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Abstract

To quantify symmetry and entropy inherent in the discrete patterns such as
spatial self-organization in cell sorting and mussel bed ecosystems, we intro-
duce the discrete Walsh analysis. This analysis enables us to estimate the
degree of the complicated symmetry, and to extract the symmetry from the
pattern that seems to be the asymmetric. The results obtained in this paper
are summarized as follows. (I) The geometrical patterns of the cell sort-
ing become systematic with the predominance of the particular symmetry.
This implies that not only the entropy but also the particular symmetry can
decrease in the biological process. (II) The magnitude of the symmetry is
related to the absolute value of the adhesion, and the type of the symmetry
is related to the sign of the adhesion. That is, centro-symmetry dominates
in the cell sorting pattern caused by large negative adhesion, and double
symmetry dominates in the pattern caused by large positive adhesion. (III)
Spatial self-organization in mussel bed is accompanied by the decreasing of
the centro-symmetry. This implies that the positive ”adhesion” between
mussel individuals increases with time. (IV) In the biological process, the
Curie symmetry breaking occurs at intervals.
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1. Introduction1

Biological patterns often show discrete patterns consisting of a regular2

grid of cells such as animal stripe pattern and shell pigment patterns (e.g.,3

Wolfram, 2002). Each of the cells can be in one of several ”states”. In4

this paper, we take up a two-state model, in which each of the cells can be5

”On” and ”Off” (or ”Black” and ”White”). Moreover, biological patterns6

also show discrete structure that induces a symmetry breaking (e.g., Turing,7

1952). Therefore, the concept of the symmetry is a useful tool to quantify8

and classify the discrete biological patterns. Especially, bilateral symmetry,9

spherical symmetry and radial symmetry are often recognized in the patterns.10

This paper quantifies the more complicated symmetry that can not be easily11

recognized, and extracts the symmetry that hides behind the asymmetric12

pattern. For this analysis, we suggest a mathematical tool: the discrete13

Walsh analysis.14

Now, in biology that deals with waveforms and signals, the Fourier analy-15

sis has been known as a tool for decomposing a function into simpler trigono-16

metric functions (Fig. 1A). As we will see in the Section 2.2, the discrete17

Walsh analysis decompose the two-dimensional discrete pattern into simpler18

trigonometric patterns called discrete Walsh functions (Fig. 1B). Based on19

the Walsh functions, we can easily estimate the degree of the symmetry in-20

herent in the discrete patterns (e.g., Yodogawa, 1982; Nishiyama et al., 2008;21

Yamasaki and Nanjo, 2009).22

Moreover, to quantify the randomness of a pattern, we introduce infor-23

mation entropy. Although the concept of entropy plays an important role in24

biological process, it has been ignored in the previous Walsh analysis applied25

to physical process (e.g., Nishiyama et al., 2008; Yamasaki and Nanjo, 2009).26

In physical system such as a solid-state phase transition, the decrease in ther-27

modynamic entropy directly corresponds to the symmetry breaking as the28

temperature is lowered (Rutherford, 2001; Avalos, et al., 2004). Then, we29

consider how the symmetry is related to the entropy in the biological phase30

transition.31

As an example of the discrete pattern, we take up spontaneous cell sorting32

caused by cell-cell adhesion. Mochizuki et al., (1996) analyzed cell sorting33

caused by the cell-cell adhesion in limb-formation based on computer sim-34

ulations of spatial Markov processes on a 2-D lattice (Fig. 2). According35
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to their model, the transition from homogeneous cell pattern (Fig. 2C) to36

inhomogeneous one (Fig. 2E∼H) is abrupt. The condition for this abrupt37

transition can be computed by translating the standard results in equilibrium38

statistical thermodynamics into the context of cell sorting. In this case, the39

spontaneous cell sorting can be regarded as one of the phase transition of the40

two-dimensional discrete patterns.41

Moreover, we take up the experimental data for spatial self-organization42

in mussel bed ecosystems (Koppel et al., 2008). Spatial self-organization is43

the main theoretical explanation for the global occurrence of regular or other-44

