage
service (Amazon S3 or Microsoft Azure, among other). Another
well-known and a de facto standard for distributed data storage is
the Hadoop Distributed File System (HDFS). HDFS is a distributed,
scalable and portable file system that may store huge files, typi-
cally in ranges of GB to TB (even PB), across multiple machines. It
can achieve reliability by replicating the cross multiple hosts, and
therefore, does not require any range storage on hosts.

However, to the author’s knowledge, there is no friendly appli-
cation able to effortlessly deploy and parametrize a Spark cluster
as well as a distributed file system for free and providing open
source. Thus, the main goal is the development of an application
that, by just a few clicks and a graphical user interface, fully de-
ploys and configures a Spark cluster with HDFS. That is, it aims
at automating the cluster deployment, thus avoiding a complicated
and tedious manual configuration. As we can see in Section 5, only

https://doi.org/10.1016/j.bdr.2020.100135
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/bdr
http://crossmark.crossref.org/dialog/?doi=10.1016/j.bdr.2020.100135&domain=pdf
mailto:amfergom@alu.upo.es
mailto:dgutavi@upo.es
mailto:atrolor@upo.es
mailto:fmaralv@upo.es
https://doi.org/10.1016/j.bdr.2020.100135

2 A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135
the Databricks private company has a similar framework to our
proposal in this work. However, although it allows the cluster man-
agement with different settings (https://databricks .com), the users
cannot control physical resources. Moreover, Databricks offers a
commercial license (pay per use), whereas LadonSpark provides an
open-source license free-to-use.

The LadonSpark tool offers an open-source and non-commercial
solution to automatically configure and deploy a Spark cluster. Be-
sides, the main advantage that a potential user acquires when
he/she installs this system is to avoid the need to use an admin-
istrator role. Therefore, any user that have several machines con-
nected by a network can configure and deploy a Spark cluster in a
user-friendly, and free of charge way, and without any system ad-
ministrator skills. Note that this fact means a great advantage, for
instance, for small-medium data science research groups, as well
as for other type of users. The application has also been designed
to easily integrate new algorithms by just uploading executable
files and configuring the inputs. As a sample usage, the tool incor-
porates some algorithms of the machine learning library (MLlib) of
Spark, in particular, Kmeans (clustering), Generalized linear models
(regression), and FP-Growth (pattern extraction).

LadonSpark is available at https://github .com/
datascienceresearchlab /LadonSpark. In this GitHub repository, you
can find a complete manual (with an installation guide and a user
guide), a video with a demonstration of use, the source code, and
the releases of the system.

The rest of the paper is structured as follows. Section 2 provides
a general overview of the state-of-the-art. Section 3 describes the
proposed approach. In Section 4 an algorithm deployment analysis
is presented. Section 5 introduces a comparative study of the dif-
ferent open-source solutions. Finally, the conclusions drawn have
been summarized in Section 6.

2. Related work

Cloud computing is an emerging technology particularly suit-
able for the execution of distributed algorithms for big data anal-
ysis. This technology allows big data processing and management
without requiring physical computers in the workplace. In the last
years, many works have been published about cloud infrastructures
for real-world applications. Next, those directly related to big data
will be described.

One of the most relevant cluster deployment applications is the
Databricks platform [10]. This platform was developed to create
and manage Spark clusters to facilitate the workflow of a data sci-
entist in big data environments. Another application following the
same model is Spark Notebook [11], which provides an interac-
tive web-based editor that can combine Scala code, SQL queries,
Markup, and JavaScript collaboratively in order to explore, analyze
and learn from massive data sets. From scientific and educational
environments, there is a lack of proposals implementing the func-
tions LadonSpark offers, but there are approximations that are an-
alyzed below.

In [12], the Plug and Play Bench (PAPB) application was pre-
sented, and it offers an abstraction layer over the infrastructure
that integrates and simplifies the deployment of big data bench-
marking tools on clusters of machines. The PAPB architecture is
based on three parts: a container layer, a middleware layer, and
a cluster layer wherein using Docker containers [13] as one of
its main characteristics. The MLI software was presented in [14].
This application is a programming interface implemented using
Spark and designed for building machine learning algorithms in
distributing environments. Its primary goal is to simplify the de-
velopment of high-performance, scalable, distributed algorithms.
The authors in [15] proposed a new framework called GeoSpark to
execute data analysis algorithms taking into consideration the ge-
olocation of the data. The approach was designed by making use of
three layers: the Apache Spark layer, Spatial RDD Layer, and Spatial
Query Processing Layer. Finally, they concluded that GeoSpark has
a better runtime performance than Hadoop-based counterparts. An
elastic resource manager was introduced in [16] to make better use
of hardware resources, and thus, improve cluster efficiency. The
proposed approach can dynamically shrink or expand the size of
the container depending on the actual resource needs of the tasks,
which are being executed. Reported results showed that the CPU
performance was improved up to 1.5 times when the resources
were adjusted to the computing needs. The architectural compo-
nents of a framework, so-called SmartHealth, proposed to provide
services of big data analytics was described in [17]. It focuses on
several applications in the healthcare domain. As the primary use
cases, the authors listed patient profile analytics, effective public
health strategies and, improved remote patient monitoring.

