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Abstract

The emergence of novelties, as a generator of diversity, in the form and function of the organisms have long puzzled

biologists. The study of the developmental process and the anatomical properties of an organism provides scarce

information into the means by which its morphology evolved. Some have argued that the very nature of novelty is

believed to be linked to the evolution of gene regulation, rather than to the emergence of new structural genes. In

order to gain further insight into the evolution of novelty and diversity, we describe a simple computational model

of gene regulation that controls the development of locomotive multicellular organisms through a fixed set of simple

structural genes. Organisms, modeled as two-dimensional spring networks, are simulated in a virtual environment to

evaluate their steering skills for path-following. Proposed as a behavior-finding problem, this fitness function guides

an evolutionary algorithm that produdes structures whose function is well-adapted to the environment (i.e., good

path-followers). We show that, despite the fixed simple set of structural genes, the evolution of gene regulation yields

a rich variety of body plans, including symmetries, body segments, and modularity, resulting in a diversity of original

behaviors to follow a simple path. These results suggest that the sole variation in the regulation of gene expression is

a sufficient condition for the emergence of novelty and diversity.
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1. Introduction

Nowadays, our planet is populated by some 1 to 20

million animal species. Quite remarkably, they repre-

sent less than 1% of the total number of animal species

that have ever existed (Carroll et al., 2004). This aston-

ishing diversity of forms and behaviors has emerged by

the evolution of novel features among animal species, a

process not fully understood yet, which remains as a fas-

cinating and challenging topic of research (Carroll et al.,

2004; Moczek, 2008). Biological evidence suggests that

the sources of novelty might have to do with a complexi-

fication in the regulation of gene expression (Levine and

Tjian, 2003). In this sense, it has been pointed out that

evolutionary change in body plans devolves from change

in the architecture of developmental regulatory programs

(Davidson, 2006), suggesting that diversity can be better

explained by variation in the regulation of gene expres-

sion than by variation in the structural genes (Davidson

and Erwin, 2006). Moreover, the developmental process

seems to be a key component in the evolution of diversity

(Borenstein and Krakauer, 2008). However, due to the

limitations to perform experiments in biological evolu-

tionary processes, it has not been demonstrated yet that

the reason for evolutionary emergence of developmental

novel features and diversity is in fact the variation in the

regulation of gene expression, rather than the variation

in the structural genes.

On the other hand, theoretical models of biological

phenomena are a valid alternative to experimentation,

and have been extensively used to prompt new questions

and research directions, especially in biological fields not

suited to experimentation, such as evolutionary devel-

opment. The work presented here subcribes to this ap-

proach. We show that a computer model, including ge-

netic regulation of developmental processes, placed in a

scenario of artificial evolution provides information about

the evolutionary emergence of novelty and diversity.

Several theoretical models and formalisms have been

proposed to describe genetic regulatory systems (see

(de Jong, 2002) for a review). Among them, the Boolean

networks proposed by Kauffman (1969) have been ex-

tensively used, and allow the simulation of large regu-

latory networks (de Jong, 2002). Furthermore, a recent

study (Davidich and Bornholdt, 2008) has demonstrated

a good correspondence between Boolean networks and

more realistic models based on differential equations of

chemical kinetics. Similarly to Boolean networks, other

network-level models focus on a statistical analysis of net-

work properties and patterns. When these models are

embedded in an evolutionary context, mutation is typ-

ically implemented as changes in the connectivity and

in the nodal output functions. These transformations

have little to do with the effects derived from biological

mutations and impose limitations to the way networks,

and hence phenotypes, do evolve (Watson et al., 2004).

Thus, in order to apply realistic mutation operators in

network-level models, an encoding of the network in a

sequence-based genome is needed. Among such models,

the Artificial Genome proposed in (Reil, 1999) has at-

tracted much attention. An Artificial Genome encodes a

regulatory network in a sequence of digits, being the dy-

namics of this regulatory network equivalent to a Boolean

network that limits the possible Boolean functions in its

nodes (Willadsen and Wiles, 2003).

Similarly, theoretical models have also been proposed

to model biological development, experiencing a consid-

erable growth as a subfield of evolutionary computa-

tion. The main reasons of such advances are the benefits

brought about by these models in scalability, adaptabil-

ity, and evolvability (Hornby and Pollack, 2002) in a wide

range of problems (see (Stanley and Miikkulainen, 2003)

for a review). Within this emerging discipline, some mod-

els have been proposed at the network-level for develop-

mental regulation. Fleisher and Barr (1993) presented a

developmental model based on genetic encoding (hand-
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coded), chemical diffusion, and mechanical interactions,

formalized by ordinary differential equations, which were

coupled with if-clauses for cell differentiation. Unfortu-

natelly, evolutionary developmental properties could not

be studied, since this model was not embedded in an evo-

lutionary process. Dellaert and Beer (1994) proposed a

model where organisms are made up of two-dimensional

squares, which develop by square division and differen-

tiation through regulation by a Boolean network. Al-

though the model included complex regulation, the phe-

notypes based on square divisions were inadequate for the

emergence of novelty. Sims (1994b) presented a system

for the evolution of physically-simulated virtual creatures

made of articulated rigid parts, effectors, and sensors,

and controlled by an extended neural network. Several

tasks were optimized, resulting in a considerable variety

of morphologies and behaviors. However, the morphology

and the controller were encoded separately in two recur-

rent directed graphs, what does not really model biolog-

ical development. Eggenberger (1997) described a grow-

ing phenotype made up of spherical modules, connected

by articulated joints. A parametric regulatory network

model was used, including diffusion concentration and

diffusion sites of genes. The evolved forms presented

limited variablility, emerging only bilaterality. Bongard

and Pfeifer (2003) extended that model by adding a neu-

ral controller, that was intended to evolve agents that

developed directed locomotion and block pushing. The

evolved agents managed to perform the assigned tasks, al-

though with a limited variability in their characteristics.

