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The vast amount of data stored nowadays has turned big data analytics into a very trendy research 
field. The Spark distributed computing platform has emerged as a dominant and widely used paradigm 
for cluster deployment and big data analytics. However, to get started up is still a task that may 
take much time when manually done, due to the requisites that all nodes must fulfill. This work 
introduces LadonSpark, an open-source and non-commercial solution to configure and deploy a Spark 
cluster automatically. It has been specially designed for easy and efficient management of a Spark cluster 
with a friendly graphical user interface to automate the deployment of a cluster and to start up the 
distributed file system of Hadoop quickly. Moreover, LadonSpark includes the functionality of integrating 
any algorithm into the system. That is, the user only needs to provide the executable file and the number 
of required inputs for proper parametrization. Source codes developed in Scala, R, Python, or Java can be 
supported on LadonSpark. Besides, clustering, regression, classification, and association rules algorithms 
are already integrated so that users can test its usability from its initial installation.

© 2020 Elsevier Inc. All rights reserved.
1. Introduction

The era of Big Data [1] has changed the way that data are 
stored and processed. The need for systems able to efficiently per-
form both actions has dramatically increased recently [2–4].

Although Spark is an open-source framework under the Apache 
2.0 license, it was initially created and developed by the University 
of California [5]. It provides an interface to deploy fault-tolerant 
clusters for distributed computing based on the parallelization of 
data and to develop software under the MapReduce paradigm [6]. 
It offers a new programming framework providing us two main 
tools: on the one hand, a high level of abstraction of the MapRe-
duce paradigm allowing an easier way to develop distributed and 
concurrent applications and, on the other hand, an interface to 
deploy fault-tolerant clusters for distributed computing based on 
the partition of data. The MapReduce paradigm [6], as mentioned 
above, refers to two differentiated tasks: map and reduce. Map-
per tasks consist in the transformation of a dataset into another 
one composed of tuples (pairs of key/value). Reducer tasks take 
the output of previous mapper tasks and combine tuples to obtain 
a smaller set of tuples.
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Spark programming is focused on the use of a data structure 
called Resilient Distributed Dataset (RDD) [7], which allows data 
distribution across the nodes of a cluster. The primary program-
ming language supported by Spark is Scala, but it also supports 
Java, R, or Python. Moreover, it can be used under different oper-
ating systems, such as Linux, MAC OS, or Windows.

For proper cluster management, Spark can make use of Apache’s 
managers like YARN [8], Mesos [9], or even it can make use of 
the native Spark manager (Standalone). As for the distributed data 
storage, several implementations can be used as NoSQL databases 
(Cassandra, MongoDB, or HBase, for example) or a cloud storage 
service (Amazon S3 or Microsoft Azure, among other). Another 
well-known and a de facto standard for distributed data storage is 
the Hadoop Distributed File System (HDFS). HDFS is a distributed, 
scalable and portable file system that may store huge files, typi-
cally in ranges of GB to TB (even PB), across multiple machines. It 
can achieve reliability by replicating the cross multiple hosts, and 
therefore, does not require any range storage on hosts.

However, to the author’s knowledge, there is no friendly appli-
cation able to effortlessly deploy and parametrize a Spark cluster 
as well as a distributed file system for free and providing open 
source. Thus, the main goal is the development of an application 
that, by just a few clicks and a graphical user interface, fully de-
ploys and configures a Spark cluster with HDFS. That is, it aims 
at automating the cluster deployment, thus avoiding a complicated 
and tedious manual configuration. As we can see in Section 5, only 
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the Databricks private company has a similar framework to our 
proposal in this work. However, although it allows the cluster man-
agement with different settings (https://databricks .com), the users 
cannot control physical resources. Moreover, Databricks offers a 
commercial license (pay per use), whereas LadonSpark provides an 
open-source license free-to-use.

