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Abstract

Regarding as an important computing paradigm, cloud computing is to address

big and distributed databases and rather simple computation. In this paradigm,

data mining is one of the most important and fundamental problems. A large

amount of data is generated by sensors and other intelligent devices. Data min-

ing for these big data is crucial in various applications. K-means clustering is a

typical technique to group the similar data into the same clustering, and has been

commonly used in data mining. However, it is still a challenge to the data con-
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taining a large amount of noise, outliers and redundant features. In this paper, we

propose a robust K-means clustering algorithm, namely, flexible subspace cluster-

ing. The proposed method incorporates feature selection and K-means clustering

into a unified framework, which can select the refined features and improve the

clustering performance. Moreover, for the purpose of enhancing the robustness,

the l2.p-norm is embedded into the objective function. We can flexibly choose

appropriate p according to the different data and thus obtain more robust perfor-

mance. Experimental results verify the presented method has more robust and

better performance on benchmark databases compared to the existing approaches.

Keywords: Big data, K-means clustering, cloud computing, subspace learning.

1. Introduction1

The cloud computing with big data is regarded as an important paradigm,2

which handles big and distributed databases and rather simple computation. Many3

interesting studies concentrate on cloud security [3], smart service [2] and mobile4

cloud computing [1]. However, most of these papers focus on hardware, data s-5

torage and management in clouds. Recently, the internet of things (IoT) is gaining6

increasing attention and many related studies are proposed in various applications7

such as quality prediction [4][5], dynamic resource discovery [6], bearing test [7]8

and feature recognition [8][9]. IoT and big data have an increasing impact on the9

future development of cloud computing. In IoT, enormous amount of data gen-10

erated by sensors and other intelligent devices contain valuable information, but11

also encompass a large amount of noise, outliers and redundant features. Thus,12

data mining for these big data is crucial to be suitable for various applications. As13

one of the most important and fundamental technique in data mining, clustering14
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has been studied a lot and applied in many fields, such as resource scheduling in15

cloud computing [10], abnormal behavior detection in cloud [11], clinical obser-16

vation [12], heterogeneous data analysis [13] and so on. Clustering is a kind of17

unsupervised learning, which groups the similar data points into the same cluster.18

As for the similarity, the most common used criterion is the distance, and K-means19

(KM) is a typical algorithm of this criterion.20

The classical K-means distributes data points to k different clusters using l2-21

norm distance. It’s simple and easy to be solved, but easily affected by outliers22

and noises [14]. To overcome this problem, one direction is to use a distance23

measure that can be more robust. The use of lp-norm is a successful extension.24

Hathaway et al. [15] conclude that p = 1 shows its property of robustness and25

choosing the value of p can provide better clustering results than fixing p as 126

or 2 but the model could be difficult to be solved. Salem et al. [16] adopt l1-27

norm to evaluate the similarity between the observation and the centroid, which is28

shown efficiency and suitable to noisy data and outliers. Cai et al. [17] propose29

a multi-view K-means clustering based on l2,1-norm. Liang et al. [18] propose30

a robust K-means using l2,1-norm in the feature space and then extend it to the31

kernel space. The reform of the distance metric can improve the performance of32

K-means algorithm, which has been demonstrated in the above literatures.33

However, with the development of science and technology, the data in re-34

al life is explosive. Big data sets generated from many fields contains a large35

amount of attributes, and some of which are noise and redundant attributes. It36

poses a remarkable challenge on the traditional clustering methods. For example,37

in face recognition applications, given a face image data of 128 × 128 resolution38

which is relatively small, it will generate a 16384-dimensional feature vector. This39
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kind of high-dimensional data always contains a large amount of noises, outliers40

and redundant features. It is difficult to cluster directly, and sometimes leads to41

high computational complexity and performance degradation [19], especially in42

K-means and its extensions. To deal with the curse of dimensionality and reduce43

the noise, outliers and redundant features, an intuitive approach is to conduct di-44

mensionality reduction processing on the data before clustering. Many dimension45

reduction methods have been studied in the past decades, such as Principal Com-46

ponent Analysis (PCA) [20], Linear Discriminant Analysis (LDA) [21], sparse ap-47

proximation to discriminant projection learning (SADPL) [22] and Locally Linear48

