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aBiomedical Engineering Department, University of Florida, Gainesville, FL, USA 32611
bElectrical Engineering Department, University of Florida, Gainesville, FL, USA 32611

Abstract

In vitro neural networks of cortical neurons interfaced to a computer via multichannel microelectrode arrays (MEA) provide a
unique paradigm to create a hybrid neural computer. Unfortunately, only rudimentary information about these in vitro network’s
computational properties or the extent of their abilities are known. To study those properties, a Liquid State Machine (LSM)
approach was employed in which the liquid (typically an artificial neural network) was replaced with a living cortical network
and the input and readout functions were replaced by the MEA-computer interface. A key requirement of the LSM architecture
is that inputs into the liquid state must result in separable outputs based on the liquid’s response (separation property). In this
paper, high and low frequency multi-site stimulation patterns were applied to the living cortical networks. Two template-based
classifiers, one based on Euclidean distance and a second based on a cross-correlation were then applied to measure the separation
of the input-output relationship. The result was over a 95% (99.8% when non-stationarity is compensated) input reconstruction
accuracy for the high and low frequency patterns, confirming the existence of the separation property in these biological networks.
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1. Introduction

Dissociated neural cultures in conjuction with pla-
nar micro-electrode arrays (MEAs) have been used to
study the computational properties of neural tissue (De-
Marse and Dockendorf, 2005; DeMarse et al., 2001;
Jimbo et al., 1999; Marom and Shahaf, 2002; Parodi
et al., 1998; Ruaro et al., 2005; Shahaf and Marom,
2001). Although in vitro neural cultures differ appre-
ciably from in vivo neuroanatomical organization, ev-
idence of rudimentary learning (DeMarse et al., 2001;
Marom and Shahaf, 2002; Shahaf and Marom, 2001),
memory (Jimbo et al., 1998, 1999; Madhavan et al.,
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2007; Maeda et al., 1998; Tateno and Jimbo, 1999) and
some evidence for pattern recognition (Ruaro et al.,
2005) have been reported. These living cortical net-
works (LCN) are spontaneously active producing com-
plex patterns of activity whose dynamics are only par-
tially understood (Madhavan et al., 2007; Parodi et al.,
1998; Rolston et al., 2007; Segev et al., 2004; Wagenaar
et al., 2006).

Here we explore the elicited activity of in vitro net-
works for computation using the Liquid State Machine
(LSM) architecture recently proposed by Maass and col-
leagues (Maass et al., 2003). LSM is a new form of
computing machine capable of universal computation
in functional spaces. The model conceptually distin-
guishes two components of the computing machine: a
linear or nonlinear dynamical system called the liquid,
and a readout component (Figure. 1). The liquid state
is the part of the internal state of the dynamical system
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that is instantaneously accessible to the readout. Unlike
the Turing machine that is capable of universal com-
putation in static discrete inputs, the LSM is universal
for real time computing on sets of continuous time ana-
log functions with finite memory (Maass et al., 2002),
also called myopic maps (Sandberg, 1997). Real world
signals are continuous time analog signals carrying in-
formation in its local time structure, so LSMs are well
matched to process sensory inputs.

Input Liquid Readout Output

u(t) y(t)

x(t)

Fig. 1. Conceptual organization of a liquid state machine. The
input is projected to the liquid (dynamical system consisting of
spiking neurons), and the state of the liquid is projected through an
instantaneous readout to an output.

One of the most surprising features of LSMs is that,
when connected to a liquid consisting of a large number
of artificial neurons, the readout is capable of achieving
stable output even though the liquid state is a continu-
ously varying high-dimensional pulse time series. This
was unsuspected from previous work in neurocompu-
tation, where dynamical systems with point attractors
were postulated as necessary to read out stable informa-
tion (?). Moreover, in spite of an instantaneous readout,
enough information about the past of the input can be
reconstructed (Maass and Markram, 2003; Maass et al.,
2003). This also defies established procedures in opti-
mal signal processing where storage of the input is com-
monly utilized to reconstruct the temporal structure of
signals (e.g. the Wiener filter). The reason this is not so
in LSMs is the recurrent and distributed nature of the
state representation possessing different time scales. In
a sense, the liquid states of individual neurons in the
liquid {x1(t), x2(t), · · · , xi(t)} can be thought of as a
set of nonlinearly transformed traces of the input sig-
nal u(t). As long as the set is complete, according to
the projection theorem (Maass and Markram, 2004), the
signal can be again recovered by a linear (or nonlin-
ear) weighted sum implemented by the readout. This
decomposition is rather different from the ones studied
in approximation theory, where the bases are chosen
a priori as simple time functions (polynomial basis or
sine waves) and are independent of the input. Notice
that the information from the liquid state is read out
instantaneously, i.e. without any delay or transient re-
sponse during the read operation, which makes LSMs

