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bstract

Many DNA-based technologies, such as DNA computing, DNA nanoassembly and DNA biochips, rely on DNA hybridization
eactions. Previous hybridization models have focused on macroscopic reactions between two DNA strands at the sequence level.
ere, we propose a novel population-based Monte Carlo algorithm that simulates a microscopic model of reacting DNA molecules.

he algorithm uses two essential thermodynamic quantities of DNA molecules: the binding energy of bound DNA strands and the
ntropy of unbound strands. Using this evolutionary Monte Carlo method, we obtain a minimum free energy configuration in the
quilibrium state. We applied this method to a logical reasoning problem and compared the simulation results with the experimental
esults of the wet-lab DNA experiments performed subsequently. Our simulation predicted the experimental results quantitatively.

2007 Elsevier B.V. All rights reserved.
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. Introduction

DNA is a molecule that carries genetic informa-
ion, thus building the basis of life. Many researchers

ave discovered its usefulness as a material for build-
ng nanostructures and nanodevices. For example, the
eeman group showed that DNA strands can be used
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NA theorem proving

in building many geometrical structures, such as DNA
tiles (Winfree et al., 1998). The Mirkin group used DNA
to make gold nanoparticles aggregate so that their com-
bined structures had different colors corresponding to
their structures (Elghanian et al., 1997). This direction
of research has evolved into DNA nanotechnology, such
as the synthesis of DNA ratchets (Yan et al., 2002).

The information contained in the base sequence of
DNA molecules also opened the possibility of using them

as computational building blocks. Adleman demon-
strated experimentally that DNA can be used in finding
a solution to a directed Hamiltonian path problem by
standard laboratory techniques (Adleman, 1994). Braich
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et al. attacked a 20-variable satisfiability (SAT) prob-
lem by devising a tool that used glass tubes containing
DNA molecules under an electric field at an appro-
priate temperature (Braich et al., 2002). A “knight
problem” with the condition that the knights must not
attack each other on a 3 × 3 chessboard was inter-
preted as an SAT problem (Faulhammer et al., 2000).
The tic-tac-toe game (Stojanovic and Stefanovic, 2003)
and a seven-city traveling salesman problem (Lee et
al., 2004) were also interesting. DNA computing has
also been used in proving theorems. Guo et al. proved
Cook’s theorem to be correct with DNA-based comput-
ing (Guo et al., 2005). Cook’s theorem is that if one
algorithm for a non-deterministic-in-polynomial-time
(NP) complete or an NP-hard problem can be devel-
oped, then other problems will be solved by means
of reduction to that problem. Others have explored
the potential of DNA computing in biotechnology and
medicine. For example, the Shapiro group showed that
DNA computing can be used in medical diagnosis and
drug delivery by synthesizing DNA-computing drugs
in vitro with restriction enzymes (Benenson et al.,
2004).

At the core of all the DNA experiments above lies
the sequence-specific DNA hybridization process. Thus,
modeling this has been so important that numerous
design tools for DNA hybridization have been suggested.
For example, the SantaLucia group extensively studied
DNA melting phenomena at the nucleotide level provid-
ing thermodynamic parameters for the nearest-neighbor
(NN) model (SantaLucia and Hicks, 2004; Blake et al.,
1999). The Garzon group’s electronic analogs of DNA
(EDNA) system is another tool for DNA hybridiza-
tion, also based on the NN model (Garzon and Deaton,
2004). The EDNA system provides a way of performing
biomolecular computing with silicon-based computers.
Shin et al. developed a multiobjective evolutionary opti-
mization technique to design optimal sequences (Shin et
al., 2005). They obtained these sequences by the opti-
mization of six fitness measures: similarity, H-measure,
secondary structure, continuity, melting temperature and
GC content. Most of these studies aimed at helping in
DNA code design and focused on the base sequences
within an NN-model framework.

In this paper, we propose a novel Monte Carlo
algorithm for simulating DNA hybridization and used
evolutionary computation to take into account the com-
binatorial effect of DNA molecules and simplified

thermodynamics of DNA hybridization. In our previ-
ous study, we proposed an evolutionary algorithm that
uses a Markov chain Monte Carlo approach to iden-
tify unknown configurations with probabilistic modeling
s 91 (2008) 69–75

