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bstract

At present there exists a large gap in size, performance, adaptability and robustness between natural and artificial information
rocessors for performing coherent perception-action tasks under real-time constraints. Even the simplest organisms have an
nviable capability of coping with an unknown dynamic environment. Robots, in contrast, are still clumsy if confronted with
uch complexity. This paper presents a bio-hybrid architecture developed for exploring an alternate approach to the control of
utonomous robots. Circuits prepared from amoeboid plasmodia of the slime mold Physarum polycephalum are interfaced with an
mnidirectional hexapod robot. Sensory signals from the macro-physical environment of the robot are transduced to cellular scale

nd processed using the unique micro-physical features of intracellular information processing. Conversely, the response form the
ellular computation is amplified to yield a macroscopic output action in the environment mediated through the robot’s actuators.

2006 Elsevier Ireland Ltd. All rights reserved.
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. Introduction

The prevalent approach to robot control is based
n ‘behaviour decomposition’. The interaction loop be-
ween robot and environment is decomposed and treated
s individual modules. This concept simplifies controller
esign and proved successful in many robotic systems
ncluding humanoid robots (e.g., Fujita et al., 2003).

ith ‘behaviour decomposition’, the flexible selection
f modules is critical for an adaptive and autonomous
ehaviour of the robot. One approach to address the de-
omposition problem disaggregates learning and inter-
ction with the environment. While in learning mode, the
obot learns or self-organises a proper module in terms

f some environmental signal provided by a teacher, and
ubsequently uses this module in interaction mode.
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The use of ‘behaviour decomposition’ enables robots
to successfully work in either a stable work space
or with the support of a teacher. The scheme can be
implemented in localised (Tani and Nolfi, 1999) or
distributed fashion (Tani et al., 2004). Without a teacher,
however, delineating a boundary for the environment
becomes an insurmountable challenge as the environ-
ment has no natural limit. In an unknown dynamic
environment a disaggregation of learning mode and
interaction mode is not useful unless this manifestation
of the ‘frame problem’ (McCarthy and Hayes, 1969)
can be overcome. In an attempt to address this difficulty,
Brooks (1990) proposed the ‘subsumption architecture’
and implemented it in insect-like robots (Brooks, 1991).
This route, however, proved difficult to scale up because
of computational cost. Quite a number of extensions

and modifications of the above architectures have been
reported, but the quest for genuinely autonomous robot
control, capable of coping with an unknown complex
environment, has not yet been successful. Nonetheless,

ed.
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organisms seemingly do not face the difficulties encoun-
tered with robots. Cariani (1992) points to the plasticity
of architecture and its ability to form appropriate sen-
sory, computational, and effector structures in response
to direct interaction with the environment. Whether
it is possible to replicate this plasticity on a virtual
level in a formal computational model for execution on
digital machine is unclear. Undoubtedly, simulation is a
powerful tool for studying design concepts. Ziegler et al.
(1998) were among the first to consider the biochemical
metaphor for robot control and employed simulation
to evolve highly abstracted chemical controllers. More
recently, Adamatzky et al. (2004) have taken steps
towards the realisation of a chemically controlled robot
based on reaction-diffusion computing with an excitable
chemical medium (cf. Rambidi, 2005).

Conrad (1989, 1999) argued that the common digital
mode of computation is fundamentally different from the
context-sensitive mode of information processing found
in biological systems and any attempt to emulate it on a
digital computer would be inherently inefficient. If Con-
rad’s assertion holds then robots that face an unknown
complex dynamic environment cannot be successfully
controlled with a conventional computer. This is the case
because the requirement to act in real-time precludes
the use of an architecture that trades efficiency for pro-
grammability (Conrad, 1995). The medium of compu-
tation becomes significant. On this basis we decided to
explore an approach that recruits intracellular dynamics
to autonomous robot control.

1.1. Intracellular computation

Ideas from biological information processing have
influenced numerous robot control architectures. Most
of them draw their inspiration from neural networks. As
a matter of fact, however, almost all known biological
information processing occurs at the subcellular level.
In consequence of the tremendous success of single cell
organisms in our biosphere, this is the case even if we
set aside molecular level computation within neurons.
The significance of intracellular information processing
has been recognised three decades ago (Conrad, 1972;
Liberman, 1979). The picture that emerged since then
shows a host of biochemical processes in the cell and
its membrane contributing to signal processing and
computing. Thus, far the mechanisms that confer the
enviable computation power to cells are not understood.