Embedding (LLE) [23]. PCAKM is a typical method that sequentially conducts49

PCA for dimension reduction and K-means for clustering [24]. Yin et al. [25]50

apply LLE to preprocess the data before performing K-means to make better use51

of the manifold information. These sequential methods can improve the com-52

putational efficiency, but the subspace got from the dimension reduction process53

may not be the optimal one for the clustering process, so that some researchers54

believe that the separation of dimension reduction and clustering may result in55

worse clustering performance [26].56

Intuitively, if clustering is embedded into the process of dimension reduction,57

the performance of clustering may be improved. This kind of methods try to find58

the optimal structure of data in the low-dimensional feature space for clustering.59

They perform K-means and the subspace learning process simultaneously. For60

example, Ding et al. [28] construct an adaptive framework LDAKM, in which61

LDA and K-means are jointly implemented, that is, labels are generated by K-62

means algorithm, and the obtained labels are used by LDA to learn the subspace.63

Since LDA may fail when the number of samples is very small, several LDA’s64
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extensions have been used to replace LDA, and get better results than LDAK-65

M [29], such as Maximum Margin Criterion (MMC) [30], Orthogonal Centroid66

Method (OCM) [31] and Orthogonal Least Squares Discriminant Analysis (OLS-67

DA) [32]. Hou et al. [29] consider the relation between PCA and K-means, and68

propose a general subspace clustering framework. This kind of algorithms have69

been proved to get better results than the sequential algorithms, but they also have70

some drawbacks. These algorithms all need to compute an approximate solution71

by eigenvalue decomposition, which will increase the computational burden so72

that when facing the high-dimensional data, these algorithms may fail. And s-73

ince the optimal subspace is found by orthogonal linear transformation, it may74

have difficulty to understand the meaning of the obtained low-dimensional fea-75

tures. Wang et al. [27] construct a special feature selection matrix and propose76

a fast adaptive subspace clustering algorithm FAKM based on DEC, which can77

effectively select the most representative subspace without requiring eigenvalue78

decomposition. FAKM also performs adaptive learning to the K-means part.79

Most methods mentioned above are based on the l2-norm distance metric,80

which is known to be very sensitive to data outliers and noise. Therefore, it is81

meaningful to build a model with robust distance metric. Recently, l2,p-norm is82

successfully used to replace l2-norm as distance metric for improving the robust-83

ness, such as DCM [33] and l2,p-PCA [34]. In l2,p-PCA, l2,p-norm is incorporated84

into PCA, and it is robust to outliers and can retain the desirable properties from85

big data. Inspired by FAKM and l2,p-PCA, we propose a flexible subspace cluster-86

ing method. Our method flexibly chooses appropriate p according to the data and87

thus obtains more robust clustering performance. Several experimental results on88

various datasets prove the effectiveness of the proposed algorithm.89
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The main contributions of our paper are listed as follows.90

• The proposed algorithm combines the feature selection and clustering into91

a single framework jointly.92

• The use of l2,p-norm on K-means makes our algorithm robust to noise and93

redundant features of big data.94

• The proposed approach is neither convex nor Lipschitz continuous, thus it is95

difficult to be solved directly. We propose an iterative algorithm to optimize96

it.97

The rest of the paper is organized as follows. We propose our model and98

derive an efficient algorithm to optimize the model in Section 2. In Section 3, the99

proposed model is evaluated on the benchmark databases. Finally, we draw the100

conclusion in Section 4.101

2. The Proposed Method102

In this section, we introduce the details about the proposed method for cluster-103

ing. The main content will be separated into the following several parts including104

the formulation of the proposed approach, an efficient algorithm, convergence and105

computational complexity analysis.106

2.1. Formulation107

Let X = [x1, · · · ,xn] ∈ RD×n be a high-dimensional data matrix, and Z =

[z1, · · · , zc] ∈ RD×c be c centroid vectors. F ∈ {0, 1}n×c denotes the indica-

tor matrix, here Fik = 1 if xi belongs to the k-th cluster, otherwise Fik = 0.
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Following [37][38], we can obtain the K-means formulation as

min
F,Z

n∑
i=1

c∑
k=1

Fik ‖ xi − zk ‖2
2, (1)

s.t. F ∈ {0, 1}n×c,F1 = 1.

Taking a simple algebra, the objective in (1) becomes

min
F,Z
‖ X− ZFT ‖2

F , (2)

s.t. F ∈ {0, 1}n×c,F1 = 1.