Hogeweg (2000) proposed a morphogenetic model of 2D

multicellular organisms where cells behaved according to

a multiscale cellular automaton. Although the pheno-

types presented interesting developmental dynamics, the

simplicity of the organisms made the results hard to use in

studies of novelty. Kumar and Bentley (2003) proposed a

computational model of development where a regulatory

network controlled the synthesis of proteins, and embryos

with spherical forms were evolved. Here, again, the sim-

plicity of the evolved phenotypes is not enough for stud-

ies of novelty emergence. Roth et al. (2007) presented

a model of developmental multicellular organisms based

on an artificial genetic regulatory network and chemical

diffusion of morphogens. In this work, squares in a lat-

tice represent cells that can differentiate into motors and

sensors, connected by a simple wiring strategy. However,

the model lacks an evolutionary component. Watson et

al. (2008) proposed a model of artificial development and

evolution of early land plants in 3D. This model employs

an artificial genome to regulate the timing of bifurcation

events and its rotation angles, yet the evolved phenotypes

are too simple for the emergence of appreciable novelties.

Doursat (2008) proposed a model of growing multicellu-

lar development, where a 2D lattice of cells proliferates

and self-patterns into differential domains orchestrated

by a gene regulatory network. Although the model pro-

duced substantial results, the process was not studied in

an evolutionary perspective. Chavoya and Duthen (2008)

proposed a model for 2D cell pattern generation based on

a gene regulatory network, which controls a cellular au-

tomaton. The phenotypes generated by the model repre-

sented simple flag-like patterns, which are not adequate

for novelty studies. Andersen et al. (2009) proposed

a model of developmental cellular systems in 3D based

on signaling and gene regulatory networks. Evolved em-

bryos showed particular stable shapes and high capacity

for self-repairing; however, the shapes presented by the

phenotypes were too simple, rectangular or spherical, for

the emergence of novelty. Finally, Zhan et al. (2009) pre-

sented an evolutionary developmental system based on

cell signalling and artificial genetic regulatory networks

focused on engeneering design: electronic circuits design.

In summary, the theoretical developmental models based

on genetic regulation presented in the literature are not

completely adequate for the study of the emergence of

evolutionary novelty and diversity.
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In this paper, we propose and analyze the results ob-

tained by a theoretical model intended to gain further

insight into the evolution of novel features and diversity.

More precisely, these results suggest that the evolution

of genetic regulation could be a sufficient condition for

the emergence of novelty and diversity. The model is

based on an Artificial Genome that encodes a Boolean

network. Regulating the expression of a fixed elmentary

set of structural genes, the network controls the develop-

ment of locomotive multicellular organisms. Organisms

develop form and function simultaneously during the de-

velopmental process, resulting in a phenotype that inte-

grates seamless morphology and control. An evolution-

ary algorithm is implemented to evolve organisms that

succeed in following a path. We show that, despite the

simplicity and invariability of the structural genes, the

evolution of gene regulation yields a rich variety of novel

body plans, including symmetries, body segments, and

modularity. Moreover, the morphological diversity ob-

tained yields a diversity of path-following behaviors.

Section 2 describes in detail the proposed artificial de-

velopment model, from the description of the genome to

the evolutionary algorithm. The results of the evolution

are presented in Section 3. Finally, in Section 4 the con-

clusions derived from the results are discussed.

2. Description of the model

The model is described in several levels: (1) genome

(encoding of the Boolean network), (2) development (ge-

netic expression and cellular differentiation), (3) physical

simulation of the organism and its interaction with the

environment, and (4) the evolutionary algorithm.

2.1. Model of genome

The genome is represented by a vector of digits, sim-

ilarly to the Artificial Genome proposed in (Reil, 1999),

where template matching determines the encoded regu-

latory network (Fig. 1a). Digits in an artificial genome

correspond to bases in a real genome, and four bases are

used (represented by decimal digits from 0 to 3). A gene is

a sequence of digits of a specified length N (equal to four,

in our case) preceded by a promoter (the word ’0101’).

A word placed between the promoter of a gene and the

previous gene plays the role of regulatory region of the

former gene. The product of a gene is a sequence of N

digits, and it is obtained by increasing every digit in a

gene by one and then taking the modulo over the number

of bases. Gene products regulate only those genes whose

regulatory region matches. A protein can act as an en-

hancer, activating the gene, or as an inhibitor, blocking

its activation. Similarly to previous works, the rule im-

plemented in this model is that proteins ending with the

base 0 are inhibitory, otherwise they behave as enhancers.

While the presence of a single enhancer will be enough to

activate a gene, inhibition blocks enhancement.

The function implemented with this genome is equiv-

alent to a Boolean network. Genes in the sequence cor-

respond to nodes in the network, what limits the set of

activation functions (Fig. 1b). Both, random Artificial

Genomes and random Boolean networks have a number

of out-connections distributed in a Poissonian way, but

they differ in the distribution of in-connections: uniform

in random Boolean networks, and Poissonian in random

Artificial Genomes (Willadsen and Wiles, 2003).

Within this approach, the genetic information of an

organism is encoded in an Artificial Genome. Not using

a Boolean network directly has the advantage that a ge-

nomic representation allows the evolution of organisms

with bioinspired mutation operators, instead of network-

level mutations. In this way, mutations raise a wide vari-

ety of network-level changes, that finally project onto the

morphology (Watson et al., 2004).

2.2. Model of development

In our model, an organism is represented by a con-

nected and directed two-dimensional geometrical graph.
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Figure 1: Morphogenetic model consisting on a derivation of a graph grammar regulated by a Boolean network

encoded in a sequential genome. (a) The genome is represented by a sequence of digits. Below it is shown a detail

of the sequence, with the regulation between genes T and W. Gene T is an enhancer of gene W while gene W is an

inhibitor of gene T. (b) Boolean network encoded in the genome. Node D is the differentiation gene. Nodes S, T, W,

and R are genes mapped to split, duplication, swap, and resize rules, respectively. Finally, node X is a regular gene

(type node omitted for clarity). (c) Graph grammar rules set, being s the split rule, t the duplication rule, w the swap

rule, and r the resize rule.

In this graph, edges can be interpreted as cells (black

lines in Fig. 2, and green, red and blue-colored ellipsoids

in Figures 4 to 7), and the nodes are junctions where cells

get attached to each other (black dots in Fig. 2), in order

to form a compact multicellular organism.

Edges (like cells do) perform developmental actions

during embryogenesis, when structural genes get active.