It is possible, however, to discern properties of the
intracellular medium that contribute. Two principles are
pertinent. One is shape-based self-assembly: Brownian
motion provides a search mechanism that in combination
87 (2007) 215–223

with free energy minimisation enables the recognition
of specific molecular coded signals in a highly complex
chemical background. The other is conformational state
change: the complex electrostatic interaction network
formed by the atoms within a macromolecule integrates
the electrostatic environment of the molecule and in
accordance therewith modulates the properties of the
molecule. Self-assembly facilitates communication
among distant molecules, but is limited by diffusion
speed. It can serve for signal integration through
the assembly of multi-component supramolecular
structures. More typically, conformational state change
mediates signal fusion. The conformational dynamics
in a molecule can be very rapid and signal propagation
along lines of molecules in direct contact is accordingly
fast. The two principles above are implemented with a
large number of specialised components that have been
picked through evolution from a combinatorially vast
space of potential combinations of building blocks. The
building block scheme extends beyond the molecular
level to the cells themselves. A myriad of different cells,
each specialised to operate in a particular environment,
are found in nature. Let us now turn to our cell of choice
for the robot controller.

2. Physarum polycephalum

The amoeboid plasmodium of the slime mold P.
polycephalum is a large multi-nuclear single-cellular
organism (Fig. 1A). In a fully developed plasmodium
flat sheet-like areas at the edge are connected by more
centrally located tubular structures as visible in Fig. 1B.
Being a single cell, the plasmodium – which can extend
to over 20 m in diameter – does not possess a nervous
system. It relies on intracellular information processing
to integrate local sensory information and to generate
an appropriate response to stimuli. Different areas
within the plasmodium communicate by protoplasmic
flow. This oscillatory flow of protoplasma is called
shuttle streaming and provides a transport mechanism
for nutrition and signals. A dynamically reconfiguring
network of tubes, formed from gelled cytosol, directs
the flow of protoplasma as well as the overall movement
and growth direction of the cell. It has been observed
that the rhythm of shuttle streaming is synchronised with
intracellular oscillatory behaviours such as oscillations
in ATP concentration, Ca2+ concentration, and the
plasmagel/plasmasol exchange rhythm (Ueda et al.,

1986). This oscillatory rhythm is known to increase in
frequency in the presence of attractive stimuli (glucose,
warmth) and, conversely, slows down if a repulsive
stimuli (blue light, salt) is encountered (Durham and
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ig. 1. Plasmodium of Physarum polycephalum. The early stage (A)
nd in developed form, approximately 8 h later (B). In both panels the
ength of the white bar corresponds to 10 mm.

idgway, 1976). The plasmodium is often viewed as
system of coupled oscillators and the oscillations are

mplicated in the information processing mechanisms of
he Physarum plasmodium. The oscillatory behaviour
as been studied from the dynamical systems perspec-
ive. A collective oscillator model with a limit cycle was
ntroduced by Takamatsu et al. (1997). Recently, Tero
t al. (in press) suggested a reaction-diffusion model
or cell fusion between two plasmodia that exhibits an
nti-phase oscillation characteristic.

The plasmodium can be regarded as an autonomous
istributed system. In a series of studies Nakagaki and
oworkers found that this natural parallel processor can

olve small instances of optimisation problems and find
n optimal path through a maze (Nakagaki et al., 2000,
001). In the context of the present work the pattern-
ng of the plasmodium with masks is particularly rele-
87 (2007) 215–223 217

vant (Takamatsu et al., 2000a,b). Our architecture for
a Physarum robot controller draws on this technique
for constructing coupled nonlinear oscillator circuits
(Takamatsu and Fujii, 2002).

3. Cellular robot control

The objective here is to make the microphysical scale
of cellular information processing amenable to robotic
control applications. To achieve this aim, we require a
system in which signals from the environment are trans-
duced to a cell and processed using the micro physical
features of intracellular information processing. Then,
the results of the cellular computation need to be ampli-
fied to steer the robot. After these two components of the
cell–robot interface have been established, the intracel-
lular level information processing can engage with the
macroscopic environment of the robot in an interaction
loop across physical scales (Fig. 2).

