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Ghost resonance in a pool of heterogeneous neurons
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Abstract

We numerically study the subharmonic response of a heterogeneous pool of neurons to a pair of independent inputs. The neurons
are stimulated with periodic pulse trains of frequencies f1 = 2 Hz and f2 = 3 Hz, and with inharmonic pulses whose frequencies f1

and f2 are equally shifted an amount �f . When both inputs are subthreshold, we find that the neurons respond at a frequency equal
to f2 − f1 in the harmonic situation (�f = 0), that increases linearly with �f in the inharmonic case. Thus the neurons detect a
frequency not present in the input; this effect is termed “ghost resonance”. When one of the inputs is slightly suprathreshold the

ghost resonance persists, but responses related with the frequency of the suprathreshold input also emerge. This behavior must be
taken into account in experimental studies of signal integration and coincidence detection by neuronal pools.
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1. Introduction

Coincidence detection is the simplest computational
task faced by neuronal circuits. Recently, a simple coin-
cidence detection mechanism has been proposed as the

basis of binaural pitch perception in the human brain
(Balenzuela and Garcı́a-Ojalvo, 2005). By way of this
mechanism, two periodic sound signals with different
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frequencies are applied to different ears (Pantev et al.,
1996), and the pitch of the combined complex signal
is detected psychoacoustically (Schouten et al., 1962).
When the input signals are higher-order harmonics of
an absent fundamental, the perceived tone is precisely
that of the fundamental, in what’s known as the “miss-
ing fundamental illusion”. Since the perceived signal is
not present in the input, the phenomenon has also been
called “ghost resonance” (Chialvo, 2003).

In its original conception, ghost resonance was found
for combinations of harmonic inputs (Chialvo et al.,
2002), and as such was reported experimentally in lasers
(Buldú et al., 2003; Van der Sande et al., 2005) and elec-

tronic circuits (Calvo and Chialvo, 2006). In the original
excitable models considered (Chialvo et al., 2002) the
input frequencies were on the order of Hz, much lower
than the physiological conditions studied by Schouten et

ed.
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Ii is the external applied current, and Ii is the synap-
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l. (1962). Here we will consider input frequencies in the
ame order of magnitude, since we do not expect qual-
tative differences due to the different frequency range.
xperiments in electronic circuits (Lopera et al., 2006)
how that the phenomenon persists for frequencies in the
ilohertz range.

When the inputs are distributed (Buldú et al., 2005),
ifferent neurons detect and transduce those harmonic
ignals into periodic pulse trains, which are transmitted
urther downstream through different pathways and pro-
essed by integrating units that must successfully detect
he coinciding arrival of spikes, for the ghost resonance to
ccur. This behavior was studied in isolated-neuron mod-
ls by Balenzuela and Garcı́a-Ojalvo (2005). However,
n real experimental situations (Manjarrez et al., 2006),
he detecting and processing units do not consist of single
eurons connected in one-to-one synapses, but in pools
f heterogeneous neurons that respond in a diverse way
o the complex distributed inputs, and whose collective
ehavior must be analyzed in detail before one is able to
ake reasonable predictions to be tested experimentally.
In this paper we model the response of a pool of

eurons to two independent input pulses of frequen-
ies f1 = 2 Hz and f2 = 3 Hz. Besides these harmonic
ignals, we have also considered inharmonic inputs for
hich the frequencies f1 and f2 were equally shifted
y an amount �f . The pools consist of 256 indepen-
ent neurons modeled by the Morris and Lecar equations
Morris and Lecar, 1981). To account for a more realistic
ituation we allow for a certain heterogeneity between
he neurons (see model description below). Under this

ituation we observe that the neurons respond to the com-
lex inputs at a ghost frequency that scales linearly with
f when both inputs are subthreshold, as predicted by
hialvo et al. (2002) in a much simpler single-neuron

Fig. 1. Schematic diagram of the neuronal
s 89 (2007) 166–172 167

model. We refer to subthreshold inputs when any of
them applied alone do not produce any response from the
pool of neurons. When one of the inputs is suprathresh-
old we still observe the ghost resonance, similar to the
case of subthreshold signals, but pulsations of the pool
related with the frequency of the suprathreshold signal
also appear.