These actions are formally specified by a graph gram-

mar. Each rule in the production system of this gram-

mar corresponds to an action, and the language specified

by the grammar determines the search space of possible

morphologies. The proposed rules (Fig. 1c) have been

chosen as to realistically match cellular transformations:

• Split rule (s): analogously to the mitosis process (re-

sponsible of the eukaryotic cell division), this rule

rewrites one edge with two edges of half-length and

perpendicular direction.

• Duplication rule (t): similar to the split rule, the

duplication rule produces two edges, that have the

same length and are arranged in parallel.

• Swap rule (w): this rule changes the direction of an

edge, i.e. after this transformation the nodes of an

edge remain connected, but in the opposite direction.

• Resize rule (r): similarly to the way in which real

cells change their volume, this rule changes the

length of an edge in a discrete way: a 25% increase

or decrease in the original length.

Every edge in an organism embeds a Boolean network

that regulates the application of the grammatical rules

to transform the edge. The genome (and so, the con-

nectivity of the Boolean network) is the same for all the

edges in an organism, similarly to living organisms, where

all the cells contain roughly the same genetic material.
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Although all edges are governed by the same Boolean

network, each one has its own expression state during

development, thus allowing cell differentiation.

Each rule is controlled by a specific node (a structural

gene) in the Boolean network. The genome specifies an

order for the nodes, that are then mapped to the rules.

During development, one edge is transformed according

to a rule when the corresponding node of its Boolean net-

work is activated. In this way, a step of development in an

organism comprises the following actions: (1) updating

the state of the Boolean network in each edge, and (2)

transforming the edges according to their active nodes.

The updating of the edges is done sequentially, from the

oldest to the newest. Also, if several nodes are active in

a Boolean network, the application of the rules is done in

a sequential manner, following the ordering of the nodes.

The first node of the Boolean network is assigned a

role of differentiation. When split or duplication rules

are applied (division rules), one of the descendant edges

will set this node to an active state, while the other resets

it. The fixed mapping between nodes and rules is made

starting from the second node. This asymmetry intro-

duces a slight difference in the future expression patterns

of both cells, allowing cell differentiation. In practice, the

option of following or not differentiating ways is imple-

mented by including two different versions (mapped to

different nodes in the Boolean network) of the split and

the duplication rules; one version sets different values for

this node, and the other deactivates the node in both

edges.

Similarly to differentiation in biological multicellular

organisms, the model includes a cellular type that deter-

mines how the edge will behave in the physical simulation:

motor edges, sensor edges, and structural edges. This is

implemented again with a special node in the Boolean

network, the type node, which determines the type of

the edge. Each edge embeds a counter that accounts for

the number of times this node has been active during

development. This counter acts as a signaler that in-

duces the differentiation of the edge. One edge becomes

a sensor if it has accumulated more than three quarters

of the maximum activations of an edge in the organism.

It becomes a motor edge if it accumulates less than a

quarter of that amount (and it has been active at least

once). And it becomes a structural edge otherwise. In

this way, the function and the form of an organism are

implemented by edges; consequently, the model makes no

distinction between the control (i.e., how the function is

commanded) and the morphology of the organism.

Development starts with a graph of a single edge (re-

sembling the zygote in living beings). In grammatical

terms, this graph is the axiom of the Boolean-network-

regulated graph grammar, from where the resulting graph

derives after a number of productions. The nodes of its

Boolean network are initially inactive, except for the first

node, which initiates the dynamics of the network. The

developmental process ends when one of these conditions

verifies: (1) all the edges have ended their expression (i.e.,

all nodes in the Boolean network of every edge remain

inactive), (2) the expression of an edge enters in a loop

without division rules, or (3) the organism has exceeded

a given number of edges (in our simulations it is limited

to 20 edges). Finally, mimicking biological competition

and cellular death processes at the cellular level, the re-

sulting graph is simplified by pruning duplicated edges

(those that connect the same pair of nodes). If edges of

different types connect the same pair of nodes, they are

deleted in this order: structural, sensor and motor edges.

The described genetic expression model defines a fam-

ily of infinite 2D connected graphs. Fig. 2 resembles the

morphogenetic process of an organism regulated by the

genome in Fig. 1. Each edge is labeled with its network

state (the nodes are ordered ’DRSTWX’). The deriva-

tion starts with the graph to the left (the zygote). The

first step is performed updating the state of this edge ac-

cording to the Boolean network. This does not alter the
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Figure 2: Example of morphogenesis of an organism regulated by the genome in Fig. 1. The first graph to the left is

the zygote. Each edge has been labeled with its expression state.

graph but changes the state of its network. In this state,

node R is active, so its corresponding rule (r, the resize

rule) is applied to the edge in the next step, changing

its length as showed in the third graph. Its state is up-

dated again, and morphogenesis proceeds until a halting

condition verifies.

2.3. Physics of the model

After development has completed, an organism is phys-

ically simulated in a flat world where they have to follow

a path and go as far as possible in a constant time. An

organism interacts with the environment by sensing and

acting: it is propelled by its motor edges, and senses the

path borders with its sensor edges, in a chemotactic way.

Colliding has not been implemented in this virtual world.

The physics assigned to the graph are: edges have been

modeled as damped springs, and nodes are free mov-

able joints that have friction with the medium. All edge

springs have the same physical parameters (spring and

damping constants). The connectivity and rest lengths

of springs are the connectivity and geometrical length of

the corresponding edges in the developed graph. Spring

dynamics are simulated according to the Hook’s law, the

damping force, and the friction with the medium. For the

class of structures used in this work, a 4th order Runge-

Kutta integrator is suitable for the former equations of

motion in the physical world.