Conrad (1996) emphasised the importance of the mi-
crophysical scale for the problem solving behaviour of
biological systems. He introduced the conceptual picture
of a vertical percolation of signals through a hierarchy
of physical structures. The underlying assumption of this
concept is that evolution recruited the dynamics on all
levels of scale for the efficient information processing
required in autonomous systems capable of negotiating
a complex hostile environment in real-time. To instanti-
ate such a device and to provide a testbed for exploring
and evaluating of bio-mimetic principles of cross-scale
information processing in artificial devices, we have im-
plemented a robot and the requisite cell–robot interface.

3.1. A pole-free legged robot

An omnidirectional walker design was adopted for the
robot because it enables us to utilise the oscillatory be-
haviour of the cell more directly for driving locomotion
and allows us to more readily understand the dynamics
of the robot. The six-legged configuration with a hexag-
onal body shape is pictured in Fig. 3. The hexagonal
platform is equipped with sensors equally in all six di-
rections, resulting in a pole-free robot that can move and
sense omnidirectional.

The chassis of the robot is a 2 mm thick sheet of
acrylic plastic in the shape of a hexagon with 115 mm
edge length. A circuit board mounted on the top of
the chassis (visible in Fig. 3B) carries six light to fre-

quency converters (TSL237-S, TAOS Inc., Plano, TX,
USA; http://www.taosinc.com) connected to an octal
line driver (74ACT240, Fairchild, South Portland, ME,
USA; http://www.fairchildsemi.com). The top circuit

http://www.taosinc.com
http://www.fairchildsemi.com
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Fig. 2. Cell–robot–environm

board also carries a connector for a tether which sup-
plies 5 V for the sensor circuitry (six TSL237 and one
74ACT240), separate 5 V for the leg actuators, 12 V
for an RS232 serial interface, the RS232 signal, and
the buffered signal lines of the six light sensors. Fur-
thermore, two LEDs of different colour are mounted
on the top circuit board to facilitate tracking of po-
sition and orientation of the robot with an overhead
camera. The same octal line driver as installed on the

Fig. 3. Six-legged robotic platform, side view (A) and top view (B).
The hexagonal body carries six light-to-frequency converters (LF) and
six legs driven by servos (SV). To assist in tracking the 2D-movements
of the robot, two LEDs are used as tracking lights (TL).
ent interaction loop.

robot (74ACT240) is used at the other end of the
tether to receive the frequency-coded sensor readings
and is connected through six adjustable voltage di-
viders to six input channels of a sound card (Sound
Blaster Live-Value, Creative Technology Ltd., Singa-
pore; http://www.creative.com) in a personal computer
(PC). Six pulse-width controlled mini servos (PARK
HPX, Grand Wing Servo-Tech Co. Ltd., Taipei, Taiwan;
http://www.gws.com.tw) of the type used in radio con-
trolled air planes are mounted to the underside of the
acrylic chassis. Each servo provides a nominal torque of
4.2 kg/cm at 4.8 V and drives an approximately 100 mm
long triangular leg formed from 1 mm diameter steel
wire. The pulse trains for the six servos are generated on-
board with a peripheral interface controller (Mini SSC II,
Scott Edwards Electronics Inc., Sierra Vista, AZ, USA;
http://www.seetron.com) which is mounted centrally on
the underside of the chassis and receives its commands
through a serial port of the PC. A leg is mounted in centre
of every edge of the hexagonal chassis (cf. Fig. 3B) with
the spring of a 20 mm foldback paper clip and is driven
perpendicular to the chassis’ edge by a lever (1 mm steal
wire) connected to the servo actuator. This simple design
offers excellent static stability and allows for numerous
possible gait patterns with only one degree of freedom
for each leg.