of search space (Zhang and Cho, 2001). In this work,
rather than identifying each possible configuration of
DNA strands with probabilistic modeling, we combine a
population-based evolutionary search and a Metropolis
selection. Random selection of two parent strands is in
proportion to the numbers of these within the population
so that the model actually performs a population-based
search. After one of every possible option of DNA
hybridization or denaturation is chosen, the Metropo-
lis selection allows or denies that particular process and
eventually drives the system into a minimum free energy
configuration of the system at the given temperature.
After reaching equilibrium, simulated annealing is used
to keep the system in thermal equilibrium as it is cooled
(Kirkpatrick et al., 1983). The evolutionary nature of
the Metropolis algorithm and simulated annealing has
been studied as a possible evolutionary mutation opera-
tor (Droste et al., 2001). In our simulation, we used four
parameters that could be extracted from other experi-
ments (Klump and Ackermann, 1971). In this sense, our
algorithm is minimal and powerful in simulating reacting
DNA molecules, whereas the NN model uses more than
20 parameters (SantaLucia and Hicks, 2004; Blake et al.,
1999; Garzon and Deaton, 2004). This reduced number
of parameters will be effective in simulating very long
DNA strands.

Our evolutionary Monte Carlo method has been
applied to theorem proving by resolution refutation in
artificial intelligence (Nilsson, 1998; Lee et al., 2003).
This theorem proving is a logical inference process from
given statements and logical relations among them. In
the simulation, we counted the number of bonds and
the number of target double-stranded (ds) DNA strands
as a function of temperature. The increasing number of
target dsDNA in the simulation corresponds to the com-
pletion of theorem proving. To confirm our algorithm, we
performed wet-lab experiments with synthetic DNAs, in
which we obtained the number of bonds by measuring
SYBR Green I fluorescence. We also measured the con-
centration of the target dsDNA by gel electrophoresis
when test samples arrived at a temperature well below
the melting temperature, which confirmed the formation
of the target dsDNA. The numerical simulation result of
the number of bonds matched the experimental data very
well.

The paper is organized as follows. In Section 2,
we describe the evolutionary Monte Carlo algorithm in
detail. In Section 3, our algorithm is applied to theorem

proving and simulation results are provided. In Section
4, we report on our wet-lab experiments with synthesized
DNA molecules. In Section 5, we summarize our work,
discuss relevant issues and draw conclusions.
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f attempt a denaturation process. We consider a new
configuration where i or j is separated from one of
its bound strands. The probability of acceptance is
given in Eq. (2).

Table 1
Parameters in the Monte Carlo simulation

Base pair Binding energy (kcal/MBP)

G–C −9.0
A–T −7.2
Others −5.4*

The lower three values are the binding energy of Watson–Crick and
other pairs. The values are from a reported experiment (Klump and
Ackermann, 1971), except for the binding energy for the other pairs
(*). The value for the other pairs is the sum of the enthalpy of a sin-
J.S. Kim et al. / Bio

. Evolutionary Monte Carlo method

The physical objects in the simulation of reacting
NA molecules are single-stranded DNAs (ssDNAs).
ach ssDNA has a base sequence designed for a
iven purpose, for example, the theorem proving to be
escribed in Section 3. We assume that all the DNAs are
n thermal equilibrium with the temperature T.

The important thermodynamic quantity in the fol-
owing algorithm is Gibbs free energy, which is defined
y:

= Hb − TSu, (1)

here Hb is the total binding energy, which is nega-
ive, and Su is the entropy of unbound base pairs, which
s positive. Therefore, the Boltzmann probability for
he system to be in a particular state C is given by
1/Z)e−G(C)/kBT , where Z ≡ ∑

Ce−G(C)/kBT and kB is
he Boltzmann constant.

Let us consider both the high and the low temperature
imits. If the temperature is very high, all ssDNAs will be
nbound because the entropy term in Gibbs free energy
s very large. If the system is at a low temperature, the
sDNAs will form dsDNAs because the binding energy
erm in Gibbs free energy becomes large in the negative
nd the entropy term becomes negligible.

Therefore, assembling ssDNAs into a dsDNA or dis-
ssembling a dsDNA into the original ssDNAs will
e determined by the thermodynamics of the bind-
ng energy term and the entropy term in Gibbs free
nergy.

The evolutionary Monte Carlo algorithm proceeds as
ollows:

(i) We start with an initial configuration of N ssD-
NAs with m types at a high temperature. The total
number of ssDNAs is N × m.

(ii) From the configuration, we choose two ssDNAs,
which are indexed as the i-th and j-th. The two
chosen ssDNAs can be alone or participating in a
bound DNA. There are four cases possible when
we choose the i-th and j-th ssDNAs.
(a) Both are unbound ssDNAs → The physical

objects are two ssDNAs.
(b) One is unbound and the other is bound to

another ssDNA → The physical objects are an
unbound ssDNA and a clustered DNA, which

includes the bound ssDNA.