an ideal real-time processing machine. Maass and col-
leagues described two conditions that are necessary for
the reconstruction to be exact: the separation property
of the liquid state and the universal approximation prop-
erty of the readout (Maass et al., 2002). However, there
are so far no design principles to create an “ideal” liq-
uid state for a special type of input (but see, Legenstein
and Maass, 2007). The universality of the readout can
be easily achieved and will not be addressed in this pa-
per, see Maass et al. (2002) for discussion.

MEA

electrode

neuron

Stimulator

Amplifier

Liquid

Computer

Input / Readout

Fig. 2. Hybrid configuration of a biological system and a digital
computer to implement liquid state machine (LSM). The liquid is
implemented with real neurons grown on a micro-electrode array
(MEA). A microscopic image (200x) snapshot of dissociated rat
cortical neurons whose connectivity has developed over time and
formed a highly interconnected network is shown. Extracellular
electrodes are used to record the activity (liquid state), and the
computer is used to perform the readout task. The extracellular
electrodes also provide the input signal to the liquid. Spatially
encoded voltage pulses are used to drive the local dynamics of the
liquid in this paradigm.

In the conventional LSM approach, a simulated spik-
ing neural network is used as the liquid. Our approach
creates a hybrid biological-silicon computer by emply-
ing a living network of in vitro rat cotrical neurons as
the liquid. This network is interfaced to a silicon com-
puter that serves as the readout stage based on spike
activity (action potentials) recorded with a 60 electrode
MEA. Inputs provided by electrically stimulating se-
lected electrodes complete the LSM achieving the de-
sired input-output mapping (Fig. 2).

Perhaps the most essential requirement of the bio-
logical subsystem to implement the liquid and achieve
computation is the separation property, which ensures
output decodability despite the stochastic nature of the
biological neurons within the LCN. Unlike simulated
neural networks where the initial state and network
configuration can be controlled, an LCN exhibits com-
plicated spontaneous dynamics (Rolston et al., 2007;
Segev et al., 2004; Wagenaar et al., 2006) whose ac-
tivity patterns evolve over the course of development
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in vitro (van Pelt et al., 2004). These dynamics typ-
ically consist of episodes of increasing spontaneous
asynchronous action potentials that culminate in a syn-
chronous population burst of activity followed by a qui-
escent period. Simple inputs such as from a brief 200
us ±500 mV stimulation pulse delivered to a single
electrode often evokes a burst of activity lasting over
100 ms and although the pattern of activity during the
initial early phase of the network response is reliable
(first 20 ms), the late phase (> 20 ms) is often more
chaotic (Jimbo et al., 2000).

Here we advance the approach that separability of re-
sponses from site specific stimulation can be indirectly
assessed in a classification context. Given different in-
puts to LCN, enough separation of the scattered output
clusters guarantees that each output (network response)
will contain unique information about the input. Since
we encode the input to the liquid as spatial pattern of
electrical stimulation, and use the response as the liquid
state, a strategy that minimizes the chaotic late phase
may provide a more accurate representation. In this pa-
per, we demonstrate and compare two types of stimu-
lation protocols to measure the seperability of the re-
sponse; one inducing bursts (LFS; low frequency stimu-
lation) and one that suppresses the burst response (HFS;
high frequency stimulation), minimizing the chaotic late
phase, and increasing potential input bandwidth. In both
cases, we show the separability property is present by
building a classifier that maps the liquid state to the in-
put stimulation pattern. We begin by describing the LCN
preparation and the interface with the computer. Then,
we present and compare the performance of two clas-
sifier methods for separating spatio-temporal responses
produced by the LFS and HFS protocols. Finally, we
discuss the implications of this approach and its appli-
cation to future LSM implementations with LCNs.