Regarding machine learning algorithms, we can find different
frameworks, as Weka [18] or KNime [19]. These platforms pro-
vide the possibility of submitting a machine learning task to an
existing Spark cluster. This feature is different from LadonSpark,
which allows us to configure and deploy a Spark cluster. We can
use LadonSpark to configure and deploy the Spark cluster first and,
then, submit our machine learning workflows to it, using Weka or
KNime. A great variety of works discussing the execution of algo-
rithms across different types of clusters using Apache Spark in the
cloud or smart grids can also be found in the literature [20–26].

A platform to unify different frameworks existing in big data
was developed in [27]. Although some issues regarding the inte-
gration of Spark were reported, they eventually got to develop a
platform for the analysis of data stored in relational databases.

However, after a thorough analysis of all these works, it can
be concluded that most of them are new algorithmic proposals
or even modifications to improve their efficiency to analyze big
data. Additionally, most of them require to pay for technological
platforms used to deploy clusters. Some others simply launches
algorithms over already deployed clusters. LadonSpark, on the con-
trary, represents a free tool to quickly deploy and manage clusters
in users’ networks and provides a repository in which users can
share their algorithms with the Spark community.

3. The LadonSpark application

Spark does not offer a complex administration of the nodes that
form part of the cluster, but several tools to manage a Spark cluster
can be found nowadays.

The Spark management system is mainly based on three con-
figuration files, which are created to deploy the cluster. These
files are stored as templates in the directory “$SPARK_HOME/conf”.
A proper configuration of such files allows launching a Spark clus-
ter. An explanation of the functionality of each file can be found
below:

1. File spark-default.conf. This file defines the default configura-
tion of different parameters for the cluster so that it can be
deployed.

2. File slaves. This file contains the list of the worker nodes that
form the cluster. It contains the IP addresses for all these
nodes.

3. File spark-env.sh. This file contains the main parameters of the
configuration of a Spark cluster, e.g., the RAM that can be
used, the number of cores and, the number of instances. It
is worth noting that there exist many more parameters, but
those mentioned above are the ones with the highest impact
in the configuration.

https://databricks.com
https://github.com/datascienceresearchlab/LadonSpark
https://github.com/datascienceresearchlab/LadonSpark

A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135 3

Fig. 1. A general illustration of the LadonSpark application.
This process previously described has to be repeated for each
node that forms the cluster. Once the configuration files have
been modified for all nodes, the cluster can be initialized by na-
tive scripts of Spark. These scripts can be found in the directory
“$SPARK_HOME/bin” and can be any of these: start-slaves.sh, start-
master.sh or start-all.sh.

Thus, the configuration of a Spark cluster is a repetitive and
humdrum process, and it can be extremely difficult if the nodes
are spread in different physical locations. Although there are sev-
eral Spark cluster managers to deploy a cluster such as Apache
Mesos or Apache Yarn, the nodes in the cluster must be individu-
ally configured for both cases.

Given that a cluster cannot be currently deployed without any
initial configuration steps, the LadonSpark web application has
been developed to automatize the entire configuration process.
Thus, LadonSpark automatically sends the configuration files to
all nodes. The application has been divided, mainly, in two parts:
algorithms and communications. The first one manages both algo-
rithms execution and parameterizations, whereas the second one
allows automatized setting and launching the Spark cluster.

Fig. 1 depicts a diagram of how the cluster is deployed by
the web application here proposed. The application is launched
from the master node, which contains a database and a reposi-
tory of algorithms. Namely, the database stores parameters needed
for the algorithms and the repository stores .jar files. The dia-
gram also shows the slave nodes as well as the communications
with external resources. These modules, along with the general
characteristics and prerequisites, are described in subsequent sub-
sections.
3.1. General characteristics

The LadonSpark software is an open-source application de-
signed to offer to the scientific community an easy-to-use user
interface to deploy a Spark cluster. LadonSpark can use any type
of machine (newer or older one) for connecting them and for pro-
viding the hardware support to the deployed Spark cluster. Ladon-
Spark provides service-level authentication in its distributed file
system, as well as an authentication layer for its Http web con-
soles. Every data transfer through the distributed file system is
encrypted. The authentication and encryption functions are im-
plemented by Hadoop-HDFS being the distributed file system of
LadonSpark; thus, data security and confidentiality are guaranteed.
On the other hand, it must be taken into account that LadonSpark
is installed by the user in its own local infrastructure. A summary
of these characteristics of the LadonSpark software, classified into
advantages and weaknesses, is shown in Table 1.

3.2. Prerequisites

The prerequisites described below are necessary for the correct
functioning of the LadonSpark approach:

1. Shared dataset. The dataset to be processed by an algorithm
has to be shared by all the cluster nodes. Currently, there are
two different ways to share it:
(a) HDFS System. This system distributes a dataset in all nodes

of the cluster. The LadonSpark application integrates the

4 A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135

Table 1
Advantages and weaknesses of LadonSpark.

Advantages Weaknesses

GPL v3 license Real machines are required
Easy installation and use Lack of virtualization approach
Designed for the scientific community Software systems knowledge needed for installation
The use of any machine is available, even older ones Not possible to scale to public networks
HDFS, which can be launched using a script that has been
developed to install it across the cluster easily.

