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bstract

Identifying DNA splice sites is a main task of gene hunting. We introduce the hyper-network architecture as a novel method
or finding DNA splice sites. The hypernetwork architecture is a biologically inspired information processing system composed of
etworks of molecules forming cells, and a number of cells forming a tissue or organism. Its learning is based on molecular evolution.
NA examples taken from GenBank were translated into binary strings and fed into a hypernetwork for training. We performed

xperiments to explore the generalization performance of hypernetwork learning in this data set by two-fold cross validation. The

ypernetwork generalization performance was comparable to well known classification algorithms. With the best hypernetwork
btained, including local information and heuristic rules, we built a system (HyperExon) to obtain splice site candidates. The
yperExon system outperformed leading splice recognition systems in the list of sequences tested.
2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

Identification of DNA splice sites in large DNA
atabases is a main task of gene hunting. Genomes from
ost eukaryotic chromosomes contain both exon and

ntron sites. Exons are DNA sections that code for pro-
eins, while introns are DNA sections that are removed
ollowing mRNA synthesis (Watson et al., 1987). The
ivision between an exon and intron is called a splice
unction (intron–exon, and exon–intron in Fig. 1). DNA
s transcribed into pre-mRNA, then, during RNA pro-

essing, excision of introns, splice of exons, and synthe-
is of the cap and the poly(A) tail occurs.
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Exons provide the information for mRNA to syn-
thesize the peptide during the translation phase in the
cytosol.

Gene identification in large DNA sequences involves
the location of the start and stop DNA triplets (codons),
exons, and introns. Typically the initial and ending sites
of genes have well-defined patterns. Moreover, there are
some rules for intron–exon boundaries that help to define
splice sites, but this is insufficient to solve the issue com-
pletely. The problem is to discover nucleotide patterns
that serve as true splice junctions in the DNA sequence
over random DNA substrings. Thus, the task is to rec-
ognize exon–intron boundaries (EI or donor sites) and
intron–exon boundaries (IE or acceptor sites) from large

DNA sequences. This can be treated as a classification
problem.

The precision of gene identification computing algo-
rithms depends on the accuracy of locating exons and

ed.
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process
Fig. 1. DNA splice sites and their role in transcription and translation
and intron–exon sites, respectively.

introns in the genome database. Several approaches
have been published: Noordewier et al. (1991) published
KBANN that is a combination of neural networks and
a knowledge based system; Xu et al. (1994) described
GRAIL II, a hybrid of a rule-based system and neural
networks; Kulp et al. (1996) and Henderson et al. (1997)
used Hidden Markov Models to build the Genie architec-
ture; Rampone (1998) described BRAIN using Boolean
expressions, neural networks and discriminant analysis;
and Fu (1999) used a symbolic system and a neural net-
work in their MYCIN architecture. More recently, Pertea
et al. (2001) implemented the “GeneSplicer” combining
a Markov model with a decision tree; Howe et al. (2002)
created GAZE, a dynamic programming based archi-
tecture; and Fogel et al. (2003) used for the first time
an evolutionary neural network to address the problem.
There are many other methods whose review is outside
the scope of this paper. It is quite clear that the com-
plexity and diversity of genomic structures in eukaryotic
organisms will likely allow the use of several methods
targeted to particular problems (Mathe et al., 2002).

Our approach is to develop an evolutionary method
with the hypernetwork architecture of biological infor-
mation processing (Segovia-Juarez and Conrad, 2001).
This is a novel machine learning methodology that is
just beginning to be applied to classification problems,

and, as demonstrated here, is also suitable for address-
ing the splice site recognition problem. It uses a bio-
logically inspired architecture that has representations
of “molecules”, “cells”, and a set of cells forming a
of DNA processing and peptide synthesis. EI and IE are exon–intron

“tissue” or “organism”. Molecules have a binary repre-
sentation and molecular interactions are based on string
matching. The dynamics occur through formation of net-
works of molecular interactions. The learning algorithm
is based on simulated molecular evolution (see Section 2
below).

Here we demonstrate the learning ability of the hyper-
network architecture in solving the splice problem for
a popular genome dataset; we study the generalization
properties of the hypernetwork on this data, and the per-
formance of this algorithm in comparison with others.
Using the best network obtained during training, we
implemented a splice site recognition system that was
tested with a list of human DNA sequences, and finally
we report our conclusions.