2. Methods

2.1. Cell Culture

Neuronal networks of rat cortical neurons were cul-
tured using the methods similar to those discussed
in prior work (e.g., Potter and DeMarse (2001)).
Briefly, embryonic day 18 Sprague/Dawley rat corti-
cal hemispheres obtained from a commercial supplier
(BrainBits) were dissociated with Worthington Papain
Dissociation System. About 20,000–50,000 cells were
plated on each microelectrode array (MEA), which was
pre-coated with 100 µL 0.1% polyethyleneimine (PEI,
Sigma) and 10 µL laminin (Sigma) to enhance adhe-

sion and promote growth. The MEAs were covered
with FEP lids (Potter and DeMarse, 2001), which re-
duce the culture media’s evaporation, prevent infection,
and allow gas exchange. Cell cultures were maintained
in the 35.5 ◦C, 5% CO2 for more than 1 month after
which the pattern of spontaneous activity within these
cultures becomes relatively stable (Kamioka et al.,
1996; van Pelt et al., 2004). Half of the culture me-
dia, which consisted of Dulbecco’s modified Eagle’s
medium (DMEM) (Gibco) containing 10% inactivated
equine serum (HyClone), was replaced biweekly.

2.2. Acquisition
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Fig. 3. Raw waveform trace before (upper) and after (lower) artifact
filtering to reject noise from stimulation. Action potentials can be
detected with a simple threshold method when the noise generated
by stimulation is removed.

Neuronal activity was recorded extracellularly (sam-
pling rate 25 kHz per electrode) using the MEA elec-
trodes (8 by 8 grid), a 64-channel amplifier and acqui-
sition board from MultiChannel Systems. Each MEA
consists of sixty 30 µm electrodes spaced 200 µm apart.
Data were collected using a Dell PC with Dual Intel
Xeon 2.8 GHz processors with 3 GB RAM or an Ap-
ple Dual G5 2.0 GHz computer with 4 GB RAM. Spike
detection was performed at a five times standard de-
viation threshold of estimated noise levels. Recordings
were blanked (zeroed) for 2 ms following each stim-
ulation pulse and any additional electrical artifact was
removed using a local low-order polynomial fit (Wage-
naar et al., 2005a), Figure 3.
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2.3. Data and Stimulus Protocols
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Fig. 4. Stimulus Pattern. Left: Low frequency stimulation, 1
3

Hz.
Right: High frequency stimulation, 20 Hz. Note the differing
timescales. In general, HFS results in individual responses with
shorter duration than the burst responses of LFS that last longer
than 100 ms. During stimulation, the average, culture-wide firing
rate was 1.50 AP/ms (LFS) and 4.24 AP/ms (HFS).

Two distinct electrical stimulation protocols were
used to provide inputs into the LCNs. The first proto-
col (LFS, n = 7 cultures) consisted of 10 repetitions of
stimulation to each of the 60 MEA channels applied in
random order at low frequency (1/3 Hz). Stimulations
were biphasic 200 µsec pulses at 500 mV. Stimulation
of most channels consistently induced population bursts
lasting longer than 100 ms (see Fig. 4). The early phase
of the response (< 20 ms) likely represents activity
from the direct activation of neurons nearby the stim-
ulation electrode or neurons connected through short
path lengths to neurons directly stimulated resulting in
a reliable pattern of activity (Jimbo et al., 2000; ?). In
contrast, the response after this period (late phase) is
often more variable and likely represents the reverbera-
tion of activity throughout the network. LFS also results
in a refractory period over 100 ms in duration in which
additional evoked bursts are not possible and therefore
limits the potential input bandwidth for this protocol.

The second protocol (HFS, n = 3 cultures) sought to
eliminate the late phase of the burst response and also
increase the potential input-output rate of the system. In
this protocol multichannel high frequency stimulation
(20 Hz) was applied which has been shown to reduce
the burst response to a tens of milliseconds in dura-
tion (Wagenaar et al., 2005b). The mechanisms under
HFS that suppress bursting are not completely under-
stood. However, stimulation at these frequencies likely
elevates synaptic depression across the entire network

and therefore decreases the ability of the neurons to
support longer bursts. Stimulation of 10 active channels
(as determined by visual inspection) was repeated 600
times in randomized sequences at high frequency (20
Hz). Stimulations were biphasic 200 µsec pulses at 400
mV. Stimulation (after the first sequence) generated ac-
tivity that typically ended in less than 30 ms (Fig. 4).
Only data after the first second is used in the discrimi-
nation tasks for this protocol due to the burst of activity
that is often elicited by the first stimulation(s).