The LadonSpark tool offers an open-source and non-commercial 
solution to automatically configure and deploy a Spark cluster. Be-
sides, the main advantage that a potential user acquires when 
he/she installs this system is to avoid the need to use an admin-
istrator role. Therefore, any user that have several machines con-
nected by a network can configure and deploy a Spark cluster in a 
user-friendly, and free of charge way, and without any system ad-
ministrator skills. Note that this fact means a great advantage, for 
instance, for small-medium data science research groups, as well 
as for other type of users. The application has also been designed 
to easily integrate new algorithms by just uploading executable 
files and configuring the inputs. As a sample usage, the tool incor-
porates some algorithms of the machine learning library (MLlib) of 
Spark, in particular, Kmeans (clustering), Generalized linear models 
(regression), and FP-Growth (pattern extraction).

LadonSpark is available at https://github .com/
datascienceresearchlab /LadonSpark. In this GitHub repository, you 
can find a complete manual (with an installation guide and a user 
guide), a video with a demonstration of use, the source code, and 
the releases of the system.

The rest of the paper is structured as follows. Section 2 provides 
a general overview of the state-of-the-art. Section 3 describes the 
proposed approach. In Section 4 an algorithm deployment analysis 
is presented. Section 5 introduces a comparative study of the dif-
ferent open-source solutions. Finally, the conclusions drawn have 
been summarized in Section 6.

2. Related work

Cloud computing is an emerging technology particularly suit-
able for the execution of distributed algorithms for big data anal-
ysis. This technology allows big data processing and management 
without requiring physical computers in the workplace. In the last 
years, many works have been published about cloud infrastructures 
for real-world applications. Next, those directly related to big data 
will be described.

One of the most relevant cluster deployment applications is the 
Databricks platform [10]. This platform was developed to create 
and manage Spark clusters to facilitate the workflow of a data sci-
entist in big data environments. Another application following the 
same model is Spark Notebook [11], which provides an interac-
tive web-based editor that can combine Scala code, SQL queries, 
Markup, and JavaScript collaboratively in order to explore, analyze 
and learn from massive data sets. From scientific and educational 
environments, there is a lack of proposals implementing the func-
tions LadonSpark offers, but there are approximations that are an-
alyzed below.

In [12], the Plug and Play Bench (PAPB) application was pre-
sented, and it offers an abstraction layer over the infrastructure 
that integrates and simplifies the deployment of big data bench-
marking tools on clusters of machines. The PAPB architecture is 
based on three parts: a container layer, a middleware layer, and 
a cluster layer wherein using Docker containers [13] as one of 
its main characteristics. The MLI software was presented in [14]. 
This application is a programming interface implemented using 
Spark and designed for building machine learning algorithms in 
distributing environments. Its primary goal is to simplify the de-
velopment of high-performance, scalable, distributed algorithms. 
The authors in [15] proposed a new framework called GeoSpark to 
execute data analysis algorithms taking into consideration the ge-
olocation of the data. The approach was designed by making use of 
three layers: the Apache Spark layer, Spatial RDD Layer, and Spatial 
Query Processing Layer. Finally, they concluded that GeoSpark has 
a better runtime performance than Hadoop-based counterparts. An 
elastic resource manager was introduced in [16] to make better use 
of hardware resources, and thus, improve cluster efficiency. The 
proposed approach can dynamically shrink or expand the size of 
the container depending on the actual resource needs of the tasks, 
which are being executed. Reported results showed that the CPU 
performance was improved up to 1.5 times when the resources 
were adjusted to the computing needs. The architectural compo-
nents of a framework, so-called SmartHealth, proposed to provide 
services of big data analytics was described in [17]. It focuses on 
several applications in the healthcare domain. As the primary use 
cases, the authors listed patient profile analytics, effective public 
health strategies and, improved remote patient monitoring.