2. Model description

2.1. Neural model

As announced above, we study a configuration con-
sisting in a pool of 256 neurons receiving synaptic
inputs from two input neurons, representing two differ-
ent pathways (see Fig. 1). The dynamical behavior of the
membrane potential of each neuron is described by the
Morris–Lecar model (Morris and Lecar, 1981):

dVi

dt
= 1

Cm
(Iapp

i − I ion
i − I

syn
i ) + Diξ(t) (1)

dWi

dt
= φ�(Vi)[W∞(Vi) − Wi] (2)

where Vi and Wi stand for the membrane potential and
the fraction of open potassium channels, respectively.
The subindex i labels the different neurons, with i = 1, 2
representing the two input neurons and the subsequent
i = 3, . . . , 258 representing the neurons of the process-
ing pool. Cm is the membrane capacitance per unit area,

app syn
tic current. The ionic current is given by

I ion
i = gCaM∞(Vi)(Vi − V 0

Ca) + gKWi(Vi − V 0
K)

+ gL(Vi − V 0
L) (3)

configuration studied in this paper.
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Table 1
Parameters values of the Morris–Lecar and synapse models used in
this work

Parameters Value

Cm 5 �F/cm2

VK −80 mV
VL −60 mV
VCa 120 mV
VM1 −1.2 mV
VM2 18 mV
VW1 2 mV
VW2 17.4 mV
φ 1/15 s−1

gK 8 �S/cm2

gL 2 �S/cm2

gCa 4 �S/cm2

α 0.5 ms−1

β 0.1 ms−1
168 P. Balenzuela et al. / B

where ga (a = Ca, K, L) are the conductances and V 0
a the

resting potentials of the calcium, potassium and leaking
channels, respectively. The following functions of the
membrane potential are also defined:

M∞(V ) = 1

2

[
1 + tanh

(
V − VM1

VM2

)]
(4)

W∞(V ) = 1

2

[
1 + tanh

(
V − VW1

VW2

)]
(5)

�(V ) = cosh

(
V − VW1

2VW2

)
, (6)

where VM1, VM2, VW1 and VW2 are constants specified in
Table 1 (Tsumoto et al., 2006). The last term in the equa-
tion of the membrane potential is a Gaussian white noise
of zero mean and intensityDi, uncorrelated between neu-
rons, and non-zero only for the neurons of the processing
pool.

The two input neurons are modulated with harmonic
suprathreshold currents with different frequencies f1
and f2:

I
app
i = I

app
0i + Ai cos(2πfit), i = 1, 2. (7)

We used the frequencies f1 = 2 Hz + �f and f2 =
3 Hz + �f , with �f = 0 representing the harmonic
case. The bias current is I

app
0,pool = 2.2 mA for the neu-

rons of the pool and I
app
01 = I

app
02 = 25 mA for the input

neurons, the pulse amplitudes being A1,2 = 24 mA for
both frequencies. With this configuration, the two input
neurons generate two periodic spike trains, one with fre-
quency f1 and the other with frequency f2, converging
on the pool of 256 neurons.

2.2. Synapse model

We represent the coupling between the input and
pool neurons with a standard model of chemical synap-
sis (Destexhe et al., 1994). In this model, coupling is
unidirectional from input to pool neurons. The synaptic
current acting on neuron i is given by

I
syn
i =

∑
j=1,2

g
syn
i rj(Vi − Es), i = 3, . . . , 258, (8)

where the sum runs over the two input neurons, g
syn
i

are the conductances of the postsynaptic channels, rj
stands for the fraction of bound receptors of the synaptic
channel, V is the postsynaptic membrane potential and
i

Es is a parameter whose value determines the type of
synapse. In the present case we assume Es = 0 mV for
all synapses, corresponding to all-excitatory couplings.
As shown below, ghost resonance does not require
gsyn See text
τsyn 35 ms
Es 0 mV

inhibitory connections. However, inhibitory synapses do
exist in real neuronal networks, and therefore it would
be interesting to examine their effect on the behavior
reported below.

The fraction of bound receptors, rj , obeys the equa-
tion:

drj

dt
= α[T ]j(1 − rj) − βrj, (9)

where [T ]j = θ(T j
0 + τsyn − t)θ(t − T

j
0 ) is a square

pulse of width τsyn representing the concentration of neu-
rotransmitter released in the synaptic cleft, α and β are
rise and decay time constants, respectively, and T

j
0 is

the time at which the presynaptic neuron j fires, which
happens whenever the presynaptic membrane potential
exceeds a predetermined value, in our case chosen to be
0 mV. The values of the used parameters are also spec-
ified in Table 1 and were taken from Destexhe et al.
(1994).

2.3. Numerical protocols

We perform two kinds of numerical experiments. In
the first, we set the excitation level of the pool neu-
rons and the synaptic coupling between those and the
input neurons to values for which the stimuli are sub-
threshold if they arrive separately to each pool neuron,
and suprathreshold if they arrive together. We also intro-

duce heterogeneity in the pool of processing neurons by
adding a 10% variability to their applied current (Iapp

pool)
and choosing a synaptic conductance between input and
pool neurons with average value g

syn
pool = 1.2 nS/cm and
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experiments of Schouten et al. (1962):

fr = f0 + �f

k + 1/2
. (10)
P. Balenzuela et al. / B

0% variability. We also add a small quantity of white
oise with amplitude Dpool = 0.5 mV/ms to the pool
eurons. Due to the heterogeneity some neurons do not
re even when two inputs arrive together. Thus, most of

he pool neurons (but not all) act as coincidence detectors
rom the spikes coming from the different inputs.