2. Methods

2.1. The hypernetwork architecture

The hypernetwork architecture is a biologically inspired
learning model based on abstract molecules and molecular
interactions that exhibits functional and organizational corre-
lation with biological systems.

This is a multi-scale architecture that comprises three hier-
archical levels: organism, cellular, and molecular. Molecules

are an abstract of enzyme-like structures, and interactions occur
as typical activation and inhibition processes. The representa-
tion of molecules and their interactions are comprised of binary
strings and string matching, respectively. Molecules have an
“excitatory receptor domain”, an “inhibitory receptor domain”,
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Fig. 2. Representation of four “molecules” in a cell. Each molecule
has an excitatory receptor domain (E), inhibitory receptor domain (I),
and catalytic domain (C). For the experiments, each domain is set to
20 bits (only some are shown). There is an example of activation of
m
(
d
e

a
6

m
t
t
s
b
t

a
(
t
f
r

e
o
t
o
i
a
L

i
l
i
i
c
t
t

olecule nos. 1–3 (solid arrow), and inhibition of molecule nos. 1–4
dashed arrow). Activations or inhibitions occurs when the catalytic
omain of an activated molecule matches – above a threshold – the
xcitatory or inhibitory domain of the target molecule.

nd a “catalytic domain”, with 20 bits each, giving a total of
0 bits/molecule.

A molecule can be activated or inhibited by neighbor
olecules through its excitatory or inhibitory domain, respec-

ively (see Fig. 2). The interactions are dynamically formed by
he catalytic site of a molecule and the excitatory or inhibitory
ites of the target molecule. An interaction is formed if the
inary matching is above a threshold value lasting just one
ime step.

Molecules are placed in cells, which are modeled by cellular
utomata, and an organized group of cells forms an organism
see Fig. 3). Each cell has three types of molecules: recep-
or molecules that gather information from the environment or
rom external molecules, effector molecules that interact with
eceptor molecules of target cells, and internal molecules.

Cell to cell interactions are produced by the effector–rec-
ptor molecules of the cells. Biosystems have several examples
f excitatory as well as inhibitory effector–receptor interac-
ions. For example, in the immune system, inhibitory receptors
n lymphoid and myeloid cells are very important in modulat-
ng the immune response. The disruption of inhibitory receptor
ctivity results in fatal autoimmune disorders (Ravetch and
anier, 2000).

The hypernetwork is organized with four layers of cells:
nput cells, that get information from the environment, two
ayers of internal cells, and a layer of output cells from which

nformation is obtained. This organization was derived empir-
cally. Since the tissue has 60 input cells, we used small input
ell sizes to improve the simulation time. Other types of archi-
ectures, and their impact on learning are currently being inves-
igated.
stems 87 (2007) 117–124 119

The hypernetwork receives environmental influences from
its input cells, and delivers a signal from its output cells. Inter-
nal cells interact with input and output cells. The input vector is
split into two bit strings, and each substring activates a receptor
molecule in each input cell (complementary to its first two bits),
triggering cascades of molecular interactions inside the cells of
the organism. The cascade of interactions continue through the
network until an effector molecule of an output cell is activated,
or 15 time steps passed after the initial feeding of each input
vector. At this point, the output is obtained from the state of
readout structures on the output cells. For every output cell we
check the states of the molecules where the readout structures
resided. If the molecule where the readout structure resides was
activated during the simulation, then the output of the corre-
sponding cell is a “1”, otherwise the output is “0”. The output
vector is formed by concatenation of output cell states. There-
fore, a given input vector will produce a specific output vector.

2.2. The learning algorithm

Hypernetwork organisms learn classification tasks by an
adaptive algorithm based on molecular evolution. This is a
bottom-up approach. Molecular entities form dynamic net-
works of interactions that affect the organismic level and allow
an organism to perform a selected task (produce a desired
output). An organism is reproduced with random molecular
mutations (variation), and selection is used to remove those
organisms with the least appropriate molecule structures, leav-
ing those that remain to serve as parents for the next generation
of solutions for the problem to be solved. For the described
results we used a population of two organisms, since our soft-
ware was restricted to such number. Current implementations,
however, allows the use of up to 1000 individuals or more.

