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Abstract

Using a new dynamical network model of society in which pairwise interactions are weighted
according to mutual satisfaction, we show that cooperation is the norm in the Hawks-Doves
game when individuals are allowed to break ties with undesirable neighbors and to make
new acquaintances in their extended neighborhood. Moreover, cooperation is robust with
respect to rather strong strategy perturbations. We also discuss the empirical structure of
the emerging networks, and the reasons that allow cooperators to thrive in the population.
Given the metaphorical importance of this game for social interaction, this is an encourag-
ing positive result as standard theory for large mixing populations prescribes that a certain
fraction of defectors must always exist at equilibrium.
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1 Introduction and Previous Work

Game Theory [1] is the study of how social or economical agents take decisions
in situations of conflict. Some games such as the celebrated Prisoner’s Dilemma
have a high metaphorical value for society in spite of their simplicity and abstract-
ness. Hawks-Doves, also known as Chicken, is one such socially significant game.
Hawks-Doves is a two-person, symmetric game with the generic payoff bi-matrix
of Table 1. In this matrix, D stands for the defecting strategy “hawk”, and C stands

C D

C (R,R) (S,T)

D (T,S) (P,P)
Table 1
Payoff matrix for a symmetric two person game.
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for the cooperating strategy “dove”. The “row” strategies correspond to player 1 and
the “column” strategies to player 2. An entry of the table such as (T,S) means that
if player 1 chooses strategy D and player 2 chooses strategy C, then the payoff or
utility to player 1 is T, while the payoff of player 2 is S. Metaphorically, a hawkish
behavior means a strategy of fighting, while a dove, when facing a confrontation,
will always yield. R is the reward the two players receive if they both cooperate, P is
the punishment for bilateral defection, and T is the temptation, i.e. the payoff that a
player receives if it defects, while the other cooperates. In this case, the cooperator
gets the sucker’s payoff S. The game has a structure similar to that of the Pris-
oner’s Dilemma [2]. However, the ordering of payoffs for the Prisoner’s Dilemma
is T > R > P > S rendering defection the best rational individual choice, while in
the Hawks-Doves game studied here the ordering is T > R > S > P thus making
mutual defection, i.e. result (D,D), the worst possible outcome. Note that in game
theory, as long as the above orderings are respected, the actual numerical payoff
values do not change the nature and number of equilibria [1].
In contrast to the Prisoner’s Dilemma which has a unique Nash equilibrium that
corresponds to both players defecting, the strategy pairs (C,D) and (D,C) are both
Nash equilibria of the Hawks-Doves game in pure strategies, and there is a third
equilibrium in mixed strategies in which strategy D is played with probability p,
and strategy C with probability 1− p, where 0 < p < 1 depends on the actual pay-
off values. We recall that a Nash equilibrium is a combination of strategies (pure or
mixed) of the different players such that any unilateral deviation by any agent from
this combination can only decrease her expected payoff [1].
As it is the case for the Prisoner’s Dilemma (see for example [2,3] for the iter-
ated case, among a vast literature), Hawks-Doves, for all its simplicity, appears to
capture some important features of social interactions. In this sense, it applies in
many situations in which “parading”, “retreating”, and “escalating” are common.
One striking example of a situation that has been thought to lead to a Hawks-Doves
dilemma is the Cuban missile crisis in 1962 [4]. Territorial threats at the border be-
tween nations are another case in point as well as bullying in teenage gangs. Other
well known applications are found in the animal kingdom during ritualized fights
[5].
In this article, we shall present our methods and results in the framework of evo-
lutionary game theory [6]. In evolutionary game theory a very large mixing pop-
ulation of players is considered, and randomly chosen pairs of individuals play
a sequence of one-shot two-person games. In the Hawks-Doves game, the theory
prescribes that the only Evolutionary Stable Strategy (ESS) of the population is the
mixed strategy, giving rise, at equilibrium, to a polymorphic population composed
of hawks and doves in which the frequency of hawks equals p, the probability with
which strategy hawk would be played in the NE mixed strategy.
In the case of the Prisoner’s Dilemma, one finds a unique ESS with all the indi-
viduals defecting. However, Nowak and May [7] showed that cooperation in the
population is sustainable under certain conditions, provided that the network of the
interactions between players has a lattice spatial structure. Killingback and Doe-
beli [8] extended the spatial approach to the Hawks-Doves game and found that
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a planar lattice structure with only nearest-neighbor interactions may favor coop-
eration, i.e. the fraction of doves in the population is often higher than what is
predicted by evolutionary game theory. In a more recent work however, Hauert and
Doebeli [9] were led to a different conclusion, namely that spatial structure does
not seem to favor cooperation in the Hawks-Doves game.
Further studies extended the structured population approach to other graph struc-
tures representing small worlds (for an excellent review, see [10]). Small-world
networks are produced by randomly rewiring a few links in an otherwise regular
lattice such as a ring or a grid [11]. These “shortcuts”, as they are called, give rise
to graphs that have short path lengths between any two nodes in the average as
in random graphs, but in contrast to the latter, also have a great deal of local struc-
ture as conventionally measured by the clustering coefficient 1 . These structures are
much more typical of the networks that have been analyzed in technology, society,
and biology than regular lattices or random graphs [12]. In [13] it was found that
cooperation in Hawks-Doves may be either enhanced or inhibited in small-world
networks depending on the gain-to-cost ratio r = R/(R− P ), and on the strategy
update rule using standard local evolutionary dynamics with one-shot bilateral en-
counters. However, Watts–Strogatz small-world networks, although more realistic
than lattices or random graphs, are not good representations of typical social net-
works. Santos and Pacheco [14] extended the study of the Hawks-Doves game to
scale-free networks, i.e. to networks having a power-law distribution of the con-
nectivity degree [12]. They found that cooperation is remarkably enhanced in them
with respect to previously described population structures through the existence of
highly connected cooperator hubs. Scale-free networks are much closer than Watts–
Strogatz ones to the typical socio-economic networks that have been investigated,
but they are relatively uncommon in their “pure” form due to finite cutoffs and other
real-world effects (for example, see [12,15,16,17]), with the notable exception of
sexual contact networks [18]. Using real and model static social networks, Luthi
et al. [19] also found that cooperation is enhanced in Hawks-Doves, although to a
lesser degree than in the scale-free case, thanks to the existence of tight clusters of
cooperators that reinforce each other.
Static networks resulting from the analysis of actual social networks or good mod-
els of the latter are a good starting point; however, the static approach ignores fluc-
tuations and non-equilibrium phenomena. As a matter of fact, in many real net-
works nodes may join the network forming new links, and old nodes may leave
it as social actors come and go. Furthermore, new links between agents already
in the network may also form or be dismissed. Often the speed of these network
changes is comparable to that of the agent’s behavioral adaptation, thus making it
necessary to study how they interact. Examples of slowly-changing social networks