Regarding machine learning algorithms, we can find different 
frameworks, as Weka [18] or KNime [19]. These platforms pro-
vide the possibility of submitting a machine learning task to an 
existing Spark cluster. This feature is different from LadonSpark, 
which allows us to configure and deploy a Spark cluster. We can 
use LadonSpark to configure and deploy the Spark cluster first and, 
then, submit our machine learning workflows to it, using Weka or 
KNime. A great variety of works discussing the execution of algo-
rithms across different types of clusters using Apache Spark in the 
cloud or smart grids can also be found in the literature [20–26].

A platform to unify different frameworks existing in big data 
was developed in [27]. Although some issues regarding the inte-
gration of Spark were reported, they eventually got to develop a 
platform for the analysis of data stored in relational databases.

However, after a thorough analysis of all these works, it can 
be concluded that most of them are new algorithmic proposals 
or even modifications to improve their efficiency to analyze big 
data. Additionally, most of them require to pay for technological 
platforms used to deploy clusters. Some others simply launches 
algorithms over already deployed clusters. LadonSpark, on the con-
trary, represents a free tool to quickly deploy and manage clusters 
in users’ networks and provides a repository in which users can 
share their algorithms with the Spark community.

3. The LadonSpark application

Spark does not offer a complex administration of the nodes that 
form part of the cluster, but several tools to manage a Spark cluster 
can be found nowadays.

The Spark management system is mainly based on three con-
figuration files, which are created to deploy the cluster. These 
files are stored as templates in the directory “$SPARK_HOME/conf”. 
A proper configuration of such files allows launching a Spark clus-
ter. An explanation of the functionality of each file can be found 
below:

1. File spark-default.conf. This file defines the default configura-
tion of different parameters for the cluster so that it can be 
deployed.

2. File slaves. This file contains the list of the worker nodes that 
form the cluster. It contains the IP addresses for all these 
nodes.

3. File spark-env.sh. This file contains the main parameters of the 
configuration of a Spark cluster, e.g., the RAM that can be 
used, the number of cores and, the number of instances. It 
is worth noting that there exist many more parameters, but 
those mentioned above are the ones with the highest impact 
in the configuration.

https://databricks.com
https://github.com/datascienceresearchlab/LadonSpark
https://github.com/datascienceresearchlab/LadonSpark
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Fig. 1. A general illustration of the LadonSpark application.
This process previously described has to be repeated for each 
node that forms the cluster. Once the configuration files have 
been modified for all nodes, the cluster can be initialized by na-
tive scripts of Spark. These scripts can be found in the directory 
“$SPARK_HOME/bin” and can be any of these: start-slaves.sh, start-
master.sh or start-all.sh.

Thus, the configuration of a Spark cluster is a repetitive and 
humdrum process, and it can be extremely difficult if the nodes 
are spread in different physical locations. Although there are sev-
eral Spark cluster managers to deploy a cluster such as Apache 
Mesos or Apache Yarn, the nodes in the cluster must be individu-
ally configured for both cases.

Given that a cluster cannot be currently deployed without any 
initial configuration steps, the LadonSpark web application has 
been developed to automatize the entire configuration process. 
Thus, LadonSpark automatically sends the configuration files to 
all nodes. The application has been divided, mainly, in two parts: 
algorithms and communications. The first one manages both algo-
rithms execution and parameterizations, whereas the second one 
allows automatized setting and launching the Spark cluster.

Fig. 1 depicts a diagram of how the cluster is deployed by 
the web application here proposed. The application is launched 
from the master node, which contains a database and a reposi-
tory of algorithms. Namely, the database stores parameters needed 
for the algorithms and the repository stores .jar files. The dia-
gram also shows the slave nodes as well as the communications 
with external resources. These modules, along with the general 
characteristics and prerequisites, are described in subsequent sub-
sections.
3.1. General characteristics

