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Abstract

Recently, several studies have investigated the transcription pro-
cess associated to specific genetic regulatory networks. In this work,
we present a stochastic approach for analyzing the dynamics and ef-
fect of negative feedback loops (FBL) on the transcriptional noise.
First, our analysis allows us to identify a bimodal activity depending
of the strength of self-repression coupling D. In the strong coupling
region D >> 1, the variance of the transcriptional noise is found to
be reduced a 28 % more than described earlier. Secondly, the con-
tribution of the noise effect to the abundance of regulating protein
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becomes manifest when the coefficient of variation is computed. In
the strong coupling region, this coefficient is found to be independent
of all parameters and in fair agreement with the experimentally ob-
served values. Finally, our analysis reveals that the regulating protein
is significantly induced by the intrinsic and external noise in the strong
coupling region. In short, it indicates that the existence of inherent
noise in FBL makes it possible to produce a basal amount of proteins
even though the repression level D is very strong.

1 Introduction

The cell is a highly dynamic and regulated system composed of complex path-
ways and networks formed by tens thousands of inter-connected proteins,
genes, and metabolites. Gene expression regulation is a complex cellular
process that involves different genetic elements, through which cells control
multiple functions such as the synthesis of mRNA molecules and the pro-
duction of enzymatic proteins. Recently, it has been shown that stochastic
fluctuations in populations of genetic and biochemical molecules can influ-
ence the gene regulatory processes [1, 2, 3]. Each cell represents a complex
system that has evolved in the presence of considerable variations and ran-
dom fluctuations of molecular components. As a consequence, cells have been
adapted to exploit the noise to enhance cellular processes [4, 5, 6, 7, 8, 9, 10].

In the transcriptional process, a part of DNA sequence (gene) is copied by
an RNA polymerase to synthesize mRNA molecule. In a second step, mRNA
is decoded to produce specific gene products like transcriptional factors (TF)
or proteins. This transcriptional process can be affected by two sources of
noise. While the internal noise emerges from low copy number of molecules
and the random encounters between reactants, the external noise is related
to changes in the neighborhood and environmental conditions [2, 6].

One mechanism that the cell uses to deal with noise is the negative feed-
back loop (FBL) [11]. Both theoretical and experimental studies on a FBL
in Escherichia coli showed that these auto-regulatory genetic modules de-
crease transcriptional noise and enhance the stability in genetic networks
[6, 8, 12, 13]. Furthermore, the propagation of noise in genetic networks is
a further interesting question [14, 15]. However, challenges still remain to
obtain a more accurate description of the transcriptional process governed
by negative feedback loops.
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In this paper, we study the auto-regulatory genetic module using a stochas-
tic model. The original work that experimentally and theoretically analyzed
this module was shown in [12]. We first derive the potential and the gene
product probability distributions corresponding to the auto-regulatory mod-
ule. We then evaluate the role of noise by computing the expectation and
variance values. We show that our approach leads to new insights into the
FBL. We were able to characterize the system according to two different
phases: weak and strong feedback regions. In particular, our model predicts
that the FBL decreases noise in the strong coupling region a 28 % more than
described earlier [12]. Furthermore, we obtained a coefficient of variation of
0.75 in the strong coupling region, which is independent of all parameters.
Remarkably, this predicted value is in agreement with the experimental value
observed in [16].

The paper is organized as follows. First, we describe the formulation of
our model. Next section shows the results classified in subsections corre-
sponding to the potential, probability distribution, expectation value, vari-
ance and noise dependence. The last section discusses and summarizes our
findings.

2 Stochastic model formulation

A deterministic model to study the auto-regulatory module was first intro-
duced by [17]. The model was based on thermodynamic theory and kinetics
associated to the system (see [17] for details). The RNA polymerase is possi-
bly bound to the promoter and the protein is also bound to the operator site.
Therefore, the single gene, single promoter and single operator site system
has three different configurations. The first state (s=1) is that neither the
RNA polymerase nor protein are bounded to the promoter and the operator
site, respectively. The second state (s=2) is that the RNA polymerase is
bound to the promoter, but the protein is not bound to the operator. The
third state (s=3) is that the RNA polymerase is not bound to the promoter,
but the protein is bound to the operator. The state that both the RNA
polymerase and protein are bound to the promoter and the operator site re-
spectively is prohibited, since repressor protein prevents the RNA polymerase
from attaching the promoter site. According to the model, the concentration
x of unbounded regulating proteins obeys the following equation:
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dx