The three types of edges that can make an organism

have different properties in the physical model. Apart

from the forces of a damped spring, motor edges imple-

ment an additional force
−−→
Ft+1 that pushes the edge in

the direction defined by the edge. The magnitude of this

force is proportional to the actual length of the edge, ac-

cordingly to the following equation:

−−→
Ft+1 = αLt

−→u

being α > 0 the motor strength parameter, Lt the length

of the motor edge in the current time-step, and −→u is the

unitary vector of the direction. Consequently, the whole

organism moves as a result of the motor edges pushing

forward in a continuous way. Edges differentiated as sen-

sors transduce the physical world information to the or-

ganism. They have the regular forces of a damped spring,

but their spring rest length lt is dynamically upscaled ac-

cordingly to the following equation:

lt+1 = (rt (β − 1) + 1) l0

being β > 1 a continuous gain parameter that regulates

the upscaling factor, rt ∈ [0, 1] is the proportion of the

edge that falls outside of the path in the current time

step, and lo is the original rest length of that edge in the

graph that results from morphogenesis. In this way, if

a sensor edge is completely inside of the path, its rest

length equals its original rest length. On the contrary,

when falling completely outside the path the rest length

equals the original rest length scaled by the gain param-

eter β (so it gets bigger). Intermediate situations are

linearly scaled by the amount of edge falling outside the

path. Notice that a sensor edge transduces sensory infor-

mation (how much it falls outside the path) to mechanical

information (its rest length). This mechanical informa-

tion is propagated to its adjacent edges, in the same way
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Figure 3: Difficulty of the path as given by the value of

parameter γ (below).

as muscular cells propagates a change in length to adja-

cent cells. Finally, structural edges are normal springs

without any particular effect.

The paths used in the simulations are made of two

equal curves but in opposite directions discretized by a

closed polygon. Each path curve is formed by two circular

arcs that form the left and right path borders respectively.

A path is defined by three parameters: γ ∈ [0, 1] is its

difficulty, ω is its width, and λ is its length. The difficulty

determines the sharpness of the bend, being a path with

γ = 0 a straight line, and a path with γ = 1 is the

sharpest one (Fig. 3). The actual curves have an angle

a = 3

2
πγ. The segments needed to build the whole path

will have positive angle if the curve is to the left, and

negative if it is to the right. A radius of λ

2a
+ ω

2
units will

apply for the external border, and λ

2a
−

ω

2
for the internal

border. Finally, the extremes of the path are extended

with a beginning and an end (straight segments of length

2ω).

Evolution is intended to obtain efficient path-followers,

i.e., organisms that, when placed at the beginning of the

path, can follow it until the end. The fitness of an indi-

vidual is determined by the length of path traveled in a

constant simulation time. The path is divided into con-

secutive sections (similar to tiles) in order to quantify

how well and far an organism moves along it. A simula-

tion starts by developing the individual from its genomic

information, and placing the resulting organism at the

beginning of the path. The physics are then run for a

fixed number of steps, and it stops if the organism ar-

rives in the end. During the simulation, a new section

of the path is labeled as visited if the centroid of the or-

ganism (computed as the average position of its nodes)

steps on it. In order to prevent high scores in organisms

that do not interact with the environment (e.g. by start-

ing with a trajectory that simply fits with the path), the

fitness is the minimum between two runs: in the second

simulation the path is flipped along the horizontal axis.

2.4. Evolutionary algorithm

A genetic algorithm has been implemented to evolve

the structure and function of organisms. The initial

population is made of 200 random organisms with short

genomes (256 bases). On average, 256 bases contain just

a single gene. In each generation only 25% of the pop-

ulation is mutated. Biologically inspired sequence-level

mutation operators are used:

• Single-point: a single nucleotide is replaced by an-

other nucleotide.

• Duplication: a segment of the genome is randomly

chosen and copied immediately after the original

(tandem duplication).

• Transposition: a segment of the genome is deleted

and copied in a random location.

• Deletion: a segment of the genome is randomly cho-

sen and removed.

• Inversion: a segment of the genome is randomly cho-

sen and re-written in reverse order.

In all cases, the size of the segment to be mutated was

fixed to 256 bases; however, genomes can vary their

lengths during evolution, as a direct consequence of muta-

tions. The mutant individuals obtained are added to the

population, and the next generation is obtained by deter-

ministic tournament selection with size 2. This scheme
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induces a low selection pressure, what has been compen-

sated by elitism of one individual. The result is a good

balance between exploitation and exploration that favors

the evolution of different strategies of locomotion.

3. Experiments and results

In order to evolve a variety of path-followers, the ge-

netic algorithm has been run 21 times, comprising 7 evo-

lutionary runs for each different path (γ = 0.2, γ = 0.4,

and γ = 0.6). The total computing time was 175 hours

in a cluster of 48 CPUs at 2 GHz. On average, 1 minute

was the computing time for the creation and evaluation

of one generation, being the physical simulation of the

organisms the most time-consuming part.

In spite of the simple building blocks available for

the organisms, 4 clearly different steering behaviors have

evolved (classified by hand). Below, we present a repre-

sentative organism for each resulting behavior, including

their epigenic and ontogenic history, and their character-

istic behavior. They have been labeled from A to D, with

a short description of the particular technique that they

use. We note that these techniques ‘emerge’, to clearly

distinguish the evolutionary methodology used here from

other approaches where a designer builds the parts in, as

it is the case with classical Braitemberg’s Vehicles (Brait-

enberg, 1984). The relative frequencies of emergence in

each behavior, among all evolutionary runs, were about

50, 10, 30, and 10 percent respectively. The best resul-

tant organism in 76% of the evolutionary runs completed

the entire path (fitness 1).

In these experiments we have observed a common pat-

tern in the evolution of the population: initial growth of

the length of the genomes, followed by a refinement of the

structures. The initial population is made of very simple

genomes (256 bases), that develop into simple organisms

, limiting their structure and function. Hence, these or-

ganisms move very little or not at all, yielding low fitness

values. Further duplications during the evolution allow

genomes to become larger, and the organisms get com-

plex enough to start moving around. From this point,

the increase in length slows down, and the solutions in

the population starts getting refined. The evolutionary

process stops when an organism has traveled the entire

path or after reaching a maximum number of generations

(1,000).

3.1. Behavior A: emergence of bilateral sensors

The simplest path-follower we can think of would in-

clude sensors in both sides to correct the direction, and a

motor in between. This type of behavior has evolved on

about half of the evolutionary runs. Fig. 4 describes the

results of an evolution where a behavior inspired in this

principle has been obtained. Fig. 4a shows the curves for

the best and mean fitness in each generation. The trajec-

tory of the organism while traveling the paths is shown

in Fig. 4b, where the gray line represents the sequence

of points drawn by the centroid. In both runs, after been

positioned at the beginning of the path, the organism

travels the paths and reaches the end. Note that, in the

second case, the organism makes a large loop outside the

path before reentering it with a different initial direction,

what is not penalized, since the organism completes the

entire path before the time expires.