3.2. Physarum circuits

3.2.1. Materials and methods
The plasmodia used for the experiments are cultured in

the dark on wet paper towel (Crecia Co.,Ltd., Tokyo, Japan,
http://www.crecia.co.jp) in a plastic box at room tempera-
ture. Oatmeal is fed once or twice a day. All experiments
have been conducted on a 1.5% agar gel plate (polystyrene
90 mm × 15 mm Petri dish, Ina Optica Co. Ltd.) with the

plasmodium kept in food hunger for at least 6 h. As noted
above, the plasmodium prefers not to migrate from a moist
surface to a dry region. For the dry masking of the agar gel,
we chose plastic film (WT-OHP100, Seikyo, Kobe, Japan;
http://www.seagull.coop.kobe-u.ac.jp) which can easily be pat-

http://www.creative.com
http://www.gws.com.tw
http://www.seetron.com
http://www.crecia.co.jp
http://www.seagull.coop.kobe-u.ac.jp
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Fig. 4. Physarum oscillator circuit. The plasmodium is patterned as six
oscillators with star coupling (A). The picture shows the view provided
by the CCD camera indicated in Fig. 5. A diagrammatic view of one
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ranch is shown on the right (B). The oscillator nodes have a diameter
f 3 mm; channels are 6 mm × 0.5 mm. A dashed box delineates the
rea irradiated for light stimulus.

erned to any desired shape with a sharp blade. In the experi-
ent, the Petri dish with the plasmodium was placed on a fiber
ptic back light (1P100-1000F-1G8-MPM-R, OPTEL, Tokyo,
apan; http://www.optel.co.jp) and illuminated with a halogen
ight source (OHX-100A, OPTEL) filtered with a 600 nm inter-
erence band pass (NT46-152, Edmund Optics Japan Co. Ltd.,

ig. 5. Cellular robot controller. Sensors on the robot (RB) detect lamp input
ensors are recoded by the PC into a spatial light pattern which is projected a
urface of the plasmodium (PP). Oscillations of the plasmodium (PP), which
y a CCD camera (CC) as intensity changes in light transmitted from the ban
87 (2007) 215–223 219

Tokyo, Japan; http://www.edmundoptics.com). Physarum is
not affected by light near this wavelength (Renzel et al., 2000).
Light transmitted through the plasmodium was detected with
a CCD camera (HOGA, Kyoto, Japan) and recorded typically
at 2 s intervals by a PC through an image capture board (GV-
VCP2/PCI, I-O Data, http://www.iodata.jp). All experiments
were conducted in the dark at 20 ◦C.

3.2.2. Architecture of Physarum circuits
In the experiments reported here, we used the star

shaped circuit shown in Fig. 4A. It consists of six circu-
lar wells of 3 mm diameter each, coupled at the centre
through six channels. With this geometry, the part of the
plasmodium contained within a well will be synchro-
nised and can be assumed to form a single oscillator
(Takamatsu and Fujii, 2002). It is also known that adja-
cent plasmodia fuse into a single one and that, under the
conditions considered here, plasmodia will never split
up. This fact is used to grow the plasmodium into the
mask. A tip portion (≈3 mm × 3 mm) cut from cultured
larger plasmodium is placed on the side of each well as a
seed. The mask thus prepared is incubated in the dark for
at least 4 h. The plasmodia migrate from the seeds onto
the exposed agar surface and fuse at the centre where the
channels meet. After the plasmodia fused into a single
cell, incubation is continued for an additional 3 h. After
total of 7 h incubation, tube structures are established in
the channels. The circuit obtained corresponds to six in-
dividual nonlinear oscillators mutually coupled through
the tubes formed in the circuit channels.

3.3. The cell–robot interface
Having implemented the above, it is necessary to
combine the Physarum circuit with the robot. The ar-
chitecture illustrated in Fig. 5 is based on an all-optical

(LI) and transmit a signal to the computer (PC). The signals from the
s light stimulus with a video projector (PR) via mirror (MR) onto the
is patterned on an agar plate (AP) by a plastic sheet (PS), are detected
dpass filtered (BF) light source (LS).

http://www.optel.co.jp
http://www.edmundoptics.com
http://www.iodata.jp
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interface between cell and robot. It makes use of three
phenomena. First, plasmodia are repelled by white light
(Ueda et al., 1988). Second, the light transmission of
plasmodia is inversely proportional to their thickness
(Nakagaki et al., 1999). And, third, as previously stated,
the plasmodium is insensitive to light near 600 nm
(Renzel et al., 2000).

