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Abstract

The emerging neural topic models make topic modeling more easily adaptable and ex-

tendable in unsupervised text mining. However, the existing neural topic models is

difficult to retain representative information of the documents within the learnt topic

representation. In this paper, we propose a neural topic model which incorporates deep

mutual information estimation, i.e., Neural Topic Modeling with Deep Mutual Infor-

mation Estimation(NTM-DMIE). NTM-DMIE is a neural network method for topic

learning which maximizes the mutual information between the input documents and

their latent topic representation. To learn robust topic representation, we incorporate

the discriminator to discriminate negative examples and positive examples via adver-

sarial learning. Moreover, we use both global and local mutual information to preserve

the rich information of the input documents in the topic representation. We evaluate

NTM-DMIE on several metrics, including accuracy of text clustering, with topic rep-

resentation, topic uniqueness and topic coherence. Compared to the existing methods,

the experimental results show that NTM-DMIE can outperform in all the metrics on

the four datasets.
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Neural Network

1. Introduction

Topic models aim at discovering latent semantic topics from a corpus of text docu-

ments and have been widely employed in information retrieval and related fields. The

field of topic modeling has shifted away from “Bag-of-Words” representations such as

Latent Dirichlet Allocation (LDA) [1] to neural networks based methods [2, 3, 4, 5],

which achieve state-of-the-art performance.

Srivastava and Sutton [6] use an Autocoder-based topic model which constructs a

Laplace approximation to the Dirichlet prior, and the proposed ProdLDA uses product

of experts to learn topic representations. Similarly, a number of VAE-based neural topic

models have also been proposed [2, 3, 7, 8]. Different from the aforementioned neural

topic model based on Gaussian distributions, Esmaeili et al [4] use a neural topic model

(VALTA) with Gumbel-Softmax[9] to simulate discrete distributions. The advantage

of using Gumbel-Softmax is that it promotes sparsity and leads to more disentangled

representations, i.e. topics [10]. Another type of widely used neural topic models are

based on Generative Adversarial Networks (GAN) [11]. Wang et al [12] propose the

Adversarial neural Topic Model (ATM) that is based on adversarial training. More-

over, they also propose the Bidirectional Adversarial Topic (BAT) method [5] that

models topics with the Dirichlet prior and builds a two-way transformation between

the document-topic distribution and the document-word distribution via bidirectional

adversarial training.

A main limitation of the existing neural topic models is that they only try to con-

strain the learned topic representations without regarding the useful information con-

veyed by the input documents. The useful information is the representative informa-

tion to distinguish the text from others. For example, in the text which are composed of

words, the topics of the text and its words can convey the useful representative informa-

tion which is informative in text clustering and classification. Here, a good representa-

tion is one that can retain as much useful information of the input text as possible [11].

In topic modeling, the amount of useful information in learned topic representations
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is important for the tasks, i.e., topic distribution learning and topic word mining. To

alleviate this problem, a simple and effective way is to train a representation learning

network to maximize the mutual information (MI) [13], between the input documents

and their latent topic representations. Since mutual information can characterize both

the relevance and the redundancy between random variables, it can effectively model

the association of different variables. However, mutual information is difficult to esti-

mate, especially in high-dimensional and continuous settings.

In this paper, we introduce deep mutual information estimation [14] to topic mod-

eling. Our method, Neural Topic Modeling with Deep Mutual Information Estimation

(NTM-DMIE), effectively estimates and maximizes mutual information between high-

dimensional input (document) and output (topic) pairs with deep neural networks. To

best utilize the rich information contained in documents in learning topic representa-

tions, we regard documents as global information and words contained in documents

as local information. Globally, we maximize MI between the documents attached with

negative examples and the learned topic representations. Locally, NTM-DMIE max-

imizes the average MI between topic representations with document words to further

improve the representation quality.

The main contributions of our work are summarized as follows:

• We propose a novel neural topic modeling technique with deep mutual infor-

mation estimation to better utilize document information. To the best of our

knowledge, this is the first work to incorporate deep mutual information estima-

tion into topic learning to improve the quality of topic representations and topic

mining tasks.

• We propose to use global and local mutual information maximization to pre-

serve the rich information contained in documents for learning their latent topic

representations.

• Extensive experimental results on four benchmark datasets show that our NTM-

DMIE model outperforms recent, strong baseline methods.
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2. Related Work

Our work is mainly related to neural topic modeling and deep mutual information

estimation. We briefly discuss their recent progress.