(c) Both are bound to different DNAs → The
physical objects are two clusters, each of
which includes each of the bound ssDNAs.
s 91 (2008) 69–75 71

(d) Both are bound together with (or without)
ssDNAs → The physical object is one cluster
that includes the i-th and j-th ssDNAs.

(iii) We test all possible M ways of binding the selected
physical object(s).

(iv) We then choose one of all the possible M ways
of binding. Here, we choose a binding config-
uration with equal probability. This procedure
corresponds to a population-based evolutionary
search. If this choice is accepted by the Metropolis
selection in the next step, offspring molecules will
be produced in the hybridization process, which
mimics the evolution of DNAs.

(v) We calculate the acceptance probability A with:

A = min{1, e−(�G/kBT )}, (2)

where �G ≡ G(C′) − G(C), C′ is the new con-
figuration and C is the current configuration
(Metropolis et al., 1953).

When two ssDNAs form a dsDNA, we can cal-
culate �Gas:

�G = �H − T�S. (3)

The �H can be calculated easily as it sums the
binding energies of the A–T and G–C pairs and
the binding energies of other pairs (see Table 1).
The entropy is reduced when the pairs are formed;
therefore, we use the same entropy change for any
possible pair because we want to make our model
as minimal as possible. In short, we have only four
parameters (Table 1 and its caption) in our model.

(vi) If the hybridization process is not chosen, we
gle hydrogen bond (1.8 kcal/MBP, where MBP denotes a mole base
pair) and the stacking enthalpy of DNA (3.6 kcal/MBP). The fourth
item is the assigned value of 23 cal/(deg MBP) for the entropy change
�Sbase pair between the hybridized and denatured state of a base pair.
This value is from the same report.
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Fig. 1. Proof tree for the resolution refutation in theorem proving.
Given five axioms, we need to prove R is true. If we obtain nil after
resolving ¬R with five axioms, we can conclude R is proved.

Table 2
Sequences for logical formulae used in the theorem-proving problem
(in order from 5′ to 3′)

Clause Sequence (5′→3′)

¬Q ∨ ¬P ∨ R CGTACGTACGCTGAA
CTGCCTTGCGTTGAC
TGCGTTCATTGTATG

Q ∨ ¬T ∨ ¬S TTCAGCGTACGTACG
TCAATTTGCGTCAAT
TGGTCGCTACTGCTT

S AAGCAGTAGCGACCA
T ATTGACGCAAATTGA

temperature, 108 reaction trials were made.
The simulation results are shown in Figs 3 and 4. In

Fig. 3, we show the total number of pairs of A–T, G–C
72 J.S. Kim et al. / Bio

(vii) We repeat (ii)–(vi) until the system reaches its
thermal equilibrium, and then count the number of
target DNAs and the number of base pairs bound
together.

(viii) We decrease the temperature by an appropriate
amount and repeat (ii)–(vii). The amount of vari-
ation in temperature should be small enough to
satisfy the annealing condition in a real experi-
ment.

Note that we use simulated annealing in step (viii).
This method is designed for optimizing combinatorial
problems (Kirkpatrick et al., 1983). If we cool the system
slowly enough from a high temperature, it is likely to be
in a stable state with minimal global energy.

3. Simulation results for theorem proving

In this section, we describe a theorem-proving prob-
lem using DNA molecules and show the simulation
results with the algorithm developed in Section 2.

Given a set of axioms, the objective of theorem
proving is to show that a statement is true. Basically,
our logical inference is made by resolution refutation
(Nilsson, 1998; Lee et al., 2003). In our work, five axioms
are given as ¬Q ∨ ¬P ∨ R, Q ∨ ¬T ∨ ¬S, S, T, P,
which are true, and the sentence to be proved is R.

Because we are interested in the consistency of R with
the given axioms, we use the proof by refutation method.
First, we negate the R as ¬R. Then, we make conjunction
of the five axioms and ¬R. If we obtain nil, which is
always false, then we can say that ¬R is false and finally
we can prove that R is true.

We use the identity that (¬A ∨ B) ∧ A ≡ B when A
is true. Also note that, if A and B are true, then (A ∧ B)
is also true trivially. For example, let us consider that the
operation of (Q ∨ ¬T ∨ ¬S) ∧ S = Q ∨ ¬T . Q ∨ ¬T

is true because both Q ∨ ¬T ∨ ¬S and S are true. The
statements obtained in each step in Fig. 1 are all true and
the last resolution with ¬R produces a contradiction.
Thus, we can conclude R is proved.