(b) File repository. The dataset is replicated in every node at a
specific folder. That way, Spark can access to the required
specific data blocks in every node. This option reduces the
computational time, but it requires much space in memory
for each node.

2. RSA ring. RSA keys are necessary for the exchange of infor-
mation between nodes without having to enter credentials for
each connection.

3. Global user. It is necessary to facilitate the RSA ring. Hence,
the access to the path of the files is greatly simplified through
the same user and password for all nodes.

4. Nmap. It is a critical prerequisite because this application
sniffs the network and creates the nodes list. Nmap must be
installed in the master node, enabling it to discover new po-
tential nodes to be part of the cluster.

5. Spark package. This package must be downloaded and un-
zipped in the specific path “/home/username”.

6. Scala package. As happens with the Spark package, the Scala
package must be downloaded and unzipped for the proper
execution of an algorithm, which has been developed in the
Scala programming language.

Finally, two new libraries have been included in the last update
of the LadonSpark, and therefore, their installation is required to
execute an algorithm in both R or Python languages supported by
Spark.

1. R-base. This library allows executing R code from Spark. This
language has been included because it is one of the most used
languages for data analysis currently.

2. Python. This language is a pervasive and popular programming
language nowadays. For that reason, this library has been in-
cluded in developing algorithms using Python from Spark.

3.3. System architecture

For the development of the LadonSpark application, the Model-
View-Controller architectural pattern has been used to improve the
implementation and to make the application more scalable. For
each layer, the following technologies have been used:

1. View. The goal of this layer is the interaction between the user
and the system. The main web technology that was used for its
development is JSP. For style, CSS, Ajax, JQuery, and JavaScript
were used. JSP provides an optimized iteration with the final
user through dynamic forms.

2. Controller. This layer is responsible for managing all the re-
quests from the users. The Servlets class was used to build
this layer. This layer gets the entities of the model and sends
them to the view layer for its presentation.

3. Model. The model layer manages access and modifies the en-
tities. Moreover, the purpose of this layer is to improve the
transparency, and for this reason, the Hibernate framework
was used along with the Data Access Object pattern to manage
entities as different objects.
3.4. Communications

In this section, the module related to communications is de-
scribed. This module can be considered critical since the cluster
must be deployed before any other further action is taken. Trans-
parent and efficient management of the cluster is the main objec-
tive of this module.

Three steps must be followed to deploy a cluster. The descrip-
tion of each step is shown below:

1. Network scanning. First, Nmap technology is used to find and
identify all nodes in the network. Next, the LadonSpark ap-
plication builds a list containing all the information for each
node from a .xml file generated by the Nmap. Afterwards, this
information is shown in a specific user interface.

2. IP filtering. Once the result of the scanning is shown in the
web interface, the user must select the slaves that are going
to be part of the cluster.

3. Configuration files and sending. After selecting the nodes, the
configuration files can be either parametrized as aforemen-
tioned in Section 3 or the default configuration can be se-
lected. The configuration by default can be summarized as one
core, one instance, and one GB of RAM. Finally, these files are
sent to each node of the cluster.

4. Cluster starting. This final step consists in the invocation of
an internal Spark script to deploy the cluster. Note that the
configuration of the nodes was made in the previous step.

Fig. 2 shows the steps followed by the LadonSpark application
in the communication module from the beginning at the commu-
nication web page to the deploying of the cluster.

3.5. Algorithms

This module responds to the need of applying some machine
learning algorithms to process and analyze big datasets once the
cluster is deployed. Following the idea of simplifying the set of
steps to facilitate the use of the LadonSpark application, this mod-
ule has been designed with two differentiated parts: the first one
to execute algorithms, and the second one to provide the possibil-
ity that the user executes their own algorithms by adding them to
the internal repository.

1. Algorithm execution. A friendly user interface displays the pa-
rameters of the algorithm selected from a drop-down list. Also,
the user can add the URL from which the dataset can be up-
loaded. Finally, after running the algorithm, the results are
shown.

2. Adding an algorithm. An important functionality of the Ladon-
Spark application is to allow the integration of new algorithms.
An algorithm can be included in the internal repository by
uploading a .jar file and by defining the parameters of the al-
gorithm from a friendly web form. Once the form has been
sent, the new algorithm to be executed is inserted in the above
drop-down list.

A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135 5

Fig. 2. Scheme of the communication module of the LadonSpark.
Fig. 3. Scheme of the algorithm module of the LadonSpark.

Finally, Fig. 3 presents the necessary steps for both adding and
executing algorithms in the Spark cluster from the algorithm mod-
ule of the LadonSpark.

4. Algorithm deployment analysis

LadonSpark provides, as well as the automatic deployment of
a Spark cluster, the function of submitting a machine learning al-
gorithm to the cluster and run it through a graphical interface.
Therefore, this section aims to show the usefulness of the Ladon-
Spark and, to prove the effectiveness (in terms of execution time)
of deploying machine learning applications in a Spark cluster.