2.1. Neural Topic Modeling

Recently, neural networks[15, 11] have been employed in topic modeling, which

are more effective and efficient at approximating the hidden, complex variables in the

topic models. Based on Variational Auto-encoder (VAE), Miao et al [2] proposed the

Neural Variational Document Model (NVDM), which builds a deep neural network

conditioned on text to approximate the intractable distributions over the latent vari-

ables. Moreover, they [3] further proposed the Gaussian Softmax topic model (GSM),

parameterized with neural networks. NVDM was extended for generalizing topic mod-

els to model with covariates, interactions, and customized regularizers [7]. Card et al

[16] developed a supervised neural topic model (SCHOLAR) which models metadata as

a covariate or a predicted variable. ProdLDA [6] and Variational Aspect-based Latent

Topic Allocation (VALTA) [4] also embed relationships between documents, topics,

and words in differentiable functions. Moreover, Neural Topic Model (NTM) [17] and

Variational Topic Model with Reinforcement Learning(VTMRL) [8] both incorporated

topic coherence into topic modeling.

Some neural topic models were designed based on Generative Adversarial Net-

work(GAN), Wang et al [12, 5, 5] proposed the Adversarial neural Topic Model (ATM)

based on adversarial training.Gupta et al [18] proposed a neural autoregressive topic

model, DocNADE, to exploit the full context information around words in a document

in a language modeling fashion.

With the rapid development of topic-aware related work, topic models were de-

signed with many other machine learning methods. Zhao X et al [19] proposed the

Variational Auto-Encoder Topic Model (VAETM) by combining word vector represen-

tation and entity vector representation to address the limitations for mining high-quality

topics from short texts. Panwar M et al [20] proposed the Topic Attention Networks for

Neural Topic Modeling(TAN-NTM), which processed document as a sequence of to-

kens through an LSTM whose contextual outputs are attended in a topic-aware manner.

4



Bahrainian S A et al [21] proposed a new light-weight Self-Supervised Neural Topic

Model (SNTM) that learns a rich context by learning a topic representation jointly from

three co-occurring words and a document that the triplet originates from. Jin Y et al

[22] proposed a variational autoencoder (VAE) NTM model that jointly reconstructs

the sentence and document word counts using combinations of bag-of-words (BoW)

topical embeddings and pre-trained semantic embeddings. Zhao H et al [23] proposed

to learn the topic distribution of a document by directly minimising its OT distance

to the document’s word distributions. Ma Z et al [24] proposed a novel topic model

named Semantic-based Bidirectional Adversarial Neural Topic Model (SNTM), which

introduces semantic information into Bidirectional Generative Adversarial Networks

(BiGAN) by adding the word embedding and BiLSTM-Attention mechanism. Wang Y

et al [25] developed a novel neural topic model, namely Layer-Assisted Neural Topic

Model (LANTM), to enhance the topic represen- tation encoding by not only using text

contents, but also the assisted network links. Yang Y et al [26] proposed TopNet, to

leverage the recent advances in neural topic modeling to obtain high-quality skeleton

words to complement the short input. Gupta P et al [27] proposed a neural topic mod-

eling framework using multi-view embedding spaces: pretrained topic-embeddings,

and pretrained word-embeddings (context-insensitive from Glove and context-sensitive

from BERT models) jointly from one or many sources to improve topic quality and bet-

ter deal with polysemy.

Despite the continual research of neural topic modeling, existing works do not yet

fully exploit the useful information contained in documents. Our method is the first

neural topic model that employs deep mutual information estimation [28]. It differs

from the aforementioned neural topic models in the following main ways. (1) Un-

like GSM, NVDM, and ProdLDA with a Gaussian or a logistic prior, we approximate

the discrete topic assignment from a continuous distribution with Gumbel-Softmax[9],

which can approximate categorical samples and whose parameters can be easily com-

puted via the reparameterization trick. (2) Taking advantage of deep mutual informa-

tion’s capability of modeling the non-linear statistical dependence of the documents

and the latent topics, our model estimates and maximizes mutual information between

documents and topics to learn better representations of documents and topics.
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2.2. Deep Mutual Information Estimation

One core objective of topic modeling is to learn useful topic representations. Sim-

ilarly, deep mutual information estimation also aims to train an encoder for represen-

tation learning to maximize the mutual information (MI) [13] between its input and

output. To the best of our knowledge, there is no work using Deep Mutual Informa-

tion Estimation on topic modeling, hence we briefly survey recent research work on

deep mutual information estimation. Belghazi et al [14] proposed MINE, a method

to compute mutual information with neural network. Hjelm et al [28] proposed Deep