wise coherent spatial patterns in ecosystems. Under homogeneous laboratory45

conditions, mussels developed regular patterns, similar to those in the field46

(Fig. 3). An individual-based model derived from the experiment showed47

that interactions between individuals explained the observed patterns.48

The structure of this paper is as follows. In Section 2, we explain data on49

cell sorting patterns and method: Walsh analysis for calculating entropy and50

symmetry of the patters. Since Fourier analysis is more familiar than Walsh51

analysis in biology, we express the Walsh analysis in terms of the Fourier52

(sine-cosine) functions. In Section 3, we describe results. In Section 4, we53

discuss results and consider the relationship between entropy and symmetry54

of the 2D discrete patterns.55

2. Data and methods56

2.1. Data57

The entropy and the symmetry of discrete patterns can be estimated58

by using the discrete Walsh analysis (Yodogawa, 1982). In this paper, we59

use the results of the computer simulation for the cell sorting (Mochizuki et60

al., 1996), and the experimental data for spatial self-organization in mussel61

bed ecosystems (Koppel et al., 200), because they are suitable for applying62

the discrete Walsh analysis used in the previous papers (Nanjo et al., 2006;63

Nishiyama et al., 2008; Yamasaki and Nanjo, 2009). Details are as given64

below.65

2.1.1. Cell sorting66

To relate the observed degree of sorting and the strength of cell-cell ad-67

hesion, Mochizuki et al., (1996) studied a stochastic spatial model of cell68

sorting, which is mathematically equivalent to a quenched binary alloy in69
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physics. They consider cells arranged on a two-dimensional regular square70

lattice, in which there are two kinds of cells, called black and white cells.71

The model can be characterized by two parameters: differential adhesion72

A and cell motility m. Cells move randomly by exchanging their locations73

between nearest neighbors in a time interval of length △t with probability74

m△t. The adhesion of cells is assumed to occur only between cells in con-75

tact. Let λBW , λBB, and λWW be the strength of adhesion per cell contact76

between a black and a white cells, between two black cells, and between77

two white cells, respectively. In this case, differential adhesion is defined as78

A = λBB−2λBW +λWW , which determines the tendency of sorting-out of the79

cell population (see Mochizuki et al., 1996 for more details.). Some examples80

of the simulation results are given in Fig. 2, which will be used in this paper.81

The cell sorting patterns depend on the ratio A/m. If A/m is sufficiently82

large, the pattern is inhomogeneous, i.e., coarse grained cell sorting occur,83

in which the whole system is separated into subareas (see Fig. 2E∼2H). On84

the other hand, for small A/m, the pattern is homogeneous, i.e., subareas85

include similar densities of black cells (see Fig. 2C and 2D). Transition from86

homogeneous pattern to inhomogeneous one is abrupt and the condition is87

given by unstable uniform solution (Mochizuki et al., 1996): ρB(1 − ρB) >88

m/(4A), where ρB is fraction of black cells. In this paper, we use the data89

illustrated by Fig. 2, in which ρB = 0.5, so this unstable solution becomes90

A

m
> 1. (1)

Eq. (1) shows that the transition occurs when differential adhesion A is91

larger than cell motility m in the case of ρB = 0.5.92

2.1.2. Mussel bed ecosystems93

Koppel et al., (2008) studied the pattern formation by using mussels in the94

laboratory within a 130×90×27 cm polyester container filled with seawater.95

Mussels were obtained from wooden wave-breaker poles on the beaches near96

Vlissingen, the Netherlands (51.458713N, 3.531643E). In the experiments,97

mussels were laid-out on an 80×60 cm surface of either concrete tiles. Mussels98

were evenly distributed at the start of the experiments, after which mussel99

movement was determined from the images by tracking the position of the100

mussels. In this paper, we take up the time-laps movie (1163952S2) showing101

the formation of spatial patterns by approximately 1200 mussels. In this102

paper, the central patterns of mussel bed were covered with 25 × 25 cells. If103
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we find a part of or whole of mussel bed in a cell of (i, j), then the cell is104