The following study case is based on several well-known ma-
chine learning algorithms. These algorithms have been chosen
from the MLlib machine learning library from Spark to cover the
most common data mining tasks. Namely, the Kmeans algorithm
has been selected as a reference clustering method, a regression
technique to obtain a generalized linear model (GLM), and the FP-
Growth approach for association rules. The primary purpose of this
study is to analyze how the configuration of a Spark cluster has a
notable influence on the runtime of each one of these algorithms,
depending on the size of the dataset to be processed. Therefore,
the hyperparameter configuration of the algorithms has been set
to the Spark MLlib default [28–30]. Hence, for the Kmeans algo-
rithm, the number of initial clusters is set to 2 and, the iterations
to 20; for the GLM algorithm the regularization parameter is set to
1.0 and the iterations to 100; and, finally, for the FP-Growth algo-
rithm, the minimum support parameter is set to 0.3. The Apache
Hadoop HDFS configuration has also been set to default.
Table 2
Different configuration settings for the Spark clus-
ter.

Number of nodes Number of cores RAM

2 24 32
4 48 64
6 72 96
12 144 192

Up to twelve computers connected through a private 10 Gigabit
Ethernet network with Intel Core i7-5820K processor at 3.3 GHz
with 15 MB of cache, 12 cores and 64 GB of RAM and, 1.2 TB SSD
hard disks have been used for this purpose. Each computer worked
under an Ubuntu 18.04 operating system. Each dataset consists of
a group of instances composed of eleven attributes. Therefore, the
dimension is fixed to eleven attributes, and the number of rows
(instances) vary depending on the different file sizes of the experi-
mentation (from 7 MB to 70 GB). The values of each instance have
been randomly generated.

Table 2 shows the different configurations of the Spark cluster
used in the experiments to assess the computing time of Kmeans,
GLM, and FP-Growth algorithms. Namely, the number of nodes be-
longing to the cluster, the total number of cores and the total RAM
are specified. The LadonSpark has been used to manage the Spark
cluster with the configurations from Table 2 and to apply the pre-
viously mentioned algorithms to datasets with sizes of different
magnitude order. In particular, two experiments have been con-
ducted regarding the type of data storage. First, the algorithms
have been applied from the LadonSpark with the datasets in lo-
cal storage; that is, the data are replicated in each slave node and
the master. Alternatively, the HDFS has been used since the Ladon-
Spark also supports it.

Tables 3, 4 and 5 show the runtimes (expressed in seconds)
for the Kmeans, GLM and FP-Growth, respectively, when data are
stored in the local file system. It can be appreciated that execution
times are of same magnitude order independently of the num-
ber of the nodes in the Spark cluster, except for the two largest
datasets (7 GB and 70 GB), in which the reduction of runtime is re-
markable for all algorithms when increasing the number of slaves
in the cluster.

Tables 6, 7 and 8 summarize execution times (expressed in
seconds) for all algorithms with datasets of different sizes and dif-
ferent cluster configurations, when the HDFS was used. By contrast
to the previous tables, decrements in execution times are not ap-
preciated in this situation. On the contrary, there is an increment
in runtimes when the number of nodes is increased.

This fact is due to HDFS needs computing time for collecting
the distributed blocks of data and building the dataset before pro-
viding it to an algorithm as the input dataset. However, in the local

6 A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135
Table 3
Kmeans execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 21 26 28 34
70 MB 34 34 37 48
700 MB 144 90 72 64
7 GB 1500 900 460 133
70 GB 17505 9822 5030 1523

Table 4
GLM execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 19 24 32 53
70 MB 19 26 30 49
700 MB 43 37 34 28
7 GB 318 216 126 97
70 GB 5243 3550 2915 1417

Table 5
FP-Growth execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 12 14 16 20
70 MB 15 19 22 25
700 MB 36 35 41 49
7 GB 246 138 120 78
70 GB 2820 2120 1735 819

Table 6
Kmeans execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 28 37 53 98
70 MB 36 44 46 57
700 MB 180 210 222 312
7 GB 1680 1740 1980 2230
70 GB 21340 23550 25929 34057

Table 7
GLM execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 19 27 39 62
70 MB 21 21 30 59
700 MB 51 96 72 103
7 GB 354 420 474 631
70 GB 4215 4480 4529 7357

storage case, the hard disc provides the data directly without any
preprocessing. Therefore, we can conclude that HDFS is inefficient
compared to the local storage and replication strategy in terms of
running times.

However, HDFS is much more efficient than the local storage
strategy in terms of data uploading times, being an essential tool
in Big data environments. This fact can be observed in Fig. 4; the
depicted lines represent how much time is spent to upload (y axis,
expressed in seconds) a file of a particular size (x axis, expressed in
gigabytes) for each specific strategy (HDFS or local) using n nodes
(2, 4, 6 and, 12). We can observe how, for all number of nodes
considered, HDFS is more efficient than the local strategy, and the
differences between the uploading times increase with the size of
the file.