During “variation”, molecules have a small chance of muta-
tion (“molecular mutation probability”), and if the molecule is
selected, a percentage of its bits are changed (“percentage of
intramolecular rearrangement”) randomly choosing between
“0” or “1”. These parameters, as well as activation and inhibi-
tion threshold values are set at the beginning of the simulation
and do not change during its course. Once an organism is
formed, we feed it with each input vector, trigger the cascades
of interactions in the hypernetwork and we obtain the output
vector. We find the Hamming distance between the desired
output vector (D) and the output vector (O) obtained from the
network. The sum of the distances is used to find the training
performance of the generation (performance measure). This
process is iterated for a number of generations, or until the sys-
tem fully learns the task. The learning algorithm is shown in
Fig. 4.

An example of a hypernetwork organism is shown in
Fig. 3. This organism was used to perform the experiments
reported here. The input was translated from nucleotide nota-

tion (A, T, G, C) into binary, which was used to form the
binary input vector, and the figure shows a sample of all
possible cell to cell interactions. The parameters for the sys-
tem are: threshold for activation = 60%, threshold for inhibi-
tion = 60%, molecular mutation probability = 0.009, percent-
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Fig. 3. The hypernetwork organism used for training. The organism has 60 input cells, two layers of internal cells with five cells each, and two
output cells. Each input cell has nine molecules comprised of four receptor, two effector, and three internal molecules. Internal and output cells
have 36 molecules comprised of four receptor, four effector, and 28 internal molecules. Each layer has the potential to be fully connected to the
adjacent layer (dotted lines). The cell to cell interactions are dynamically formed by effector molecules to receptors of target cells. The cascade of

applied
ar inter
d).

in the middle of the DNA sequence, so there are 30 nucleotides
before and after the splice site. Each instance can belong to one
of three classes: EI (exon–intron boundary), IE (intron–exon
interactions (solid lines are a sample) is originated by the input vectors
a receptor molecule in each input cell, triggering a cascade of molecul
based on the state of their readout structures (two per cell, shown fille

age of intra-molecular rearrangement = 40%, molecular size
(shape) = 20 bits/domain. The parameter file and the source
code of the training and testing programs can be requested
from the corresponding author.

During training Hamming distance metric was used. With
this metric we give credit to partial matching on the output.
However, during testing we counted only 100% correct answers
as positive, otherwise the answer was negative. Accuracy was
defined as the total of true positive cases divided by the total
number of instances.
2.3. Data description

We used primate splice-junction DNA sequences taken
from GenBank. This dataset has been used by several authors.
to the input cells. A two-bit substring from the input vector, activates
actions through the organism. Each output cell will answer “1” or “0”

Even though there are other gene splice datasets, this dataset
was chosen as it allows comparison with many other machine
learning algorithms.

The original dataset we chose is found at the UCI reposi-
tory of machine learning databases.1 This data is also part of
the Statlog dataset (Michie et al., 1994). The data set obtained
is comprised of 3186 entries. Each entry is formed by 60
nucleotides and one attribute to label the class. The splice site is
boundary) or N (neither of them).

1 http://www.datalab.uci.edu/data/mldb-sgi/data/.

http://www.datalab.uci.edu/data/mldb-sgi/data/
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versa. We ran the simulations twice due to the stochas-
tic nature of the algorithm, for 80,000 generations, and
with the best network found in each set we evaluated its
performance on the validation set.

Table 1
Experimental setting

Set No. of training
instances

No. of
subsets

Total no. of
generations
Fig. 4. The variation-selection algorithm for hypernetwork

Noordewier et al. (1991) and Towell and Shavlik (1992)
sed these data with a knowledge-based neural network named
BANN; Fu (1999) used these data with a system that com-
ined a symbolic expert system and a feed-forward multilayer
eural network; Rampone (1998) used the dataset with an algo-
ithm based on complex relevance rules.

Since the input and output of the hypernetwork are in binary,
e encoded DNA data and their classes into a binary represen-

ation. The binary representation of DNA nucleotides A, T,
and C were “00”, “01”, “10”, and “11”, respectively. The

plice site classes: exon–intron (donors), intron–exon (accep-
ors), and neither, were encoded into “10”, “01”, and “11”,
espectively. Although other data representations may be used,
his representation was selected for simplicity.

From the 3186 entries, the dataset was already split into
wo sets. A set for training with 2000 instances, and a set for
alidation with 1186 instances. In our experiments we used the
ame partitions as the train and validation sets.

. Experiments

We ran experiments to study the effect of the size of
he training set on generalization, the overall generaliza-
ion with a two-fold cross validation experiment. Then
e built a splice recognition system.

.1. Generalization

We studied the effect of the size of the training set
n generalization accuracy, which is an important fea-
ure of the algorithm since we wanted to know both how
ell the learning architecture captured the features dur-

ng training, and how well it performed when the size of

he input data increased. We also report its performance
ver time.

