
 1

 

Triadic Conceptual Structure 

of the Maximum Entropy Approach to Evolution 

 
Carsten Herrmann-Pillath* and Stanley N. Salthe** 

 

* East West Center for Business Studies and Cultural Science, Frankfurt School of Finance 

and Management, Sonnemannstraße 9-11, 60314 Frankfurt am Main, Germany 

Email c.herrmann-pillath@fs.de 

** Biological Sciences, Binghamton University, Vestal, New York, USA 

Email ssalthe@binghamton.edu  

 

 

Abstract 

Many problems in evolutionary theory are cast in dyadic terms, such as the polar oppositions 
of organism and environment. We argue that a triadic conceptual structure offers an 
alternative perspective under which the information generating role of evolution as a physical 
process can be analyzed, and propose a new diagrammatic approach. Peirce’s natural 
philosophy was deeply influenced by his reception of both Darwin’s theory and 
thermodynamics. Thus, we elaborate on a new synthesis which puts together his theory of 
signs and modern Maximum Entropy approaches to evolution. Following recent contributions 
to the naturalization of Peircean semiosis, we show that triadic structures involve the 
conjunction of three different kinds of causality, efficient, formal and final. We apply this on 
Ulanowicz’s analysis of autocatalytic cycles as primordial patterns of life. This paves the way 
for a semiotic view of thermodynamics which is built on the idea that Peircean interpretants 
are systems of physical inference devices evolving under natural selection. In this view, the 
principles of Maximum Entropy, Maximum Power, and Maximum Entropy Production work 
together to drive the emergence of information carrying structures, which at the same time 
maximize information capacity as well as the gradients of energy flows, such that ultimately, 
contrary to Schrödinger’s seminal contribution, the evolutionary process is seen to be a 
physical expression of the Second Law. 
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1. From dyadic to triadic conceptual structure 
Evolutionary theory is haunted by a number of problems which emerged in its defining stages, 

and have persisted to the present time, such as the relation between ontogeny and phylogeny, 

the relations between genotype and phenotype, and the relation between organism and 

environment. In their research strategies, evolutionary theorists have tended to vacillate 

between polar approaches, such as, for example, gradualism versus saltationism in the 

broadest sense. In many respects, as in Robert Wilson’s terminology (Wilson 2004: 68ff.), 

these oppositions can be interpreted using the ‘internal richness’ and ‘external minimalism’ 

format. Different approaches to evolution differ in whether they adopt an ‘internal richness’ 

position, such as in the gene-biased position, which sees genetic information as carrying the 

exclusive determinants of development, minimizing the role of external factors, or whether 

they reject one or both extremes, such as in the developmental systems approach (Oyama 

2001), which continues to maintain the internal richness view, but rejects external minimalism, 

thus positing that biological information is contextual, that is, embodied in the larger 

structures of cells, organisms and even local biomes. 

The conceptual trouble with dualisms is that they vacillate between privileging the 

epistemological positions of externalism, focusing on constraints, and internalism, focusing 

on generativity, depending on the aspect of evolution that is in focus. They may even fail to 

distinguish between the epistemological and ontological dimensions of an issue, uncritically 

assuming, for example, that the scientific observer is able to position herself in an external 

position such that possible internal positions become irrelevant, thus effectively eliminating 

the distinction between internal and the external. This also obscures the material fact of their 

own position as mediating observers by assuming a direct mapping between reality and 

concepts. For example, with reference to development, the NeoDarwinian view focuses 

internally on the locus of biological information in the ontological dimension, but at the same 

time is externalist with reference to the process of selection in the epistemological dimension, 

so that the forces of evolutionary change are seen to be located outside of the genome even 

though change must materially originate internally (Reid 2008). This reflects a failure to 

distinguish between ontological and epistemological internalism vs. externalism in the 

treatment of the notion of information -- that is, the question of the location of operative 

information and the question as to which stance of the observer the information refers. In 

order to keep our subsequent argument within the confines of a paper, we avoid even more 

fundamental issues that would arise if we were to consider that even the distinction between 

epistemological and ontological dimensions is itself a problem pointing toward more radical 
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approaches, such as anchoring both dimensions internally in the observer (Matsuno and Salthe, 

2002). 

In the present paper, we propose that the difficulties with these questions have resulted from 

the fundamentally dualist oppositions in which the discussions have been framed. Ontological 

dualisms permeate the field, as with ‘genetic cause and phenotypic effect’, or ‘genetic sender 

and phenotypic receiver’. This is related to the belief that biological phenomena can be fully 

explained as efficient-causal, that is, as mechanistic processes (Ulanowicz 1997: Chapter 2). 

In the mechanistic worldview, there is no need to distinguish between different possible 

positions of observers in the treatment of information. This has, however, produced perennial 

debates about foundational issues such as the distinctions between units of selection, units of 

heredity and units of evolution. 

Neither polar opposition is entirely satisfactory, and so we need some ‘meta’ perspective to 

dissolve them. Herein we propose a triadic structure to evolutionary change, in which polar 

oppositions are revealed to be two modes of approach to the same fundamental reality, 

somewhat like the wave-particle dualism in physics during 19th century debates. 

Correspondingly, biologists debate the nature of biological information, whether it is 

‘particularistic,’ i.e. manifested ontologically in genes, or whether it is more holistic, i.e., 

ontologically manifest in complex living systems, of which genes are only one part (Godfrey-

Smith and Sterelny 2008). In a triadic approach, this debate is found to be a dual perspective 

view. The required triadic structure can be based on the theory of signs developed by Charles 

Sanders Peirce (for an accessible collection of his most important works, see Peirce 1992, 

1998). We will link as well his broader views on the stochastic nature of reality, and on the 

roles of final, as opposed to efficient causation in evolution. In referring to Peirce’s views, we 

mainly build on the synthesis offered by Stone (2007), who puts these views into the more 

explicit context of modern analytical philosophy. 