1 The clustering coefficient Ci of a node i is defined as Ci = 2Ei/ki(ki−1), where Ei is the
number of edges in the neighborhood of i. Thus Ci measures the amount of “cliquishness”
of the neighborhood of node i and it characterizes the extent to which nodes adjacent to
node i are connected to each other. The clustering coefficient of the graph is simply the
average over all nodes: C = 1

N

∑N
i=1 Ci [12].
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are scientific collaborations, friendships, firm networks among others. A static net-
work appears to be a good approximation in these cases. On the other hand, in our
Internet times, there exist many social or pseudo-social networks in which topol-
ogy changes are faster. For example, e-mail networks [20], web-based networks
for friendship and entertainment, such as Facebook, or professional purposes such
as LinkedIn, and many others. Furthermore, as it is not socially credible that peo-
ple will keep for a long time unsatisfying relationships, addition and dismissal of
partners are an extremely common phenomenon, also due to natural causes such
as moving, changing fields, or interests. We note at this point that some previous
work has focused on the possibility of allowing players to choose or refuse social
partners in game interactions [21,22], which has been shown to potentially promote
cooperation. However, this work does not consider an explicit underlying interac-
tion network of agents, nor does it use the social link strengths as indicators of
partner’s suitability as we do here.
In light of what has been said above, the motivation of the present work is to study
the co-evolution of strategy and network structure and to investigate under which
conditions cooperative behavior may emerge and be stable in the Hawks-Doves
game. A related goal is to study the topological structures of the emergent networks
and their relationships with the strategic choices of the agents. Some previous work
has been done on evolutionary games on dynamic networks [23,24,25,26,27] al-
most all of them dealing with the Prisoner’s Dilemma. The only one briefly describ-
ing results for the Hawks-Doves game is [27] but our model differs in several impor-
tant respects and we obtain new results on the structure of the cooperating clusters.
The main novelty is the use of pairwise interactions that are dynamically weighted
according to mutual satisfaction. The new contributions and the differences with
previous work will be described at the appropriate points in the article. An early
preliminary version of this study has been presented at the conference [29].
The paper is organized as follows. In the next section we present our coevolutionary
model. This is followed by an exhaustive numerical study of the game’s parameter
space. After that we present our results on cooperation and we describe and dis-
cuss the structure of the emerging networks. Finally we give our conclusions and
suggestions for possible future work.

2 The Model and its Dynamics

The model is strictly local as no player uses information other than the one con-
cerning the player itself and the players it is directly connected to. In particular,
each agent knows its own current strategy and payoff. Moreover, as the model is an
evolutionary one, no rationality, in the sense of game theory, is needed [1]. Players
just adapt their behavior such that they imitate more successful strategies in their
environment with higher probability. Furthermore, they are able to locally assess
the worthiness of an interaction and possibly dismiss a relationship that does not
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pay off enough. The model has been introduced and fully explained in [30], where
we study the Prisoner’s Dilemma and the Stag-Hunt games; it is reported here in
some detail in order to make the paper self-contained.