InfoMax (DIM) to estimate and maximize the mutual information between input data,

with global and local information, and its high-level representation with adversarial

learning [11]. Yang et al [29] proposed a dual autoencoder network with mutual infor-

mation estimation to learn the robust and discriminative latent representations for deep

spectral clustering. Guo et al [30] proposed a method to learn disentangled represen-

tations, which incorporates deep mutual information estimation into the objective of

cross-modal retrieval. Sanchez et al [31] proposed a method to learn the disentangled

representations of images via deep mutual information estimation. Bachman et al [32]

proposed a method, Augmented Multiscale Deep InfoMax (AMDIM), for representa-

tion learning based on maximizing mutual information between features from multiple

views of a shared context and the latent representation. Qian et al [33] proposed VAE-

MINE, which incorporates mutual information estimation (MINE) into variational au-

toencoder (VAE), to learn the latent representation. Zhou et al [34] proposed Text

Matching with Deep Info Max (TIM), which maximizes the mutual information be-

tween the input and output with global and local information, for text matching. Ben-

efiting from these work, we want to incorporate deep mutual information estimation

into topic modeling to learn the topic representation more specific to given documents

or sentences.

3. Neural Topic Model with Deep Mutual Information Estimation

The overall framework of our Neural Topic Modeling with Deep Mutual Infor-

mation Estimation (NTM-DMIE) can be seen in Figure 1. Our framework consists
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Figure 1: The overall framework of NTM-DMIE

of two main components, i.e., Document-Topic Encoder and Topic-Word Decoder.

(1) The Document-Topic Encoder, which learns robust latent topic representations of

documents with the documents themselves and their negative examples, simulates the

document-topic distribution in LDA. To preserve the rich information of documents,

we introduce mutual information estimation between the documents and their topic

representations in the encoder. (2) The Topic-Word Decoder, which embeds the la-

tent topic representations into document words, learns the topic-word distribution as

in LDA. These two components are jointly optimized in a unified framework. The

generative process of the common topic modeling is given as follows:

• Draw a topic distribution θ ∼ Dirichlet(α) ,

• For each word in the document, draw wn ∼Multinomial(σ(βθ)).

Where α is the parameter of the Dirichlet distribution, wn is the n-th word in the

document, β is the topic word distribution, σ is the softmax function, and θ and β are

the parameters of the document-topic and topic-word distributions respectively, which

are computed with neural network in our work.

Let xBOW ∈ V Z≥0 denote an input document in the bag-of-words representation,

where V is the vocabulary and Z≥0 denotes non-negative integers. x′BOW denotes
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an negative example for learning the discriminative topic representation of xBOW and

x̂BOW is the document reconstructed by the autoencoder. θ̂ denotes the topic distri-

bution of the documents and θ is the distribution after normalization. z denotes their

corresponding topic assignment based on the topic distribution θ, and K is the topic

number and the dimension of θ, θ̂ and z. Moreover, τ , the temperature parameter of

Gumbel-Softmax, and ga, the base distribution, are used for sampling Gumbel-Softmax

in the reparameterization trick. We use x and xBOW interchangeably when there is no

ambiguity.

Our goal is to train a document encoder with deep mutual estimation [14] to learn

robust, discriminative topic representations for a given document together with its neg-

ative examples.

3.1. Document-Topic Encoder

Learning the topic representation of documents is the core part of neural topic mod-

eling and a good topic representation can improve the quality of learning the topic

word distribution. Mutual information, as shown in Eq (1), can model the essential

correlation between two objects. We use it to measure the association between doc-

uments x ∈ X and latent topics z ∈ Z to learn robust topic representations, where

X = {x1, ..., xn} denote the input documents, Z = {z1, ..., zn} denote their corre-

sponding latent topic representations.

I(X,Z) =

∫ ∫
p(z|x)p(x) log p(z|x)

p(z)
dxdz

= KL(p(z|x)p(x)||p(z)p(x))
(1)

In Eq 1, p(x) is the distribution of documents, p(z|x) is the distribution of the latent

topic and the marginal distribution of topic p(z) is computed by p(z) =
∫
p(z|x)p(x)dx.