From the training data set of 2000 entries, we ran-
omly obtained five subsets of 100, 400, and 1000 entries
g. Modified from Segovia-Juarez and Colombano (2006).

as shown in Table 1. We also trained the hypernetwork
organism with the complete training set of 2000 entries.
For the experiments A–C, we ran only up to 30,000 gen-
erations due to time limitations, and for experiment D
we ran up to 50,000 generations.

Since the learning algorithm is stochastic, we ran it
twice with each subset obtained, and evaluated the accu-
racy of the best trained hypernetwork with the validation
set. Then, we evaluated the average performance of the
five subsets. The number of generations was constrained
by computer time and it was evaluated from preliminary
experiments with the training set. We did not use the
validation set during training in any way.

3.2. Two-fold cross validation

We estimated the overall generalization performance
of the hypernetwork architecture by using two-fold cross
validation. We randomly divided the 3186 dataset entries
into two sets of 1593 entries each, and used one as the
training set and the other as the validation set, and vice
Experiment A 100 5 30,000
Experiment B 400 5 30,000
Experiment C 1000 5 30,000
Experiment D 2000 – 50,000
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Table 2
Generalization results

Set Table 100 generations (s) Average generations Average train performance CI (±) Average test accuracy CI (±)

A 10 24,576 0.998 0.002 0.760 0.033
B 33 30,000 0.988 0.004 0.887 0.014
C 76 30,000 0.978 0.003 0.912 0.013

75
77
D 147 30,000 0.9
D 147 50,000 0.9

CI is the confidence interval (95% confidence), n = 5.

3.3. The HyperExon recognition system

We built the first version of a splice site recognition
system (HyperExon), by using the best hypernetwork
obtained during training, from experiment D. The hyper-
network learned global information from the length of
the input string, 30 nucleotides at each side of the splice
site. In addition to the hypernetwork, and in order to
refine the output, the system also needed both informa-
tion near the splice site and heuristic rules to create exon
candidates from the list of splice sites obtained.

Local information was obtained from patterns of
nucleotides near the splice sites using nucleotide occur-
rences frequencies (Stephens and Schneider, 1992). We
employed a nucleotide frequency matrix from Stephens
and Schneider (1992), for the locations starting at −5 to
4 of the exon–intron sites, and locations −13 to 4 of the
intron–exon sites. The information present in each loca-
tion was used to calculate a nucleotide consensus index.
We averaged the consensus index with the global infor-
mation obtained from the hypernetwork to get scored
splice site candidates with weights between 0.0 and 1.
Thus, we filtered a large proportion of the false posi-
tives that splice recognition procedures often produce
(Fu, 1999; Xu et al., 1996). The HyperExon recognition
system2 was tested on 50 human loci obtained from Fu
(1999). The data chosen was independent from the train-
ing data so that there would be no bias on the results of
the study. The 50 loci had a total of 84 introns and 36,927
base pairs (bp) in length. About 20% of the loci had less
than 200 bp, and 22% had more than 1500 bp.

We compared the performance of the splice site candi-
dates HyperExon generated with Gene-Splicer (Pertea et
al., 2001) and NetGene2 (Brunak et al., 1991; Hebsgaard

et al., 1996), leading splice site prediction systems.We
used their default parameter settings and their human
databases. According to Pertea et al. (2001), GeneS-

2 The HyperExon program, testing files, performance results files,
and additional information can be found at http://malthus.micro.med.
umich.edu/hypernet/hyperexon.
– 0.922 –
– 0.927 –

plicer outperformed other recognition systems such as
NetGene2, HSPL, NNSPlice, GENIO, and SpliceView.

In order to have a precise measure of the splice site
candidates, we counted as positives only the sites that
had exactly the same location as in the real exon. We
used two performance measures: sensitivity (Sn) and
specificity (Sp). Sensitivity (Sn) is the number of true pos-
itives divided by total number of cases to predict (true
positives + false negatives), and Specificity (Sp) is the
number of true positives divided by total predicted (true
positives + false positives) (Snyder and Stormo, 1995).