2.1 Agent-Agent and Network Interaction Structure

The network of agents is represented by a directed graph G(V,E), where the set
of vertices V represents the agents, while the set of oriented edges (or links) E
represents their unsymmetric interactions. The population size N is the cardinality
of V . A neighbor of an agent i is any other agent j such that there is a pair of
oriented edges ~ij and ~ji ∈ E. The set of neighbors of i is called Vi. For network
structure description purposes, we shall also use an unoriented version G

′ of G
having exactly the same set of vertices V but only a single unoriented edge ij
between any pair of connected vertices i and j of G. For G′ we shall define the
degree ki of vertex i ∈ V as the number of neighbors of i. The average degree of
the network G′ will be called k̄.
A pair of directed links between vertices i and j in G is schematically depicted in
Fig. 1. Each link has a weight or “force” fij (respectively fji). This weight, say fij ,
represents in an indirect way the “trust” player i attributes to player j. This weight
may take any value in [0, 1] and its variation is dictated by the payoff earned by i in
each encounter with j, as explained below.

Fig. 1. Schematic representation of mutual trust between two agents through the strengths
of their links.

The idea behind the introduction of the forces fij is loosely inspired by the potenti-
ation/depotentiation of connections between neurons in neural networks, an effect
known as the Hebb rule [31]. In our context, it can be seen as a kind of “memory”
of previous encounters. However, it must be distinguished from the memory used in
iterated games, in which players “remember” a certain number of previous moves
and can thus conform their future strategy on the analysis of those past encoun-
ters [1]. Our interactions are strictly one-shot, i.e. players “forget” the results of
previous rounds and cannot recognize previous partners and their possible playing
patterns. However, a certain amount of past history is implicitly contained in the
numbers fij and this information may be used by an agent when it will come to
decide whether or not an interaction should be dismissed (see below).
We also define a quantity si called satisfaction of an agent i which is the sum of all
the weights of the links between i and its neighbors Vi divided by the total number
of links ki:
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si =

∑
j∈Vi

fij
ki

.

We clearly have 0 ≤ si ≤ 1. Note that the term satisfaction is sometimes used
in game-theoretical work to mean the amount of utility gained by a given player.
Instead, here satisfaction is related to the average willingness of a player to maintain
the current relationships in the player’s neighborhood.

2.2 Initialization

The network is of constant size N = 1000; this allows a simpler yet significant
model of network dynamics in which social links may be broken and formed but
agents do not disappear and new agents may not join the network. The initial graph
is generated randomly with a mean degree k̄ = 10 which is of the order of those ac-
tually found in many social networks such as collaboration, association, or friend-
ship networks in which relations are generally rather long-lived and there is a cost
to maintain a large number; see, for instance, [16,12,32,33]. Players are distributed
uniformly at random over the graph vertices with 50% cooperators. Forces of links
between any pair of neighboring players are initialized at 0.5.
We use a parameter q which is akin to a “temperature” or noise level; q is a real
number in [0, 1] and it represents the frequency with which an agent wishes to dis-
miss a link with one of its neighbors. The higher q, the faster the link reorganization
in the network. This parameter has been first introduced in [25] and it controls the
speed at which topological changes occur in the network, i.e. the time scale of the
strategy-topology co-evolution. It is an important consideration, as social networks
may structurally evolve at widely different speeds, depending on the kind of in-
teraction between agents. For example, e-mail networks change their structure at a
faster pace than, say, scientific collaboration networks.

2.3 Strategy and Link Dynamics

Here we describe in detail how individual strategies, links, and link weights are
updated. The node update sequence is chosen at random with replacement as in
many previous works [34,9,26]. Once a given node i of G is chosen to be activated,
it goes through the following steps:

• if the degree of agent i, ki = 0 then player i is an isolated node. In this case a
link with strength 0.5 is created from i to a player j chosen uniformly at random
among the other N − 1 players in the network.
• otherwise,
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· either agent i updates its strategy according to a local replicator dynamics rule
with probability 1 − q or, with probability q, agent i may delete a link with a
given neighbor j and creates a new 0.5 force link with another node k ;
· the forces between i and its neighbors Vi are updated

Let us now describe each step in more detail.