Considering that the high-dimensional data could contain a large amount of

noises, outliers and redundant features. It leads to high computational complexity

and performance degradation. The direct idea is to find a transformation matrix

W ∈ RD×d which transforms the high-dimensional features to a low-dimensional

feature space Y = WTX, where Y = [y1, · · · ,yn] ∈ Rd×n. Following the

feature selection [39][27], we use the column vectors wi as follow

wi = [0, ..., 0︸ ︷︷ ︸
i−1

, 1, 0, ..., 0︸ ︷︷ ︸
D−i

]T . (3)

Then the feature selection matrix W can be represented as

W = [wI(1),wI(2), ...,wI(d)], (4)

where I is a permutation of {1, 2, ..., D}. It can be seen that the transformation108

matrix W is sparse and column-full-rank.109

To achieve the goal of feature selection and K-means clustering simultaneous-

ly, we incorporate the subspace learning and K-means clustering into a unified
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framework as

max
W,G,F

Tr(WTStW)− λ ‖WTX−GFT ‖p2

s.t. W ∈ {0, 1}D×d, rank(W) = d,WT1 = 1,

F ∈ {0, 1}n×c,F1 = 1, (5)

where St =
∑n

i=1 xix
T
i is the total scatter matrix. G = [g1, · · · ,gc] ∈ Rd×c is c110

centroid vectors in the low-dimensional space. It should be noted that FAKM [27]111

is also a joint model of subspace learning and clustering. It uses the pattern of ‖112

M ‖σ=
∑

i
(1+σ)‖mi‖22
‖mi‖2+σ

to construct the K-means clustering, here M is an arbitrary113

matrix, mi is the i-th column and σ is a parameter. Different from FAKM, the114

model in (5) has more robust performance since it adopts l2,p-norm to construct115

the K-means clustering and can flexibly choose appropriate p according to the116

different data.117

2.2. Optimization118

Since our objective function (5) involves l2,p-norm, it is difficult to get its119

closed-form solution directly. In [34], an iterative algorithm is proposed to solve120

the objective function in the form of l2,p-norm. Similar techniques are used in121

[35] to solve the problem of the minimization of LDA with regular term based on122

l2,p-norm (0 < p ≤ 2). Inspired by these papers, we propose an effective iterative123

algorithm to solve our objective function.124

Let di = p
2
‖WTxi −Gfi‖p−2

2 , then (5) can be transformed to

max
W,G,F

Tr(WTStW)− 2λ/p
n∑
i=1

di‖WTxi −Gfi‖2
2. (6)

Since λ is an arbitrary constant, for convenience, we will still mark 2λ/p as λ.125
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Denote ∆ as a diagonal matrix with its i-th diagonal element as di, and U =

[u1,u2, ...,un] = WTX−GFT , where ui ∈ Rd is the i-th column of U. We have

max
W,G,F,∆

Tr(WTStW)− λTr(UT∆U). (7)

Since the objective function in (7) is not jointly convex with all the variables,126

and ∆ is dependent on W,F and G, we propose the following iterative algorithm127

to alternatively update W,G,F and ∆.128

Step 1: Fixing W,G and ∆ and Optimizing F.129

When W,G and ∆ are fixed, the first term in (7) is constant, and we only need

to minimize the second term. The optimization problem becomes

min
F

n∑
i=1

di‖WTxi −Gfi‖2
2 = min

F

n∑
i=1

di

c∑
k=1

‖WTxi −G‖2
2Fik, (8)

Since G is fixed and F is the cluster indicator matrix, according to the algo-

rithm in [29] and [27], the optimized F can be derived from

Fij =


1, j = argmin

k
‖WTxi − gk‖2

2,

0, Otherwise.

(9)

Step 2: Fixing ∆ and F and Optimizing W and G.130

When ∆ and F are fixed, the closed-form solution of W and G can be derived

as follows. Denote

L(W,G) = Tr(WTStW)− λTr(UT∆U), (10)

where U = WTX−GFT .131
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We take a derivative of L(W,G) over G

∂L(W,G)

∂G
= −λ∂Tr((WTX−GFT )T∆(WTX−GFT ))

∂G
,

= −λ∂Tr((GFT −WTX)T∆(GFT −WTX))

∂G
,

= −λ∂Tr(GFT∆FGT )− 2Tr(GFT∆XTW)

∂G
,

= −2λ(GFT∆F−WTX∆F).