The LadonSpark software is an open-source application de-
signed to offer to the scientific community an easy-to-use user 
interface to deploy a Spark cluster. LadonSpark can use any type 
of machine (newer or older one) for connecting them and for pro-
viding the hardware support to the deployed Spark cluster. Ladon-
Spark provides service-level authentication in its distributed file 
system, as well as an authentication layer for its Http web con-
soles. Every data transfer through the distributed file system is 
encrypted. The authentication and encryption functions are im-
plemented by Hadoop-HDFS being the distributed file system of 
LadonSpark; thus, data security and confidentiality are guaranteed. 
On the other hand, it must be taken into account that LadonSpark 
is installed by the user in its own local infrastructure. A summary 
of these characteristics of the LadonSpark software, classified into 
advantages and weaknesses, is shown in Table 1.

3.2. Prerequisites

The prerequisites described below are necessary for the correct 
functioning of the LadonSpark approach:

1. Shared dataset. The dataset to be processed by an algorithm 
has to be shared by all the cluster nodes. Currently, there are 
two different ways to share it:
(a) HDFS System. This system distributes a dataset in all nodes 

of the cluster. The LadonSpark application integrates the 
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Table 1
Advantages and weaknesses of LadonSpark.

Advantages Weaknesses

GPL v3 license Real machines are required
Easy installation and use Lack of virtualization approach
Designed for the scientific community Software systems knowledge needed for installation
The use of any machine is available, even older ones Not possible to scale to public networks
HDFS, which can be launched using a script that has been 
developed to install it across the cluster easily.

(b) File repository. The dataset is replicated in every node at a 
specific folder. That way, Spark can access to the required 
specific data blocks in every node. This option reduces the 
computational time, but it requires much space in memory 
for each node.

2. RSA ring. RSA keys are necessary for the exchange of infor-
mation between nodes without having to enter credentials for 
each connection.

3. Global user. It is necessary to facilitate the RSA ring. Hence, 
the access to the path of the files is greatly simplified through 
the same user and password for all nodes.

4. Nmap. It is a critical prerequisite because this application 
sniffs the network and creates the nodes list. Nmap must be 
installed in the master node, enabling it to discover new po-
tential nodes to be part of the cluster.

5. Spark package. This package must be downloaded and un-
zipped in the specific path “/home/username”.

6. Scala package. As happens with the Spark package, the Scala 
package must be downloaded and unzipped for the proper 
execution of an algorithm, which has been developed in the 
Scala programming language.

Finally, two new libraries have been included in the last update 
of the LadonSpark, and therefore, their installation is required to 
execute an algorithm in both R or Python languages supported by 
Spark.

1. R-base. This library allows executing R code from Spark. This 
language has been included because it is one of the most used 
languages for data analysis currently.

2. Python. This language is a pervasive and popular programming 
language nowadays. For that reason, this library has been in-
cluded in developing algorithms using Python from Spark.

3.3. System architecture

For the development of the LadonSpark application, the Model-
View-Controller architectural pattern has been used to improve the 
implementation and to make the application more scalable. For 
each layer, the following technologies have been used:

1. View. The goal of this layer is the interaction between the user 
and the system. The main web technology that was used for its 
development is JSP. For style, CSS, Ajax, JQuery, and JavaScript 
were used. JSP provides an optimized iteration with the final 
user through dynamic forms.

2. Controller. This layer is responsible for managing all the re-
quests from the users. The Servlets class was used to build 
this layer. This layer gets the entities of the model and sends 
them to the view layer for its presentation.

3. Model. The model layer manages access and modifies the en-
tities. Moreover, the purpose of this layer is to improve the 
transparency, and for this reason, the Hibernate framework 
was used along with the Data Access Object pattern to manage 
entities as different objects.
3.4. Communications

In this section, the module related to communications is de-
scribed. This module can be considered critical since the cluster 
must be deployed before any other further action is taken. Trans-
parent and efficient management of the cluster is the main objec-
tive of this module.