The lineage of the best evolved organism in the exper-

iment is shown in Fig. 4c. Lineages in these experiments

are linear (instead of tree-like) since sexual reproduction

has not been considered. Two aspects are worth mention-

ing in this figure. Firstly, the segmentation in the mor-

phology of the ancestor in generation 40, which is made

up of four equal segments, each of them consisting in two

motor edges connected to two sensor edges. Secondly,

as in the ancestor in generation 122, two main modules

can be distinguished in the phenotypes: an upper module

made of one structural edge connecting two motor edges

which propel the organism forward, in addition to a sec-

ond lower module made of two sensor edges that control
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the direction of motion by varying their lengths. These

two modules are connected through two structural edges

in the ancestor in generation 122, in the same way that

in the final organism; however, the ancestor in generation

152 displays the two modules directly connected. This

is an example of the versatility of an indirect encoding

based on regulatory networks, which allows the omission,

modification through neutral mutations, and later reap-

pearance of part of the organism’s morphology during the

evolution.

Fig. 4d shows the morphogenetic process (the develop-

ment) of the best organism. Morphogenesis starts with

the graph to the left, and edges are rewritten as the graph

rules are applied according to the Boolean network that

is encoded in the genome. This produces the graph in

the right-side, its definite phenotype. More precisely, the

morphology is developed by means of an edge’s activa-

tion of a duplication rule followed by a split rule during

three consecutive steps. Each application of this pair of

rules forms a new triangle-shaped module in the devel-

oping organism. Besides, in the third step, a resize rule

is activated in both lower edges, increasing their lengths

equally. During morphogenesis, four edges differentiate

due to the differential activation of their type nodes, orig-

inating two sensor and two motor edges.

Finally, Fig. 4e illustrates the steering behavior with

a sequence of snapshots (see also Movie S1, available as

supplementary material). When the organism is on the

path (in gray), the forces of its two motor edges are com-

pensated, resulting in a straight movement. When one

of the sides exits the path, the sensor becomes longer,

transmitting a positional change to the motor edges. This

corrects the direction of movement, pointing now to the

interior of the path. This process repeats every time the

organism transgresses a path border, allowing it to stay

inside the path.

3.2. Behavior B: emergence of turning by friction

This is an interesting behavior that exploits a com-

pletely different aspect of the physics. The morphology of

the organism integrates a more sophisticated sensory sys-

tem (8 sensor edges), only one motor edge, and it shows

symmetry with respect to the motion direction axis. It

moves straightforward while inside of the path. When the

organism starts exiting the path, the external skeleton of

structural edges forces the sensors to reconfigure inter-

nally, and the symmetry breaks down due to the elonga-

tion of some sensors. In this asymmetrical configuration,

more nodes concentrates in the side opposite to the ex-

iting border, producing a higher overall friction on that

side that generates a bent movement towards the path.

When the organism gets back in the path it recovers the

symmetry.

Fig. 5 shows an organism exhibiting behavior B. This

and further figures are organized similarly to Fig. 4. Note

that the ancestor in generation 94 almost managed to

travel the full path, but it took 234 generations more

to reach an organism with fitness 1. During this period

mutations had a neutral effect, and the fitness increased

when a mutation produced a bigger organism. Morpho-

genesis (Fig. 5d) reveals why becoming bigger was not

easy. A straightforward way is to upsize the zygote, so

that the resulting organism is proportionally bigger, but

any change in an early stage will propagate through the

morphogenetic process, amplifying its effect and disrupt-

ing the phenotype. Hence, it takes more time for evo-

lution to modify these early stages of organism develop-

ment. The final phenotype is composed of a central mo-

tor edge surrounded by four equal segments arranged in

radial symmetry. Every segment grows from a single sen-

sor edge, which in turn develops into a triangle formed by

an external structural edge and two internal sensor edges

(each sensor edge superimposes with a sensor edge of an

adjacent module). It is also worth mentioning that the

sensors develop separately, giving rise to four independent

9
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Figure 4: Behavior A: bilateral sensors. (a) Best and mean fitness of the population in each generation during the

evolution. (b) Paths and trajectories described by the best evolved organism. (c) Lineage of the best evolved organism.

(d) Morphogenesis of the best evolved organism. (e) Illustration of the steering behavior as a sequence of snapshots

(from left to right, and from top to bottom). Motor edges are represented in red, cyan edges are sensors (with white

bands to better compare relative lengths), structural edges are the green ones, and the path is the area in gray. It

can be seen how the elongation of the sensor that exits the path steers the pair of motor edges towards the path,

correcting the direction and bringing the organism back to the path.
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nodes in the center of the organism, what is important

for the behavior in order to have enough difference of fric-

tion during its asymmetrical configuration to provoke the

turn (only nodes are responsible for friction).

The trajectory followed by the organism and some

snapshots are shown in Fig. 5b and Fig. 5e, respectively

(see also Movie S2). The images illustrate how the initial

straight movement changes when the sensors of the right

segments elongate as they move away from the path. This

makes the organism to turn to the left due to a higher

friction on that side. When the organism is completely

back on the path, it adopts again its symmetrical form

and moves straightforward along the path.

3.3. Behavior C: emergent spinning

Contrary to what could be expected, the second behav-

ior preferred by evolution had to do with spinning organ-

isms. A combination of sensor and motor edges arranged

in a sort of quadrilateral pattern favors a rotational move-

ment. Typically, a small asymmetry is important for this

type of organisms, since it allows it to actually start mov-

ing and reach a path border, preventing from an endless

rotation around the starting point. In this way, when a

path border is transgressed for the first time, the organ-

ism follows it due to an iterative elongation of its sensors

during the rotation, while keeping its centroid inside the

path most of the time.

Fig. 6 shows an organism that has implemented this

behavior. Graphical results are arranged as in behavior

A. Its lineage (Fig. 6c) features a structure simplification

in generation 55, and almost the final structure reap-

pears in generation 80. From there, small refinements

are fixated during more than 300 generations to reach an

organism with fitness 1. This way of evolving the gen-

eral structure fast, and refine it slowly has been shown

also in the former behavior (Fig. 5). In this case, the

refinements also include a size increment implemented

by a mutation that affected early stages of development.

The morphogenesis of the final organism is divided in two

phases (Fig. 6d). First, the zygote elongates and divides

during two steps (new edges do not show in the figure

because they are superimposed). Secondly, several edges

split and turn, yielding the final structure: four segments

distributed in two quasisymmetric pairs on both sides of

an additional central motor edge. Each segment is made

up of two connected edges: a motor edge whose direction

is controlled by the elongation of a sensor edge.