recognized as the black cell (xij = 1), otherwise the white cell (xij = 0).105

2.2. Method106

The order of the discrete Walsh analysis is as follows. (i)Spatial pattern107

is considered as an information source consisting of dot patterns. The dot108

patterns emitted from the source are assumed to occur with the correspond-109

ing probabilities given by Eq. (3). Entropy function in information theory is110

applied to the probabilities so that we can define entropy by Eq. (6) or Eq.111

(13). (ii)When spatial pattern is regarded as an information source consist-112

ing of four types of symmetry (Fig. 4B), the corresponding probabilities are113

given by Eqs. (8) to (11). In this case, we can define the entropy concerned114

with symmetry by Eq. (12). This is called symmetropy. (Strictly speak-115

ing, this symmetropy corresponds to ”partial symmetropy” (Yamasaki and116

Nanjo, 2009). For simplicity, we use the term ”symmetropy” in this paper.)117

As details of the mathematical procedures were given in previous pa-118

pers (e.g., Yodogawa, 1982; Nishiyama et al., 2008), only a brief outline is119

described below. Following Yodogawa (1982), we represent Walsh function120

based on sinusoidal functions (see also Beauchamp, 1975). Walsh function121

wal(κ,χ) of order κ and argument χ can be represented in terms of the122

Fourier (sine-cosine) functions: wal(κ,χ) =
∏m−1

i=0 sgn[(cos 2iπχ)κi], where123

0 ≤ χ < 1, κ = 0, 1, · · · and κi = 0 or 1. The function sgn[t] is −1 if t < 0124

and +1 if t ≥ 0. The product of the two walsh functions is given by dyadic125

addition of orders (nonnegative integers): wal(λ,χ)wal(κ,χ) = wal(λ⊕κ,χ).126

Since the Walsh functions form a complete orthonormal set in the interval127

0 ≤ χ < 1, every integrable functions f(x) can be expressed as a series128

of the form f(x) =
∑

∞

i=0 aiwal(i,χ), where the coefficients ai are given by129

ai =
∫ 1

0
f(x)wal(i,χ)dχ.130

Discrete Walsh functions are defined below. Let the interval (0, 1) be131

divided intoN = 2q (q is a positive integer) with equal subintervals. Let wn(i)132

be the value of the nth order Walsh function in the ith subinterval. In this133

case, the two-dimensional discrete Walsh function is defied as Wmn(i, j) =134

wn(i)wm(j) on a square region divided into equal square subregions called135

cells (Fig. 4A; see also p. 573 in Wolfram, 2002). These functions can be136

represented in matrix form as [Wmn(i, j)], where Wmn(i, j) is the value of the137

(m,n)th order Walsh function in the ith row cell in the j th column.138

Patterns used in this paper are restricted to square matrices, each con-139

sisting of N ×N = 25 × 25 square cells. This pattern can be written as [xij ],140
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where xij is the value of gray level in the ith row cell in the j th column141

and i, j = 0, 1, · · · , N − 1. If there are just two gray levels: for instance142

”black” and ”white”, xij is usually represented by 1 and 0, respectively. The143

two-dimensional discrete walsh transform of the pattern [xij ] is given by144

amn =
1

N2

N−1∑

i=0

N−1∑

j=0

xijWmn(i, j), (2)

where m,n = 0, 1, 2, · · · , N − 1. The functions amn and (amn)2 are the145

two-dimensional Walsh spectrum and power spectrum, respectively. Since146

a00 = (1/N2)
∑N−1

i=0

∑N−1
j=0 xij , we can interpret a00 as the average value for147

the summation of gray levels in the pattern x[i, j].148

The Walsh power spectrum can be normalized:149

pmn =
(amn)2

K
, (3)

with150

K =
N−1∑

m=0

N−1∑

n=0

(amn)
2 − (a00)

2. (4)

The reason for subtracting a00 from the summation is that W00 provides no151

shape information (see Fig. 4A, m = n = 0). In this case, we obtain152

∑
pmn = 1, (5)

where the sum is taken over all ordered pairs (m,n) except (0, 0) for 0 ≤153

m,n ≤ N − 1.154

Applying the entropy function in information theory to the normalized155

power spectrum pmn, we obtain information entropy concerned with the pat-156

tern:157

E = −

N−1∑

m=0

N−1∑

n=0

pmn log2 pmn. (6)

If the value of a certain component is larger than the values of the other158

components, Eq. (6) shows that E decreases, i.e., the pattern becomes sys-159

tematic. On the other hand, if the values of the components are almost equal160

each other, E increases, i.e., the pattern becomes random.161
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Next, let us consider the information entropy concerned with symmetry162

of the pattern. Because the two-dimensional Walsh functions can be easily163

divided into four types of symmetry (Fig. 4B), Eq. (5) can be rewritten as164

4∑

i=1

Pi = 1, (7)

where165

vertical symmetric component:P1 =
∑

m=even,
n=odd

pmn, (8)

horizontally symmetric component:P2 =
∑

m=odd,
n=even

pmn, (9)

centro-symmetric component:P3 =
∑

m=odd,
n=odd

pmn, (10)

double symmetric component:P4 =
∑

m=even,
n=even

pmn. (11)

Applying the entropy function in information theory to these four symmetric166

components, we obtain167

S = −

4∑

i=1

Pi log2 Pi. (12)