2.4 Strategy Evolution

We use a local version of replicator dynamics (RD) for regular graphs [9] but mod-
ified as described in [35] to take into account the fact that the number of neighbors
in a degree-inhomogeneous network can be different for different agents. Indeed,
it has been analytically shown that using straight accumulated payoff in degree-
inhomogeneous networks leads to a loss of invariance with respect to affine trans-
formations of the payoff matrix under RD [35]. The local dynamics of a player i
only depends on its own strategy and on the strategies of the ki players in its neigh-
borhood Vi ∈ G

′ . Let us call πij the payoff player i receives when interacting with
neighbor j. This payoff is defined as

πij = σi(t) M σTj (t),

where M is the payoff matrix of the game and σi(t) and σj(t) are the strategies
played by i and j at time t. The quantity

Π̂i(t) =
∑
j∈Vi

πij(t)

is the weighted accumulated payoff defined in [35] collected by player i at time
step t. The rule according to which agents update their strategies is the conven-
tional RD in which strategies that do better than the average increase their share
in the population, while those that fare worse than average decrease. To update the
strategy of player i, another player j is drawn at random from the neighborhood
Vi. It is assumed that the probability of switching strategy is a function φ of the
payoff difference; φ is required to be monotonic increasing; here it has been taken
linear [6]. Strategy σi is replaced by σj with probability

pi = φ(Π̂j − Π̂i),

where
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φ(Π̂j − Π̂i) =


Π̂j − Π̂i

Π̂j,max − Π̂i,min
if Π̂j − Π̂i > 0

0 otherwise.

In the last expression, Π̂x,max (resp. Π̂x,min) is the maximum (resp. minimum) payoff
a player x can get (see ref. [35] for more details).

The major differences with standard RD is that two-person encounters between
players are only possible among neighbors, instead of being drawn from the whole
population, and the latter is of finite size in our case. Other commonly used strategy
update rules include imitating the best in the neighborhood [7,25], or replicating in
proportion to the payoff [9,13].

2.5 Link Evolution

The active agent i, which has ki 6= 0 neighbors will, with probability q, attempt
to dismiss an interaction with one of its neighbors in the following way. In the de-
scription we focus on the outgoing links from i in G, the incoming links play a
subsidiary role. Player i first looks at its satisfaction si. The higher si, the more
satisfied the player, since a high satisfaction is a consequence of successful strate-
gic interactions with the neighbors. Thus, the natural tendency is to try to dismiss a
link when si is low. This is simulated by drawing a uniform pseudo-random num-
ber r ∈ [0, 1] and breaking a link when r ≥ si. Assuming that the decision is taken
to cut a link, which one, among the possible ki, should be chosen? Our solution is
based on the strength of the relevant links. First a neighbor j is chosen with proba-
bility proportional to 1− fij , i.e. the stronger the link, the less likely it is that it will
be selected. This intuitively corresponds to i’s observation that it is preferable to
dismiss an interaction with a neighbor j that has contributed little to i’s payoff over
several rounds of play. However, dismissing a link is not free: j may “object” to
the decision. The intuitive idea is that, in real social situations, it is seldom possible
to take unilateral decisions: often there is a cost associated, and we represent this
hidden cost by a probability 1 − (fij + fji)/2 with which j may refuse to be cut
away. In other words, the link is less likely to be deleted if j appreciates i, i.e. when
fji is high.
Assuming that the ~ij and ~ji links are finally cut, how is a new interaction to be
formed? The solution adopted here is inspired by the observation that, in social
settings, links are usually created more easily between people who have a mutual
acquaintance than those who do not. First, a neighbor k is chosen in Vi \ {j} with
probability proportional to fik, thus favoring neighbors i trusts. Next, k in turn
chooses player l in his neighborhood Vk using the same principle, i.e. with proba-
bility proportional to fkl. If i and l are not connected, two links ~il and ~li are created,
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otherwise the process is repeated in Vl. Again, if the selected node, say m, is not
connected to i, an interaction between i and m is established by creating two new
links ~im and ~mi. If this also fails, new links between i and a randomly chosen node
are created. In all cases the new links are initialized with a strength of 0.5 in each
direction. This rewiring process is schematically depicted in Fig. 2 for the case in
which a link can be successfully established between players i and l thanks to their
mutual acquaintance k.

Fig. 2. Illustration of the rewiring of link {ij} to {il}. Agent k is chosen to introduce player
l to i (see text). Only outgoing links are shown for clarity.

At this point, we would like to stress several important differences with previous
work in which links can be dismissed and rewired in a constant-size network in evo-
lutionary games. First of all, in all these works the interaction graph is undirected
with a single link between any pair of agents. In [25], only links between defec-
tors are allowed to be cut unilaterally and the study is restricted to the Prisoner’s
Dilemma. Instead, in our case, any interaction has a finite probability to be aban-
doned, even a profitable one between cooperators if it is recent, although links that
are more stable, i.e. have high strengths, are less likely to be rewired. This smoother
situation is made possible thanks to our bilateral view of a link. It also allows for a
moderate amount of “noise”, which could reflect to some extent the uncertainties in
the system. The present link rewiring process is also different from the one adopted
in [27], where the Fermi function is used to decide whether to cut a link or not and
also from their new version of it which has appeared in [28]. Finally, in [26] links
are cut according to a threshold decision rule and are rewired randomly anywhere
in the network.