At a new stage, a new parameter has been explored accord-
ing to the research published in [31]. The authors showed that
the number of blocks in which data are divided to be distributed
across the Spark cluster is a parameter necessary to improve the
performance of the algorithms when processing big data. This pa-
rameter indicates to Spark the number of partitions that should
Table 8
FP-Growth execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 11 15 18 24
70 MB 16 19 22 43
700 MB 84 87 90 103
7 GB 360 276 294 478
70 GB 3971 2849 2432 4023

Table 9
Kmeans algorithm execution times with the optimal number of partitions
in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 17 (32) 22 (64) 29 (64) 35 (32)
70 MB 25 (64) 35 (64) 33 (128) 38 (64)
700 MB 92 (64) 142 (64) 78 (32) 89 (32)
7 GB 1320 (32) 960 (32) 568 (32) 145 (128)
70 GB 15465 (32) 11340 (32) 9935 (128) 2845 (128)

Table 10
GLM algorithm execution times with the optimal number of partitions
in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 17 (64) 26 (64) 32 (64) 45 (64)
70 MB 22 (64) 24 (64) 27 (128) 63 (128)
700 MB 57 (64) 46 (64) 47 (32) 83 (32)
7 GB 516 (64) 324 (128) 259 (32) 108 (32)
70 GB 7450 (64) 4871 (128) 3720 (128) 1124 (128)

Table 11
FP-Growth execution times with the optimal number of partitions in local
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 10 (64) 13 (64) 14 (64) 22 (64)
70 MB 18 (64) 21 (64) 20 (64) 39 (64)
700 MB 48 (64) 52 (128) 56 (32) 101 (64)
7 GB 390 (128) 278 (128) 220 (128) 153 (64)
70 GB 5220 (128) 3989 (128) 3420 (128) 1020 (128)

create from the input file to obtain the best computing times. Note
that, by default, Spark splits data into blocks of 64 MB.

Tables 9, 10 and 11 present, expressed in seconds, the run-
times for each algorithm respectively, when the number of data
blocks has been specified. In this work, 32, 64 and 128 partitions
of data have been tested, being the optimal number of blocks for
each configuration of the Spark cluster and for each dataset shown
in parentheses. As expected, a reduction of execution times are
not appreciated in comparison with the runtimes obtained when
storing data in a local file system without providing the number
of partitions to be considered for the processing of data. This is
mainly due to data are not distributed as they are stored in all
nodes of the cluster, and therefore, the number of partitions has
no effect on the computing time.

Tables 12, 13 and 14 show the computing times (expressed in
seconds) for each algorithm respectively, when using the HDFS and
the number of data blocks is established as input parameter. It can
be observed that computing times decrease when using an optimal
distribution of data for the datasets with sizes from 700 MB to
70 GB for a cluster with 4 to 12 nodes. Therefore, the number of
partitions has a great influence when a distributed computing is
carried out, that is, by using a high number of nodes and a large
dataset.

A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135 7

Fig. 4. Data uploading time evolution for local and HDFS strategies. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 12
Kmeans execution times with the optimal number of partitions in HDFS
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 18 (32) 28 (32) 31 (64) 42 (64)
70 MB 33 (64) 38 (128) 43 (64) 53 (32)
700 MB 144 (32) 138 (64) 158 (64) 189 (32)
7 GB 1220 (32) 1020 (128) 900 (32) 678 (128)
70 GB 9832 (32) 9002 (32) 8814 (64) 5735 (128)

Table 13
GLM execution times with the optimal number of partitions in HDFS
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 18 (128) 28 (64) 30 (128) 52 (128)
70 MB 23 (32) 27 (128) 30 (64) 61 (32)
700 MB 66 (64) 72 (64) 84 (32) 134 (32)
7 GB 528 (64) 480 (32) 397 (128) 201 (128)
70 GB 1634 (128) 1583 (128) 1255 (128) 725 (128)

Table 14
FP-Growth execution times with the optimal number of partitions in
HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 12 (64) 13 (32) 15 (32) 28 (64)
70 MB 18 (128) 26 (64) 24 (64) 41 (32)
700 MB 84 (64) 72 (128) 84 (64) 101 (128)
7 GB 360 (128) 258 (128) 150 (32) 123 (64)
70 GB 3840 (128) 3126 (128) 2831 (128) 1340 (128)

5. Comparative study

In this section, we have carried out a comparative analysis be-
tween the existing solutions of Spark cluster deployment tools and
our proposal.

After an exhaustive searching task, it can be confirmed that
there are not many alternative tools that offer the specific func-
tionalities and capabilities that LadonSpark does. Nevertheless, a
set of four representative tools has been selected for comparative
purposes.

First, Databricks [32] is a widely used software for automatic
deployment of Spark clusters. This tool provides a graphical user
interface and requires a low-level administration role. Further-
more, it offers the possibility of virtualizing the system. In absolute
terms, this software would be a perfect alternative to LadonSpark
with the exception of a few difficulties. Mainly, Databricks provides
all its functionalities over commercial license (pay-per-use) and its
non-commercial version limits the characteristics of the potential
Spark cluster deployments. On the contrary, LadonSpark provides
all its functionalities with no restriction under a non-commercial
license.

Regarding Kubernetes [33], it is a container (like Docker) man-
agement and deployment tool. Its philosophy consists in the de-
ployment of microservices in a high-availability environment based
on load balancers through Kubernetes services and monitorization.
The installation and deployment of a Kubernetes system in a local
cluster requires medium-high administration system knowledge.
With regard to this issue, LadonSpark provides an advantage over
Kubernetes. Furthermore, Kubernetes clusters use a virtualized net-
work to support container connections whereas LadonSpark re-

8 A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135

Table 15
Comparison between LadonSpark and other tools.