In figure 1, we show the polar oppositions resolved into two modes in the fundamental triadic 

structure of reality envisaged by Peirce: This structure is a static snapshot of an evolutionary 

process in which information about an object, while not directly accessible epistemically, is 

generated within a system of interpretance (Salthe 2009) via sequences of interpretants 

informed by an evolving sign (sometimes referred to as ‘representamen’ in Peirce’s later 

works, a notation that has been accepted by many semioticians, using instead ‘sign vehicle’, 

but rejected by Stone 2007: 19, 55, whose usage we follow in the present paper, if only for 

reasons of consistency and expediency). However, the triadic structure of object, sign and 



 4

interpretant could be interpreted in two different ways, ending up in those polar dyadic 

discursive oppositions. 

 One way is to conflate sign and object, thus assuming a direct accessibility of objects by 

the reactive system of interpretants. In this ‘particularistic mode’ efficient causality is the 

framework of explanation, and this perspective also tends to adopt atomistic ontologies 

which gravitate towards the presumption that causal processes relate to certain 

fundamental entities, such as elementary particles or genes (for programmatic statements, 

see Wilson 1998: 53ff., 297, or von Baeyer 2003: 11ff.). In this view, the distinction 

between different observational standpoints becomes irrelevant, because if sign and object 

are conflated, it appears to be possible for observers to get direct access to ‘reality,’ 

independently of the epistemological position from which the object is approached. 

Interestingly, and perhaps unexpectedly, this truncation of the triadic structure has resulted 

in serious epistemological problems in foundational physics, where the distinction 

between the observer’s states of knowledge and the physical object has been blurred, 

resulting in endless debates over the Copenhagen view on quantum mechanics, where the 

ontological status of ‘randomness’ still awaits final clarification (Jaynes 2003: 327ff.; 

Penrose 2006: 782ff.; Faye 2008). 

 The other way is to conflate sign and interpretant, thus positing that objects are only 

accessible from the perspectives of particular systems of interpretance, such that there is 

no way to conceive of objects independent from context. This view neglects the fact that 

the sign is co-produced by both the system of interpretance and the object. This is a 

holistic mode, as, for example, in theories about the co-evolution of organisms and 

environment, which, again interestingly and unexpectedly perhaps, might also be 

formulated in a mechanistic fashion, because the conjunction of different causalities can 

only emerge in the triadic structure (see, for example, the theory of ‘niche construction,’ 

Odling-Smee, Laland and Feldman 2003). However, in this view, all potential positions of 

observers are equally valid, so that there is no way to arrive at a canonical unified picture 

of ‘reality,’ – a Peircean desideratum -- such as, in the aforementioned example, when 

trying to overcome the principled distance between the epistemic reconstruction of a niche 

by the external observer and the internal position of the evolving biological systems that 

results in niche construction (Brier 2008: 169ff., referring to Reventlow’s ethological 

theory). 
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Figure 1: The two modes in the Peircean triadic structure of semiosis 

 
In modern science, the co-existence of the two modes was suppressed by the social 

construction of the ‘experiment,’ in which the relationship between observer and object was 

standardized in a way that conflates sign and object (Salthe, under review). However, in many 

sciences, such as the evolutionary sciences, the experimental construction has been difficult to 

implement or even impossible to achieve. Therefore, it is absolutely necessary to make the 

triadic structure explicit in order to clarify contentious issues in sciences confronting complex 

systems. The triadic structure of explanation allows for the simultaneous analysis of the two 

modes, and the notion of ‘sign’ obtains a central role, as it mediates two relations: one is the 

efficient-causal relation with the object that stimulates generation of the sign, and the other is 

the final-causal relation with the interpretants, which determines the larger role of the sign in 

the observational system in which the object is embedded. 

In taking this stance, we argue that a particular methodological step is necessary. This is to 

adopt a naturalistic approach to semiosis – that is to say, the position according to which 

‘interpretants’ are taken to be physical phenomena (upon which, for example, ‘minds’ 

supervene) and which can therefore be applied to all aspects of living systems. Our approach 

is not, however, identical to certain positions in the current ‘biosemiotics’ discourse because, 

for example, there can be different interpretations of the ‘mental’ with reference to the 

concept of the ‘meaning’ of signs, depending on whether, in the end of the day, a Cartesian 

dualist ontology is implied (Hoffmeyer 1999, Brier 2008), which has also been the case in 

panpsychistic approaches (Rensch 1974; for an overview of the alternatives, see Seager and 
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Allan-Hermanson 2007). We follow Stone’s (2007: 156ff., 301ff.) interpretation of Peirce in 

taking ‘mental’ phenomena to emerge from the semiotic process, and therefore they cannot 

serve as an explanation of that process. Yet, our view implies that ‘mental’ characteristics 

could emerge in all physical structures that manifest semiosis, without implying Cartesian 

dualism. Recently, several attempts have been presented offering naturalistic versions of 

Peircean semiosis, which differ in details, but less in substance (Vehkavaara 2002, El-Hani et 

al. 2006, Southgate and Robinson 2010, Herrmann-Pillath 2010, Salthe, under review). We 

build on these approaches, but add a substantial extension, which relates particularly to 

Peirce’s interest in the interplay between randomness and regularity. This is to bring 

thermodynamics and statistical mechanics into the picture.  

The established way of naturalizing semiosis is to understand the concept of the interpretant 

to be a ‘response’ or a ‘function’ in a semiotic system, basically similar to the teleosemantic 

approach to meaning as function (Millikan 1989; Macdonald and Papineau 2006). This entails 

reference to a function of functions, so to speak, hence to a hierarchy of functions, which is 

central to realizing that signs themselves cannot be seen as having functions (Stone 2007: 

159ff., 172). We argue that the (subsumptive) hierarchy (Salthe 2002):  

 

{PHYSICAL TENDENCY {CHEMICAL AFFORDANCES {BIOLOGICAL FUNCTIONS  }}} 

 

represents the fundamental properties of living systems, which can be viewed as exploiting 

information to harness and dissipate energy (the physical tendency -- for convergent views, 

see, for instance, Lahav et al. 2001, Elitzur 2005). Both information processing and energy 

dissipation can be effectively viewed from the standpoint of thermodynamics and statistical 

mechanics. A major aim of this paper is to establish a direct conceptual bridge between the 

latter -- hence the concepts of information and entropy -- and Peircean semiosis, in order to 

shed new light on the aforementioned external / internal polar oppositions in evolutionary 

theory. We expect that this conceptual synthesis may offer an opportunity for resolution of 

other open questions in evolutionary theory, which, however, we will only allude to in the 

final section of this paper. Our aim here is to establish fundamentals.  