2.6 Updating the Link Strengths

Once the chosen agents have gone through their strategy or link update steps, the
strengths of the links are updated accordingly in the following way:

fij(t+ 1) = fij(t) +
πij − π̄ij

ki(πmax − πmin)
,

where πij is the payoff of i when interacting with j, π̄ij is the payoff earned by i
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playing with j, if j were to play his other strategy, and πmax (πmin) is the maximal
(minimal) possible payoff obtainable in a single interaction. If fij(t+1) falls outside
the [0, 1] interval then it is reset to 0 if it is negative, and to 1 if it is larger than 1.
This update is performed in both directions, i.e. both fij and fji are updated ∀j ∈ Vi
because both i and j get a payoff out of their encounter.

3 Numerical Simulations and Discussion

3.1 Simulation Parameters

We simulated the Hawks-Doves game with the dynamics described above exploring
the game space by limiting our study to the variation of only two game parameters.
We set R = 1 and P = 0 and the two parameters are 1 ≤ T ≤ 2 and 0 ≤ S ≤ 1.
Setting R = 1 and P = 0 determines the range of S (since T > R > S > P )
and gives an upper bound of 2 for T , due to the 2R > T + S constraint, which
ensures that mutual cooperation is preferred over an equal probability of unilateral
cooperation and defection. Note however, that the only valid value pairs of (T, S)
are those that satisfy the latter constraint.

Fig. 3. Average cooperation values for the Hawks-Doves game for three values of q at
steady-state. Results are the average of 50 runs.

We simulated networks of size N = 1000, randomly generated with an average
degree k̄ = 10 and randomly initialized with 50% cooperators and 50% defectors.
In all cases, parameters T and S are varied between their two bounds in steps of
0.1. For each set of values, we carry out 50 runs of at most 10000 steps each, using
a fresh graph realization in each run. Each step consists in the update of a full pop-
ulation. A run is stopped when all agents are using the same strategy, in order to be
able to measure statistics for the population and for the structural parameters of the
graphs. After an initial transient period, the system is considered to have reached
a pseudo-equilibrium strategy state when the strategy of the agents (C or D) does
not change over 150 further time steps, which means 15 × 104 individual updates.
It is worth mentioning that equilibrium is always attained well before the allowed
10000 time steps, in most cases, less than 1′000 steps are enough. We speak of
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pseudo-equilibria or steady states and not of true evolutionary equilibria because
there is no analog of equilibrium conditions in the dynamical systems sense.
To check whether scalability is an issue for the system, we have run several simu-
lations with larger graphs namely, N = 3000 and N = 10000. The overall result is
that, although the simulations take a little longer and transient times are also slightly
longer, at quasi-equilibrium all the measures explored in the next sections follow
the same trend and the dynamics give rise to comparable topologies and strategy
relative abundance.

3.2 Emergence of Cooperation

Cooperation results in contour plot form are shown in Fig. 3. We remark that, as ob-
served in other structured populations, cooperation is achieved in almost the whole
configuration space. Thus, the added degree of freedom represented by the possi-
bility of refusing a partner and choosing a new one does indeed help to find player’s
arrangements that help cooperation. When considering the dependence on the pa-
rameter q, one sees in Fig. 3 that the higher q, the higher the cooperation level, al-
though the differences are small, since full cooperation prevails already at q = 0.2.
This is a somewhat expected result, since being able to break ties more often clearly
gives cooperators more possibilities for finding and keeping fellow cooperators to
interact with. The results reported in the figures are for populations starting with
50% cooperators randomly distributed. We have also tried other proportions with
less cooperators, starting at 30%. The results, not reported here for reasons of space,
are very similar, the only difference being that it takes more simulation time to reach
the final quasi-stable state. Finally, one could ask whether cooperation would still
spread starting with very few cooperators. Numerical simulations show that coop-
eration could indeed prevail even starting from as low as 1% cooperators, except
on the far left border of the configuration space where cooperation is severely dis-
advantaged.
Compared with the level of cooperation observed in simulations in static networks,
we can say that results are consistently better for co-evolving networks. For all
values of q (Fig. 3) there is significantly more cooperation than what was found
in model and real social networks [19] where the same local replicator dynam-
ics was used but with the constraints imposed by the invariant network structure.
A comparable high cooperation level has only been found in static scale-free net-
works [14,36] which are not as realistic as a social network structures.
The above considerations are all the more interesting when one observes that the
standard RD result is that the only asymptotically stable state for the game is a
polymorphic population in which there is a fraction α of doves and a fraction 1−α
of hawks, with α depending on the actual numerical payoff matrix values. To see
the positive influence of making and breaking ties we can compare our results with
what is prescribed by the standard RD solution. Referring to the payoff table 1, let’s
assume that the column player plays C with probability α and D with probability
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1− α. In this case, the expected payoffs of the row player are:

Er[C] = αR + (1− α)S

and
Er[D] = αT + (1− α)P

The row player is indifferent to the choice of α when Er[C] = Er[D]. Solving for
α gives:

α =
P − S

R− S − T + P
. (1)