Tool GUI Administration level Virtualization Automatic deployment

LadonSpark Yes Low No Yes
Databricks Yes Low Yes Yes
Kubernetes No Low Yes No
Spark-cluster-deployment No High No Yes
Automate-Spark No High No Yes
quires a private network with real nodes since it is developed to
take advantage of real resources.

Finally, we can find two other alternatives within the academic
community. Concerning the spark-cluster-deployment alternative
in [34], we can find that a potential user must have high system
administrator skills to install and maintain the tool since there is
no graphical user interface that facilitates that task. The same ob-
jections can be found for the Automate-Spark [35]. About these
points, LadonSpark offers a graphical user interface and an auto-
matic installation that does not require high system administration
skills.

As summarized in Table 15, the comparative analysis has been
performed attending to four main characteristics: the offer of a
graphical user interface (column GUI), the system administration
level required to install the tool and deploy a Spark cluster (col-
umn Administration level), the possibility of system virtualization
(column Virtualization) and if the system can perform an auto-
matic deployment of the Spark cluster with minimum intervention
of the user (column Automatic deployment).

6. Conclusions

This work provides an overview of a new application, called
LadonSpark, for fast and easy management of a Spark cluster. The
main objective of LadonSpark is to turn the configuration and de-
ployment of a Spark cluster into a simple task by using a graphical
user interface. Furthermore, the LadonSpark has been created so
that any algorithm can be integrated by merely indicating its pa-
rameters and uploading . jar files from a dynamic form. Thus, the
user should determine the path of the dataset as well as the al-
gorithm that the user would like to apply. The proposed tool has
been compared with other alternatives, and its usefulness probed
with an exhaustive machine learning running tests. As a result, we
can conclude that LadonSpark is a valuable tool for the quick de-
ployment of a Spark cluster. Future works are directed towards the
development of an application able to remotely control and man-
age all nodes in a cluster in real-time.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgements

The authors would like to thank the Spanish Ministry of Sci-
ence, Innovation and Universities for the support under the project
TIN2017-88209-C2-1-R.

References

[1] N. Marz, J. Warren, Big Data: Principles and Best Practices of Scalable Realtime
Data Systems, Manning Publications Co., 2015.

[2] A. Galicia, J.F. Torres, F. Martínez-Álvarez, A. Troncoso, A novel Spark-based
multi-step forecasting algorithm for big data time series, Inf. Sci. 467 (2018)
800–818.
[3] R. Talavera-Llames, R. Pérez-Chacón, A. Troncoso, F. Martínez-Álvarez, Big data
time series forecasting based on nearest neighbors distributed computing with
Spark, Knowl.-Based Syst. 161 (1) (2018) 12–25.

[4] J.F. Torres, A. Galicia, A. Troncoso, F. Martínez-Álvarez, A scalable approach
based on deep learning for big data time series forecasting, Integr. Comput.-
Aided Eng. 25 (4) (2018) 335–348.

[5] M. Zaharia, R.S. Xin, P. Wendell, T. Das, M. Armbrust, A. Dave, X. Meng, J. Rosen,
S. Venkataraman, M.J. Franklin, A. Ghodsi, J. Gonzalez, S. Shenker, I. Stoica,
Apache Spark: a unified engine for big data processing, Commun. ACM 59 (11)
(2016) 56–65.

[6] J. Dean, S. Ghemawat, Mapreduce: simplified data processing on large clusters,
Commun. ACM 51 (1) (2008) 107–113.

[7] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M.J. Franklin,
S. Shenker, I. Stoica, Resilient distributed datasets: a fault-tolerant abstraction
for in-memory cluster computing, in: Proceedings of the USENIX Conference
on Networked Systems Design and Implementation, 2012, p. 2.

[8] V.K. Vavilapalli, A.C. Murthy, C. Douglas, S. Agarwal, M. Konar, R. Evans, T.
Graves, J. Lowe, H. Shah, S. Seth, B. Saha, C. Curino, O. O’Malley, S. Radia, B.
Reed, E. Baldeschwieler, Apache Hadoop YARN: Yet Another Resource Nego-
tiator, in: Proceedings of the Annual Symposium on Cloud Computing, 2013,
pp. 5:1–5:16.

[9] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A.D. Joseph, R.H. Katz, S.
Shenker, I. Stoica, Mesos: A Platform for Fine-Grained Resource Sharing in the
Data Center, Technical Report UCB/EECS-2010-87, Electrical Engineering and
Computer Sciences, University of California at Berkeley, May 2010.

[10] Databricks Inc. Databricks platform, https://databricks .com/.
[11] Spark notebook, http://spark-notebook.io/.
[12] S. Ceesay, A. Barker, B. Varghese, Plug and play bench: simplifying big data

benchmarking using containers, in: Proceedings of the IEEE International Con-
ference on Big Data, 2017, pp. 2821–2828.

[13] Docker, https://www.docker.com/.
[14] E.R. Sparks, A. Talwalkar, V. Smith, J. Kottalam, X. Pan, J. Gonzalez, M.J.

Franklin, M.I. Jordan, T. Kraska, MLI: an API for distributed machine learning,
in: Proceedings of the IEEE International Conference on Data Mining, 2013,
pp. 1187–1192.