We start with an analytical summary of one recently published attempt at a naturalistic 

semiotics, by Robinson and Southgate (2010). We expand on this by means of an analysis of 

the underlying triadic structure, proposing clarification by way of a new diagrammatic 

exposition. Dovetailing with R&S’s analysis of the origin of life, we generalize the argument 

by offering a semiotic analysis of the universal model of autocatalytic cycles as found in, e.g., 
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chemistry, ecology and social systems. This allows for linking the Peircean semiotic analysis 

with thermodynamics. Then we continue by placing the structure of statistical mechanics into 

the triadic framework, so that we can apply basic conceptual principles from statistical 

mechanics to semiosis. We show that in a naturalized semiotics, semiosis encompasses both 

the information theoretic Maximum Entropy Principle and the physical Maximum Entropy 

Production Principle.  

 

 

2. Naturalizing Peircean semiosis 
 

2.1 Basics of triadic conceptual structures: Efficient and final causality in evolution 

A conceptual framework for a naturalistic semiotics has recently been proposed by Robinson 

and Southgate (2010) (R&S) who build on Short’s (2007) account of Peirce’s theory of signs. 

The basic idea is that ‘interpretants’ in Peirce’s approach are linked to a ‘general response’, R, 

in any system. This corresponds to use of the term ‘function’ in teleosemantics, which implies 

that responses are embedded in larger systemic contexts, such as biological functions in an 

organism. A response, R, to an object, O, is informed by a sign, X, that represents O to the 

responding system. R&S do not use the term ‘information’ here because, according to their 

understanding, it suggests only the Shannon information concept. However, we think this 

conceptual barrier is unnecessary, as the natural notion of information always implies 

semantic information -- that is, data with meaning in context (Floridi 2003, 2007).  

Furthermore, Shannon information is merely a quantitative measure of information. For us the 

information concept will be useful in recognizing that the dualism of sign and object plays 

precisely the role of generating information about the object for an observing system. In other 

words, in our naturalized view, the semiotic relation between object, sign and response is an 

inference mechanism: The sign mediates a response that, if that response meets certain criteria 

of proper functioning, it carries information about the object embodied in the corresponding 

physical interactions (as in the ‘inference devices’ in the sense of Wolpert, 2001, 2008). This 

information-generating role has been thematized by Peirce in his distinction between 

‘immediate object’ and ‘dynamical object’, and the idea that the deployment of sequential 

interpretants is a process of approximating the ‘reality’ of objects, relative to the contexts in 

which the interpretants are embedded, as well as in regard to the interest, qua functions, of the 

observing system. This is why Peirce’s theory of signs and his theory of inference form a 

unity (Atkin 2006), which we could also project into our analysis of evolution.  
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This statement needs careful consideration: We cannot say that the sign carries information 

about the object unless this information relates to an interpretant (Stone 2007: 172). For 

example, even in the standard case of smoke and fire, smoke is a direct (efficient) causal 

effect of fire, and only carries information if there is at least a potential observer that makes 

the inference from smoke to fire. However, this implies that the information is embodied in 

the observing system’s global response, and not in the sign exclusively. In Peircean semiotic 

analysis there is no ‘view from anywhere’ which is implied in the particularistic stance of 

standard science discourse. For example, if the observer is interested in whether there is fire 

because she would flee in order to survive, then the response, running away, embodies the 

information that there is fire, and not the smoke as such. This is also evident from the fact that 

the same physical entity, such as smoke, can be a different sign, dependent on the interpretant 

(for some, smoke indicates fire, for others, smoke indicates human company, depending on 

context and interest, see Short 2007: 189). 

The basic triadic structure of semiosis as naturalized is depicted in figure 2, following the 

notation introduced by R&S, modifying and extending it on the basis of a related diagram of 

theirs. This differs in several important respects from other triadic diagrams that can be found 

in the literature (e.g. El-Hani et al. 2006, Brier 2008, Salthe, 2009). Actually, this is a diagram 

of two triads, one of which goes via the Q at the center and a more encompassing one passing 

through X. In the first, Q represents the physical mechanisms that connect object, sign and 

response. R&S define Q as a property of an entity -- which we will just call ‘living system’ 

here -- of undergoing a change of state when causally impacted by O, such that the response R 

occurs. For example, Q contains all the physical and neuronal chains of causes and effects that 

would connect smoke with the movements of a person fleeing from the fire. All interactions 

of Q can be separately described mechanistically, whence our use of the term ‘naturalization.’ 

Q is a blackbox that contains several different mechanisms, which, however, become 

integrated into the semiotic process via the interpretants (at R). Insofar as the identification of 

the boundaries of that blackbox cannot be determined physically (for example, there may be 

many other causal effects of smoke that are irrelevant for the action of running, yet are also 

physically connected in an indistinguishable way), Q cannot be isolated from the embedding 

semiotic relations, because the scope of relevant causal effects can only be defined relative to 

the dynamic relations between all of O, X and R. 
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Figure 2: A naturalistic view on the Peircean semiotic triad 

 
So, the blackbox Q contains the mechanisms by which an object causes some effect(s) on a 

system, which are twofold, corresponding to the two triads. One is the effect that is mediated 

via the sign, such as, e.g., neurophysiological mechanisms of perception, involving R. These 

are the mechanisms by which the physical phenomena emanating from smoke are identified 

perceptually as ‘smoke’, as being separate from other physical phenomena in the environment. 