3. Classification Methods

The input to the LCN was spatially coded via se-
lection among the 8 × 8 grid of electrodes. Therefore,
the goal of the classification task is to reconstruct the
spatial stimulation pattern given the temporal structure
of the spike trains recorded using the MEA. There are
a wide variety of classification methods that could be
used. For this paper, high similarity or small distance to
a set of templates is used to classify windowed action
potential trains. For similarity, a novel scheme based on
cross-correlation of spike times is proposed and com-
pared with a distance measure proposed by van Rossum
(2001).

Since we are interested in proving the separation
property, templates for the spatio-temporal pattern of
action potentials with respect to each input are created,
and later used to select the most similar template when
an unknown pattern is given (nearest centroid classi-
fier). The templates are built from simple smoothed peri-
stimulus time histograms (PSTH, bin size equal to 1
sample) SX→Y generated for every input-output map-
ping, i.e. between every stimulus channel X and every
recording channel Y , as shown in equation (1) (Fig. 5).

SX→Y (t) =
1
N

∑

k

∑

i

exp

(
−|t− tki,Y |

τ

)
(1)

where tki,Y is the timing of the i-th action potential of
k-th response contained in the training set of size N re-
peated stimulations corresponding to input X for output
channel Y . Throughout this paper, the term training set
is used to refer to the experimental data used to gen-
erate the templates for typifing stimulation of channel
X . Training data is excluded from the descrimination
task and is selected randomly from the entire set of ex-
perimental data unless otherwise noted. The smoothing
function is a double exponential kernel with time con-
stant τ = 0.25 ms. τ is selected to be highly selective
for differences in timing, but allow for spike jitter. Al-
though the standard deviation of jitter in reliable spike
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timing varies, most of the channels show precise timing
rather than firing rate modulation (data not shown), thus
we chose a fixed time constant for all action potentials.

Fig. 5. Representative Example of Smoothed PSTHs for HFS proto-
col (N = 10 repeated stimulation of a single channel). Data shown
represents the average response to stimulations on channel 54 (left)
and 61 (right panel), indicated by grey. The horizontal axis corre-
sponds to 3-18 ms interval after each stimulation input. The net-
work’s response to different stimulation sites is often unique pro-
ducing different patterns dependent on stimulus location (response
templates marked with a single dot at upper right corner). However,
a few of the readout channels (marked with doubled dots) do show a
remarkable similarity on a subset of stimulus locations, highlighting
the importance of multichannel readout and classification techniques.

For the HFS protocol, we specifically excluded read-
out data from the stimulated channel. In order to do
the same exclusion for the LFS protocol, we limited
the number of stimulated channels to 10 where speci-
fied. Hence, only the nonstimulated channels were used
for readout and classification in these cases. This is to
ensure that the lack of detected action potentials due
to the large isolated transient artifact on the stimulated
electrode does not become a prominent feature used to
match the template. For the LFS protocol with all 60
channels used as input stimulation, this exclusion is not
possible and results in an artificial mechanism to iden-
tify the stimulated channel. However, incorporating 60
channels of data reduces the effect of this, as the signif-
icance of any one channel on average in the classifiers
is approximately related to the inverse number of chan-
nels when the classifier equally weights the channels.

Spike trains recorded from many of the MEA chan-
nels are multi-unit activity (MUA). Spike sorting, to
isolate individual neurons, is not used since it adds a
source of error and it is not neccesary for the descrim-
ination task. Futhermore, the correct method for com-
bining (or weighting) the distances of action potential
trains from multiple readout sources has not been de-
termined, thus seperating each source would compound
this issue further.

Template Normalization
Proper normalization of the PSTHs allows direct

comparison to the template based on spike times regard-
less of the output spike train that is under classification.
The normalization used is as follows,

S̄X→Y (t) =





µX→Y

µ
if µX→Y < µ− σ

or µX→Y = 0,
SX→Y (t)
µX→Y

if µX→Y ≥ µ− σ.