The objective of our encoder is to maximize the mutual information as Eq (2). To make

the learned topic more representative to the documents, the marginal distribution of la-

tent topic p(z) must obey the prior distribution of Dirichlet distribution q(z).

p(z|x) = max
WE

{I(X,Z)} (2)

where WE is the parameter of the encoder E.
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Based on Eq (2), the objective of the encoder can be summarized as Eq (3).

p̂(z|x) = min
WE

{ − βI(X,Z)

+ γ

∫ ∫
p(z|x)p(x) log p(z|x)

q(z)
dxdz}

(3)

The first term of Eq (3) is the mutual information defined in Eq (1), and the second

term is the KL divergence of the posterior p(z|x) and the prior q(z), which is beneficial

to make the latent topic space more regular. Here, γ is the smoothing parameter of

mutual information and KL divergence. To resolve the problem of unbounded KL

divergence in the calculation of mutual information (Eq (1)), the Jensen-Shannon (JS)

divergence is employed for mutual information estimation. The objective thus can be

rewritten as Eq (4).

p̂(z|x) = min
WE

{ − βJS(p(z|x)p(x), p(z)p(x))

+ γEx∼p(x)[KL(p(z|x)||q(z))]}
(4)

Inspired by Nowozin et al [35], we also use the variational estimation of JS diver-

gence with adversarial learning. The first term of Eq (4) can thus be optimized as Eq

(5).

max
T
{Ex,z∼p(z|x)p(x)[log(σ(T (x, z)))]

+Ex,z∼p(z)p(x)[log(1− σ(T (x, z)))]}
(5)

where T (x, z) is given in Eq (6) and σ(T (x, z)) is a discriminator.

T (x, z) = log
2p(z|x)p(x)

p(z|x)p(x) + p(z)p(x)
(6)

To learn robust topic representations, the encoder uses a discriminator to differenti-

ate the original document and its negative examples to measure the topic representation

of the original document. In Eq (5), σ(T (x, z)) is used for discriminating the original

document x and its negative examples {x′}, where the negative examples are selected

from the corpus with a deterministic strategy (which we will describe below). Eq (5)

only considers the global mutual information: that between the whole document x and
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Figure 2: Global information: document and its negative examples. The latent topic represen-

tation is concatenated with the global “Bag of Words” representation. A 1 × 1 convolutional

discriminator is used to score the ‘real’ document and its topic representation, while ‘fake’ is the

randomly selected document with the learnt topic representation.

its topic representation z, as shown in Figure 2. The words in the document, i.e. lo-

cal information, also play an important role in learning the topic representation of the

document. Hence, we introduce the local mutual information to model the association

between document words and the topic representation as shown in Figure 3. Similar to

the global mutual information, negative examples are also used in the local mutual in-

formation. The loss function of the encoder is given as Eq (7), where |x| is the number

of words in the document, xi represents the i-th word in the document and q(z) is the

symmetrical Dirichlet distribution as the prior distribution.

Le = −β(Ex,z∼p(z|x)p(x)[log(σ(T (x, z)))]

+Ex,z∼p(z)p(x)[log(1− σ(T (x, z)))])

− β

|x|
∑
i

(Ex,z∼p(z|x)p(x)[log(σ(T (xi, z)))]

+Ex,z∼p(z)p(x)[log(1− σ(T (xi, z)))])

+γEx∼p(x)[KL(p(z|x)||q(z))]

(7)

10



Figure 3: Local information: document word and its negative examples. The latent topic rep-

resentation is concatenated with the local word information. ‘real’ corresponds to the pair with

word in the given document and the topic representation of the document, while ‘fake’ corre-

sponds to the the pair with the randomly selected word and the given topic representation.

In Eq (7), q(z) is the standard prior Dirichlet distribution and p(x) is given by the

corpus. The core part, p(z|x), is the encoder of Fig 1, and p(z) can be computed

via
∫
p(z|x)p(x)dx. To model p(z|x), note that the input x is represented as xBOW .

Then, a feedforward neural network with two hidden layers (FC Layers) is utilized

to embed xBOW into a hidden vector θ̂. To solve the problem of posterior collapse

in VAE [36], a batch normalization layer [10] is added and the hidden vector θ̂ with

normalization is transformed as θ, which is the latent representation of the document

x, and the parameter of the discrete distribution, i.e. p(z|x). In the case of the Dirichlet

distribution, we use the concrete distribution, a relaxation of discrete distribution via a

Gumbel-Softmax [4], for sampling via the reparameterization trick.

3.2. Topic-Word Decoder

The decoder of NTM-DMIE, the TWD layers of Fig 1, is a linear transformation

layer that maps z for document x to the predicated probability of words x̂, i.e., the

reconstructed document. The reconstruction loss mainly depends on two parts: the
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distribution of latent topics and the generative performance of the decoder network.

Our goal is to compute the word distribution of each topic τ via the decoder network.