4. Results and discussion

4.1. The relationship between training set size and
generalization

The optimal networks learn the patterns hidden in the
data with a representative training data set. The results of
the hypernetwork generalization are shown in Table 2.
Testing was performed after training, with the stored
hypernetwork structures. The hypernetwork trained with
100 instances did not generalize well, obtaining average
testing accuracy of 0.760 ± 0.033. Training with 400
instances (set B), the hypernetwork showed a testing
accuracy of 0.887 ± 0.013. However, the hypernetwork
achieved acceptable generalization when trained with
half of the 2000 training instances (set C), obtaining
testing accuracy of 0.912 ± 0.013. Thus, we observed
an improvement in learning with the size of the training
sets, and a linear relationship of the computer time the
algorithm took while training a number of vectors.

Experiment D shows at 50,000 generations the best
hypernetwork testing accuracy was 0.927. Using the
same training and validation sets, Michie et al. (1994)
reported a test accuracy of 0.959 with the radial basis

function (RBF) method, accuracy of 0.912 with back-
propagation, 0.905 with bayesian trees, and 0.854 with k-
NN. Thus, the hypernetwork architecture outperformed
some well-known algorithms, even though the current
parameter setting could be further optimized.

http://malthus.micro.med.umich.edu/hypernet/hyperexon
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Table 3
Results of the two-fold cross validation experiment

Train set Training performance Testing accuracy

Acceptors Donors Neither Total

A 0.9802 0.9179 0.9117 0.9554 0.936
B 0.9836 0.9177 0.9026 0.9563 0.934
Average 0.9819 0.935

Table 4
Performance of HyperExon and GeneSplicer in finding the correct acceptor and donor sites

Acceptor sites Donor sites

HE GS NG2 HE GS NG2

True positives 51 40 54 52 44 41
False positives 111 101 284 76 57 78
S
S

T G2: N
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ensitivity (Sn) 0.61 0.48
pecificity (Sp) 0.31 0.28

otal no. of cases to predict = 84. HE: HyperExon; GS: GeneSplicer; N

.2. Two-fold cross validation results

In addition to the experiments reported in Section 4.1,
e performed two-fold cross validation. Table 3 shows

he two-fold cross validation results from the hypernet-
ork generalization performance. The average testing

ccuracy was 0.935, with very small difference between
f each set (A and B). Each run of the experiment took
bout 20–22 h of computer time on a Xeon 2.6 GHz
achine.

.3. The performance of the HyperExon recognition
ystem

Table 4 shows the results of evaluating the set of
oci with the HyperExon, GeneSplicer, and NetGene2
ystems. A good recognition system will have high sen-
itivity (Sn) and high specificity (Sp).

The sensitivity of HyperExon outperformed GeneS-
licer in both acceptor and donor sites, indicating that
yperExon was able to obtain a higher number of true
ositives than GeneSplicer, with both having about the
ame specificity level.

The sensitivity of NetGene2 and HyperExon were
bout the same in the acceptor sites, but NetGene2
btained half the specificity of HyperExon. In general, an
ncrease in specificity will usually result in a decrease in

ensitivity. Therefore, if NetGene2 increases the speci-
city of acceptors to the same level of HyperExon values,

ts sensitivity will be lower. On the donor sites, Hyper-
xon outperformed NetGene2 in both sensitivity and
pecificity values.
0.64 0.62 0.52 0.49
0.16 0.41 0.43 0.34

etGene2.

4.4. Future work

Hypernetwork dynamics is based on string match-
ing and the formation of interaction cascades. Its evo-
lutionary learning algorithm is based on mutations on
the molecular binary strings. There are no weights to
maintain as in standard neural networks. These features
make this novel architecture a great candidate for hard-
ware implementation in field programmable gate arrays
(FPGA).

Hypernetworks can evolve in different structural lev-
els, in terms of size and interactions. We have prelim-
inary unpublished results that show that if we evolve
other attributes in a population of hypernetworks it
could result in the improvement of learning perfor-
mance. Further research will explore these capabili-
ties.

The HyperExon recognition system could be
improved by training with a large annotated database,
adding structural coding information and rules for cre-
ating exon models, among other features.

5. Concluding remarks

The main goal of this paper was to show that the
hypernetwork architecture, a biologically inspired infor-
mation processing system, exhibits generalization per-
formance comparable with other algorithms and is suit-

able for DNA splice recognition systems. Using the best
hypernetwork obtained during training, including local
information, we built HyperExon, a system to obtain
splice site candidates. The HyperExon system outper-
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formed leading splice recognition systems in the list of
sequences tested.

Biologically inspired methods and technologies, such
as the ones proposed here, demonstrate the potential
of stronger connections between computer science and
biology, both in the development of new algorithms and
possibly in new hardware approaches.
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