dt
=

kαe−∆G2/RT [RNAP ]

e−∆G1/RT + e−∆G2/RT [RNAP ] + e−∆G3/RTx
− λx, (1)

where ∆Gs is the Gibbs free energy of state s, R is the gas constant, T is
the absolute temperature, [RNAP ] is the concentration of unbound RNA
polymerase molecules, x is the concentration of unbounded regulating pro-
tein, k is the rate of RNA polymerase isomerization from closed to open
complex, α is the proportionality coefficient that represents the number of
protein synthesized per complex formed, and λ is the protein degradation
rate. To clarify the argument, we simplify equation (1) as follows:

dx

dt
=

A

C +Dx
− λx, (2)

where A = kαe−∆G2/RT [RNAP ], C = e−∆G1/RT + e−∆G2/RT [RNAP ], D =
e−∆G3/RT .

By using a stochastic partial differential equation (SPDE), we can derive a
stochastic regulatory model that allows us to include the stochastic nature of
the transcriptional process. This can be done by replacing the usual variable
x by the stochastic variable and adding the noise term in Eq. (1). As a
result, the SPDE of one gene, one operator-site system is given by

dXt = a(Xt)dt+ σdWt, (3)

where

a(Xt) =
A

C +DXt
− λXt. (4)

Here, the stochastic variable Xt denotes the fluctuating concentration of
unbounded regulating protein, Wt corresponds to the Wiener process and σ
represents the combined effect of internal and external noise.
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3 Results

3.1 Potential representation of the FBL

The potential of the system given by Eq. (3) can read as follows:

U(x) = −
∫ x

a(s)ds

= −A

D
log(C +Dx) +

1

2
λx2 (x > −C

D
). (5)

The strength of the coupling between the unbounded regulating proteins
(also known as transcriptional factors) and the operator site is represented by
the parameter D. Then, high D values indicate strong coupling probability.
Then, FBL will strongly repressed the production of new regulating proteins.
In the following, we analyze how is the shape of the potential in both weak
and strong coupling regions.

The weak coupling limit In the weak feedback region D → 0, the po-
tential (5) takes the form:

U(x) =
1

2
λ(x− A

λC
)2 − A2

2λC2
− A

D
logC (6)

This is the classical Gaussian potential.

The strong coupling limit In the strong feedback region D → ∞, the
shape of the potential (5) is transformed into the following expression:

U(x) =

{

1

2
λx2 (x > 0)

∞ (x = 0).
(7)

This is a truncated like potential. Truncation naturally arises due to the
log term in the potential (5). When D increases, there is a transition from
the Gaussian potential (6) to the truncated potential (7). The existence
of two different shapes of potentials depending on the strength coupling D
has implications in the probability distributions as we will show in the next
section.
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3.2 Probability Distribution

It is known that SPDE’s can be generally transformed into Fokker-Planck
equations (FK equations) which are mathematically equivalent to the original
SPDE (See [18, 19, 20] for details). Then, we can transform Eq. (3) into the
following FK equation:

∂p(x, t)

∂t
=

∂

∂x
{U ′(x)p(x, t)}+ σ2

2

∂2

∂x2
{p(x, t)}. (8)

By solving this FK equation, the stationary distribution is given by

p(x) = K exp(− 2

σ2
U(x))

= K exp(
2

σ2

A

D
log(C +Dx)− λ

σ2
x2), (9)

where K is a normalization constant. Again, we can analyze the weak and
strong coupling of unbounded transcriptional factors and gene operator site
as follows.

The weak coupling limit In the weak feedback region, D → 0, the prob-
ability distribution (9) reads as

p(x) =

√

λ

σ2π
exp(− λ

σ2
(x− A

λC
)2). (10)

This is a Gaussian distribution.

The strong coupling limit In the strong feedback region D → ∞, the
distribution (9) changes and takes the form

p(x) =

{

2
√

λ
σ2π

exp(− λ
σ2x

2) (x > 0)

0 (x ≤ 0).
(11)

This distribution corresponds to the truncated potential (7). It is worth
noticing that this truncated distribution emerges as a consequence of the
truncated potential (7). Next, in order to investigate the role of noise in
the FBL module, we compute the expectation and variance values in both
coupling limits.
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3.3 Expectation value

The expectation value of gene expression level in the auto regulatory module
is given as

E(D) =< x >=

∫

∞

−C/D

xp(x)dx. (12)

The numerical solution of this expression is shown in Fig. 1. We observe two
different states depending on the feedback strength D. In particular, we see
a transition from high to low expectation values with increasing the feedback
strength D. While it is difficult to obtain the analytical expression for all D,
we can derive these two states by computing Eq. (12) in the coupling limits.