(11)

Let the above equation equals to zero, and we have

G = WTX∆F(FT∆F)−1. (12)

Substituting G into L(W,G), we have

L(W) = Tr(WTStW)− λTr((WTX−GFT )T∆(WTX−GFT ),

= Tr(WTStW)− λTr(WTX∆XTW−WTXF(FT∆F)−1FT∆TXTW),

= Tr(WT (St − λX∆XT + λX∆F(FT∆F)−1FT∆XT )W),

= Tr(WTMW),

(13)

where M = St − λX∆XT + λX∆F(FT∆F)−1FT∆XT .132

Therefore the problem to optimize W becomes

max
W

Tr(WTMW) = max
W

d∑
i=1

Tr(wT
i Mwi), (14)

According to the definition of W in (4), we can optimize W by locating the133

first d largest diagonal elements of matrix M.134

Step 3: Updating ∆ by calculating its i-th diagonal element as

di =
p

2
‖WTxi −Gfi‖p−2

2 . (15)
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It is important to note that there is a problem when using the above alternative135

algorithm. Although the above solving strategy can guarantee convergence, its136

result is not satisfactory. Like the traditional K-means method, there are a lot of137

local optimizations which depend on initialization. Considering the above update138

rules, when F is fixed, the algorithm can quickly adjust W and G to adapt to the139

F. In other words, when we need to update the F in the next step, the optimal F140

is the same as before. That is to say, the algorithm has fast convergence speed141

and the optimal solution depends on the initial value. In order to avoid the local142

optimal problem, the update rule proposed in [29] and [27] is employed. In each143

step of updating F, we will randomly initialize F several times (20 times in our144

experiment). If the value of the objective function ‖WTX − GFT‖2
F is smaller145

than that of the previous F, then updating F according to the random initialization.146

Otherwise, updating F by (9). That is, assume that in the i-th iteration, we have147

gotten F∗i ,W
∗
i and G∗i . In the (i+1)-th iteration, we will get F1

i+1,F
2
i+1, ...,F

t
i+1 by148

random initialization, where t is the number of random initialization. We update149

F according to the following rules150

F∗i+1 =


Fji+1,

‖(W∗i )T X−G∗i (Fj
i+1)T ‖2F

<‖(W∗i )T X−G∗i (F∗i )T ‖2F
,

F∗, Otherwise,
(16)

where F∗ is defined as

F∗ij =


1, j = argmin

k
‖(W∗

i )
Txi − (g∗i )k‖2

2,

0, Otherwise.

(17)

The pseudo code of optimizing the proposed algorithm is listed in Algorithm151

1.152
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Algorithm 1 The Algorithm to Solve Problem (5)
Input: The input data X ∈ RD×n, the reduced dimension number d, the number

of clusters c, regularization parameter λ, and the distance metric parameter p.

Output: Transformation matrix W, cluster indicator matrix F, and cluster cen-

troid matrix G.

1: Initialize ∆ as identity matrix, and randomly initialize W and G.

2:while Not convergent do

3: Update F by (16);

4: Update G by (12);

5: Update W by locating the d largest diagonal elements of the matrix M in

(14);

6: Update ∆ by calculating its diagonal elements by di = p
2
‖WTxi−Gfi‖p−2

2 ;

7: end while

2.3. Convergence Analysis153

In this section, we prove the convergence of the proposed algorithm. First, we154

give the following Lemma:155

Lemma 1 [34]: For any nonzero vectors et+1, et ∈ Rm, when 0 < p ≤ 2, we

have:
‖et+1‖p2
‖et‖p2

− p

2

‖et+1‖2
2

‖et‖2
2

− 1 +
p

2
≤ 0. (18)

Theorem 1: When W,G and ∆ are fixed, the derived F in (9) is the global156

solution to the problem (7). Similarly, when F and ∆ are fixed, the derived G157

in (12) and the derived W by locating the d largest diagonal elements of St −158

λX∆XT + λX∆F(FT∆F)−1FT∆XT are also the global solutions to the problem159

in (7).160
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Proof : When W,G and ∆ are fixed, optimizing the problem in (7) is equal to161

solving the traditional K-means on WTX with fixed centroid. Thus the optimized162

solution is unique.163

According to (3), wi is a vector with only one element being 1 and the rest164

being 0. Obviously, the derived W by locating the d largest diagonal elements165

of St − λX∆XT + λX∆F(FT∆F)−1FT∆XT maximizes the objective function in166

(14). When F and ∆ are fixed, G is dependent on W, and the global solution of167

W can be derived from the process above.168

To sum up, the theorem is proved.169

Theorem 2: The procedure in Algorithm 1 monotonically increases the objec-170

tive function of the problem in (5) in each iteration.171

Proof : Assume that we have derived the updated Wt, Gt in the t-th iteration.