The other is the effect that the object has on the larger scale organism, and which relates to the 

larger, more general, function of the response, such as running (here, away from fire). It is 

important to realize that Q has been affected by natural selection, which is indicated by the 

thin arrow that relates Q to P. P, following R&S, represents the pull of the response by its 

larger function (‘purpose’) in the organism. R&S define natural selection as a process in 

which particular functionings are selected for a ‘general type of outcome,’ such as ‘avoiding 

dangerous fire,’ which allows for a multitude of different possible activities. The central 

insight depicted in fig. 2 lies in the observation that the evolution of both X and Q are guided 

by natural selection, and that the physical content of Q is entangled with the evolution of X. 

This is the central mechanism by which natural selection results in generating information 

about O.  

The bottom or inner triangle, in dark shading, is embedded within the larger one, partly in 

dashed lines. We propose to understand this embeddedness as referring to ‘supervenience.’ 

Thus, X supervenes upon Q in the same way as mental processes supervene upon neuronal 

processes (McLaughlin and Bennett 2008). Supervenience has the important property of 
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multiple realizability: The same sign, in its relation to the response, could be released by 

many different states or aspects of the object. As we shall see, this is the ultimate reason why 

signs generate information within the system of interpretance as it confronts an object. In 

preparation of things to come, we notice that this relation of multiple realizability of X 

corresponds to the distinction between microstates and a macrostate in statistical mechanics, 

such that a large number of microstates of an object correspond to one macrostate causally 

connected with the object. 

The difference between the two triangles, O-Q-R and O-X-R, in figure 2 lies in that the larger 

one describes a process guided by final causality, as in Short’s (2007: 136ff.) precise 

definition, though being materialized via efficient causality, too (that is, for instance, the sign 

X connects with R efficient-causally, if this relation is taken in isolation). Diagrammatically, 

therefore the broken arrow X-R supersedes a solid arrow (not shown for reasons of clarity in 

the diagram). This is because the relation between sign, response and object is a generic one, 

which directly connects to mechanisms producing general types of outcome. That is, viewed 

from the inner triangle, the sign is a particular in Peirce’s sense, hence a token, but viewed 

from the outer, partly dashed triangle it is a Peircean ‘general,’ hence a type. This 

differentiation of two levels, one supervening on the other, will presumably have resulted 

from natural selection, which can be viewed as a process that maps relations between object 

and sign into a ‘general’ in Peirce’s terms -- that is, a general type of outcome according to 

Short. It is the sign that enables a semiotic system having the property Q to manifest a 

response R by which the system is enabled to relate with the object O under the perspective of 

the ‘purpose’ P. So, in the supervening level of the semeiotic relation as solid arrow (the 

object causing the sign) is related with two broken arrows, which, via the R, lead back to the 

object, thus reversing the direction of the causal forces, with the object becoming causally 

influenced by the interpretant. This is meant to display final causality. 

Therefore, in the naturalization of semiosis, the notion of ‘purpose’ is pivotal, and comes 

close to the notion of ‘proper function’ in teleosemantics. In Short’s approach, continued in 

R&S, a purpose is associated with selection, which is implicitly viewed as selection of 

something for some purpose, with the latter designating a general type of outcome. We notice 

that epistemologically, this general type of outcome is not a simple observable, but can only 

be reconstructed conceptually by means of a theory of the larger system in which P is 

embedded, such as, for example, differential reproductive success in the NeoDarwinian theory 

of evolution. In other words, in Peircean terms, selection maps particulars into generals. 

Reproduction can subsume innumerable variations of particular traits. This general type of 
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outcome is a criterion of selection. For another example, high speed movement might be a 

general type of outcome in a predator-prey system, based on any number of anatomical or 

behavioral adjustments within the prey. The point is that this outcome can be achieved in 

many different ways, so that the result of selection can be described as final causality that 

supervenes on various underlying processes, each animated by efficient causality. This means 

that, in natural selection there is a sequence of causal events that leads towards the differential 

reproduction of organisms with traits such as higher speed, which sequence could be 

described in terms of efficient causality. But the direction taken by the process is determined 

by the property of higher relative speed, which is a final cause, subsumed by the yet more 

general final cause of reproduction. 

To summarize, in our interpretation, there are the following core components of the R&S 

approach, building on Short’s more fundamental conceptual distinctions. 

 R relates to an object such that it contributes to the generation of a generalized type of 

outcome, thus R mediates a purpose. This means that the object must have a causal effect 

on R that would be relevant in terms of the purpose P. This effect works via Q. 

 X also relates to R in a mechanistic way This relation is a mapping from the efficient 

causal relation between O and X, which works via the co-evolution of X and Q under 

natural selection, resulting in the supervenience of a formal-causal relation X-R to the 

mechanistical relation X-R . 

 The different relations mentioned previously are reflected in a property, Q, of the system 

that manifests in the response R. This property has been selected in the light of purposes P. 

 The embeddedness of the two triangles, both building on relations of efficient causality, 

manifests the supervenience of final causality on efficient causality, such that the purpose 

P, via the intermediation of the evolving X, guides the generation of information about the 

object O in the evolutionary process. 

 

Figure 3: The system of interpretance 
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This conceptual scheme is extended in figure 3, showing further additions to figure 2, and also 

simplifying the relations of different causalities, in order to highlight the result from adding 

the notion of hierarchically ordered purposes. Every purpose is a nested structure with 

different degrees of generality, as in: 

 

{P  {R  {R’  {R’’ { etc. }}}} 

 

So, it is not sufficient to refer only to the most general purpose, P, such as ‘differential 

reproductive success.’ R&S use the term ‘proximal purposes’ in order to make this point, 

while emphasizing that P and R should not be conflated, because otherwise there would be no 

possibility of poor, or non-functional, responses and functionings of signs, which is central for 

the validity of this approach, as well as for Peircean ‘fallibility’, required also in 

teleosemantics. Yet, we can say that proximal purposes connect to a chain of hierarchically 

ordered responses. For example, the purpose of an engine can be to transmit power, which is 

general. The more limited purpose might be to move a car, or it can be viewed as to move the 

wheels of a car. Using the subsumptive hierarchy we get: 

 

{TO POWER  {A CAR  {BY WAY OF ITS WHEELS }}} 

 

Clearly, the different purposes are also increasingly specific functions. If we transfer this 

observation onto the semiotic analysis, then we have responses / interpretants which can give 

rise to other responses / interpretants. For example, an animal may respond to the shape of 

another animal with flight. Flight is related to the generalized purpose of survival. Yet, the 

immediate causal loop may just relate the observation of the shape with a movement of the 

limbs as a response. This response alone is not sufficient for flight. For example, there must 

be another response that is directing the movement away from the perceived threat. Thus, a 

complex reaction such as a movement can be dissected into hierarchies of functions, which 

can be viewed as increasingly ‘more proximate’ purposes. So, movement of limbs has the 

purpose to move in a certain direction, and the movement toward a certain direction serves the 

purpose to avoid a perceived predator.  