(2)

where µX→Y is the temporal average of SX→Y (t) and
µ and σ are the average and standard deviation, respec-
tively, of µX→Y for all X and Y .

Template matching can then be performed by the
summation of the template values corresponding to the
response (i.e., the timing of all the action potentials un-
der classification).

Qx =
∑

y

∑

j

S̄x,y(tj,y) (3)

where tj is the stimulation-locked time of the j-th action
potential on output channel y. The response is classified
as the channel x by having the maximum Qx value.

L2 Distance
As an alternate approach, L2 distance between spike

trains (van Rossum, 2001),

Dx =

√∑
y

∫
(Sx→y(t)− λy(t))2 dt (4)

is used where λy(t) is the smoothed spike train with the
same double exponential kernel similar to Eq. (1). The
stimulation response is then classified by the minimum
Dx value.

4. Results

We apply the template matching approaches from
the previous section to LFS and HFS data with the
goal of finding a one-to-one mapping of stimulus to re-
sponse. Classification of inputs (stimulations) based on
the spatio-temporal output pattern of action potentials
is affected by a variety of factors. Here we note differ-
ences in the datasets and address the factors affecting
input reconstruction including training data, stimulus
protocols, windowing, and nonstationarity.

The spike trains produced by the two stimulation pro-
tocols differed in their composition, as seen by inspec-
tion of the activity (Fig. 4). Inspection of the spike trains
under LFS showed unreliable responses as early as 13
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Classification LFS, 60 channel LFS, 10 channel HFS, 10 channel

Method n = 7 cultures n = 7 cultures n = 3 cultures

Correlation 85.9% 95.4% 96.1%

L2 64.5% 89.4% 98.1%
Table 1
Average (across cultures and repetitions) classifier performance in
correctly identifying the input stimulation site. For LFS, 8 stimula-
tions per input channel were classified using 2 responses as a tem-
plate for each of the 60 channels (left column) or the 10 most active
response channels (middle column) that improved classification per-
formance. High frequency stimulation classifies 588 stimulations per
input channel using 10 stimulations as a template. Overall, HFS re-
sulted in more accurate seperability of the input-output relationship
than the LFS protocol while also increasing the input bandwidth.

ms after stimulation and most reliable responses had
terminated by 20 ms after stimulus. HFS produced the
same reliable responses during the early phase; however,
unreliable responses occurred less frequently. Occasion-
ally, unreliable timings in responses were observed with
HFS that was associated with the stimulation of partic-
ular channels. This response was typically isolated to a
handful of readout channels with other channels simul-
taneously demonstrating precise timings. This contrasts
with LFS which induced unreliable activity with varied
firing rates as part of the population burst.

Input Reconstruction Performance

The performance of classifiers used in this work was
dependent on the dataset, see Table 1. Sixty-channel
classification is a more difficult task than classifying
10 channels due to increased input space. Further, LFS
protocol occasionally delivers a stimulus mid-burst or
does not evoke a (population) burst at all. However,
this only accounted for 15 of the 600 stimulations on
average in the cultures tested. Using data selection to
circumvent these issues and choosing the ten most ac-
tively responding channels that remain compensates for
both these issues and enables us to more fairly compare
LFS data with HFS data. Regardless, both classifiers
monotonically increased in performance with increases
in the training data (N ) for both LFS and HFS data (data
not shown). Moreover, the normalization-based classi-
fier outperformed the L2 classifier when using fewer
training data.

In contrast to the increase in performance associated
with increases in training data, increasing the length of
post-stimulus analysis window does not increase classi-
fication performance indefinitely. Indeed, the benefits of
increases in window size on classification performance
rapidly diminish following a peak at 5–10 ms and de-
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Fig. 7. Effect of Post-Stimulus Analysis Window on Classification
Performance. Varying the post-stimulus window used for the tem-
plate and classification demonstrates the reliability of timings rela-
tive to stimulation time. Five stimulations for each template were
used to classify responses from 10 inputs (For LFS data only the
most actively responding channels were used) during a 15 ms win-
dow. The degradation of the HFS performance is due to the lack
of evoked late activity. The decline of low frequency stimulation
performance is likely due to the small tau used in creating the
smoothed PSTHs and the accumulation of spike jitter as larger taus
have shown better similarity between trials in other work (Jimbo
et al., 2000). Recurrent activity from stimulations inducing bursting
(0.33 Hz) reduces the ability to perform correct classification.