Three steps must be followed to deploy a cluster. The descrip-
tion of each step is shown below:

1. Network scanning. First, Nmap technology is used to find and 
identify all nodes in the network. Next, the LadonSpark ap-
plication builds a list containing all the information for each 
node from a .xml file generated by the Nmap. Afterwards, this 
information is shown in a specific user interface.

2. IP filtering. Once the result of the scanning is shown in the 
web interface, the user must select the slaves that are going 
to be part of the cluster.

3. Configuration files and sending. After selecting the nodes, the 
configuration files can be either parametrized as aforemen-
tioned in Section 3 or the default configuration can be se-
lected. The configuration by default can be summarized as one 
core, one instance, and one GB of RAM. Finally, these files are 
sent to each node of the cluster.

4. Cluster starting. This final step consists in the invocation of 
an internal Spark script to deploy the cluster. Note that the 
configuration of the nodes was made in the previous step.

Fig. 2 shows the steps followed by the LadonSpark application 
in the communication module from the beginning at the commu-
nication web page to the deploying of the cluster.

3.5. Algorithms

This module responds to the need of applying some machine 
learning algorithms to process and analyze big datasets once the 
cluster is deployed. Following the idea of simplifying the set of 
steps to facilitate the use of the LadonSpark application, this mod-
ule has been designed with two differentiated parts: the first one 
to execute algorithms, and the second one to provide the possibil-
ity that the user executes their own algorithms by adding them to 
the internal repository.

1. Algorithm execution. A friendly user interface displays the pa-
rameters of the algorithm selected from a drop-down list. Also, 
the user can add the URL from which the dataset can be up-
loaded. Finally, after running the algorithm, the results are 
shown.

2. Adding an algorithm. An important functionality of the Ladon-
Spark application is to allow the integration of new algorithms. 
An algorithm can be included in the internal repository by 
uploading a .jar file and by defining the parameters of the al-
gorithm from a friendly web form. Once the form has been 
sent, the new algorithm to be executed is inserted in the above 
drop-down list.
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Fig. 2. Scheme of the communication module of the LadonSpark.
Fig. 3. Scheme of the algorithm module of the LadonSpark.

Finally, Fig. 3 presents the necessary steps for both adding and 
executing algorithms in the Spark cluster from the algorithm mod-
ule of the LadonSpark.

4. Algorithm deployment analysis

LadonSpark provides, as well as the automatic deployment of 
a Spark cluster, the function of submitting a machine learning al-
gorithm to the cluster and run it through a graphical interface. 
Therefore, this section aims to show the usefulness of the Ladon-
Spark and, to prove the effectiveness (in terms of execution time) 
of deploying machine learning applications in a Spark cluster.

The following study case is based on several well-known ma-
chine learning algorithms. These algorithms have been chosen 
from the MLlib machine learning library from Spark to cover the 
most common data mining tasks. Namely, the Kmeans algorithm 
has been selected as a reference clustering method, a regression 
technique to obtain a generalized linear model (GLM), and the FP-
Growth approach for association rules. The primary purpose of this 
study is to analyze how the configuration of a Spark cluster has a 
notable influence on the runtime of each one of these algorithms, 
depending on the size of the dataset to be processed. Therefore, 
the hyperparameter configuration of the algorithms has been set 
to the Spark MLlib default [28–30]. Hence, for the Kmeans algo-
rithm, the number of initial clusters is set to 2 and, the iterations 
to 20; for the GLM algorithm the regularization parameter is set to 
1.0 and the iterations to 100; and, finally, for the FP-Growth algo-
rithm, the minimum support parameter is set to 0.3. The Apache 
Hadoop HDFS configuration has also been set to default.
Table 2
Different configuration settings for the Spark clus-
ter.