[15] J. Yu, J. Wu, M. Sarwat, Geospark: a cluster computing framework for process-
ing large-scale spatial data, in: Proceedings of the 23rd International Confer-
ence on Advances in Geographic Information Systems (SIGSPATIAL), USA, 2015,
pp. 70:1–70:4.

[16] Y. Zhao, G. Wu, Yadoop: an elastic resource management solution of yarn, in:
Proceedings of the IEEE Symposium on Service-Oriented System Engineering
(SOSE), March 2015, pp. 276–283.

[17] J. Chen, K. Li, Z. Tang, K. Bilal, K. Li, A parallel patient treatment time prediction
algorithm and its applications in hospital queuing-recommendation in a big
data environment, IEEE Access 4 (2016) 1767–1783.

[18] Weka, https://www.cs .waikato .ac .nz /ml /weka/.
[19] Knime, https://www.knime .com/.
[20] R.L. Talavera, R. Pérez-Chacón, M. Martínez-Ballesteros, A. Troncoso, F.

Martínez-Álvarez, A nearest neighbours-based algorithm for big time series
data forecasting, Lect. Notes Comput. Sci. 5391 (2016) 674–679.

[21] B.R. Chang, H.F. Tsai, Y.A. Wang, C.F. Huang, Resilient distributed computing
platforms for big data analysis using spark and hadoop, in: Proceedings of
the International Conference on Applied System Innovation (ICASI), May 2016,
pp. 1–4.

[22] J.F. Torres, A. Troncoso, I. Koprinska, Z. Wang, F. Martínez-Álvarez, Big data solar
power forecasting based on deep learning and multiple data sources, Expert
Syst. 36 (4) (2019) e12394.

[23] R. Pérez-Chacón, R.L. Talavera-Llames, A. Troncoso, F. Martínez-Álvarez, Finding
electric energy consumption patterns in big time series data, in: Proceedings
of the International Conference on Distributed Computing and Artificial Intelli-
gence, 2016, pp. 231–238.

[24] R. Shyam, H.B. Bharathi Ganesh, S. Sachin Kumar, Prabaharan Poornachandran,
K.P. Soman, Apache spark a big data analytics platform for smart grid, Proc.
Technol. 21 (2015) 171–178.

[25] A. Galicia, R. Talavera-Llames, A. Troncoso, I. Koprinska, F. Martínez-Álvarez,
Multi-step forecasting for big data time series forecasting based on ensemble
learning, Knowl.-Based Syst. 163 (2018) 830–841.

[26] R. Talavera-Llames, R. Pérez-Chacón, A. Troncoso, F. Martínez-Álvarez, MV-
kWNN: a novel multivariate and multi-output weighted nearest neighbors

http://refhub.elsevier.com/S2214-5796(20)30003-4/bibAA1BF6B47E68F7FE4FBB81E854AE375As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibAA1BF6B47E68F7FE4FBB81E854AE375As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib5A6136991964707117D374178739B317s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib5A6136991964707117D374178739B317s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib5A6136991964707117D374178739B317s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibECE36A6029B56C32DFF554549905D0FEs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibECE36A6029B56C32DFF554549905D0FEs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibECE36A6029B56C32DFF554549905D0FEs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibA933FCBB45D88FA00FFEE1634C73AA15s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibA933FCBB45D88FA00FFEE1634C73AA15s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibA933FCBB45D88FA00FFEE1634C73AA15s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6E5A1BF1ABBE0BBBFE6CF0E80045AA74s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6E5A1BF1ABBE0BBBFE6CF0E80045AA74s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6E5A1BF1ABBE0BBBFE6CF0E80045AA74s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6E5A1BF1ABBE0BBBFE6CF0E80045AA74s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib843CD3F3690C7D2DA5688423ED536782s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib843CD3F3690C7D2DA5688423ED536782s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib9985D24C18AC6EF933ED875C49BDB80As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib9985D24C18AC6EF933ED875C49BDB80As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib9985D24C18AC6EF933ED875C49BDB80As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib9985D24C18AC6EF933ED875C49BDB80As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib312F619F1132370A7B4F698289FA018Bs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib312F619F1132370A7B4F698289FA018Bs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib312F619F1132370A7B4F698289FA018Bs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib312F619F1132370A7B4F698289FA018Bs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib312F619F1132370A7B4F698289FA018Bs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib34E25C1B4EEF811CC38863370F3E9B14s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib34E25C1B4EEF811CC38863370F3E9B14s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib34E25C1B4EEF811CC38863370F3E9B14s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib34E25C1B4EEF811CC38863370F3E9B14s1
https://databricks.com/
http://spark-notebook.io/
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE59A2D8B124E1D96B6385F7A3C73C2A8s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE59A2D8B124E1D96B6385F7A3C73C2A8s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE59A2D8B124E1D96B6385F7A3C73C2A8s1
https://www.docker.com/
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE1DFC5A933DA6DAB7485FFC5BAB49078s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE1DFC5A933DA6DAB7485FFC5BAB49078s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE1DFC5A933DA6DAB7485FFC5BAB49078s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibE1DFC5A933DA6DAB7485FFC5BAB49078s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibFB012A225EAA4D3A545147C84CE51500s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibFB012A225EAA4D3A545147C84CE51500s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibFB012A225EAA4D3A545147C84CE51500s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibFB012A225EAA4D3A545147C84CE51500s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib090C407149DEBEEE143F8C1773364E29s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib090C407149DEBEEE143F8C1773364E29s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib090C407149DEBEEE143F8C1773364E29s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD478ADEBAEB6CB21D3BC34705C3D0A55s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD478ADEBAEB6CB21D3BC34705C3D0A55s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD478ADEBAEB6CB21D3BC34705C3D0A55s1
https://www.cs.waikato.ac.nz/ml/weka/
https://www.knime.com/
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibC6E235175EF67574C882007797913152s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibC6E235175EF67574C882007797913152s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibC6E235175EF67574C882007797913152s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD16451163D91CC0D8CDE04172BFC5F18s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD16451163D91CC0D8CDE04172BFC5F18s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD16451163D91CC0D8CDE04172BFC5F18s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibD16451163D91CC0D8CDE04172BFC5F18s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib7362762FD8E1C9890B3112C819751E5As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib7362762FD8E1C9890B3112C819751E5As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib7362762FD8E1C9890B3112C819751E5As1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibF50F2AD1807D40EA8A1206AD56930585s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibF50F2AD1807D40EA8A1206AD56930585s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibF50F2AD1807D40EA8A1206AD56930585s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bibF50F2AD1807D40EA8A1206AD56930585s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib78259F3CDF0D04E495A27E7211D954FAs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib78259F3CDF0D04E495A27E7211D954FAs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib78259F3CDF0D04E495A27E7211D954FAs1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib3BAB61A938484B1386869170C86FF65Es1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib3BAB61A938484B1386869170C86FF65Es1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib3BAB61A938484B1386869170C86FF65Es1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D57B387288A90B8E2C31086CFA90979s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D57B387288A90B8E2C31086CFA90979s1