In the (t + 1)-th iteration, we fix Wt, Gt and ∆t, and get the optimized Ft+1 by

(16). According to Theorem 1 and the updating rule in (9), we have

Tr(WT
t StWt)− λ‖WT

t X−GtFTt ‖
p
2,p

≤ Tr(WT
t StWt)− λ‖WT

t X−GtFtt+1‖
p
2,p. (19)

Then we fix ∆t and Ft+1, and update G and W by maximizing (10). Let

f(W) = Tr(WT
t StWt), uti = WT

t xi−Gt(fi)t+1, and ut+1
i = WT

t+1xi−Gt+1(fi)t+1,

we have

f(Wt)− λ
∑
i

dti‖uti‖2
2 ≤ f(Wt+1)− λ

∑
i

dti‖ut+1
i ‖2

2. (20)

Since dti = p
2
‖WT

t xi −Gt(fi)t‖p−2
2 , thus we have

f(Wt)− λ
∑
i

p

2
‖uti‖

p
2 ≤ f(Wt+1)− λ

∑
i

p

2
‖uti‖

p−2
2 ‖ut+1

i ‖2
2, (21)
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which can be wrote as

f(Wt)− λ
∑
i

p

2

‖uti‖2
2

‖uti‖
2−p
2

≤ f(Wt+1)− λ
∑
i

p

2

‖ut+1
i ‖2

2

‖uti‖
2−p
2

, (22)

According to Lemma 1, we have

p

2

‖ut+1
i ‖2

2

‖uti‖2
2

‖uti‖
p
2 ≥ ‖ut+1

i ‖
p
2 − (1− p

2
)‖uti‖

p
2, (23)

which holds for each index i, thus we have

p

2

∑
i

‖ut+1
i ‖2

2

‖uti‖2
2

‖uti‖
p
2 ≥

∑
i

‖ut+1
i ‖

p
2 − (1− p

2
)
∑
i

‖uti‖
p
2, (24)

that is

−
∑
i

‖uti‖
p
2 +

p

2

∑
i

‖uti‖2
2

‖uti‖
2−p
2

≤ −
∑
i

‖ut+1
i ‖

p
2 +

p

2

∑
i

‖ut+1
i ‖2

2

‖uti‖
2−p
2

, (25)

Combining (22) and (25), we have

f(Wt)− λ
∑
i

‖uti‖
p
2 ≤ f(Wt+1)− λ

∑
i

‖ut+1
i ‖

p
2. (26)

To sum up, Algorithm 1 monotonically increases the objective function of the172

problem in (5) in each iteration. Since (5) has an obvious upper bound Tr(XXT ),173

Algorithm 1 will monotonically increase the objective function until it converges.174

2.4. Complexity Analysis175

First we consider the computation complexity of Algorithm 1. It contains176

three main components, i.e., K-means in the subspace with computation com-177

plexity O(dcn), the process of computing matrix G with computation complexity178

O(dcn + c2n) and computing matrix M’s diagonal elements to optimize W with179

computation complexity O(Dn + D + dlogd). Denote the repeated initialization180

14



times of F in (16) as Tk, and the number of iterations in the whole algorithm as Tt,181

then the computational complexity of our algorithm isO(Tt(Tk(DCN)+DCN+182

c2n + Dn + dlogd) ∼ O(Dn). Next we consider the memory cost of Algorithm183

1. Algorithm 1 mainly involves matrices such as X, F, G, etc. O(Dn + cn + dc)184

is needed for storage. Thus, the calculation cost of our algorithm has a linear re-185

lationship with the dimension of the data. According to the above analysis, our186

algorithm can deal with high-dimensional data well.187

2.5. Parameter Determination188

Our method mainly involves three important parameters: the reduced dimen-189

sion d, the balance parameter λ, and the p value of the l2,p-norm used in the dis-190

tance metric. Since the determination of the parameters is still an open problem191

in the related fields, we use heuristic and empirical methods to determine the pa-192

rameters.193

The first parameter d represents the number of features that can best repre-194

sent the original data. When d is too large, the representation of the original data195

is still redundant and the curse of dimension still exists. When d is too small,196

there may be loss of information so that different clusters cannot be separated.197

In this paper, by changing the value of d, the parameters with the best accuracy198

are selected through grid search. The second parameter is the balance parame-199

ter λ. Obviously, this parameter balances the effect of dimensionality reduction200

and clustering on the value of objective function. The larger λ, the greater the201

impact of clustering is. Following the setting in [27], we search λ in the range202

of [10−6, 10−4, 10−2, ..., 102, 104, 106]. The third parameter p affects the distance203

between data points in KM, and then influences the clustering results. We adjust204

the value between 0 and 2. The influence of different parameter values will be205
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discussed in the experimental section.206