Organisms showing spinning behavior describe a typ-

ical cyclic trajectory along one of the path borders dur-

ing the simulation (Fig. 6b). Snapshots of the organism

performing a complete spin are shown in Fig. 6e (see

also Movie S3). In this case, the organism spins counter-

clockwise, but clockwise spinning is also common in other

experiments. Notice how in snapshot 1 the exterior motor

edges are aligned at roughly 45º with respect to the inte-

rior motor edges. In snapshot 3 this angle has increased

to some 90º due to the elongation of the sensor edges that

fall outside the path. Repetitive transition between these

two configurations allows the organism to steer following

the path’s border.

3.4. Behavior D: emergent rectification

Finally, some organisms revealed a much more elabo-

rate behavior. Remarkably, this behavior emerged with

the simplest possible sensory system: one sensor edge.

While the organism is inside of the path, and as a result

of balanced motor actions, all the edges get arranged in

a single line, and the organism follows a straightforward

movement. When the sensor exits the path, its elonga-

tion breaks the previous configuration, initiating a long

sequence of actions (the rectification) which force the or-

ganism to go backwards, return to the path, and start an-

other trajectory, shifted some degrees (around 40º) with

respect to the original one.

Fig. 7 shows an organism with such a behavior. The

evolution stopped after reaching the maximum number

11
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Figure 5: Behavior B: turn by friction. (a) to (d) as in Fig. 4. (e) Illustration of the steering behavior as a superposition

of snapshots. As some sensors exit the path, their change in length pushes some nodes towards the path. This shifts

the forces of friction in a way that corrects the direction of the organism, recovering its original configuration when it

travels again over the path.
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Figure 6: Behavior C : emergent spinning. (a) to (d) as in previous figures. (e) From left to right, and from top

to bottom: one complete cycle in the counter-clockwise spinning behavior of the organism. Differently from other

strategies, this one attaches the organism to one border of the path, changing the angles of the external motor edges

with respect to the central motor edge. This angle varies from some 45º (snapshot 1) to about 90º (snapshot 4),

providing the organism with a net movement that tracks the border of the path.
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of generations. At that point, the best evolved organism

had a fitness of 0.5 (Fig. 7a). Though, given enough sim-

ulation time, the organism managed to complete the path

(Fig. 7b). This organism moves comparatively much

slower than the others, and maneuvers in a complex way

to correct the direction. The linage shows a more diver-

sified set of ancestors (Fig. 7c), what meant an intricate

evolution, compared to previous behaviors. The morpho-

genesis (Fig. 7d) starts with a duplication phase dur-

ing the first two steps, followed by a split-and-turn step,

and finishes with some refinement. The final morphology

shows two equal segments made up of two motor edges,

and connected by a pair of structural edges, showing the

ensemble bilateral symmetry. An extra homologous seg-

ment in the upper part of the organism breaks the balance

of motor forces. This extra segment is attached to a sen-

sor edge, whose elongation causes a rotation in the extra

segment, leading to a steer which rectifies the trajectory.

Fig. 7e shows in detail how the organism performs

the rectification (see also Movie S4). The structure of

the organism includes two pairs of motor edges that push

forward, and another pair that pushes backwards (hence

the overall slowing down). The net effect results in an

alignment of the edges, and a straight movement in the

direction of the two pairs of motor edges. When the or-

ganism exits the path, the sensor elongates, forcing one

of the leading pairs of motor edges to rotate and push

backwards. In this configuration, the net movement is

backwards, taking the organism back to the path. As

the sensor enters the path again it shortens, provoking

the pair of motor edges to return to its original aligned

arrangement. While this happens, the organism tilts to

one side, correcting the original direction. Finally, the

organism keeps moving straightforward.

3.5. Generalization capability of the behaviors

Behaviors described above were obtained under par-

ticular settings (three path difficulties and constant fric-

tion). The resulting organisms have been simulated for

a range of values of the difficulty and friction parame-

ters in order to test the robustness of their behaviors. In

each different setting, the organisms were simulated with

a time limit of 5,000 steps. Fig. 8a shows the fitness

(i.e., how much of the path was actually traveled) of the

four organisms described in the previous section, along

six different paths with a difficulty that increases from 0

to 1 (as showed in Fig. 3). This reveals that the more

complex behavior is also the most robust to changes in

the curvature of the path: behavior D performs well in

any path, from the simplest to the most complex. Fig.

8b displays the average performance with different fric-

tion constant. In this case, the performance degrades in

all cases as it gets more slippy, since sensor edges fail to

steer when the motor edges propel the organism too fast.

Behavior A is the only one that performs well for small

friction.

Fig. 9a shows how behavior D deals with the two cases

of maximum difficulty. Surprisingly, it can also generalize

for very narrow paths, as shown in Fig. 9b. While the

organism fails to track the path when it first exits it, it

manages to wander around until it reenters the path, but

this time it does it backwards (instead of the behavior

showed in Fig. 7). Then it starts to travel the path going

from one border to the other, until the end is reached

(see Movie S5). Some behaviors demonstrate this ability

to reenter the path after quitting it. What is remarkable

because this capacity was not expected, since simulation

time during the evolution is too short to develop reen-

tering skills. This suggests that more complicated be-

haviors might be obtained if a longer time is allowed for

fitness evaluation. Fig. 10 shows some snapshots illus-

trating how the organism with behavior B manages to

reenter the path. The organism follows a straight tra-

jectory when outside the path, with the sensory system

arranged in a star-like configuration. As some sensors

enter the path, their change in length pushes some nodes

14
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Figure 7: Behavior D: rectification. (a) to (d) as in previous figures. (e) From left to right, and from top to bottom:

the organism moves straightforward while inside the path. When it exits the path the sensor elongates and provokes

an unstable equilibrium, since a pair of motors moves forward. This equilibrium breaks at some point and forces the

organism to return, since the pair of motors now points backwards. Back in the path, the sensor restores its rest

length, and the pair of motor edges returns to the original position, correcting the previous direction, and keeping the

organism traveling the path again.
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Figure 8: Study of generalization of the evolved behav-

iors in different environments. All the parameters are

kept as they were during the evolution of each behavior,

while path difficulty and friction of the medium are var-

ied separately to find out the robustness of each organism

to changes in the environment where it has evolved. (a)

Performance of the behaviors for variable path difficulty.