The weak coupling limit In the weak feedback region D → 0, the ex-
pectation value (12) is given by1

E(D = 0) =
A

λC
. (13)

The strong coupling limit In the strong feedback region D → ∞, the
expectation value (12) reads

E(D = ∞) =
σ√
λπ

. (14)

This is the expectation value corresponding to the truncated potential. It
is particularly clear on this result that, in the strong coupling limit, the
abundance of unbounded regulating protein is caused by the noise σ. In Fig.
1, we see that even in the strong feedback coupling region D (strongly self-
repressed gene), there is a non-zero basal amount of proteins that emerges
in our approach from the stochastic noise. In addition, it is worth noticing
that deterministic analyses could not detect this protein concentration.

3.4 Variance

Next, we investigate the variance of gene expression level in FBL. Previous
studies [12] have shown that variance of gene expression is strongly reduced
in FBL modules. However here, as a main result we find here that, in the

1Here we write E(D = 0) instead of E(0) for highlighting the variable D.
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strong coupling region, the feedback loop decreases the transcriptional noise
in almost a 30 % more than described in previous studies. First, the variance
is defined as

V (D) =< (x− E(D))2 >=

∫

∞

−C/D

(x− E(D))2p(x)dx. (15)

Eq. (15) was simulated and the result is shown in Fig. 2 in continuous
line. In contrast, in dashed lines shown in Fig. 2, we can see the function
corresponding to 1/Sr shown in [12]. Furthermore, we analytically evaluate
the variance for both limiting coupling regions.

The weak coupling limit In the weak feedback region D → 0, the vari-
ance (15) reads as

V (D = 0) =
σ2

2λ
. (16)

The strong coupling limit In the strong feedback region D → ∞, the
variance (15) is given by

V (D = ∞) =
σ2

λ
(
1

2
− 1

π
). (17)

Comparison with previous studies In [12], a ratio of the absolute values
of stability of the unregulated to auto-regulated modules was used to compare
both systems. This is based on the fact that a system with higher stability
exhibits a lower variance in gene expression. An equivalent computation can
be performed in our analysis by evaluating the ratio of variances at different
coupling limits. In this case, a very weak coupling limit (D → 0) corresponds
to the unregulated module considered in [12]. The ratio is computed as
follows:

V (D = ∞)

V (D = 0)
= (1− 2

π
) = 0.363. (18)

This expression is equivalent to the inverse of the relative stability 1/Sr

(in the strong coupling region), shown in Eq. (3) of [12]. In [12], it was
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found that this ratio takes the value 0.5. Therefore, we see that our analysis
suggests that the variance of the gene expression in the strong coupling region
is reduced further than expected (28% more) [12]. This can also be seen by
comparing the continuous and dashed line shown in Fig. 2.

3.5 Coefficient of variation

It is important to consider a magnitude that combines the expectation value
and the variance. The coefficient of variation CV is a measure of dispersion of
a probability distribution. It is useful for comparing the uncertainty between
different measurements of varying absolute magnitude. It is defined as the
ratio of the standard deviation to the mean. This magnitude is often called
variability or relative standard deviation when the absolute value of the CV

is expressed as a percentage.

CV (D) =

√

V (D)

E
(19)

Fig.3 shows the result of the simulation of Eq. (19) for three sets of param-
eters.

The weak coupling limit In the weak feedback region D → 0, the coef-
ficient of variation reads as

CV (D = 0) =

√
λσC√
2A

. (20)

The strong coupling limit In the strong feedback region D → ∞, the
coefficient of variation follows

CV (D = ∞) =

√

π

2
− 1 = 0.755. (21)

We see that in the case of a very large feedback strength D, the coefficient
of variation CV takes the value 0.75. Interestingly, this expression is inde-
pendent of parameters. Fig. 3 shows the result of the simulation of Eq. (19)
for three different sets of parameters. In all cases, we observed the same be-
haviour. In weak coupling limit (D → 0), CV can be reduced by decreasing
noise σ. However, in the strong coupling limit, we cannot reduce CV , even
if we decrease the noise σ. This is because in the strong coupling limit, the
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abundance of protein is linear in noise σ, which cancels the noise dependence
coming from the standard deviation contribution. Therefore, in the strong
coupling limit, the relative value of variation CV can not be further reduced.
In other words, no external parameters can disturb the system.Thus, a FBL
system operating in the strong feedback region is robust.