3. Experiments207

3.1. Data Description and Evaluation Metric208

3.1.1. Data Description209

We conduct analytical experiments on seven datasets to evaluate the perfor-210

mance. For each dataset, we preprocess all the values by centralization. These211

datasets include:212

UCI datasets 1: We evaluate our algorithm on four datasets: Cars, Wine, Iono-213

sphere, and Ecoli.214

USPS Digit Dataset 2: The dataset includes 9298 handwritten digital images,215

all of which are grayscale images of 16 pixels. We select 20% of the dataset for216

the experiment.217

Umist Face Dataset 3: 575 images in total, corresponding to 20 different peo-218

ple. Each category consists of 19 to 48 images.219

COIL-20 Object Dataset [40]: It contains 20 objects and each object has 72220

samples taken at pose intervals of five degrees. We first extract LBP features with221

3076 dimensions and reduce the dimension to 300 for evaluating the performance222

of our method.223

The detailed description of the aforementioned datasets is displayed in Table224

1.225

1http://archive.ics.uci.edu/ml/datasets.html
2https://www.csie.ntu.edu.tw/cjlin/libsvmtools/datasets/multiclass.html
3http://images.ee.umist.ac.uk/danny/database.html
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Table 1: Summary of the different datasets.

Datasets Classes (c) Samples (n) Total features (D)

Cars 3 392 8

Wine 3 178 13

Ionosphere 2 351 34

Ecoli 8 366 343

USPS 10 1854 256

Umist 20 575 644

COIL-20 20 1440 3076

3.1.2. Evaluation Metric226

In order to evaluate the effectiveness of the proposed method, we will compare227

it with some relevant subspace clustering methods. Meanwhile, in order to express228

the effect of dimensionality reduction, we will also provide the results of K-means229

clustering for comparison. The detailed introduction is as follows:230

- KM represents the traditional K-means algorithm, and its results will be231

used as the benchmark in the experiment.232

- PCAKM means that PCA is first used to reduce the dimension of data, and233

then KM clustering is used for clustering.234

- DEC [29] is a general discriminant subspace learning framework, which235

optimizes both PCA and KM simultaneously.236

- TRACK [36] adopts LDA and KM clustering methods, and uses regulariza-237

tion technique of structured sparse induction criterion to select discriminant238

features.239

17



- FAKM [27] combines feature selection with KM clustering, and uses an240

adaptive loss function in the objective function.241

All the compared methods are implemented in MATLAB (R2016a). The com-242

puter processor is Intel(R)Core(TM) i7-7500T CPU @ 2.70GHz, and the memory243

is 8-GB. We used three indicators of accuracy (ACC), normalized mutual infor-244

mation (NMI) and purity to evaluate the clustering performance of all methods.245

Denote gi as the real label of xi, qi as the result of cluster process. Accuracy

(ACC) is defined as follow

ACC =

n∑
i=1

σ(gi,map(qi))

n
, (27)

where map(·) is a mapping function to obtain the matching between real tags and

clustering tags by Kuhn-Munkres algorithm. δ(x, y) is the Kronecker function

δ(x, y) =

 1, x = y,

0, Otherwise.
(28)

A larger value of accuracy (ACC) indicates a better clustering result.246

Denote C as the real classes tag set of the sample, C ′ as the classes tag set

obtained by clustering algorithm. Normalized mutual information (NMI) can be

defined by the following formula

NMI(C,C ′) =
MI(C,C ′)

max(H(L), H(C))
, (29)

where H(·) represents the entropy. MI(C,C ′) is the mutual information between

C and C ′, as defined below

MI(C,C ′) =
∑

ci∈C,c′j∈C′
p(ci, c

′
j) · log2

p(ci, c
′
j)

p(ci) · p(c′j)
, (30)
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here p(ci, c′j) is the probability of a randomly selected sample belongs to both247

cluster ci and c′j . It is easy to observe that the value of normalized mutual infor-248

mation (NMI) is between 0 and 1. Similar to the accuracy rate (ACC), the larger249

the NMI, the better the clustering result.250

Purity is a very simple clustering evaluation method, which is calculated by

assigning the labels of a cluster to the most frequent classes. The mathematical

definition is as follows

purity(C,C ′) =
1

N

∑
j

max
i
|c′j ∩ cj|, (31)

where N represents the total number of samples. Similarly, purity ∈ [0, 1], the251

closer the value is to 1, the better the result.252

3.2. Toy Example on Iris253

To show the visual effectiveness, we first conduct a small experiment on Iris254

dataset 4. The dataset consists of three categories (setosa, versicolor and Virginia).255

The petal length and petal width are chosen for experiment to show a visualization256

example. DEC is used to compare with our method, and d is set as 2. We first257

cluster the iris data, and then use the obtained optimal transformation matrix to258

project the original data into a two-dimensional space. The clustering results are259

shown in Fig 1, where the samples of the wrong cluster are marked with red ’x’.260

As we can see, our method has fewer error markers than DEC. In addition,261

From Fig. 1.(c), it can be seen that the features selected by our method are con-262

sistent with the two features that can distinguish the various types of samples263

visually, namely, the length and width of petals. From the Fig. 1.(b), we can see264

4http://archive.ics.uci.edu/ml/datasets/Iris
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(a) (b) (c)

Figure 1: Clustering results on the Iris dataset, the dimension is reduced to 2. (a) Original data.