(b) Performance of the behaviors for variable friction con-

stant.
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Figure 9: Trajectories drawn by the organism that recti-

fies the trajectory (behavior D) in the cases of maximum

difficulty of the path (a), and narrower path (b). Narrow-

ing the path forces the organism to adopt a completely

different strategy.
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towards the path, changing friction forces and correcting

the direction of the organism.

4. Conclusions and discussion

In order to provide arguments in support of the hy-

pothesis that the evolution of developmental genetic reg-

ulation is indeed a sufficient condition for the emergence

of novelty and diversity, we have defined and studied a

model that integrates a considerable amount of biologi-

cal features: (1) an encoding method based on sequence

genotypes; (2) gene regulation by Boolean networks; (3)

multicellular development through a fixed set of simple

structural genes; (4) cell differentiation (three cellular

types); and (5) evolution of morphologies and locomo-

tive behaviors in a particular environment.

Despite the simple and fixed set of structural genes im-

plemented, a rich variety of body plans have evolved, pro-

viding the organisms with appropriate steering strategies.

In a recent work the authors have shown that symme-

tries, segments, and modules do not emerge when spring

networks are encoded with direct methods (Lobo et al.,

2010). This suggests that these properties, found in the

described phenotypes, could emerge as a consequence of

the genetic regulation of development that has been mod-

eled.

Furthermore, apart from the rich variety of body plans,

the evolved organisms presented a rich variety of behav-

iors. Indeed, the problem of path-following employed to

test the model is unconnected to the traditional class

of form-finding problems, in which the fitness of a so-

lution is directly evaluated from its form. Instead, it is

related to a new class of problems where the behavior is

to be optimized, which we have named behavior-finding

(Lobo, 2010). Behavior-finding problems search for solu-

tions whose behavior (as the result from the interaction

of its form with an environment) verifies a set of restric-

tions. Consequently, the fitness of a solution is evaluated

as how it behaves in a concrete environment. Following a

path is but an example of this class of problems. The de-

velopmental model presented in this work has been shown

to be adequate for the class of behavior-finding problems,

as the resulting behaviors have demonstrated.

The behaviors obtained are diverse and complex, and

successfully exploit very different aspects of the model:

sensorial systems adapted to the geometry of the problem

(behaviors A and B), physical aspects of the environment

(behavior B), symmetry (behaviors B and C ), or complex

arrangements of edges (behaviors C and D). This diver-

sity is remarkable if we attend to the simplicity of the

resulting graphs (7 edges for behavior A, 17 for B, and

9 for C and D). Considering the very limited function-

ality of the cellular types that have been modeled, the

performance and generalization capacity of the evolved

organisms result from the expressive power of the genetic

model and the high degree of adaptation to the environ-

ment reached by the organisms. The fact that behavior D

can be obtained with only 9 edges and a single sensor edge

is amazing considering the efficiency and generalization

capacity demonstrated by this organism. Fig. 9b shows

that this structure manages to travel backwards when the

path is too narrow to be traveled forward. This suggests

that the evolved structures implement not only the steer-

ing behavior, but also the ability to wander around the

path, and reenter the path. In short, a remarkable re-

sult is how such a biological model obtains very simple

structures that show a very complex behavior.

In the field of autonomous agents, an embodiment is

employed to allow agents to interact with the environ-

ment. Such embodiments have been traditionally split

in morphology and controller (Gruau, 1994; Sims, 1994a;

Koza, 1995; Dellaert and Beer, 1996; Bongard and Pfeifer,

2001; Komosinski and Rotaru-Varga, 2002; Hornby et al.,

2003), being the controller typically implemented by a

neural network, and adjusted separately from the mor-

phology. In contrast, the proposed model does not in-

clude an explicit controller, i.e., there is no clear sepa-
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Figure 10: Capacity of behavior B to reenter the path after quitting it. The organism changes from a straight

trajectory to a curve towards the path as some sensors reenter the path. Their change in length displaces some nodes

towards the path, and the imbalance of friction forces tilts the organism towards the path. Once it travels again over

the path, the organism recovers its symmetry and continues straightforward.

ration between the body and the brain that controls its

behavior. A sensor is implemented in our model as an

excitable element that alters its rest length depending

on its position relative to the path. In this way, sen-

sors transduce information of the environment by intro-

ducing a change in the geometrical state of the organ-

ism. This change propagates along the organism to adapt

the response in a proper way, so as to accomplish what

is favored by evolution: steering to keep following the

path. Furthermore, since the controller and morphology

are merged in the model, both of them develope seamless

in the same process, simplifying the model as a reliable

abstraction of biological development.

In conclusion, the theoretical results presented in this

work support the latest biological hypothesis, suggesting

that the sole variation in the regulation of gene expres-

sion is indeed a sufficient condition for the emergence

of novelty and diversity of body plans. While the pro-

posed model used a fixed and simple set of structural

genes that fired just a few basic developmental actions,

the evolution of the regulation of gene expression origi-

nated a diversity of body plans, which managed to solve

a path following problem with a rich variety of behav-

iors. This quite striking diversity of forms and behavioral

strategies is connected to the diversity of forms and fea-

tures found on earth, suggesting that such morphological

richness should not be considered a surprising fact, but

rather an inevitable consequence of the variability of gene

regulation.

Acknowledgments

This work has been partially funded by the Sixth Euro-

pean Union Framework Program for Research and Tech-

nological Development, contract #028892. The authors

are grateful to V. Canteli for graphical support and the

anonymous reviewers for helpful comments and sugges-

tions.

18



References

Andersen, T., Newman, R., Otter, T., 2009. Shape home-

ostasis in virtual embryos. Artificial Life 15 (2), 161–

183.

Bongard, J. C., Pfeifer, R., 2001. Repeated structure and

dissociation of genotypic and phenotypic complexity

in artificial ontogeny. In: The Genetic and Evolution-

ary Computation Conference, GECCO-2001. Morgan

Kaufmann publishers, pp. 829–836.

Bongard, J. C., Pfeifer, R., 2003. Evolving Complete

Agents Using Artificial Ontogeny. Springer-Verlag, pp.