The reconstructed document can be obtained by Eq (8), where τ ∈ R|V |×K . Each

column of τ , τk, represents the word distribution of the topic k.

p(x̂|τ, z) = softmax(τz + b) (8)

The reconstruction loss is defined over the reconstructed document x̂ and the orig-

inal document x as below.

Lr = ||x̂− x||2F (9)

3.3. Model Training

The entire NTM-DMIE model is trained in an end-to-end manner. The overall loss

function L is a weighted sum of the mutual information loss and the reconstruction

loss.

L = µ ∗ Lr + (1− µ) ∗ Le (10)

4. Experimental Setup

4.1. Dataset

We evaluate the performance of NTM-DMIE on four public datasets, including

two labeled datasets and two unlabeled datasets. 20 Newsgroups1. is a collection

of approximately 20,000 newsgroup documents, partitioned (nearly) evenly across 20

different newsgroups. Documents in the 20 newsgroups collections have class labels,

so the dataset is used for evaluating the performance of text classification. AG_News is

a collection of more than one million news articles which include four different groups:

World, Sports, Business and Sci/Tec. News articles have been gathered from more than

2,000 news sources by ComeToMyHead in more than 1 year of activity. We selected its

subset, which contains 12,760 articles, for the evaluation. NY times is a collection of

news articles published between 1987 and 2007, and contains a wide range of topics,

1http://qwone.com/~jason/20Newsgroups/
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such as sports, politics, education, etc. Wikitext-103 is a collection of more than 100

million sentences, all extracted from Wikipedia’s Good and Featured articles. It has

been widely used in language modeling.

Table 1: Statistics of the four datasets.

Dataset Num of Docs Average_Size Num of Labels

20NG 19,999 220.5 20

AG_News 12,760 26.3 4

NYTimes 242,798 7.29 -

Wikitext-103 307,807 176.2 -

We conducted the following common preprocessing steps: conversion into lower-

case, word tokenization, lemmatization, and removal of stop words special characters.

After preprocessing, the statistics of the four datasets are summarized in Table 1.

4.2. Baselines

We compared our NTM-DMIE model with the following state-of-the-art methods:

• ProdLDA [6] is an Autocoder-based topic model that constructs a Laplace ap-

proximation to the Dirichlet prior.

• GSM [3] is a Gaussian Softmax topic model parameterized with neural net-

works.

• NTM [17] is a neural topic model which incorporates a topic coherence objec-

tive.

• Scholar [16] is a supervised neural topic model that allows for metadata to ap-

pear as either a covariate or a predicted variable in the model structure.

• Gaussian-BAT [5] models topics with the Dirichlet prior and builds a two-way

transformation between document-topic distribution and document-word distri-

bution via bidirectional adversarial training.
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4.3. Implementation Details

The hyperparameters of ProdLDA, GSM, NTM, Scholar and Gaussian-BAT are set

according to the best hyperparameters reported in their original papers. Topic number

was set as 10, 20 and 50 for all the four datasets to test the ability of text clustering and

the quality of topics in our model compared with the baselines. During model training,

we used the Adam optimizer with a learning rate of 10E − 4 on the all datasets. For

the weight of the loss function of the encoder given in Eq 7, it was set as β = γ = 1.

For µ of the overall loss function in Eq (10), it was empirically set as µ = 0.4. All

the experiments were conducted for 100 epochs with batch size 128. And all models

are implemented by PyTorch with a single Nvidia GTX 1080Ti graphic card, running

for four times. In our model, negative examples are used for learning robust topic

representations of the document. In our experiment, we use different strategies for

selecting negative examples: random selection and similarity-based selection. Hence,

our model have two variants, NTM-DMIE (random) and NTM-DMIE (similarity).

4.4. Evaluation Metrics

We compare model performance on topic coherence and topic uniqueness to evalu-

ate the quality of topics. We also perform text clustering to measure the reconstruction

ability of latent features, for which we use accuracy.

Topic Coherence (NPMI) [37] Topic coherence indicates that the words in a topic

should be as coherent as possible. For this we use the widely-used metric Normal-

ized Pointwise Mutual Information (NPMI), which assumes coherent words should

co-occur within a certain distance. Given the top M topic words ordered by their prob-

abilities, the NPMI score of the topic can be calculated as follows:

NPMI =
1

M

∑
wi,wj

log
p(wi,wj)+ε
p(wi)p(wj)

− log(p(wi, wj) + ε)
(11)

where p(wi) is the probability of word wi, p(wi, wj) is the co-occurrence probability

of wi, wj within a window in the reference corpus and ε is used to avoid division by

zero.