Number of nodes Number of cores RAM

2 24 32
4 48 64
6 72 96
12 144 192

Up to twelve computers connected through a private 10 Gigabit 
Ethernet network with Intel Core i7-5820K processor at 3.3 GHz 
with 15 MB of cache, 12 cores and 64 GB of RAM and, 1.2 TB SSD 
hard disks have been used for this purpose. Each computer worked 
under an Ubuntu 18.04 operating system. Each dataset consists of 
a group of instances composed of eleven attributes. Therefore, the 
dimension is fixed to eleven attributes, and the number of rows 
(instances) vary depending on the different file sizes of the experi-
mentation (from 7 MB to 70 GB). The values of each instance have 
been randomly generated.

Table 2 shows the different configurations of the Spark cluster 
used in the experiments to assess the computing time of Kmeans, 
GLM, and FP-Growth algorithms. Namely, the number of nodes be-
longing to the cluster, the total number of cores and the total RAM 
are specified. The LadonSpark has been used to manage the Spark 
cluster with the configurations from Table 2 and to apply the pre-
viously mentioned algorithms to datasets with sizes of different 
magnitude order. In particular, two experiments have been con-
ducted regarding the type of data storage. First, the algorithms 
have been applied from the LadonSpark with the datasets in lo-
cal storage; that is, the data are replicated in each slave node and 
the master. Alternatively, the HDFS has been used since the Ladon-
Spark also supports it.

Tables 3, 4 and 5 show the runtimes (expressed in seconds) 
for the Kmeans, GLM and FP-Growth, respectively, when data are 
stored in the local file system. It can be appreciated that execution 
times are of same magnitude order independently of the num-
ber of the nodes in the Spark cluster, except for the two largest 
datasets (7 GB and 70 GB), in which the reduction of runtime is re-
markable for all algorithms when increasing the number of slaves 
in the cluster.

Tables 6, 7 and 8 summarize execution times (expressed in 
seconds) for all algorithms with datasets of different sizes and dif-
ferent cluster configurations, when the HDFS was used. By contrast 
to the previous tables, decrements in execution times are not ap-
preciated in this situation. On the contrary, there is an increment 
in runtimes when the number of nodes is increased.

This fact is due to HDFS needs computing time for collecting 
the distributed blocks of data and building the dataset before pro-
viding it to an algorithm as the input dataset. However, in the local 
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Table 3
Kmeans execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 21 26 28 34
70 MB 34 34 37 48
700 MB 144 90 72 64
7 GB 1500 900 460 133
70 GB 17505 9822 5030 1523

Table 4
GLM execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 19 24 32 53
70 MB 19 26 30 49
700 MB 43 37 34 28
7 GB 318 216 126 97
70 GB 5243 3550 2915 1417

Table 5
FP-Growth execution times in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 12 14 16 20
70 MB 15 19 22 25
700 MB 36 35 41 49
7 GB 246 138 120 78
70 GB 2820 2120 1735 819

Table 6
Kmeans execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 28 37 53 98
70 MB 36 44 46 57
700 MB 180 210 222 312
7 GB 1680 1740 1980 2230
70 GB 21340 23550 25929 34057

Table 7
GLM execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 19 27 39 62
70 MB 21 21 30 59
700 MB 51 96 72 103
7 GB 354 420 474 631
70 GB 4215 4480 4529 7357

storage case, the hard disc provides the data directly without any 
preprocessing. Therefore, we can conclude that HDFS is inefficient 
compared to the local storage and replication strategy in terms of 
running times.

However, HDFS is much more efficient than the local storage 
strategy in terms of data uploading times, being an essential tool 
in Big data environments. This fact can be observed in Fig. 4; the 
depicted lines represent how much time is spent to upload (y axis, 
expressed in seconds) a file of a particular size (x axis, expressed in 
gigabytes) for each specific strategy (HDFS or local) using n nodes 
(2, 4, 6 and, 12). We can observe how, for all number of nodes 
considered, HDFS is more efficient than the local strategy, and the 
differences between the uploading times increase with the size of 
the file.