237–258.

Borenstein, E., Krakauer, D. C., 2008. An end to end-

less forms: Epistasis, phenotype distribution bias, and

nonuniform evolution. PLoS Computational Biology

4 (10), e1000202+.

Braitenberg, V., 1984. Vehicles: Experiments in Syn-

thetic Psychology. The MIT Press.

Carroll, S., Grenier, J., Weatherbee, S., October 2004.

From DNA to Diversity: Molecular Genetics and

the Evolution of Animal Design, 2nd Edition. Wiley-

Blackwell.

Chavoya, A., Duthen, Y., 2008. A cell pattern genera-

tion model based on an extended artificial regulatory

network. Biosystems 94 (1-2), 95–101.

Davidich, M., Bornholdt, S., 2008. The transition from

differential equations to boolean networks: A case

study in simplifying a regulatory network model. Jour-

nal of Theoretical Biology 255 (3), 269–277.

Davidson, E. H., 2006. The Regulatory Genome: Gene

Regulatory Networks In Development And Evolution.

Academic Press.

Davidson, E. H., Erwin, D. H., 2006. Gene regulatory

networks and the evolution of animal body plans. Sci-

ence 311 (5762), 796–800.

de Jong, H., 2002. Modeling and simulation of genetic

regulatory systems: a literature review. Journal of

Computational Biology 9 (1), 67–103.

Dellaert, F., Beer, R. D., 1994. Toward an evolvable

model of development for autonomous agent synthe-

sis. In: Brooks, R., Maes, P. (Eds.), Artificial Life IV.

MIT Press Cambridge.

Dellaert, F., Beer, R. D., 1996. A developmental model

for the evolution of complete autonomous agents. In:

From animals to animats 4: Proceedings of the Fourth

International Conference on Simulation of Adaptive

Behavior. MIT Press, pp. 393–401.

Doursat, R., 2008. Organically grown architectures: Cre-

ating decentralized, autonomous systems by embry-

omorphic engineering. In: Würtz, R. P. (Ed.), Organic

Computing. Springer-Verlag, pp. 167–199.

Eggenberger, P., 1997. Evolving morphologies of simu-

lated 3d organisms based on differential gene expres-

sion. In: the Fourth European Conference on Artificial

Life. MIT Press, pp. 205–213.

Fleischer, K., Barr, A. H., 1993. A simulation testbed

for the study of multicellular development: The multi-

ple mechanisms of morphogenesis. Addison-Wesley, pp.

389–416.

Gruau, F., 1994. Genetic micro programming of neural

networks. MIT Press, Cambridge, MA, USA, pp. 495–

518.

Hogeweg, P., 2000. Evolving mechanisms of morphogen-

esis: on the interplay between differential adhesion

and cell differentiation. Journal of Theoretical Biology

203 (4), 317–333.

19



Hornby, G. S., Lipson, H., Pollack, J. B., 2003. Genera-

tive representations for the automated design of mod-

ular physical robots. IEEE Transactions on Robotics

and Automation 19 (4), 703–719.

Hornby, G. S., Pollack, J. B., 2002. Creating high-level

components with a generative representation for body-

brain evolution. Artificial Life 8 (3), 223–246.

Kauffman, S., 1969. Metabolic stability and epigenesis in

randomly constructed genetic nets. Journal of Theo-

retical Biology 22 (3), 437–467.

Komosinski, M., Rotaru-Varga, A., 2002. Comparison

of different genotype encodings for simulated three-

dimensional agents. Artificial Life 7 (4), 395–418.

Koza, J. R., August 1995. Gene duplication to enable

genetic programming to concurrently evolve both the

architecture and work-performing steps of a computer

program. In: IJCAI-95 Proceedings of the Fourteenth

International Joint Conference on Artificial Intelli-

gence. Vol. 1. Morgan Kaufmann, Montreal, Quebec,

Canada, pp. 734–740.

Kumar, S., Bentley, P. J., 2003. Biologically inspired evo-

lutionary development. In: Evolvable Systems: From

Biology to Hardware. pp. 99–106.

Levine, M., Tjian, R., 2003. Transcription regulation and

animal diversity. Nature 424 (6945), 147–151.

Lobo, D., 2010. Evolutionary development based on ge-

netic regulatory models for behavior-finding. Ph.D.

thesis, Universidad de Málaga.

Lobo, D., Vico, F. J., Dassow, J., 2010. Graph grammars

with string-regulated rewriting. Submitted to Theoret-

ical Computer Science.

Moczek, A. P., 2008. On the origins of novelty in devel-

opment and evolution. BioEssays 30 (5), 432–447.

Reil, T., 1999. Dynamics of gene expression in an artifi-

cial genome - implications for biological and artificial

ontogeny. In: European Conference on Artificial Life.

pp. 457–466.

Roth, F., Siegelmann, H., Douglas, R. J., 2007. The self-

construction and -repair of a foraging organism by ex-

plicitly specified development from a single cell. Arti-

ficial Life 13 (4), 347–368.

Sims, K., 1994a. Evolving 3d morphology and behavior

by competition. Artificial Life 1 (4), 353–372.

Sims, K., 1994b. Evolving virtual creatures. In: SIG-

GRAPH ’94: Proceedings of the 21st annual confer-

ence on Computer graphics and interactive techniques.

ACM, New York, NY, USA, pp. 15–22.

Stanley, K., Miikkulainen, R., 2003. A taxonomy for ar-

tificial embryogeny. Artificial Life 9 (2), 93–130.

Watson, J., Geard, N., Wiles, J., 2004. Towards more bi-

ological mutation operators in gene regulation studies.

Biosystems 76 (1-3), 239–248.

Watson, J., Hanan, J., Wiles, J., 2008. Modeling the fit-

ness of plant morphologies across three levels of com-

plexity. Biosystems 94 (1-2), 182–190.

Willadsen, K., Wiles, J., 2003. Dynamics of gene expres-

sion in an artificial genome. In: 2003 Congress on Evo-

lutionary Computation. IEEE Press, pp. 185–190.

Zhan, S., Miller, J. F., Tyrrell, A. M., 2009. An evo-

lutionary system using development and artificial ge-

netic regulatory networks for electronic circuit design.

Biosystems 98 (3), 176–192.

20