Signals from the robot’s six light sensors are trans-
duced to the plasmodium by shining a band of white light
on the coupling channel of an oscillator (cf. Fig. 4). To
this end, we project one mask from a set of dark masks
with suitably positioned white lines onto the Physarum
circuit. We use a video projector with standard optics
and a light path of 1.2 m. By this way only a fraction of
the projectors image covers the circuit, but the obtained
resolution is sufficient to send signals to specific chan-
nels. Our observations suggest that light stimulation
of an oscillator’s channel weakens the coupling of
this oscillator to other oscillators in the circuit. Such
a weakening can alter the behaviour of the oscillator
system.

To read out the response of the plasmodium, the cir-
cuit is illuminated through its agar base by orange light.
The intensity of the transmitted light is recorded by a
CCD camera. The image of the camera (shown in Fig.
4A) provides state information for all six oscillators pat-
terned in the plasmodium. To calculate the amplitude of
an oscillator, the average brightness of a 5 × 5-pixel area

centred over the well of the oscillator under considera-
tion in the camera image is taken. For analysis purpose,
we eliminate camera noise by calculating moving tem-
poral averages with a window size of 30 s.

Fig. 6. Thickness oscillation of the plasmodium without light stimuli; s
87 (2007) 215–223

It is now possible to transmit signals from the robot’s
light sensor to the plasmodium cell and to read the cell’s
oscillations in the six wells of the circuit, which is then
used to control the robot’s leg actuators. The oscillations
of the plasmodium typically have a period in the order
of 1–2 min. Practically, therefore, it is convenient to up-
convert the oscillator frequencies rather than to use them
directly for driving the actuators.

By using the arrangement above described, the closed
loop interaction between the plasmodium cell and the
robot’s environment depicted in Fig. 2 is established.
Each plasmodial oscillator controls the rhythm of one
robot leg. In combination, the leg oscillations lead to a
locomotion of the robot. As a consequence of the robots
motion, the light levels sensed by the robot changes. The
change is communicated back to the plasmodium that
responds with alternations in its oscillatory behaviour.

4. Behaviour of a Physarum circuit

Two properties of the Physarum circuit are essential
to make the conceived architecture practical. The cou-
pled oscillatory system has to yield oscillation patterns
that lead to a robot gait. And, equally important, the gait
pattern has to be responsive to stimuli. Fig. 6 shows typ-
ical oscillatory behaviour of the wells in the Physarum
circuit. The upper graph shows the relative thickness,
i.e., the amplitude, measured for the six oscillator wells.

The lower graph shows the binarized phase for the six
oscillators on the same time axis as the graph above
it. The six horizontal bands from top to bottom corre-
spond to oscillators 1–6, respectively. A black vertical

ample selected from a long time series. See text for explanation.
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Fig. 7. Effect of light stimulus on oscillation of the plasmodium; sam-
ple selected from a long time series. The amplitude of an oscillator that
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eceives a light stimulus is drawn as solid line, the amplitude of the
scillator opposite to it as dashed line. Irradiation is on until t = 1370 s
vertical line) and off thereafter. As soon as the light stimulus is re-
oved, the oscillation switches rapidly from in-phase to anti-phase.

ine for an oscillator indicates that at this point in time
ts thickness was increasing. Note that the oscillation pat-
ern changes spontaneously, even without light stimulus,
rom a rotational pattern (a) to an alternating pattern (b).
he position of oscillator labels used in the legend of the
mplitude curves (upper graph) is shown in (c).

The anti-phase oscillation phenomenon supports
obot locomotion. As will be described in the following
ection, an anti-phase oscillation gives rise to an effec-
ive gait pattern. The experimental results obtained so
ar show that the six-oscillator circuit exhibits in-phase
r anti-phase pattern under many circumstances. If we
an modulate the relative phases of a pair of oscillators
y light stimuli and manage to avoid interfering, un-
avourable oscillations, the robot can be made to walk in
ny desired direction under the control of the plasmod-
um cell.

Unexpectedly, we found that irradiating the channel
f an oscillator has little effect on its rhythm. However,
f a channel is stimulated with light and the stimulus
s removed, the stimulated oscillator and the oscillator
ocated directly opposite to it rapidly go into anti-phase
scillations as shown in Fig. 7. A possible explanation of
his phenomenon may be found in the fact that the driving
orce of protoplasmic flow is proportional to phase dif-
erence between two areas of the plasmodium (Nakagaki
nd Ueda, 1996). The switch to anti-phase oscillation
pon removal of the light stimulus may be due to an

utonomous recovering process. As shown by these ex-
eriments, the six-oscillator star circuit design fulfils the
wo basic requirements for the cellular robot control ar-
hitecture.
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5. Robot locomotion with coupled oscillators

To investigate the possible gait patterns that can be
generated by coupled oscillator circuits and how the
gait can be modulated we conducted a set of experi-
ments in which the actuators of the robot are driven by
a coupled nonlinear oscillator system implemented in
software.