In molecular theorem proving, we use DNA
molecules for representing logical formulae and apply
the hybridization of Watson–Crick complementary pairs
to the process of resolution refutation. Six sentences
are encoded in synthetic DNAs and their sequences
are shown in Table 2. In Fig. 2, we show the struc-
ture of the target dsDNA, which is nil in Fig. 1. If we

obtain the target dsDNA, we have proven that the theo-
rem is true. Table 2 and Fig. 2 are adopted from Lee
et al. with the permission of the authors (Lee et al.,
2003).
P GTCAACGCAAGGCAG
¬R CATACAATGAACGCA

We simulated the DNA reaction process for theorem
proving on a silicon-based computer with the algorithm
explained in Section 2. First, we built the population
of the six types of strands shown in Table 2. Simula-
tions were performed for 300, 600 and 900 molecules
for each sequence. The temperature was decreased from
95 ◦C to 1 ◦C by 1 ◦C decrement; for each decrease in
Fig. 2. Target dsDNA whose formation is the outcome of proving the
theorem (the arrows are from 5′ to 3′).
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Fig. 3. Simulation result of the number of bonds as a function of tem-
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erature for N = 300, 600 and 900, where N is the number of ssDNA
f each type. The pairing of bonds started to occur around 80 ◦ C and
aturated at around 50 ◦C.

nd other pairs as a function of temperature. Each curve
tands for the data for N = 300, 600 and 900, where N is
he number of ssDNAs for each species. In this figure, we
ound that the bonds began to form at around 80 ◦ C and
he number of bonds saturated at around 50 ◦C. This sim-
lation result is consistent with the wet-lab experimental
esult in the next section.

Fig. 4 shows the number of target dsDNAs as a func-
ion of temperature. These data are important because
hey give the solution to the theorem-proving problem.

e find that the target dsDNAs began to form at around
3 ◦ C and the number saturated at around 45 ◦C. Note

hat this result is very hard to obtain in wet-lab exper-
ments, which implies that our estimation predicts the
umber of target dsDNAs in those situations.

ig. 4. Simulation result of the number of target dsDNAs as a function
f temperature for N = 300, 600 and 900, where N is the number of
sDNAs of each type. The formation of the target dsDNAs began at
round 63 ◦ C and saturated at around 45 ◦C.
s 91 (2008) 69–75 73

4. Theorem-proving in vitro experiment

4.1. Design and synthesis of sequences

The sequences in this experiment were designed with
the Nucleic Acid Computing Simulation Toolkit (Shin et
al., 2002, 2005). The resulting oligomer sequences are
shown in Table 2. All oligonucleotides were purchased
from Genotech (Bioneer, Daejon, Korea). Each sequence
pellet was brought to a stock concentration of 100 pmol/
�l in TE buffer (10 mM Tris–HCl, 1 mM EDTA, pH 8.0)
and stored at −20 ◦ C until use.

4.2. Quantitative annealing of oligonucleotides

All six single strands were adjusted to 15 pmol (2 ×:
30 pmol, 3 ×: 45 pmol) in a final volume of 20 �l. The
ratio of DNA to IQ SYBR Green supermix (100 mM
KCl, 40 mM Tris–HCl, pH 8.4, 0.4 mM each dNTP,
50 U/ml iTaq DNA polymerase, 6 mM MgCl2, SYBR
Green I, 20 nM fluorescein) in the reaction was 1:1 (by
volume). The hybridization buffer was 1 M NaCl solu-
tion. The sample was maintained at 95 ◦ C for 5 min
and temperature annealing was performed as we cooled
the sample slowly to 5 ◦ C using iCycler (Bio-Rad, Her-
cules, CA, USA). The cooling rate for annealing was
1 ◦C/10 min. All reactions were performed in triplicate
with independent sample preparation and repeated at
least twice for each reaction.

4.3. Visualization of the hybridized mixture by
electrophoresis

The hybridized mixture was electrophoresed on 12%
polyacrylamide gels. The running buffer consisted of
0.045 M Tris-borate and 0.001 M EDTA (pH 8.0) (TBE).
Gels were run on a Mini Polyacrylamide Gel System
(Bio-Rad) for 150 min at 80 V with constant voltage.
To define the molecular size of the hybridized mixture,
25 bp DNA Step Ladder (Promega, Madison, WI, USA)
was loaded.