Since this entropy is concerned with symmetry, it is called symmetropy (Yo-168

dogawa, 1982). The symmetropy means the entropy of information source169

consisting of the four types of symmetry, and can be considered as a quantita-170

tive and objective measure of symmetry. If the value of a certain component171

is larger than the values of the other three components, the pattern is rich172

in symmetry related to the certain component. In this case, Eq. (12) shows173

that S decreases. On the other hand, if the values of the four components are174

almost equal each other, the pattern is poor in symmetry and S increases.175

Eqs. (7) and (12) show that S ranges form 0 to 2 bits. On the other hand,176

Eq. (6) shows that the minimum value of E is zero bits, but the maximum177

value depends on the number of the cell: log2(N
2 − 1). (Since we ignore the178

component a00, the total number of cell is N2 − 1.) Then, let us define the179

normalized entropy En as follows:180
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En =
E

log2(N
2 − 1)

. (13)

In this case, En ranges from 0 to 1 bit.181

2.3. Examples182

For example, take two patterns shown in Fig. 5B and C. In Fig. 5B,183

the two dimensional Walsh spectra calculated by Eq. (2) are given by a00 =184

0.5, a10 = a13 = a22 = −0.25, a21 = 0.25, and all the others are zero. In this185

case, Eq. (4) shows K = 0.25. Therefore, from Eq. (3) and Eqs. (8) to (11),186

we obtain p10 = p13 = p21 = p22 = 0.25 and P1 = P2 = P3 = P4 = 0.25,187

which satisfy Eq. (5) and Eq. (7), respectively. Hence, by using Eqs. (6),188

(13) and (12), the entropy and the symmetropy of the pattern in Fig. 5B189

can be estimated as190

En = 0.51, (14)

S = 2.00. (15)

On the other hand, the spectra of Fig. 5C are given by a00 = 0.5, a01 =191

a21 = a31 = 0.25, a11 = −0.25 and all the others are zero. In the same192

way as described above, the entropy and the symmetropy of Fig. 5C can be193

estimated as194

En = 0.51, (16)

S = 1.00. (17)

It is found from Eqs. (14) and (16) that the degree of randomness of the195

patterns shown in Fig. 5B and C are equal each other. On the other hand,196

Eqs. (15) and (17) show that the symmetropy of Fig. 5B is larger than197

that of Fig. 5C. This means that the pattern in Fig. 5B lacks symmetry198

compared with the pattern in Fig. 5C. The examples described above show199

that symmetry of a pattern is not necessarily correlated with entropy of the200

pattern. However, previous studies have concentrated on the symmetry (e.g.,201

Nishiyama et al., 2008; Yamasaki and Nanjo, 2009). In this case, we cannot202

quantify the difference between the patterns that have the same symmetry203

but the different entropy. For instance, the pattern in Fig. 5B cannot be204
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distinguished from that in Fig. 5D in the sense of the symmetry, although205