Since the game is symmetric, the result for the column player is the same and
(αC, (1−α)D) is a NE in mixed strategies. We have numerically solved the equa-
tion for all the sampled points in the game’s parameter space. Let us now use the
following payoff values in order to bring them within the explored game space
(remember that NEs are invariant w.r.t. such an affine transformation):

C D

C (1, 1) (2/3, 4/3)

D (4/3, 2/3) (0, 0)

Substituting in equation 1 gives α = 2/3, i.e. the dynamically stable polymorphic
population should be composed by about 2/3 cooperators and 1/3 defectors. Now,
if one looks at Fig. 3 at the points where S = 2/3 and T = 4/3, one can see
that the point, and the region around it, is one of full cooperation instead. Even
within the limits of the approximations caused by the finite population size and
the local dynamics, the non-homogeneous graph structure and an increased level
of tie rewiring has allowed cooperation to be greatly enhanced with respect to the
theoretical predictions of standard RD.

3.3 Evolution of Agents’ Satisfaction

According to the model, unsatisfied agents are more likely to try to cut links in an
attempt to improve their satisfaction level, which could be simply described as an
average value of the strengths of their links with neighbors. Satisfaction should thus
tend to increase during evolution. In effect, this is what happens, as can be seen in
Fig. 4. The figure refers to a particular run that ends in all agents cooperating, but it
is absolutely typical. One can remark the “spike” at time 0. This is clearly due to the
fact that all links are initialized with a weight of 0.5. As the simulation advances,
the satisfaction increases steadily and for the case of the figure, in which all agents
cooperate at the end, it reaches its maximum value of 1 for almost all players.
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Fig. 4. Fraction of agents having a given satisfaction level as a function of evolution time.

3.4 Stability of Cooperation

Evolutionary game theory provides a dynamical view of conflicting decision-making
in populations. Therefore, it is important to assess the stability of the equilibrium
configurations. This is even more important in the case of numerical simulation
where the steady-state finite population configurations are not really equilibria in
the mathematical sense. In other words, one has to be reasonably confident that the
steady-states are not easily destabilized by perturbations. To this end, we have per-
formed a numerical study of the robustness of final cooperators’ configurations by
introducing a variable amount of random noise into the system. A strategy is said
to be evolutionarily stable when it cannot be invaded by a small amount of players
using another strategy [6]. We have chosen to switch the strategy of an increasing
number of highly connected cooperators to defection, and to observe whether the
perturbation propagates in the population, leading to total defection, or if it stays
localized and disappears after a transient time. Figs. 5 and 6 show how the sys-

Fig. 5. Cooperation percentage as a function of simulated time when the strategy of the
30% most connected nodes is switched from cooperation to defection. T = 1.6, S = 0.4
and, from left to right, q = 0.2, 0.5, 0.8.

tem recovers when the most highly connected 30% of the cooperators are suddenly
and simultaneously switched to defection. In Fig. 5 the value chosen in the game’s
configuration space is T = 1.6 and S = 0.4. This point lies approximately on the
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Fig. 6. Cooperation percentage when the strategy of the 30% most connected nodes is
switched from cooperation to defection. T = 1.9, S = 0.1 and, from left to right,
q = 0.2, 0.5, 0.8.

diagonal in Fig. 3 and corresponds to an all-cooperate situation. As one can see,
after the perturbation is applied, there is a sizable loss of cooperation but, after a
while, the system recovers full cooperation in all cases (only 10 curves are shown
in each figure for clarity, but the phenomenon is qualitatively identical in all the 50
independent runs tried). From left to right, three values of q = 0.2, 0.5, 0.8 are used.
It is seen that, as the rewiring frequency q increases, recovering from the perturba-
tion becomes easier as defection has less time to spread around before cooperators
are able to dismiss links toward defectors. Switching the strategy of the 30 % most
connected nodes is rather extreme since they include most cooperator clusters but,
nonetheless, cooperation is rather stable in the whole cooperating region. In Fig. 6
we have done the same this time with T = 1.9 and S = 0, 1. This point is in a fron-
tier region in which defection may often prevail, at least for low q (see Fig. 3) and
thus it represents one of the hardest cases for cooperation to remain stable. Never-
theless, except in the leftmost case (q = 0.2) where half of the runs permanently
switch to all-defect, in all the other cases the population is seen to recover after
cooperation has fallen down to less than 10%. Note that the opposite case is also
possible in this region that is, in a full defect situation, switching of 30% highly
connected defectors to cooperation can lead the system to one of full cooperation.
In conclusion, the above numerical experiments have empirically shown that co-
operation is extremely stable after cooperator networks have emerged. Although
we are using here an artificial society of agents, this can hopefully be seen as an
encouraging result for cooperation in real societies.