4.4. Analysis of the experiment results

The SYBR Green I fluorescence intensity is propor-
tional to the number of DNA bonds (Zipper et al., 2004).
Therefore, its graph is the experimental confirmation of
the simulation of the bond number. In Fig. 5, we show the

fluorescence intensity of SYBR Green I as a function of
temperature. Total fluorescence intensity of each of eight
test tubes was normalized to the mean value. The error
bars in Fig. 5 indicate the interval of 50% certainty. We
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Fig. 5. Fluorescence intensity of SYBR Green I as a function of tem-
perature. N is the amount of ssDNA of each type. The intensity started

to grow at 80 ◦ C and saturated near 50 ◦C, which is consistent with
the simulation results. The cooling rate was 1 ◦C/10 min and proved
sufficient for annealing.

found that the fluorescence intensity started to increase
at around 80 ◦ C and saturated at around 50 ◦C. Remark-
ably, this experimental result for the number of bonds is
similar to our simulation result shown in Fig. 3.

Fig. 6 shows the gel electrophoresis image of our

DNA solution. The clear band at the 75 bp region
confirms that many target dsDNAs were formed after
annealing, as predicted by simulation in Fig. 4. Note

Fig. 6. Gel electrophoresis images of theorem-proving DNA solutions
after annealing for 15, 30 and 45 pmol. Lane M shows the size markers,
lane 1 shows 45 pmol, lane 2 shows 30 pmol and lane 3 shows 15 pmol
ssDNA of each type. The brightness at 75 base pairs (bp) is proportional
to the number of target DNAs.
s 91 (2008) 69–75

that the number of target dsDNAs as a function of tem-
perature could not be measured in this experiment.

5. Conclusion

We have presented an evolutionary Monte Carlo
method that simulates DNA hybridization. This algo-
rithm uses population-based evolutionary search with
Metropolis selection. These two processes simulate
DNA reactions in an evolutionary manner. The accep-
tance of a given reaction process is determined by the
Metropolis algorithm considering only four parameters
of enthalpy and entropy changes. Simulated annealing
was used to keep the system in the state of mini-
mum Gibbs free energy as we lowered the temperature
slowly. With our evolutionary Monte Carlo algorithm,
we obtained the numbers of bonds as a function of
temperature. The simulation results were consistent
with subsequent experiments using synthesized DNA
molecules designed for solving the theorem-proving
problem. The number of target dsDNAs was obtained as
a function of temperature in the simulation, which is very
hard to obtain in real DNA experiments. We obtained
many target dsDNAs after annealing in this simulation,
which was confirmed by a clear band at the 75 bp region
in the gel electrophoresis image. The presence of this
band showed that the theorem was proved.

Of course, there will be issues in the practical use of
our algorithm. First, it does not address general math-
ematical problems such as Fermat’s last theorem. The
theorem proving in this work is a problem in artificial
intelligence adopting the resolution refutation (Nilsson,
1998; Lee et al., 2003). We emphasize here that we
perform this kind of theorem proving by enumerating
the number of target dsDNAs, i.e. proofs, during the
annealing process by taking possible combinations of
statements into account. Second, there may be DNA
mismatches in the annealing process. We point out that
we used DNA sequences of 15-mer for each symbol,
which were designed to match correctly to avoid those
possible mismatches. For example, ¬Q ∨ ¬P ∨ R is a
single statement with three symbols. Note that the length
of 15-mer is longer than that of 10-mer of Adleman’s
Hamiltonian path problem (Adleman, 1994) and is equal
to that of 15-mer of the knight problem (Faulhammer
et al., 2000). Third, theorem proving with five axioms
and one clause seems to be easy when the number of
statements is small. However, other experiments have

used around 10 statements. For example, Yang et al.
applied a theorem-proving approach to medical diag-
nosis using microRNAs, DNAs and gold nanoparticles
(Yang et al., 2007). They used microRNAs as input data,
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NAs as logic elements and the gold nanoparticles as
isplay devices. They used 10 statements. The Winfree
roup implemented a 12 microRNA logic-gate circuit
Seelig et al., 2006). This was used for detecting gene
xpression patterns. They used 12 statements. Although,
e used about half the number of statements of those

eported, we believe we can apply our algorithm to more
tatements in future work.

In conclusion, we have shown that an evolutionary
onte Carlo can simulate the DNA hybridization pro-

ess. The reliability of our algorithm was confirmed by a
olecular biology experiment. This algorithm could be

sed in modeling other DNA hybridization experiments
ith silicon-based computers.
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