Now, we posit that such hierarchies of purposes make up a ‘system of interpretance’ (SI, 

Salthe, 2009). Systematicity implies two things here. Firstly, as depicted in fig. 3, there is a 

chain of responses qua interpretants of signs which are reflected in certain mechanisms that in 

complex systems will have evolved as the effects of selection. Secondly, the system has 
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boundaries with respect to other systems. With the concept of system of interpretance, we are 

supplementing the R&S model. For example, an SI can be an organism, which manifests 

many different interrelated functions related to various purposes. A purpose can be 

determined in different ways, depending on the hierarchical level considered. Thus, an 

organism is part of an ecosystem which constitutes a higher level SI in a compositional 

hierarchy (Salthe, 2002). In this higher level (here larger scale) system, we can identify 

higher-level purposes which embed the organismic functions. Similar lower-level responses 

can also have different higher-level purposes, which in turn relate with even broader SI’s, 

such as, in the limit, might be envisaged in ‘Gaia’ approaches. This increasing scale (in the 

compositional hierarchy) or generality (in the subsumptive hierarchy) of context also reflects 

the fact that living systems ultimately are related with a limited number of more universal 

purposes, such as differential reproduction of a population, the generation of energy flows in 

an ecosystem, etc. Thus, the SI provides connections between a systemic response and 

multiple purposes, in this way extending the R&S approach. 

 

2.2 Semiotic analysis of autocatalytic cycles 

In order to prepare the ground for the argument in the next section, we propose that in a 

naturalized semiotics, the archetypical case of systematicity is the autocatalytic cycle, which 

we analyze in semiotic terms. Again, this follows the R&S approach (and see also Herrmann-

Pillath 2010) in using the origin of life scenario as a reference case. However, we claim that 

this reference case can be viewed as just one example of the more general model of 

autocatalytic cycles (or hypercycles, in particular), which applies in many different contexts 

and across systemic levels, reaching from chemistry to human social systems (Maynard Smith 

and Szathmary 1995, Padgett 1997, Padgett et al. 2003, Odum 2008). Hence, it provides an 

analytical backbone for generalizing the semiotic triad. We notice, but refrain from 

elaborating further on this point here, that this argument can even be further generalized onto 

dissipative structures as physical phenomena, which corresponds to recent attempts at 

building foundational physics on an information-theoretic basis (see e.g. Zeilinger 1999, 

Lloyd 2006, Salthe under review). 

In Ulanowicz’s (1997: 41ff.) outline of the autocatalytic cycle, the following features are 

essential. First, there is a process that generates an effect on another process which increases 

the rate of activity of this second process. Then, the second process also generates a similar 

effect on another process, which may result in a linked sequence of processes. Finally, there is 

a process in the chain of them that contributes to increasing the rate of activity of an earlier 
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process in the chain. Ulanowicz shows that the resulting overall process cannot be exclusively 

understood in terms of efficient causality, even though every step in the process can be 

viewed as efficiently caused. This is because the internal interdependence introduces a 

distinction between external and internal selection on the overall unit of interrelated processes. 

Internal selection happens because any variation in a single processes that enhances the 

overall level of activity will be leveraged by the interaction, and in the reverse case, 

reductions will be also leveraged, such that an internal directedness will emerge that 

Ulanowicz calls ‘growth enhancing’, with ‘growth’ here referring to growth in the overall 

throughput of the cycle. 

If one considers the case of a population of autocatalytic cycles, this implies that those which 

increase their overall rate of activity will increase their share of resources in a population of 

them. This results in external selection of units of cycles. Therefore, internal directedness 

translates into external directedness on the population level, a relation which Ulanowicz calls 

‘asymmetric.’ This expression directly corresponds to Stone’s (2007: 115) notion of 

‘anisotropic processes’ as opposed to mechanical processes. From this follows what 

Ulanowicz calls the ‘centripetality’ of the autocatalytic process. Centripetality means that the 

cycles with higher rates of activity attract more resources and energy from their environment 

to feed their growth. In other words, autocatalytic cycles tend to maximize power throughput 

in the sense of Lotka’s (1922a, b) principle of natural selection. Centripetality implies 

competitive pressure on other cycles in the neighborhood, with the neighborhood being 

defined by the scope of the resource constraints, not spatially (Matsuno and Swenson 1999). 

Autocatalytic cycles are a simple case of the emergence of a higher level in a compositional 

hierarchy, understood as either larger in scale (or, alternatively, greater in complexity in a 

subsumptive hierarchy). This is because with an autocatalytic cycle, its integrity is 

independent from variations of its constituents, as long as those constituents retain their 

integrated catalytic function with respect to other processes. This means that any element in 

the cycle could be substituted by a functionally equivalent (even if in unrelated ways 

phenotypically different) element. Therefore, cycles can be functionally identical on the 

higher level, even though consisting of different elements entirely.  