On the other hand, it is worth noticing that values in the vicinity of 0.75
were experimentally observed in [16]. Three different negative feedback loops
were designed and analyzed under different concentrations of anhydrotetracy-
cline hydrochloride (aTc) ranging from 0 to 100 ng/ml. These aTc molecules
inhibit the negative feedback loop. These chemicals play the same role as the
strength of regulation D in our approach. At low aTc concentrations, the
strength of the FBL is strong (D large). In contrast, high aTc concentrations
correspond to low D values. Experimental results described in [16] show that
at very low aTc concentrations (i.e., D → ∞), the CV is in the vicinity of
0.75, in agreement with our theoretical results.

3.6 Noise dependence

This system is characterized by two phases or regions depending on the
strength of the self-repression coupling D. In strong coupling region, the
role of noise is more relevant. We here address the issue of analytically as-
sessing the role of noise in the FFL module. We define the following noise
dependence N 2

N(D) =
E(D, σ)− E(D, 0)

E(D, σ)
. (22)

This value N(D) indicates the contribution of the noise effect σ to the
abundance (expectation value) of protein. In the strong coupling region,
N(D) = 1, therefore it indicates that the system is completely dominated
by the noise in this region. In contrast, in weak coupling region, N(D) = 0.
Then, the influence of the noise is very small in this limit. We showed the
numerical solution in Fig. 4.

2In (12), we write E(D) for expectation. However, in this section, we write E(D, σ)
for that, since the expectation also depends on σ.
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4 Conclusions

There have been a series of studies and model developments in recent years
towards an understanding of small functional units of cells. Among them,
FBL is an interesting module with important implications for cell regulation
and stability [12].

A major challenge addressed in this study consisted in embedding a
stochastic approach into the structure of this FBL. This approach based
on stochastic theory presents a number of advantages if compared with de-
terministic analyses. We summarize them as follows: (1) We were able to
identify a bimodal activity depending of the strength of self-repression cou-
pling D. (2) In the strong coupling region, the variance of the transcriptional
noise was found to be reduced a 28 % more than described earlier [12]. (3)
The contribution of the noise effect to the abundance of regulating protein be-
comes manifest when the coefficient of variation was computed. This value
was independent of all parameters and in fair agreement with the experi-
mentally observed values [16]. This result could have not been found using
deterministic models. (4) Our analysis revealed that the autoregulation pro-
cess is significantly induced by the intrinsic and external noise in the strong
coupling region. In short, it means that the existence of inherent noise in
FBL makes it possible to produce a basal amount of proteins even although
the repression level D is very high.

Finally, it remains to be explored to which extent this stochastic analysis
can be extended to the analysis of noise propagation in networks composed
of several modules [14, 15], and even in larger gene networks, and more inter-
estingly in which way these large-scale networks can increase the robustness
and stability.
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Figure 1: We show the expectation value of gene expression level in the auto-
regulatory genetic module. Horizontal axis denotes feedback strength D and verti-
cal axis denotes the expectation value of gene expresssion level E(D). The numeri-
cal values of the system parameters are taken from [12]: A = 4.5×10−6[Ms−1], C =
1.5× 103, λ = 10−5[s−1], and σ = 1.5× 10−7[Ms−1/2] is an arbitrary parameter.
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Figure 2: We show the variance of gene expression level in the auto-regulatory
genetic module. Horizontal axis denotes feedback strength D and vertical axis
denotes the variance V (D). The continuous line is our result and the dashed line
is the result from [12]. We see that the variance in the gene expression is reduced
further than expected (28% more) in the strong coupling region. The numerical
values of the system parameters are the same as Fig. 1.
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Figure 3: We show the coefficient of variation (standard deviation/mean). Hor-
izontal axis denotes feedback strength D and vertical axis denotes the coefficient
of variation CV (standard deviation/mean). The numerical values of the system
parameters are the same as Fig. 1. but noise size σ takes the following values.
red curve σ = 1.5× 10−7[Ms−1/2], green curve σ = 1.5× 10−6.75[Ms−1/2], and blue
curve σ = 1.5 × 10−6.5[Ms−1/2]. In the strong feedback region, all three curves go
to the same value 0.755
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Figure 4: We show the noise dependence N(D). Horizontal axis denotes feedback
strength D and vertical axis denotes the noise dependence N(D). The numerical
values of the system parameters are the same as Fig. 1.
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