Topic Uniqueness (TU) [38] measures the diversity of a set of topics, and can be

used to determine how distinguished the topics are from each other. Given the top M
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words for each of the K topics, TU for topic k = 1, . . . ,K can be defined as follows:

TU(k) =
1

M

M∑
i=1

1

cnt(i, k)
(12)

where cnt(i, k) is the occurrence count of the i-th top word in topic k in the top words

across all topics. The range of TU value is between 1/K and 1. A higher TU value

indicates that fewer words are repeated across topics, thus the produced topics are more

diverse.

Clustering Accuracy (ACC) [5] measures the effectiveness of learned topics on

document clustering, in which the learned topic distributions are used as features for

clustering. Model performance is evaluated by accuracy (ACC) as follows:

ACC = max
mapping

∑Nt

i=1 1(li = mapping(ci))

Nt
(13)

where Nt is the number of documents in the test set, 1() is the indicator function,

li is the ground-truth label of the i-th document, ci is the cluster assignment of the

i-th document, and mapping ranges over all possible one-to-one mappings between

labels and clusters. A higher ACC score means that the model is more likely to capture

features that are representative of the given corpus.

5. Results and Analysis

In this section we present a comprehensive empirical evaluation on our proposed

method. Our experiment evaluate the metrics, topic coherence for evaluating the qual-

ity of the learnt topics, topic uniqueness for the diversity of the topics, and the text

clustering for evaluating the representative ability of the topic representations. Finally,

the qualitative analysis of the learnt topics are given below. The source code of our

experiment is given in the link https://github.com/Asuper-code/NTM-DMIE.

5.1. Topic Coherence and Topic Uniqueness

Table 2 presents the results on topic coherence (measured by NPMI) and topic

uniqueness with the number of topics set to 20. Results with the number of topics

set to 10 , 50 and 100 can be found in Figure 4, Figure 5 and Figure 6, where our

15
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model exhibits similar superiority over the compared state-of-the-art models. Among

Figure 4 , 5 and 6, we also give the result of NMPI and TU of the two variants,

NTM-DMIE(random) and NTM-DMIE(similarity). And the result show that NTM-

DMIE(similarity) performed better than NTM-DMIE(random). The detailed analysis

of the experiment about selection of negative examples will be discussed in section 5.4.

Table 2: Topic quality evaluation for 20 topics. The numbers in each cell are NPMI/TU, showing

the 95% confidence interval. Both NPMI and TU values are the higher the better.

Method
20NG NYTimes AG_News Wikitext-103

NPMI TU NPMI TU NPMI TU NPMI TU

ProdLDA 0.267±0.002 0.58±0.01 0.319±0.001 0.67±0.03 0.247±0.003 0.65±0.02 0.325±0.001 0.69±0.02

GSM 0.243±0.001 0.65±0.02 0.303±0.002 0.79±0.02 0.239±0.003 0.70±0.03 0.317±0.001 0.71±0.02

NTM 0.252±0.003 0.62±0.02 0.310±0.003 0.88±0.01 0.245±0.001 0.67±0.01 0.320±0.003 0.79±0.02

Scholar 0.273±0.004 0.73±0.01 0.328±0.001 0.89±0.01 0.265±0.002 0.78±0.02 0.333±0.002 0.85±0.01

Gaussian-BAT 0.285±0.001 0.85±0.01 0.344±0.002 0.95±0.01 0.274±0.001 0.86±0.01 0.338±0.003 0.93±0.02

NTM-DMIE(random) 0.294±0.001 0.88±0.03 0.350±0.002 0.94±0.01 0.281±0.004 0.90±0.02 0.341±0.003 0.91±0.01

NTM-DMIE(similarity) 0.298±0.002 0.93±0.01 0.357±0.003 0.96±0.01 0.285±0.002 0.94±0.02 0.347±0.001 0.94±0.02

In Table 2, in terms of topic coherence, NTM-DMIE achieves the highest NPMI

scores on all four datasets. Moreover, the NPMI of our model is substantially higher

than all the baselines. This result demonstrates that our model can obtain more coherent

topic words than the state-of-the-art baselines.

As for topic uniqueness, NTM-DMIE also achieves the highest scores than all base-

lines on all the four datasets. This result indicates that our model can obtain topics with

less repetition better than the baseline models.

5.2. Ablation Study

We conduct an ablation study to examine the effectiveness of the local information

and global information components in our framework. Experiments are conducted on

all four datasets with the topic number set to 20.