In the analysis of autocatalytic cycles, Ulanowicz distinguishes three causal processes and 

compositional levels, which directly correspond to our triadic framework -- that is, can be 

reconstructed in terms of the embedded semiotic triads. One is the lower level of the 

component efficient-causal processes -- the chemical kinetics. The other is the ‘focal level,’ 

which is formal-causal in the sense that the structure of the cycle is ontologically autonomous 
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from its individual constituent processes. We can also say that formal causation is a static 

view of an autocatalytic cycle. Finally, the autocatalytic cycle establishes a functional unit 

which underlies its growth dynamics and its developmental directionality of increasing 

throughput. It is, at a larger scale, a developmental trajectory (Salthe 1993). This brings in 

final causality, which can here be described as the tendency to maximize energy throughput, 

linking the cycle’s activity to the universal tendency to dissipate energy gradients at the 

fastest possible rate as the more encompassing final cause (Schneider and Kay 1994, Niven 

2009, 2010). 

 

Figure 4: Triadic structure of the autocatalytic cycle 

 
 

So, we end up with the following triadic diagram of the autocatalytic cycle (figure 4), which 

we supplement by Ulanowicz’s (1997: 52) diagram of the relation between the three levels 

and the causal types (in the bottom). This differs from the previous diagram in explicitly 

identifying formal causality (represented by the vertical dotted line), working from the 

structure to Q. Q is now to be seen as the sequential pattern of the chemical interactions in 

terms of kinetics, whereas the structure (identified at its apex) is the abstract form of chemical 

functions, such as would described in the overall formula for the aggregate catalytic functions. 

This abstract pattern underlies the internal selection of components, whereas the external 

selection of different versions of the cycles in a population determines their relative shares of 
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environment resources. The correspondence between the semiotic concepts and Ulanowicz’s 

analysis of the autocatalytic cycle springs to the eye. 

In which sense, then, can we understand autocatalytic chemical cycles as being semiosic? In 

the first place, this results from the distinction between the active parts of an involved 

molecule and the entire molecule, which is, in living systems, particularly pronounced in 

enzymatic reactions, in which the shape of a molecule obtains the central role in determining 

its functions. In a solution with different chemical agents, the kinetics would be determined 

by the molecules, but the enzymatic activity is determined only or mostly by the active sites. 

Thus, the active sites stand in an object-sign relation with the molecule in its entirety, insofar 

as the active site relates with another molecule that takes part in the catalyzed reaction. In 

other words, the catalyzed reaction and its product make up the response R, or the interpretant 

taken from the chemical solution in which the reaction happens, and in which aspects of 

molecular shape assume the role of the sign X.  Beyond this, these relations are determined by 

the function of catalysis. That is, whether a molecule is a catalyst or not depends in part upon 

its environment. Only in the case of autocatalysis is there a direct functional interdependence 

between the concentration of a molecule in a solution and its catalytic effects on other linked 

reactions, and hence, on the concentration of its products. The joint product of this 

interdependence constitutes an (immediate) finality, which is essential for semiosis. We note 

as well that if the environment of the cycle were depleted of all but one input into the cycle, 

then the active site of that member of the cycle would signify for the cycle as a whole the 

chemical activity that it mediates, serving as a sign of it.  

From another perspective, and directly referring to fig. 3, the chemical structure of the 

autocatalytic cycle is a property that supervenes on the underlying field of efficient causality 

in the sense that the cyclic interdependence only relies on the emergent and partial spatial 

properties of the different molecules involved (which corresponds to the general emergent 

relation between shape / structure and atoms in molecules, Del Re 1998, Ramsey 2000, 

Vemulapalli 2006). This imposes constraints in terms of final causality on the further 

evolution of the chemical composition of the environment in which the reactions take place, 

which is the relation between X and Q in semiosis. The response R results in growth of the 

rate of cycling, thus operating as an internal selection on the composition of the environment. 

Arguing this way, it is also immediately evident that the relation between the cycle as X and 

the components as objects, O, is also a relation between microstates and macrostate in the 

statistical mechanics sense. In the autocatalytic cycle, this holds for the response R, too. The 

autocatalytic structure is a macrostate that, in principle, allows for a multitude of different 
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microstates on which it supervenes, and which are selected by their contribution to the 

response R, which enhances the power of the structure. In other words, the relation between 

macrostate and microstates allows for neutral variations, the scope of which would be 

determined by internal selection, both on the level of the transition from the molecular 

composition to the dynamical shape, and the level of the spatial matches between sites and 

substances (for a pertinent argument on proteins in general, see Fontana 2007). 

Now, given these correspondences between autocatalytic structure, object-sign relation and 

micro / macro-state distinctions, the question arises if, in a comprehensive view of chemical 

and biological evolution, we could elaborate on the role of energy dissipation in the 

autocatalytic cycle as a physical correspondence to final causality in semiosis. This opens up 

the possibility to relate semiosis with fundamental aspects of thermodynamics. 

 

 

3. Statistical mechanics and semiosis 
 

3.1 The role of final causality in statistical mechanics 

The relevance of the Peircean approach for evolutionary theory can be derived from a 

fundamental insight into the statistical nature of the theory of evolution (Fisher 1958), which 

it shares with thermodynamics. In the words of Short (2007: 117ff.), both processes are 

anisotropic, hence manifest the property of directedness, which cannot be explained on purely 

mechanistic terms. In both cases, this directedness emerges from stochastic processes. In the 

case of thermodynamics, this is the expression of the Second Law. In the case of evolution, 

this is the result of selection, when it is viewed in a certain way. The statistical nature of 

selection and the closeness of evolution to thermodynamics had already been emphasized by 

Ronald Fisher, as well as George Price (1975), who emphasized the relation between 

information theory and evolution in his foundational treatment of selection (Frank 1995).  

In simple terms, the commonality results from the fact that in a statistical explanation, the 

difference between the initial and the final state of a process under consideration does not rest 

on properties of the individual entities that make up the relevant population, but on certain 

properties of the ensemble of individuals, such as their distribution over a certain space 

partitioned in a particular way, or the temperature of the ensemble, which is a property of the 

population, and not of the individual members. So, if we state that the process will reach the 

most probable state, attainable by way of a maximum number of trajectories, this is 

independent of  any force that impacts the individual particles. Similarly, if we state that 
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evolution tends towards the realization of certain states (maximizing population fitness), these 

states themselves are not determined by particular properties of the individuals, but by 

properties of the entire ensemble of individuals and environments, such that, again, the final 

state could be realized by way of many different actualisations -- a maximized number of 

them.  