At a new stage, a new parameter has been explored accord-
ing to the research published in [31]. The authors showed that 
the number of blocks in which data are divided to be distributed 
across the Spark cluster is a parameter necessary to improve the 
performance of the algorithms when processing big data. This pa-
rameter indicates to Spark the number of partitions that should 
Table 8
FP-Growth execution times in HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 11 15 18 24
70 MB 16 19 22 43
700 MB 84 87 90 103
7 GB 360 276 294 478
70 GB 3971 2849 2432 4023

Table 9
Kmeans algorithm execution times with the optimal number of partitions 
in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 17 (32) 22 (64) 29 (64) 35 (32)
70 MB 25 (64) 35 (64) 33 (128) 38 (64)
700 MB 92 (64) 142 (64) 78 (32) 89 (32)
7 GB 1320 (32) 960 (32) 568 (32) 145 (128)
70 GB 15465 (32) 11340 (32) 9935 (128) 2845 (128)

Table 10
GLM algorithm execution times with the optimal number of partitions 
in local data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 17 (64) 26 (64) 32 (64) 45 (64)
70 MB 22 (64) 24 (64) 27 (128) 63 (128)
700 MB 57 (64) 46 (64) 47 (32) 83 (32)
7 GB 516 (64) 324 (128) 259 (32) 108 (32)
70 GB 7450 (64) 4871 (128) 3720 (128) 1124 (128)

Table 11
FP-Growth execution times with the optimal number of partitions in local 
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 10 (64) 13 (64) 14 (64) 22 (64)
70 MB 18 (64) 21 (64) 20 (64) 39 (64)
700 MB 48 (64) 52 (128) 56 (32) 101 (64)
7 GB 390 (128) 278 (128) 220 (128) 153 (64)
70 GB 5220 (128) 3989 (128) 3420 (128) 1020 (128)

create from the input file to obtain the best computing times. Note 
that, by default, Spark splits data into blocks of 64 MB.

Tables 9, 10 and 11 present, expressed in seconds, the run-
times for each algorithm respectively, when the number of data 
blocks has been specified. In this work, 32, 64 and 128 partitions 
of data have been tested, being the optimal number of blocks for 
each configuration of the Spark cluster and for each dataset shown 
in parentheses. As expected, a reduction of execution times are 
not appreciated in comparison with the runtimes obtained when 
storing data in a local file system without providing the number 
of partitions to be considered for the processing of data. This is 
mainly due to data are not distributed as they are stored in all 
nodes of the cluster, and therefore, the number of partitions has 
no effect on the computing time.

Tables 12, 13 and 14 show the computing times (expressed in 
seconds) for each algorithm respectively, when using the HDFS and 
the number of data blocks is established as input parameter. It can 
be observed that computing times decrease when using an optimal 
distribution of data for the datasets with sizes from 700 MB to 
70 GB for a cluster with 4 to 12 nodes. Therefore, the number of 
partitions has a great influence when a distributed computing is 
carried out, that is, by using a high number of nodes and a large 
dataset.
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Fig. 4. Data uploading time evolution for local and HDFS strategies. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)
Table 12
Kmeans execution times with the optimal number of partitions in HDFS 
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 18 (32) 28 (32) 31 (64) 42 (64)
70 MB 33 (64) 38 (128) 43 (64) 53 (32)
700 MB 144 (32) 138 (64) 158 (64) 189 (32)
7 GB 1220 (32) 1020 (128) 900 (32) 678 (128)
70 GB 9832 (32) 9002 (32) 8814 (64) 5735 (128)

Table 13
GLM execution times with the optimal number of partitions in HDFS 
data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 18 (128) 28 (64) 30 (128) 52 (128)
70 MB 23 (32) 27 (128) 30 (64) 61 (32)
700 MB 66 (64) 72 (64) 84 (32) 134 (32)
7 GB 528 (64) 480 (32) 397 (128) 201 (128)
70 GB 1634 (128) 1583 (128) 1255 (128) 725 (128)

Table 14
FP-Growth execution times with the optimal number of partitions in 
HDFS data storage (in seconds).