In Table 3 and Table 4 (for labeled and unlabeled datasets respectively), the full

NTM-DMIE model outperforms both variants significantly. It attests to the effective-

ness of both local and global mutual information in our framework. On NPMI, we

can see that NTM-DMIE with local information only performs better than with global
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(a) NPMI results. (b) TU results.

Figure 4: NPMI and TU Performance when Topic=10 on the four datasets.

(a) NPMI results. (b) TU results.

Figure 5: NPMI and TU Performance when Topic=50 on the four datasets.

information only, which can be attributed to the fact that local information helps the

model capture more specific and high-quality features than global information. A sim-

ilar observation can be made for TU, where local information performs better except a

slightly worse TU score on the NYTimes dataset.

In the Table 3 and Table 4, it show the result of the variants of our model, which

are the one without the global information, the one without local information, and the

one without both the global information and local information. Based on the result, we

can find that the NPMI and TU performance of the model obviously decline when our

model remove the global information or the local information.
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(a) NPMI results. (b) TU results.

Figure 6: NPMI and TU Performance when Topic=100 on the four datasets.

Table 3: Ablation study of labeled datasets.

Method
20NG AG_News

NPMI TU NPMI TU

NTM-DMIE 0.298 0.93 0.285 0.94

w/ gloal information only 0.243 0.79 0.241 0.76

w/ local information only 0.252 0.82 0.247 0.79

w/ both 0.223 0.66 0.225 0.61

Table 4: Ablation study of unlabeled datasets.

Method
NYTimes Wikitext-103

NPMI TU NPMI TU

NTM-DMIE 0.357 0.96 0.347 0.94

w/ gloal information only 0.319 0.88 0.323 0.80

w/ local information only 0.321 0.89 0.329 0.84

w/ both 0.300 0.71 0.307 0.63

5.3. Text Clustering Performance

We evaluate the text clustering performance of the topic models learned by each

method on the labeled datasets 20NG and AG_News, and Table 5 presents the overall
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results for all the models where the topic number is set to 20, which is set based on the

number of classes in the labeled datasets.

In Table 5, features captured by NTM-DMIE obtain the highest accuracy on text

clustering on both datasets. We attribute this result to the mutual information frame-

work of NTM-DMIE, which helps reconstruct the input and improves the quality of

topics captured by the model.

Table 5: Text clustering performance of different methods on the 20Newsgroups dataset, where

topic number is set to be 20. Higher value indicates better performance.

Model 20NG AG_News

ProdLDA 32.5% 78.2%

GSM 31.7% 80.1%

NTM 33.9% 82.3%

Scholar 35.7% 82.9%

Gaussian_BAT 39.9% 84.5%

NTM-DMIE (random) 43.5% 85.1%

NTM-DMIE (similarity) 45.2% 85.9%

5.4. Selection Strategies of Negative Examples

We employ a discriminator in the document-topic encoder to distinguish a docu-

ment from its negative examples for learning robust topic representations of the docu-

ment. Here we examine the effect of different strategies for selecting negative exam-

ples: random selection and similarity-based selection.

Random selection, as the name suggests, randomly chooses several negative exam-

ples for a given example. In contrast, the similarity-based selection strategy chooses

the most dissimilar documents as negative examples. The results of NPMI and TU on

all four datasets are shown in Table 2, with the topic number set to 20.

Table 2 shows that NTM-DMIE performs better with the similarity-based selection

strategy than with the random strategy. We can also see the trend in Figure 7, Figure

8, Figure 9 and Figure 10. This makes intuitive sense as a randomly chosen “nega-

tive” example may not actually be sufficiently different from the given document, thus

providing the discriminator with noisy training signals.
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(a) Topic = 10_NPMI. (b) Topic = 10_TU.

Figure 7: NPMI and TU with different ways of negative sample choosing when Topic = 10.

(a) Topic = 20_NPMI. (b) Topic = 20_TU.

Figure 8: NPMI and TU with different ways of negative sample choosing when Topic = 20.

(a) Topic = 50_NPMI. (b) Topic = 50_TU.

Figure 9: NPMI and TU with different ways of negative sample choosing when Topic = 50.
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(a) Topic = 100_NPMI. (b) Topic = 100_TU.

Figure 10: NPMI and TU with different ways of negative sample choosing when Topic = 100.