Viewed in this way, the simple, yet essential conclusion follows that evolution can be seen as 

‘survival of the likeliest’, in the sense of a multiple realizability of end states of evolutionary 

processes (e.g. many possible ways to fulfil a certain adaptive function, thus a general type of 

outcome in the sense of R&S and Short). So we see that the common characterization of 

evolution ending up in ‘improbable states’ is in fact a fundamental misunderstanding of the 

underlying statistical processes, because it confuses our perception of the complexity of 

individual living systems with the statistical properties of the populations, which is the focus 

of the statistical theory of selection. In fact, the distribution of biological forms represents the 

results of selective sorting which necessarily would be those variants of pathways of change 

which are the most probable ones, given the constraints, and relative to a certain context 

(Whitfield 2007, Dewar and Porté 2008, Dewar 2010). Simply, then, the prevalence of a 

certain type of organism under certain environmental conditions just shows that this particular 

pattern of biological organization was the most likely given the constraints (organismic and 

ecological) under which the selection of patterns operates. Seeming exceptions, like bizarre 

deep sea fishes, would from this perspective result when the selective intensity is low 

compared to the variability in the population.  So, both natural selection and statistical 

mechanics build on the common foundations of statistical processes in ensembles of 

individuals, and hence belong to the general class of anisotropic processes. 

For the statistical framework, the distinction between macroscopic and microscopic states in a 

state space is central. This concurs with different and distinct notions of causality, which have 

been in confrontation since Boltzmann conceived the foundations of statistical mechanics, and 

which had left him in a ‘tragical impassée’ (Cohen 1996). In this framework, one posits a 

regularity in the changes of the macrostate of a system, and argues that this process follows a 

statistical principle which determines that those macrostates will materialize that correspond 

to the most probable next microstates in a given set of possible ones. This principle is the 

maximum entropy principle. It is important to recognize the simple, yet often overlooked fact 

that in this argument there is always only one macrostate unequivocally and deterministically 

related with any given microstate. This differs in principle from those approaches in quantum 

theory that regard the macrostate itself as a probabilistic phenomenon as depicted in the 
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Schrödinger equations. Thus, probabilistic reasoning only refers to properties of ensembles, of 

which single physical microstates might be a part, and which therefore cannot be seen as a 

physical, or more exactly, a mechanistic aspect of reality (which Bayesians such as Jaynes, 

2003: 74, 411, therefore criticize as a ‘mind projection fallacy’). 

This explanatory structure is triadic, not dyadic. In Figure 5 the triad consists of object 

microstates, macrostate representations, and systemic responses by way of interpretants. 

Recognizing its triadic structure, we immediately see that two different kinds of explanation 

are involved which proved difficult to reconcile in the early decades of the development of 

thermodynamics, when the notions of mechanistic reversibility and thermodynamic 

irreversibility clashed. One is the mechanistic explanation, the other is the anisotropic 

explanation. In fig. 5, we can analyze this in more detail, involving the different causalities 

that we have already related to each other in understanding the autocatalytic cycle (which, in 

our current argument, would itself count as an example of an anisotropic process). 

 

Figure 5: The triadic structure of thermodynamics 

 
As we have already stated, every microstate corresponds to one macrostate, such that the 

macrostate is efficiently caused by the microstate. For example, the temperature of a gas is 

one <- many, as determined by the kinetic energy of the molecules. However, the transition 

from microstate to macrostate involves an important conceptual transition, because 

macrostates manifest the property of multiple realizability, hence they supervene on the 

microstates: Every macrostate can be realized by a number of different microstates (compare 

Sklar 2009). Therefore, the transition from microstate to macrostate involves a transition to a 
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different form of causal explanation: In the relation between macro- and microstate, a 

probability can be assigned to any particular microstate, which is a property of the ensemble 

of possible microstates, without implicating that this ensemble is a physically real thing. 

Therefore, we can no longer think in terms of efficient causality here. The assignment of 

probabilities corresponds to formal causality in our analysis of the autocatalytic cycle: Thus, 

in an autocatalytic cycle, its dynamic structure would determine a range of possible individual 

actualizations of the cycling. We can now generalize, in the sense that the statistical argument 

puts macrostates and microstates into a formal-causal relation to each other.  

Then, once the probabilistic framework is established, it allows for the formulation of a 

hypothesis about change of macrostate. This hypothesis is the maximum entropy principle, 

which states that those macrostates will be tend to be realized which could be realized by the 

maximum number of possible microstates. This is a purely statistical hypothesis, which does 

not relate to any notions of efficient causality, and hence is totally independent from the 

underlying physical properties of the process in question. The MaxEnt principle is universal, 

as long as certain fundamental formal properties apply. So the distinction between microstates 

and macrostates and the corresponding establishment of the formal-causal framework 

generates the conditions for the application of a final-causal principle, the MaxEnt principle. 

This is final-causal because it is anisotropic, that is, it introduces the notion of directedness in 

the analysis of the observed process. 

The central point is that the determination of a resulting microstate cannot be based on the 

efficient-causal framework alone, because the directedness of change can only be determined 

via reference to a macrostate, which in turn refers to the probabilistic context, which is not 

physical. We note that the commonly used image of particles moving by efficient causality 

away from collisions toward their most dispersed state actually depends upon formal relations 

imposed by boundary conditions. Hence the transition from a purely dyadic framework (cause 

and effect in mechanistic terms) to a triadic framework (the additional distinction between 

microlevel and macrolevel) is necessary to explain the observations. 