(b) Clustering results of DEC. (c) Clustering results of our methods.

Table 2: Comparison of clustering results (ACC%)

Methods Cars Wine Ionosphere Ecoli USPS Umist COIL-20

KM 44.79± 0.13 64.80± 6.44 70.75± 1.60 55.67± 7.69 62.03± 3.89 41.67± 2.23 62.78± 0.04

PCAKM 44.82± 0.12 67.64± 5.44 71.11± 0.14 68.93± 6.41 63.91± 1.64 42.10± 2.32 59.38± 3.27

TRACK 45.66± 0.00 70.22± 0.00 71.88± 0.14 63.01± 5.42 65.70± 0.27 47.97± 4.02 54.04± 3.08

DEC 47.68± 0.08 70.22± 0.00 71.23± 0.00 62.08± 3.85 64.96± 0.09 44.54± 1.73 67.74± 2.81

FAKM 59.18± 0.17 88.20± 0.00 72.31± 3.63 69.73± 6.11 66.98± 3.37 48.43± 1.98 67.02± 3.33

OURS 62.50± 1.31 88.20± 0.00 74.93± 0.00 72.05± 2.25 67.49± 2.79 48.54± 3.10 67.23± 1.98

that DEC has a completely different structure. Therefore, our approach better p-265

reserves the structure of the original data than that of DEC by selecting the most266

representative features.267

3.3. Comparison of Clustering Results268

In this section, we show the clustering results of different methods on differ-269

ent datasets. Grid search is conducted for different parameters according to the270

above mentioned, and the best combination of parameters is selected to repeat the271

experiment for 10 times and the average value is taken. The results are shown in272
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Table 3: Comparison of clustering results (NMI%)

Methods Cars Wine Ionosphere Ecoli USPS Umist COIL-20

KM 19.35± 0.33 41.61± 1.49 12.30± 2.99 49.09± 4.00 61.73± 2.67 62.93± 2.27 73.28± 1.97

PCAKM 19.45± 0.32 42.27± 1.57 13.01± 0.00 57.38± 3.51 62.34± 0.68 64.07± 2.27 71.82± 2.09

TRACK 30.39± 3.78 43.56± 2.68 13.49± 0.48 55.29± 6.66 63.60± 0.79 64.43± 2.27 66.30± 1.92

DEC 19.10± 0.00 42.87± 0.00 13.12± 0.00 56.54± 2.58 62.90± 0.66 65.77± 2.27 75.94± 1.29

FAKM 19.10± 7.17 65.69± 0.00 12.85± 9.72 57.59± 1.58 63.60± 0.88 66.84± 2.27 75.60± 1.63

OURS 30.39± 0.00 65.69± 0.00 18.86± 0.00 58.52± 1.46 64.08± 1.12 66.74± 2.27 75.65± 1.13

Table 4: Comparison of clustering results (purity%)

Methods Cars Wine Ionosphere Ecoli USPS Umist COIL-20

KM 65.05± 0.00 69.52± 0.84 70.75± 1.60 76.60± 3.17 70.76± 3.22 49.90± 2.36 66.06± 2.90

PCAKM 65.05± 0.00 69.89± 1.12 71.11± 0.00 80.59± 2.89 71.51± 1.49 50.63± 2.36 63.28± 2.82

TRACK 65.03± 0.00 70.22± 0.00 71.88± 0.27 80.86± 7.43 73.19± 1.54 52.89± 2.36 57.78± 2.28

DEC 65.05± 0.00 70.22± 0.00 71.23± 0.00 82.17± 2.39 72.40± 1.58 52.94± 2.36 70.39± 2.57

FAKM 67.85± 7.17 88.20± 0.00 72.30± 6.38 81.69± 7.87 73.40± 1.80 56.94± 2.36 70.04± 2.32

OURS 69.03± 0.12 88.20± 0.00 75.73± 0.00 82.83± 0.14 73.59± 2.21 56.50± 2.36 70.24± 1.52

Tables 2-4.273

From the tables, we can get the following observations:274

- Most KM-based subspace clustering algorithms have better performance275

than KM on each dataset, which shows the effectiveness of this kind of276

algorithm. Although the NMIs of DEC and FAKM on the Cars dataset are277

lower than KM, these methods still achieve a smaller gap with KM when the278

dimension is reduced and the calculation cost of subsequent learning tasks279

is greatly reduced.280

- DEC achieves better results than PCAKM on all datasets except Ecoli be-281

cause it builds a more general discriminant clustering framework.282
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(a) (b) (c)