In the second type of simulations, we introduce
nother source of heterogeneity by considering that
he neurons respond differently to the different inputs.
pecifically, we choose g

syn
pool = 1.0 nS/cm ± 20% if the

nput comes from neuron 1 (spiking with frequency f1)
nd g

syn
pool = 1.8 nS/cm ± 20% if the input comes from

euron 2. We also consider a higher noise level for the
eurons in the pool, with amplitude Dpool = 2.0 mV/ms.

The equations where integrated using the Heun
ethod (Garcı́a-Ojalvo and Sancho, 1999), which is

quivalent to a second order Runge-Kutta algorithm for
tochastic equations.

. Results

We have numerically studied the two situations
escribed above, using the parameters given in Table 1.
e consider different pairs of input frequencies f1 =

f0 + �f and f2 = (k + 1)f0 + �f , with f0 = 1 Hz
nd k > 1, and increase both frequencies simultaneously
n steps of �f . For each pair of frequencies, we run sim-
lations over a time span of 60 s, with a time step of
.01 ms.

.1. All neurons subthreshold

In this situation, no neuron in the pool is suprathresh-
ld to a single input. We start analyzing the harmonic
ase, when the input neurons are spiking with frequen-
ies f1 = 2 Hz and f2 = 3 Hz. These frequencies are
igher-order harmonics of f0 = 1 Hz, which is also their
requency difference. Those neurons in the pool that
eceive both inputs at the same time produce a spike,
rovide the combined stimulation is above threshold.
ig. 2 shows, in its top panel, the average membrane
otential of the pool as a function of time. Spikes in the
verage membrane potential are clearly observed with a
eriod of 1 s, corresponding with the ghost fundamen-
al frequency f0 = 1 Hz. These spikes are interspersed
ith small-amplitude depolarization episodes that can-
ot be considered action potentials. A corresponding
aster plot, shown in the bottom panel of Fig. 2 is con-

tructed by defining a spike when the single-neuron
embrane potential surpasses a threshold Vthr = 0 mV.
he response at the ghost frequency is evident from this
lot.
Fig. 2. Average membrane potential of the pool of neurons (upper
panel) and raster plot (lower panel) when the neurons of the pool are
subthreshold to separately arriving inputs.

Next we analyze the case in which the input sig-
nals keep their frequency difference (f0 = 1 Hz), but
they are no longer higher-order harmonics of f0, i.e.
f1 = kf0 + �f and f2 = (k + 1)f0 + �f . In order to
analyze the response of the pool, we consider the aver-
age membrane potential plotted above for each pair of
frequencies and calculate the instantaneous firing rate fr
as the inverse of the time between consecutive spikes
along each time series. Fig. 3 shows the distribution of
response frequencies fr as a function of the input fre-
quency f1 (with f2 = f1 + f0 in every case). One can
observe that most of the responses follow the relation
predicted by Chialvo et al. (2002) for sinusoidal inputs,
reproduced by Balenzuela and Garcı́a-Ojalvo (2005) for
spiking inputs, and observed in the psycho-acoustical
Fig. 3. Distribution of response frequencies fr (inverse of the inter-
spike intervals of the average membrane potential) as a function of the
input frequency f1 = kf0 + �f . In this case all neurons in the pool
are subthreshold to inputs arriving separately.
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Fig. 4. Average membrane potential of the pool of neurons (upper
panel) and raster plot (lower panel) when some of the neurons of
the pool are suprathreshold to the input coming from neuron 2 (with
frequency f2). The horizontal lines in the upper panel denote two
different thresholds used to compute the probability distributions of
response frequencies, such as those shown in Fig. 5. The raster plot has
been computed by applying a threshold Vthr = 0 mV to the individual
membrane potentials of the neurons.

Fig. 5. Distribution of response frequencies fr (inverse of the inter-
spike intervals of the average membrane potential) as a function of
170 P. Balenzuela et al. / B

This expression corresponds to a linear relation
between fr and �f (and hence f1), which is represented
in Fig. 3 by means of lines for different values of k.
Fig. 3 also reveals responses at much lower frequencies,
which are characteristic of the detection of coincidences
of inharmonic input pulses (see, for instance, Lopera et
al., 2006).

3.2. Some neurons suprathreshold

The results described above show that the simple
mechanism of ghost resonance, previously reported for
the combination of sinusoidal (Chialvo et al., 2002) and
spiking (Balenzuela and Garcı́a-Ojalvo, 2005) inputs
in single-neuron models, persists in the more realis-
tic case in which input signals act upon a pool of
heterogeneous neurons. However, it’s reasonable to
anticipate that in an experimental setting it will be dif-
ficult to adjust the input signals in such a way that all
neurons in the processing pool are below threshold.
Therefore the question arises of what is the behav-
ior of the system when a fraction of the neurons in
the pool is suprathreshold for at least one of the two
inputs.