3.5 Structure of the Emerging Networks

In this section we present a statistical analysis of the global and local properties of
the networks that emerge when the pseudo-equilibrium states of the dynamics are
attained. Note that in the following sections the graph we refer to is the unoriented,
unweighted one that we called G′ in Sect. 2.1. In other words, for the structural
properties of interest, we only take into account the fact that two agents interact
and not the weights of their directed interactions.
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3.5.1 Small-World Nature

Small-world networks are characterized by a small mean path length and by a
high clustering coefficient [11]. Our graphs start random, and thus have short path
lengths by construction since their mean path length l̄ = O(logN) scales loga-
rithmically with the number of vertices N [12]. It is interesting to notice that they
maintain short diameters at equilibrium too, after rewiring has taken place. We took
the average L̄ =

∑660
k=1 l̄ of the mean path length of 660 evolved graphs, which rep-

resent ten graphs for each T, S pair. This average is 3.18, which is of the order
of log(1000), while its initial random graph average value is 3.25. This fact, to-
gether with the remarkable increase of the clustering coefficients with respect to the
random graph (see below), shows that the evolved networks have the small-world
property. Of course, this behavior was expected, since the rewiring mechanism fa-
vors close partners in the network and thus tends to increase the clustering and to
shorten the distances.

3.5.2 Average Degree

In contrast to other models [25,27], the mean degree k̄ can vary during the course of
the simulation. We found that k̄ increases only slightly and tends to stabilize around
k̄ = 11. This is in qualitative agreement with observations made on real dynamical
social networks [20,37,38] with the only difference that the network does not grow
in our model.

Fig. 7. Average values of the clustering coefficient over 50 runs for three values of q.

3.5.3 Clustering Coefficients

The clustering coefficient C of a graph has been defined in the Introduction section.
Random graphs are locally homogeneous in the average and for them C is simply
equal to the probability of having an edge between any pair of nodes independently.
In contrast, real networks have local structures and thus higher values of C. Fig. 7
gives the average clustering coefficient C̄ = 1

50

∑50
i=1 C for each sampled point in the

Hawks-Doves configuration space, where 50 is the number of network realizations
used for each simulation. The networks self-organize through dismissal of partners
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and choice of new ones and they acquire local structure, since the clustering coef-
ficients are higher than that of a random graph with the same number of edges and
nodes, which is k̄/N = 10/1000 = 0.01. The clustering tends to increase with q
(i.e. from left to right in Fig. 7). It is clear that the increase in clustering and the
formation of cliques is due to the fact that, when dismissing an unprofitable relation
and searching for a new one, individuals that are relationally at a short distance are
statistically favored. But this has a close correspondence in the way in which new
acquaintances are made in society: they are not random, rather people often get to
interact with each other through common acquaintances, or “friends of friends” and
so on.

3.5.4 Degree Distributions

The degree distribution function (DDF) p(k) of a graph represents the probability
that a randomly chosen node has degree k. Random graphs are characterized by
DDF of Poissonian form p(k) = k̄ke−k̄/k!, while social and technological real net-
works often show long tails to the right, i.e. there are nodes that have an unusually
large number of neighbors [12]. In some extreme cases the DDF has a power-law
form p(k) ∝ k−γ; the tail is particularly extended and there is no characteristic
degree. The cumulative degree distribution function (CDDF) is just the probability
that the degree is greater than or equal to k and has the advantage of being less
noisy for high degrees. Fig. 8 shows the CDDFs for the Hawks-Doves for three
values of T , S = 0.2, and q = 0.5 with a logarithmic scale on the y-axis. A Pois-
son and an exponential distribution are also included for comparison. The Poisson
curve actually represents the initial degree distribution of the (random) popula-
tion graph. The distributions at equilibrium are far from the Poissonian that would
apply if the networks would remain essentially random. However, they are also
far from the power-law type, which would appear as a straight line in the log-log
plot of Fig 9. Although a reasonable fit with a single law appears to be difficult,

Fig. 8. Empirical cumulative degree distribution functions for three different values of the
temptation T . A Poissonian and an exponential distribution are also plotted for comparison.
Distributions are discrete, the continuous lines are only a guide for the eye. Lin-log scales.

these empirical distributions are closer to exponentials, in particular the curve for
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Fig. 9. Empirical cumulative degree distribution functions for three different values of the
parameter T . Log-log scales.

T = 1.7, for which such a fit has been drawn. It can be observed that the distribu-
tion is broader the higher T (The higher T , the more agents gain by defecting). In
fact, although cooperation is attained nearly everywhere in the game’s configura-
tion space, higher values of the temptation T mean that agents have to rewire their
links more extensively, which results in a higher number of neighbors for some
players, and thus it leads to a longer tail in the CDDF. The influence of the q pa-

Fig. 10. Empirical cumulative degree distribution functions for three different values of the
temptation q. Lin-log scales.