Figure 2: Clustering results (ACC) of the compared methods on the different d. (a) Cars. (b) Wine.

(c) Ecoli.

- Compared to DEC, we can see that our method achieves better results on283

the most of datasets due to the robustness of l2,p-norm as a distance metric.284

- Compared with TRACK, which also combines feature selection and clus-285

tering, our method also has better performance. The reason may be that our286

method is more flexible in balancing the scatter matrix.287

- FAKM defines an adaptive objective function to improve the robustness of288

the method. In comparison, our method has similar or better results, which289

indicates that the objective function based on l2,p-norm is more robust.290

3.4. Impact of Dimension Reduction291

In addition, we also study the effect of the reduced dimension d on different292

datasets by different methods, and the parameter setting is the same as above, each293

experiment is repeated ten times, and the mean value is recorded. The results are294

shown in Fig. 2 and Fig. 3.295
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(a) (b) (c)

Figure 3: Clustering results (purity) of the compared methods on the different d. (a) Cars. (b)

Wine. (c) Ecoli.

Through observation, the following conclusions can be drawn:296

- Not all the methods can achieve better results when d is increased, which297

indicates that dimension reduction can effectively improve the performance298

of clustering.299

- When only a small dimension is reserved, the performance of some sub-300

space clustering methods will decline because of the excessive information301

loss.302

- Our method tends to perform better on smaller dimensions than other meth-303

ods. In addition, the optimal results are usually obtained on the smaller304

dimensions, which indicates that our method can effectively select the most305

important features in the data.306

- Our method can get the better results in most cases.307
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(a) (b) (c)

(d) (e) (f)

Figure 4: Parameters sensitivity analysis. (a) Cars; (b) Wine; (c) Ionosphere; (d) Ecoli; (e) Usps;

(f) Umist
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3.5. Parameter Analysis308

In order to understand how the parameters λ and p affect the results of the309

clustering experiment, we fix the value of d in the experiment and carry out the310

parameters sensitivity experiment. The results are shown in Fig. 4.311

As can be seen from Fig. 4, λ and p both have great influence on the final312

clustering accuracy. Let’s first discuss the impact of λ. From the experimental313

results, we notice that the clustering performance is sensitive to λ. For example,314

in Fig. 4.(b), i.e., the Wine dataset, the result of λ < 1 is significantly better315

than that of λ > 1. At the same time, it can be found that if we can choose a316

value close to the λ that get the optimal result, we can get a good result, but it is317

also affected by the value of parameter p. We can see that the p also affects the318

result by the different value range. Take Fig. 4.(a) and (b) as examples, when p319

approximately belongs to (0, 1), the clustering results are better. In Fig. 4.(c) and320

(e), it is approximately within the range of (1, 2) for higher accuracies. The above321

observation is very helpful for parameter selection, that is, the parameter value322

can be approximately determined by finding which range of results are better.323

4. Conclusion324

In this paper, we propose a flexible subspace clustering model. Specifically,325

we first incorporate feature selection and K-means clustering into a single frame-326

work, which can select the refined features and improve the clustering perfor-327

mance. Second, we embed the l2,p-norm into the framework to enhance the ro-328

bustness and retain the desirable properties from big data. Finally, considering the329

proposed model is neither convex nor Lipschitz continuous, we develop an effec-330

tive algorithm to solve it. In addition, we also theoretically prove the convergence331
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of the proposed algorithm. Experimental results verify the presented method has332

more robust and better performance on benchmark databases compared to the ex-333

isting approaches.334

It should be noted that the proposed method could obtain more robust results335

than the existing methods due to the flexibility of selecting p value. However, the336

proposed model can only choose the parameter p manually for different dataset-337

s. Recently, many adaptive learning approaches [41] [42] are successfully used338

in data mining and pattern recognition. Can the idea be used for our clustering339

model to adjust the parameter p automatically according to characters of different340

datasets? If the answer if yes, how to design the adaptive scheme? Our future341

work will focus on the topic.342
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