To answer that question, we now consider that the
input coming from neuron 2 is stronger than the one
coming from neuron 1 (see Fig. 1), so that some neu-
rons are suprathreshold to the synaptic input coming
from neuron 2 with frequency f2. The resulting time
series of the average membrane potential is shown in
the top panel of Fig. 4. Again a response at the ghost
frequency is clearly revealed by high-amplitude spikes,
but this response is now interspersed with depolariza-
tion events at frequency f2 which are considerable more
intense than in the case where all neurons in the pool
are assumed to be subthreshold (compare this plot with
Fig. 2). Note that, as shown in the raster plot appear-
ing in the bottom panel of Fig. 4, a sizable fraction
of the neurons are suprathreshold with respect to the
input f2 (compare the bottom panels of Figs. 2 and
4). In other words, while most of the neurons spike
at the ghost frequency (every 1 s), some neurons fire
with frequency f2 = 3 Hz coming from one of the
inputs.

Due to the relatively high amplitude of the depo-
larization events at the input frequency f2, shown as
middle-sized spikes in the top panel of Fig. 4, differences
may arise when analyzing the corresponding time series

of the average membrane potential, depending on the
threshold being used to define when spikes take place.
For instance, for a high enough threshold (upper hor-
izontal line in the top panel of Fig. 4) only the ghost

the input frequency f1 = kf0 + �f , when some of the neurons of the
pool are suprathreshold with respect to the input coming from neu-
ron 2 (with frequency f2). Left: high spike threshold; right: low spike
threshold. Note the difference between the scales of the vertical axis
in the two plots.
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requency f0 = 1 Hz is detected. On the other hand,
hen the threshold is smaller (lower horizontal line in the
lot), the input frequency f2 = 3 Hz is usually detected,
hile depending on the noise level the ghost frequency

rises as well.
Certainly, the interpretation problems highlighted

bove also persist in the case of inharmonic inputs, i.e.
hen the input frequencies are detuned by a frequency

hift �f while keeping their frequency difference con-
tant. Fig. 5 represents the distribution of instantaneous
ring rates fr as a function of one of the input fre-
uencies f1, with f2 = f1 + f0. When a high threshold
s used to determine the existence of a spike (upper
orizontal line in the top panel of Fig. 4), the corre-
ponding response-frequency distribution (left panel of
ig. 5) looks very similar to the case in which all neu-
ons are subthreshold (Fig. 3). This happens because
nly the spiking events associated with successful detec-
ion coincidences are identified in this case, while the
eurons responding directly at frequency f2 do not
ave an effect on the measure defined above. But if
he threshold is smaller (lower horizontal line in the
op panel of Fig. 4), new frequencies arise in the dis-
ribution plot, corresponding to fr = f2 + �f and its
ubharmonics (red dashed lines in the right plot of
ig. 5). In other words, the system detects not only

he ghost frequency, but also the input frequency at
hich some of the neurons in the pool are suprathresh-
ld.

. Discussion

Many basic studies and predictions in neuronal
ynamics are based on models of single neurons. An
xample is the subharmonic response to a complex sig-
al known as ghost resonance, which was first proposed
y Chialvo et al. (2002) for a combination of har-
onic tones acting on an isolated neuron, and was later

xtended to the case of spiking inputs by Balenzuela
nd Garcı́a-Ojalvo (2005). In the latter case, the phe-
omenon took the form of a coincidence-detection
echanism.
However, real experimental investigations of dynam-

cal processes in neuronal circuits frequently involve
ools of many neurons, which furthermore present a
ubstantial level of heterogeneity. It is thus necessary
o determine (i) whether ghost resonance prevails in that
ase, and (ii) what is the influence of heterogeneity on

he system’s response. The present study addresses these
wo issues, and in relation with the second one it shows
hat different results can be obtained depending on how
he system’s behavior is quantified. Specifically, hetero-
s 89 (2007) 166–172 171

geneity in the thresholds of the different neurons in the
pool may lead to spike time distributions that reveal the
main hallmarks of ghost resonance, but which neverthe-
less may or may not exhibit other responses depending on
how a spike in the average membrane potential (which
is the quantity that frequently has a functional role) is
“defined”. Of course, the answer to this question will
depend on the physiological responses that the neu-
ronal processing pool is expected to elicit. Therefore,
it is important to take the preceding considerations into
account when designing an experiment to test the valid-
ity of the ghost-resonance mechanism, and in general of
any mechanism based on coincidence detection.
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