Data size 2 nodes 4 nodes 6 nodes 12 nodes

7 MB 12 (64) 13 (32) 15 (32) 28 (64)
70 MB 18 (128) 26 (64) 24 (64) 41 (32)
700 MB 84 (64) 72 (128) 84 (64) 101 (128)
7 GB 360 (128) 258 (128) 150 (32) 123 (64)
70 GB 3840 (128) 3126 (128) 2831 (128) 1340 (128)

5. Comparative study

In this section, we have carried out a comparative analysis be-
tween the existing solutions of Spark cluster deployment tools and 
our proposal.

After an exhaustive searching task, it can be confirmed that 
there are not many alternative tools that offer the specific func-
tionalities and capabilities that LadonSpark does. Nevertheless, a 
set of four representative tools has been selected for comparative 
purposes.

First, Databricks [32] is a widely used software for automatic 
deployment of Spark clusters. This tool provides a graphical user 
interface and requires a low-level administration role. Further-
more, it offers the possibility of virtualizing the system. In absolute 
terms, this software would be a perfect alternative to LadonSpark 
with the exception of a few difficulties. Mainly, Databricks provides 
all its functionalities over commercial license (pay-per-use) and its 
non-commercial version limits the characteristics of the potential 
Spark cluster deployments. On the contrary, LadonSpark provides 
all its functionalities with no restriction under a non-commercial 
license.

Regarding Kubernetes [33], it is a container (like Docker) man-
agement and deployment tool. Its philosophy consists in the de-
ployment of microservices in a high-availability environment based 
on load balancers through Kubernetes services and monitorization. 
The installation and deployment of a Kubernetes system in a local 
cluster requires medium-high administration system knowledge. 
With regard to this issue, LadonSpark provides an advantage over 
Kubernetes. Furthermore, Kubernetes clusters use a virtualized net-
work to support container connections whereas LadonSpark re-
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Table 15
Comparison between LadonSpark and other tools.

Tool GUI Administration level Virtualization Automatic deployment

LadonSpark Yes Low No Yes
Databricks Yes Low Yes Yes
Kubernetes No Low Yes No
Spark-cluster-deployment No High No Yes
Automate-Spark No High No Yes
quires a private network with real nodes since it is developed to 
take advantage of real resources.

Finally, we can find two other alternatives within the academic 
community. Concerning the spark-cluster-deployment alternative 
in [34], we can find that a potential user must have high system 
administrator skills to install and maintain the tool since there is 
no graphical user interface that facilitates that task. The same ob-
jections can be found for the Automate-Spark [35]. About these 
points, LadonSpark offers a graphical user interface and an auto-
matic installation that does not require high system administration 
skills.

As summarized in Table 15, the comparative analysis has been 
performed attending to four main characteristics: the offer of a 
graphical user interface (column GUI), the system administration 
level required to install the tool and deploy a Spark cluster (col-
umn Administration level), the possibility of system virtualization 
(column Virtualization) and if the system can perform an auto-
matic deployment of the Spark cluster with minimum intervention 
of the user (column Automatic deployment).

6. Conclusions

This work provides an overview of a new application, called 
LadonSpark, for fast and easy management of a Spark cluster. The 
main objective of LadonSpark is to turn the configuration and de-
ployment of a Spark cluster into a simple task by using a graphical 
user interface. Furthermore, the LadonSpark has been created so 
that any algorithm can be integrated by merely indicating its pa-
rameters and uploading . jar files from a dynamic form. Thus, the 
user should determine the path of the dataset as well as the al-
gorithm that the user would like to apply. The proposed tool has 
been compared with other alternatives, and its usefulness probed 
with an exhaustive machine learning running tests. As a result, we 
can conclude that LadonSpark is a valuable tool for the quick de-
ployment of a Spark cluster. Future works are directed towards the 
development of an application able to remotely control and man-
age all nodes in a cluster in real-time.
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