cline gradually thereafter (see Figure 6). However, clas-
sification performance declined more slowly for HFS
than for LFS. Shifting the template and comparison win-
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dow toward later response data, we see a rapid decline
in classification performance (Fig 7). We suggest that
the deterioration of classification for the high frequency
stimulation data with later post-stimulus windows is
likely due to the lack of action potentials at longer de-
lays (see Fig. 4). In contrast, the decrease in classifica-
tion performance for the LFS protocol is likely due to
accumulation of spike jitter and the resulting changes
in action potential patterns across each stimulation. If
we assume that recurrent activity especially during the
late phase accumulates spike jitter (interpreted as error
or noise in response output), then a decline would be
expected in classification performance as recurrent ac-
tivity increases (late phase) (Fig. 7). This would then re-
sult in an increase in ratio of highly recurrent activity to
initial activity and reduce classification performance by
effectively decreasing the signal to noise ratio (Fig. 6).

Surrogate Data

To insure the reconstruction of stimulated channels
through output spikes is independent of artificial cor-
relations, we shuffled the spike-times of each response
while maintaining the number of action potentials for
each channel for both training and test data. This sur-
rogate data discards consistent stimulation locked cor-
relations but maintains stimulation locked culture-wide
average firing rates. The resulting classification perfor-
mance of the 20 Hz stimulations fell to 15.8% and
45.3% for the normalization and L2 methods, respec-
tively.

Thus, the L2 classifier’s firing rate component was
able to maintain marginal classification performance
since the firing rate response varies by the channel stim-
ulated. The normalization method performs near chance
level, 10%, since firing rate information is removed in
the formation of the template. This is confirmed in a
second analysis by pairing random channels (instead of
shuffling channels) with each spike time resulting in
similar classification performance for both classifiers.
However, assigning random spike-times to the origi-
nal spike-channels resulted in classification rates for the
normalization and L2 methods of 10%. Not shuffling
the data used to generate the template had little effect
on the classification rates for the surrogate test data.

Training Set Sampling and Nonstationarity

Figure 8 shows a raster plot of each HFS trial for a
single stimulation site and the template used for clas-
sification of a single output channel. Frequently, clear
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Fig. 8. Pattern of Evoked Activity and Associated Templates for One
of the 60 Channels. Upper: Raster of activity from a single readout
channel during repeated high frequency stimulation of an MEA elec-
trode. Note the changes in action potential precise timings during
the course of the 600 stimulations over 5 minutes. Lower: Compar-
ison of the template and representative match from last 4 minutes
relative to the first minute of stimulation. Note the blurring of the
precise timings by randomly sampled template construction. (Thick
line: smoothed template, Thin line: smoothed response from the last
minute, Dotted line: smoothed response from the first minute).

temporally-dependent trends appear in the response
over the course of the stimulation trials. The same
trends were not noticed with the low frequency stimu-
lus responses; although samples of the low frequency
stimulation data are sparse and subtle changes would
be indiscernible. Thus, only the stationarity of HFS
data are mentioned and shown in Figure 8. A large por-
tion (over 70% for each culture) of misclassifications
occurred during the initial minute of high frequency
stimulation; indeed, greater than 90% of misclassifica-
tions occurred in the first two minutes of data. As a
result, the template is more representative of the latter
4 minutes as shown in Figure 8.

To illustrate the similarity of consecutive stimulus re-
sponses (and thus a gross measure of plastic changes on
classification over long time periods), the ten immedi-
ately preceding responses of the same input stimulation
are used to build the current template for classifying
each succeeding response. The performance of the nor-
malization classifier using this mutable template now
becomes 99.77± 0.07% correct (n = 3). The changing
template contains sharper peaks corresponding to reli-
able action potentials that shift over time and as a result
are blurred in the static template (Fig. 8). Comparison
with the numbers in Table 1 and considering the ker-
nel size (τ = 0.25 ms), the performance indicates that
the changes in timings of action potentials are small
between consecutive stimulations. Furthermore, this il-
lustrates that nearly all the classification errors (in HFS
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data) originate from the limitations of using the static
template (or one that does not account for nonstationar-
ity) and that only recent examples of stimulus response
are required for correct classification while stimulation
rate is maintained.