the cell in Fig. 5B is more connected with the other cells compared with that206

in Fig. 5D. Then, in this paper, we estimate not only the symmetry but also207

the entropy of the cell sorting patterns.208

3. Results209

Fig. 6 shows the normalized power spectrum pmn of Fig. 2. It is found210

that the particular components of pmn increase depending on the sign of211

A/m. That is, in the case of A/m < 0 (Fig. 6A and B), the values of pmn212

with high numbers of m and n predominate, which reflects the decrease of213

the cluster size. In the case of A/m > 0 (Fig. 6D∼H), the values of pmn214

with low numbers of m and n predominate, which reflects the increase of the215

cluster size.216

Fig. 7A shows the entropy En of Fig. 2 estimated from pmn in Fig. 6.217

The data En = 0.15 at A/m = −2 is not plotted in the figure, because it is218

too small. When A/m is smaller than the threshold value 1 (see Eq. (1)), the219

entropy En is close to the maximum value 1.0 bit which means the pattern is220

random. On the other hand, when A/m increases and passes the threshold221

value, the entropy decreases, i.e., the pattern formation occurs. Moreover,222

when A/m remarkably increases and passes the value 4, the entropy begins223

to increase, i.e., the pattern becomes random again.224

The symmetry and the symmetropy of Fig. 2 are estimated, and plotted225

against A/m (Fig. 7). The data at A/m = −2: P1 = 0.03, P2 = 0.02,226

P3 = 0.92, P4 = 0.03 and S = 0.54 are not plotted in the figures, because227

they are quite different from the other data. When A/m passes the threshold228

value 1, P3 decreases and P4 increases as Fig. 7C shows. On the other hand,229

Fig. 7B shows that P1 and P2 do not change appreciably. Moreover, when230

A/m passes the value 4, P3 remains low and P4 begins to decrease. From231

these symmetric components change, the symmetropy decreases at A/m ≈ 1232

and begin to increase at A/m = 4 as Fig. 7A shows.233

In a similar fashion described above, we estimate the entropy, the sym-234

metry and the symmetropy of the pattern formation by mussels based on the235

experimental data (Koppel, et al., 2008). In Fig. 8, theses data are plotted236

against time. Fig. 8 shows that the entropy tends to decrease, but the sym-237

metropy varies randomly. Figs. 8B and C show that P3 tends to decrease,238

but the other symmetries are irregular.239
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4. Discussion240

Let us discuss the relationship between the entropy and the symmetry241

in the biological phase transition: the cell sorting. In physical system such242

as a solid-state phase transition, the decrease in thermodynamic entropy243

directly corresponds to the symmetry breaking as the temperature is lowered244

(Rutherford, 2001; Avalos et al., 2004). As describe in the Section 2.3, the245

information entropy change is not necessarily correlated with the symmetry246

change. If the entropy and the symmetry correlate to each other, there are247

various possible combinations as follows (off course, other combinations can248

be created):249

(i)The entropy change is correlated with the symmetry change. For ex-250

ample, this is a case where the pattern becomes systematic with the predom-251

inance of the particular symmetry (e.g., Fig. 5B → A).252

(ii)The entropy varies and the symmetry maintains a uniform value. For253

example, this is a case where the pattern becomes random to maintain the254

degree of symmetry (e.g., Fig. 5B → D).255

(iii)The symmetry varies and the entropy maintains a uniform value. For256

example, this is a case where the pattern restores symmetry to maintain the257

randomness (e.g., Fig. 5B → C).258

To what combinations does the cell sorting pattern belong? Fig. 7A shows259

that the entropy and the symmetropy have a similar tendency to change. This260

result implies that the cell sorting pattern taken up in this paper belongs to261

the combination (i), i.e., the formation of the cell sorting is accompanied by262

the predominance of the particular symmetry (i.e., the decrease of the other263

symmetries). This means that not only the entropy but also the particular264

symmetry can decrease in the biological process. Details are given below.265

As shown in Fig. 7A, the symmetropy decreases with the absolute value of266

A/m. From Eq. (12), a decrease of the symmetropy is caused by an increase267

of the particular symmetry. If the cell motility m is constant (Mochizuki268

et al., 1998), this means that the magnitude of the particular symmetry269

increases with the absolute value of the differential adhesion A. On the270

other hand, the sign of A is related to the type of the symmetry as follows.271

In the case of A < 0, the cluster size decreases and the mixed cell shows the272

checker-board like pattern (Figs. 2A and B). That is, the centro-symmetric273

component P3 increases (Fig. 7C). This agrees with the previous results (e.g.,274

Honda and Eguchi, 1980). Moreover, Figs. 7B and 7C show that not only275

P3 but also the other symmetries: P1 and P4 hide behind the pattern with276
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the negative A. This cannot be easily recognized without the discrete Walsh277