Each of the six legs of the robot is driven directly with
the amplitude of one of six van der Pol oscillators. The
choice of van der Pol oscillators was motivated by the
works of Takahashi et al. (1997) and Nomura (2001) on
simulation of plasmodium behaviour. The fully (all-to-
all) connected oscillators are described by

dxi(t)

dt
= yi(t),

dyi(t)

dt
= ε(1 − 2βixi(t) − xi(t)

2)yi − xi(t)

+
6∑

j=1

κij(xj(t) − xi(t))

+
6∑

j=1

σij(yj(t) − yi(t)) (1)

where xi, xj correspond to the six van der Pol oscilla-
tors, ε, β represent the nonlinearity, and κij , σij are the
coupling constants among the oscillators. In addition,
to account for the variability seen in the living oscilla-
tors, κij and σij are slightly varied at every time step
with κt+1

ij = κt
ij + �κij and σt+1

ij = σt
ij + �σij , where

�κij, �σij are Gaussians with zero mean and unit vari-
ance. Consequently, as is the case in the Plasmodium
circuit, the network of oscillators dynamically changes
and is never trapped in a stable or periodic state.

A typical trajectory of the robot under control of the
van der Pol oscillator system is depicted in Fig. 8A.
Control experiments conducted with in-phase periodic
movements of the legs (not shown) and random move-
ments of the legs (solid line in Fig. 8A) confirmed that
the direction of locomotion of the robot is not biased by
unintentional asymmetries arising from variations in the
construction of the robot.

In the experiment shown the parameters are restricted
to the range of: ε ∈ [0, 3], κ ∈ [0, 0.15], σ ∈ [0, 0.2]
and, for simplicity, β = 0. Under these conditions, we
observe both wiggle (Fig. 8B1) and walking. Directed

movement mainly arises from anti-phase oscillation be-
tween an oscillator and its opposite oscillator. In par-
ticular, two adjacent pairs of oscillators that oscillate in
anti-phase with their opposite oscillators, but in-phase



222 S. Tsuda et al. / BioSystems 87 (2007) 215–223

riven le
the star
the ph
Fig. 8. Trajectories of robot migration. The trajectories for randomly d
compared for the same number (579) of steps (A). The distance from
and B2 show the migration distance in mm for each time step (top) and
indicated by the labelled boxes in (A).

with each other yield an efficient gait with a stepping
movement (Fig. 8B2).

6. Conclusions and outlook

We have presented an architecture for a cell-based
robot controller and have shown that cells of P. poly-
cephalum can provide the functionality required by our
design. Previous reports on Physarum based oscillator
systems used a fixed coupling strength determined by
the width of the channel connecting oscillators. Our ex-
periments show that light signals can be used to dynami-
cally alter the coupling among oscillators and thus point

to a path for interfacing the sensors of the robot with
the plasmodium. Clearly, this work is at an early stage
and further studies are needed to explore the properties,
capabilities and limitations of such a system.
gs (solid line) and legs driven by coupled oscillators (dashed line) are
t position of the robot is shown on the x- and y-axis in cm. Panels B1
ases of the legs (bottom). The two panels correspond to the movement

We believe that the use of biological cells for the con-
trol of autonomous robots is attractive because of several
features difficult to obtain with other technologies. The
nano-architecture of the robot controller self-reproduces
and is therefore of low cost. Power requirements are
exceedingly low; circuits of the type employed here can
operate for several days without supply. The controller
can be stored for a long time in a dry dormant state and
activated by moisture. Moreover, the nano-architecture
of the controller comes with a build in self-repair
capability. In the foreseeable future, it may be possible
to use the tools of synthetic biology to customise
cell-based robot controllers for a particular application

(Blake and Isaacs, 2004; Simpson, 2004). We speculate
that cellular controllers are less likely than conventional
designs to get stuck in contradictory or undefined
situations.
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