Changes in response to high frequency stimulation
occur with many of the channels and are manifest as
the origination or termination of precisely timed spikes
or as a shift in the precise timing either earlier or later.
Due to these changes, selecting the first stimulations
for the generation of the template for comparisons re-
sults in more misclassifications than randomly selecting
stimulations for the template. Hence, it is essential that
the template incorporate stimulations from each period
of experiments demonstrating differing timings and/or
emphasize temporally relevant data extracted through
HFS.

5. Discussion

The present study supports the notion of the hybrid
computational device that consists of a biological sys-
tem as a recurrent dynamical system, and a computer to
explicitly interpret the biological activity based on the
theory of LSMs. The ability to produce discriminable
liquid states for different inputs, the separation prop-
erty which is one of the key requirements of LSM, is
demonstrated via the performance of a classifier. De-
spite the spontaneous non-stationary activity of the cul-
tured network, we were able to show that the response
is reproducible (reliable) for a short window (up to 15
ms) with high temporal precision (τ = 0.25 ms) of the
action potentials.

An MEA’s electrode activates nearby tissue with a
sufficiently low activation threshold – most of which
are axons. Axons then propagate orthodromic and an-
tidromic action potentials to the extent of the axonal ar-
borization (Nowak and Bullier, 1998), thus, activating
specific synapses with specific timing. In turn, a partic-
ular pattern is generated. However, spike jitter and un-
reliable vesicular release (among other reasons, Darbon
et al., 2002; Reich et al., 1997; Shadlen and Newsome,
1998; Yvon et al., 2005) accumulates down stream error
and is manifested as trial by trial variations in the re-
sponse pattern. Without highly recurrent activity, these
variations in timing propagate only for a short time.
Thus, even a single early response is representative of
the pattern seen from each repeated stimulation. This
is particularly the case with respect to HFS as there is
negligible late phase noise. Moreover, high input recon-
struction accuracy (99.77%) is achievable by tracking

changes in the response spike trains.
High frequency input has improved reliability (mini-

mal late phase with reduced recurrent activity), is better
from an input data rate perspective (increases through-
put), and is more likely to produce interacting responses
(i.e., overlapping activity due to stimulation) than the
more traditional slower stimulation rate. Rapid stimula-
tion avoids a cascade of recurrent activation maintain-
ing a large portion of action potentials due to stimu-
lation relative to cascading recurrent activity (i.e., low
noise versus high noise). However, high frequency input
also reduces the activity length so much of the activity
from consecutive stimulations may not directly inter-
act through APs or be separated based on late portions
since there is minimal activity after 30 ms. Yet, recov-
ery time constants of synapses and neurons are slower
than the period of HFS thus continuous activity may not
be necessary to demonstrate fading memory.

However, the liquid is required to have the fading
memory property which enables embedding of the tem-
poral signal to the spatial representation (liquid states)
and allow instantaneous readout for the implementation
of a temporal signal filter (such as Wiener filter). Not
only the stability of internal states and the dynamics of
the liquid, but also the strength of the input stimulation
limits the time period that the liquid is dependent on
the past stimulus. In the HFS protocol, the recurrent dy-
namics is limited and activity is typically silent after 30
ms, therefore the state of the liquid can only be main-
tained through internal or unobserved states (Mongillo
et al., 2008). We did observe some preliminary evidence
of these states via conditional responses, however, the
effects are currently unreliable.

To implement a full-fledged hybrid LSM, there are
some important additional issues that needs to be re-
solved. One of the limitations of the current paradigm is
the finite input space. Current stimulation spatially en-
codes each input to a single stimulation site, limiting the
input space to 60 electrodes on the MEA. In the origi-
nal LSM framework, the input is continuously fed into
the network via a temporal pattern, however, technical
limitations of the stimulation device prevents recording
and stimulation at the same time. Therefore, a scheme
that interleaves stimulation period and a response read-
out period is inevitable. Preliminary results suggest that
using a combination of channels with a small time de-
lay can still be separated. We are planning for extensive
data collection in this direction.
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