analysis. In the case of A > 0, the cluster size increases and the mixed cell278

shows the segregated pattern (Fig. 2D∼H). This pattern is accompanied by279

the predominance of the doubly symmetric component P4 and the decreasing280

of P3 (Fig. 7C). To our knowledge, this has not been reported in detail.281

Fig. 7A also illustrates that the entropy and the symmetry of the cell282

sorting patterns shows a fall at A/m ≈ 1, i.e., A ≈ m, followed by s rise at283

A/m ≈ 4, i.e., A ≈ 4m. The former threshold value has been predicted by284

the previous theoretical study (Mochizuki et al., 1996) such as Eq. (1), but285

the latter value has not. We may intuit that the more adhesion A increases,286

the more systematic the cell sorting patten becomes. However, contrary to287

this intuition, the results show the middle range m < A < 4m in which the288

cell sorting pattern becomes extremely systematic.289

Fig. 8A shows that the entropy of the distribution pattern of the mussel290

tends to decrease. This result provides the quantitative support for the291

spatial self-organization of the mussel. On the other hand, the symmetropy292

seems to vary randomly. From Eq. (12), this is due to the irregular patterns293

of the symmetries except for P3 (Figs. 8B and C). By comparison with Fig.294

7C, the decreasing of P3 implies that the positive ”adhesion” between mussel295

individuals increases with time.296

Finally, let us reconsider the symmetry change in the biological process297

from the viewpoint of the Curie symmetry principle (Curie, 1894; Rosen and298

Copie, 1982). In physical process, the Curie symmetry principle has been299

known as an aspect of the causality relationship between the symmetry of300

the cause and that of the resultant effect, and allows us to predict possible301

properties and to forbid impossible ones (e.g., Jaeger, 1920). The Curie302

symmetry principle is expressed in terms of the symmetropy as follows (Nanjo303

et al., 2005): symmetropy evaluating the cause Scause is equal to or smaller304

than symmetropy evaluating the resultant effect Seffect:305

Scause ! Seffect (18)

Since the simulation is executed from a random initial pattern (Mochizuki306

et al., 1996), Scause is considered to be the symmetropy of the random pat-307

tern: 2.0 bits. Since the maximum value of the symmetropy is 2.0 bits, Eq.308

(18) means that Seffect is constant at close to 2.0 bits if the Curie symmetropy309

principle holds. In this sense, Fig. 7A shows that the Curie symmetry prin-310

ciple breaks at the interval 1 < A/m < 4, because the symmetropy decreases311
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from 2.0 bits. These quantitative results imply that the spontaneous cell sort-312

ing is accompanied by the spontaneous Curie symmetry breaking. Moreover,313

Fig. 8 shows that the Curie symmetry breaking occurs at the intervals. This314

finding may provides quantitative support for the idea: symmetry breaking315

in self-organizing systems from a viewpoint of the Walsh analysis.316

5. Conclusions317

The following conclusions were derived from the results and discussion.318

(I)In the cell sorting, the pattern’s entropy and symmetry correlate to each319

other, i.e., the formation of the cell sorting is accompanied by the predom-320

inance of the particular symmetry. (II)The magnitude and the sign of the321

differential adhesion is related to the magnitude and the type of the pattern’s322

symmetry, respectively. That is, in the case of A < 0, the centro-symmetry323

increases; in the case of A > 0, the double symmetry dominates. (III) Spa-324

tial self-organization in mussel bed is accompanied by the decreasing of the325

centro-symmetry. This implies that the positive ”adhesion” between mussel326

individuals increases with time. (IV) In the biological process, the Curie327

symmetry breaking occurs at intervals.328

329
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Figure captions393

394

Fig. 1. Conceptual diagrams of Fourier analysis (A) and discrete Walsh395

analysis (B). The coefficients are spectrum.396

397

Fig. 2. Patterns obtained by computer simulation of cell sorting system398

(data from Mochizuki et al., 1996). A part (40 × 40) of whole simulation399

space (100 × 100) is shown. Each simulation is executed from a random400

initial pattern for 10000 time steps. Parameters are: m = 0.5, and relative401

differential adhesion is: (A) A/m = −2; (B) A/m = −1; (C) A/m = 0; (D)402

A/m = 0.6; (E) A/m = 1.2; (F) A/m = 2; (G) A/m = 4; (H) A/m = 6.403

404

Fig. 3. Pattern formation in mussels under experimental laboratory405

conditions (data from Koppel et al., 2008).406

407

Fig. 4. (A) Examples of the two-dimensional discrete Walsh function408

for M = N = 4. Black and white represent +1 and −1, respectively. (B)409

Four types of symmetry in the sense of the discrete Walsh function.410

411

Fig. 5. Entropy (En) and symmetropy (S) of samples. The full mean-412

ings of the numbers (i), (ii) and (iii) are described in Section 4. (i) The413

pattern becomes systematic (En decreases) with the predominance of the414

particular symmetry (S also decreases). (ii) The pattern becomes random415

(En increases) to maintain the degree of symmetry (constant S). (iii) The416

pattern restores the particular symmetry (S decreases) to maintain the ran-417

domness (constant En).418

419

Fig. 6. Normalized power spectrum of Fig. 2. (A)-(H) in this figure420

correspond to (A)-(H) in Fig. 2, respectively.421

422

Fig. 7. Plots of entropy, symmetropy and four types of symmetry for423

cell sorting against A/m. The data at A/m = −2: P1 = 0.03, P2 = 0.02,424

P3 = 0.92, P4 = 0.03, S = 0.54 and En = 0.15 are not plotted in the figures,425

because they are quite different from the other data.426

427

Fig. 8. Plots of entropy, symmetropy and four types of symmetry for428

pattern formation in mussels against time.429

430
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