A.M. Fernández et al. / Big Data Research 19–20 (2020) 100135 9
algorithm for big data time series forecasting, Neurocomputing 353 (2019)
56–73.

[27] B. Chang, H. Tsai, Y. Tsai, C. Kuo, C. Chen, Integration and optimization of mul-
tiple big data processing platforms, Eng. Comput. 33 (6) (2016) 1680–1704.

[28] Kmeans Spark Sacaladoc, https://spark.apache .org /docs /latest /api /scala /index .
html #org .apache .spark.mllib .clustering .KMeans.

[29] GLM Spark Sacaladoc, https://spark.apache .org /docs /latest /api /scala /index .
html #org .apache .spark.mllib .regression .LinearRegressionWithSGD.

[30] FPGrowth Spark Sacaladoc, https://spark.apache .org /docs /latest /api /scala /index .
html #org .apache .spark.mllib .fpm .FPGrowth.

[31] J. Maillo, S. Ramírez, I. Triguero, F. Herrera, kNN-IS: an iterative spark-based
design of the k-nearest neighbors classifier for big data, Knowl.-Based Syst.
117 (2017) 3–15.

[32] Databricks community, https://community.cloud .databricks .com /login .html.
[33] Kubernetes, https://spark.apache .org /docs /latest /running -on -kubernetes .html.
[34] Spark Cluster Deployment, https://github .com /adobe -research /spark-cluster-

deployment.
[35] Automating SPARK-YARN-HADOOP-HDFS Cluster Deployment using Ansible,

https://github .com /rshad /Automate -Spark-Hadoop -HDFS -Configuration -Ansible.

http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D57B387288A90B8E2C31086CFA90979s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D57B387288A90B8E2C31086CFA90979s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib35B010957DD16B89DE4C3E75C90F7D43s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib35B010957DD16B89DE4C3E75C90F7D43s1
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.KMeans
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.clustering.KMeans
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.regression.LinearRegressionWithSGD
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.regression.LinearRegressionWithSGD
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth
https://spark.apache.org/docs/latest/api/scala/index.html#org.apache.spark.mllib.fpm.FPGrowth
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D8B12FE3B0822ABCFDCAE17CE572B36s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D8B12FE3B0822ABCFDCAE17CE572B36s1
http://refhub.elsevier.com/S2214-5796(20)30003-4/bib6D8B12FE3B0822ABCFDCAE17CE572B36s1
https://community.cloud.databricks.com/login.html
https://spark.apache.org/docs/latest/running-on-kubernetes.html
https://github.com/adobe-research/spark-cluster-deployment
https://github.com/adobe-research/spark-cluster-deployment
https://github.com/rshad/Automate-Spark-Hadoop-HDFS-Configuration-Ansible

	Automated Deployment of a Spark Cluster with Machine Learning Algorithm Integration
	1 Introduction
	2 Related work
	3 The LadonSpark application
	3.1 General characteristics
	3.2 Prerequisites
	3.3 System architecture
	3.4 Communications
	3.5 Algorithms

	4 Algorithm deployment analysis
	5 Comparative study
	6 Conclusions
	Acknowledgements
	References