rameter on the shape of the degree distribution functions is shown in Fig. 10 where
average curves for three values of q, T = 1.7, and S = 0.2, are reported. For high
q, the cooperating steady-state is reached faster, which gives the network less time
to rearrange its links. For lower values of q the distributions become broader, de-
spite the fact that rewiring occurs less often, because cooperation in this region is
harder to attain and more simulation time is needed. In conclusion, emerging net-
work structures at steady states have DDFs that are similar to those found in actual
social networks [12,15,16,17,33], with tails that are fatter the higher the temptation
T and the lower q. Topologies closer to scale-free would probably be obtained if
the model allowed for growth, since preferential attachment is already present to
some extent due to the nature of the rewiring process [39].
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3.5.5 Degree Correlations

Besides the degree distribution function of a network, it is also sometimes useful to
investigate the empirical joint degree-degree distribution of neighboring vertices.
However, it is difficult to obtain reliable statistics because the data set is usually
too small (if a network has L edges, with L � N2 where N is the number of
vertices for the usually relatively sparse networks we deal with, one then has only
L pairs of data to work with). Approximate statistics can readily be obtained by
using the average degree of the nearest neighbors of a vertex i as a function of the
degree of this vertex, k̄Vi

(ki) [40]. From Fig. 11 one can see that the correlation

Fig. 11. Average degree of the direct neighbors of a vertex Vs. the vertex degree. The
relation is disassortative. Log-lin scales.

is slightly negative, or disassortative. This is at odds with what is reported about
real social networks, in which usually this correlation is positive instead, i.e. high-
degree nodes tend to connect to high-degree nodes and vice-versa [12]. However,
real social networks establish and grow because of common interests, collabora-
tion work, friendship and so on. Here this is not the case, since the network is not a
growing one, and the game played by the agents is antagonistic and causes segrega-
tion of highly connected cooperators into clusters in which they are surrounded by
less highly connected fellows. This will be seen more pictorially in the following
section.

3.6 Cooperator Clusters

From the results of the previous sections, it appears that a much higher amount
of cooperation than what is predicted by the standard theory for mixing popula-
tions can be reached when ties can be broken and rewired. We have seen that this
dynamics causes the graph to acquire local structure, and thus to loose its initial
randomness. In other words, the network self-organizes in order to allow players
to cooperate as much as possible. At the microscopic, i.e. agent level, this happens
through the formation of clusters of players using the same strategy. Fig. 12 shows
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one typical cooperator cluster. In the figure one can clearly see that the central co-

Fig. 12. A typical cooperator cluster. Links to the rest of the network have been suppressed
for clarity. The size of a node is proportional to its connectivity in the whole graph. The
most connected central cooperator is shown as a square.

operator is a highly connected node and there are many links also between the other
neighbors. Such tightly packed structures have emerged to protect cooperators from
defectors that, at earlier times, were trying to link to cooperators to exploit them.
These observations help understand why the degree distributions are long-tailed
(see previous section), and also the higher values of the clustering coefficient.
Further studies of the emerging networks would imply investigating the communi-
ties and the way in which strategies are distributed in them. There are many ways
to reveal the modular structure of networks [41] but we leave this study for further
work.

4 Conclusions

In this paper we have introduced a new dynamical population structure for agents
playing a series of two-person Hawks and Doves game. The most novel feature of
the model is the adoption of a variable strength of the bi-directional social ties be-
tween pairs of players. These strengths change dynamically and independently as
a function of the relative satisfaction of the two end points when playing with their
immediate neighbors in the network. A player may wish to break a tie to a neigh-
bor and the probability of cutting the link is higher the weaker the directed link
strength is. The ensemble of weighted links implicitly represents a kind of memory
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of past encounters although, technically speaking, the game is not iterated. While in
previous work the rewiring parameters where ad hoc, unspecified probabilities, we
have made an effort to relate them to the agent’s propensity to gauge the perceived
quality of a relationship during time.
The model takes into account recent knowledge coming from the analysis of the
structure and of the evolution of social networks and, as such, should be a better
approximation of real social conflicting situations than static graphs such as regu-
lar grids. In particular, new links are not created at random but rather taking into
account the “trust” a player may have on her relationally close social environment
as reflected by the current strengths of its links. This, of course, is at the origin of
the de-randomization and self-organization of the network, with the formation of
stable clusters of cooperators. The main result concerning the nature of the pseudo-
equilibrium states of the dynamics is that cooperation is greatly enhanced in such
a dynamical artificial society and, furthermore, it is quite robust with respect to
large strategy perturbations. Although our model is but a simplified and incomplete
representation of social reality, this is encouraging, as the Hawks-Doves game is
a paradigm for a number of social and political situations in which aggressivity
plays an important role. The standard result is that bold behavior does not disap-
pear at evolutionary equilibrium. However, we have seen here that a certain amount
of plasticity of the networked society allows for full cooperation to be consistently
attained. Although the model is an extremely abstract one, it shows that there is
place for peaceful resolution of conflict. In future work we would like to inves-
tigate other stochastic strategy evolution models based on more refined forms of
learning than simple imitation and study the global modular structure of the equi-
librium networks.
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