5.5. Qualitative Analysis

In order to more closely examine the accuracy of the topics and the correspond-

ing keywords captured from each topic model, we compare NTM-DMIE with all the

baseline models on the 20NG and NYTimes datasets, with the topic number set to 10.
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Table 6: Topic-word example of Gaussain_BAT and NTM-DMIE on 20Newsgroups dataset with

topic = 10

Topic:Politics and Military

ProdLDA gun people law problem government think kill death say drug

GSM gun government tax pay law weapon rights people firearm president

NTM people gun government law rights article drug death clinton kill

Scholar gun article run people law government say death problem weapon

Gaussian_BAT gun problem people use government law article drug write kill

NTM-DMIE gun government tax pay law weapon rights people firearm president

Topic:Transportation and daily life

ProdLDA car bike ride get dod run write go put like

GSM car bike problem use dod work ride driver set get

NTM car bike problem get use ride dod driver work drive

Scholar car bike drive dod ride get engine driver use buy

Gaussian_BAT car bike ball use dod work ride driver set get

NTM-DMIE car bike drive ride engine dod buy sell like bmw

Topic:Security

ProdLDA key chip use problem encryption bit system work clipper government

GSM key chip encryption use run clipper system government problem bit

NTM key chip encryption clipper get work government use system bit

Scholar key use chip problem encryption work system set machine bit

Gaussian_BAT key chip use problem encryption bit system work clipper government

NTM-DMIE key chip clipper encryption escrow nsa government system secure need

Topic:Communication

ProdLDA drive card controller disk monitor thanks port pc driver system

GSM card drive controller disk monitor use port controller driver window

NTM drive card use problem disk work sale offer monitor machine

Scholar drive card disk windows use run sale problem monitor pc

Gaussian_BAT drive card use disk monitor sale controller reply printer window

NTM-DMIE card thanks please use window advance email port reply display
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Table 7: Topic-word example of Gaussain_BAT and NTM-DMIE on NYtimes dataset with topic

= 10

Topic:Business

ProdLDA company money percent pay state cost bill industry buy chief

GSM company executive business chief sell buy price pay share

NTM company president executive business sell market sale chief share buy

Scholar company percent market price business sell sale industry buy executive

Gaussian_BAT company computer system technology program number service price product information

NTM-DMIE company percent market price business sell sale pay buy industry

Topic:Literature and Art

ProdLDA music play art film book world write performance audience present

GSM music art play book film write world television performance life

NTM music program art book director write production company feature performance

Scholar play music film performance movie audience young write book character

Gaussian_BAT play music write book life world art film character director

NTM-DMIE music play art film movie book director write performance audience

Topic:Politics and Law

ProdLDA case police charge official court law judge yesterday officer state

GSM case police charge officer law man life feel official rule

NTM law charge case court police judge recieve graduate official rule

Scholar state law issue official vote public case court member judge

Gaussian_BAT case police charge official court law worker judge public officer

NTM-DMIE case law official court state charge issue judge rule police

Topic:People and Life

ProdLDA man life feel thing tell ask woman friend son student

GSM life man woman young thing write son love tell friend

NTM man police woman life death son daughter family child kill

Scholar man life father mother family student child graduate director school

Gaussian_BAT man life woman father mother child young family feel friend

NTM-DMIE shcool child father family mrs son mother student graduate daughter

Table 6 shows that nearly all the models can extract the four topics, namely Politics

and Military; Transportation and daily life; Security; and Communication. However,

NTM-DMIE can mine more keywords that are more closely related to the specific top-

ics than the other models, while other baselines may mine some words that do not
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belong to the corresponding topic. For example, in topic Politics and Military, Gaus-

sain_BAT captures "article" and "write", which are not so closely related to poli-

tics or military while NTM-DMIE can capture words like "firearm" and "president"

which are closely related to the topic. Table 7 also shows that nearly all the models

can extract the four topics, namely Business; Literature and Art; Politics and Law; and

People and Life. However, similarly, NTM-DMIE performs better than the other five

baselines.

6. Conclusion

In this paper, we have proposed a framework to incorporate deep mutual informa-

tion into neural topic modeling. Our framework maximizes the mutual information

between the input documents and their latent topic representations. We capture mu-

tual information on the global and local levels to preserve the rich information of the

documents and words into their topic representations. A discriminator is also em-

ployed to discriminate a document from its negative examples for learning robust topic

representations. Experiments on four public datasets show that our model outperforms

state-of-the-art neural topic models on the metrics of topic coherence and topic unique-

ness. A further experiment on text clustering demonstrates the quality of the learned

topics in downstream tasks. In future work, we will investigate self-supervised learning

approaches to extend our model.
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