Some resulting microstates might correspond to a new macrostate, B, which can be predicted 

by application of the MaxEnt Principle on the part of the observer, who reasons that 

macrostate B will be that state in which the dispersion within the microstate has been 

increased. This introduces many conceptual debates about the notion of probability (for an 

overview, see Hájek 2010), especially with reference to the distinction between so-called 

‘subjective’ and ‘objective’ interpretations. Here we meet another dyadic conceptual structure, 

where the debates can be resolved in a triadic framework which recognizes different kinds of 
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causality. On the one hand, Jaynes’ (2003: 290ff., 343ff.) ‘Bayesian’ definition of the MaxEnt 

principle is fully justified because the formal-causal framework is not the same type (Salthe, 

1986) as an efficient-causal physical reality, and thus is set up relative to the expectations 

based on the knowledge of an observer. But -- and in this sense contrary to Jaynes -- this 

observer is a part of physical reality, such that the status of the MaxEnt Principle is not just a 

conceptual one, but refers to a property of the physical reality that is being observed, namely 

the directedness of the developmental process linking up microstates, that multiply realize 

respective macrostates. This directedness is ‘objective,’ and would correspond to a notion of 

propensity (which is vehemently criticized by Jaynes 2003: 60ff.). Yet, as a physical 

phenomenon of directedness it cannot be explained in terms of efficient causality, but only via 

the conjunction of formal and final causality, the reconstruction of which necessarily involves 

reference to an abstract observer (for instance, in the definition of the state space or the 

constraints, see below). In this sense, the term ‘statistical mechanics’ is systematically 

misleading, as the central explanatory scheme is not mechanistic (see Ulanowicz 1997: 24ff.). 

In the debates over thermodynamics raging at the turn from the last century, the failure to 

distinguish between dyadic and triadic conceptual structures also found expression in the 

opposition between the reversibility of the micro-level effects and the irreversibility of the 

macro-level processes. This is basically the distinction between statistical mechanics and 

thermodynamics.  In figure 5, this difference is visualized in the distinction between two 

levels of processes, the micro-level processes, which are reversible, and the macro-level 

processes, which are irreversible. The two levels imply two different interpretations of 

entropy, one in the statistical sense, and one in the sense of phenomenological 

thermodynamics, and hence, in the context of the Second Law. The Second Law, as has been 

demonstrated by Jaynes (1965), follows from the MaxEnt Principle, and hence can also be 

seen as a purely statistical principle (Dewar 2005). However, at the same time it refers to 

relations between physical magnitudes which are not statistical as such, like energy, 

temperature or pressure. The central physical phenomenon is the dissipation of energy, which 

is the transformation of energy that can exert physical work into energy that cannot. This 

energetic perspective introduces as well a cosmological dimension into the analysis, which is 

necessary to explain the relation between specific physical processes and the underlying 

universal trend of energy dissipation (Layzer 1988, Chaisson 2001, 2005, Penrose 2006: 

686ff.). 

In the triadic formulation, we distinguish between maximum entropy and the Second Law 

because we need to distinguish between the statistical properties and the physical properties of 
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a process and the resulting states. The maximum entropy principle identifies the most 

probable macrostate, given a reference frame, which implicitly refers to an observer. The 

Second Law and the corresponding process of energy dissipation refers to dynamical physical 

activities that approach the dispersed microscopic state, either in the sense of physical process 

leading towards the corresponding macroscopic state, or in the sense of the microscopic flows 

in the direction of that state. This distinction is necessary to distinguish between the two main 

interpretations of the statistical mechanics foundation of thermodynamics, namely the 

Maximum Entropy Principle and the Maximum Entropy Production Principle. The conflation 

of the two triangles in fig 5 into one is not desirable, because that would seem to merge the 

two principles into one. Currently, there is an empirical and theoretically informed discussion 

about whether the former principle necessarily implies the second principle, such that both are 

just two sides of the same coin (Kleidon and Lorenz 2005b, Kleidon et al. 2010). This is the 

question that we will pursue now. 

 

3.2. A semiotic interpretation of thermodynamics 

We can now relate our triadic analysis of thermodynamics to the Peircean notion of semiosis, 

which allows us to analyze the triadic structure more deeply. This is possible because in the 

Peircean approach, the notion of interpretant is a physical one, that is, it does not presuppose 

mental phenomena (which are seen as emergent properties of the semiotic process). The 

general idea will be that directedness results from a semiotic process that underlies the 

interaction between microstates and macrostates, and which corresponds to an inference 

process that is pulled by a general purpose, namely the maximum dissipation of energy. We 

concentrate our argument on living systems, even though the physical framework is more 

encompassing (Salthe in press). This focus renders the depiction of the intermediating role of 

natural selection more straightforward and easier to integrate into established positions in the 

literature. 

The relationship between object, sign and interpretant we take to be a relation between a 

realized microstate (in thermodynamic disequilibrium), an unrealized, yet evolving macrostate 

(thermodynamic equilibrium) and the fluctuating microstates of a system. The current value 

of the macrostate is causally related to the microstates, but there is multiple realizability -- 

that is, the same macrostate could result from many different microstates. When introducing 

semiotic analysis, it is important to notice that macrostates can differ in nature, especially 

with regard to the location of a system’s boundaries. There are macrostates which are 

connected to properties of a system, and there are macrostates which are caused by a system 
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but are not properties of that system. Taking smoke and fire: smoke is a direct causal effect of 

fire, but may not be regarded as a property of the burning material as such, because it depends 

upon the entire systemic boundary, wherein smoke can be seen as a part of an entire process 

involving the dissipation of energy. These differences relate to the two-faced nature of a sign, 

which relates on the one hand with the object and on the other with the interpretants deployed 

by the semiotic system in reaction to it. Whether and how a macrostate relates to a microstate 

depends as well upon the system’s deployment of its interpretants. 

This view corresponds to the Jaynes view on thermodynamics in the sense that the sign has 

the function to generate inferences about the object via the intermediation of the system’s 

interpretants. In the case of thermodynamics, the inferences aim at predictions of future states 

of an object. This inferential process is not explicit in the standard treatments of statistical 

mechanics concerning the probabilistic nature of the changes in the physical properties of the 

object. However, it becomes explicit in the Bayesian approach favoured by Jaynes, where the 

MaxEnt Principle is explicitly conceived as an inference process. This oscillation between 

two views reflects the dyadic structure of these arguments, which is made obsolete by taking a 

triadic view. 

Comparing the triadic structures in figures 2 and 5, we can propose a further interpretation. 

Here we treat the relationship between macrostate A and macrostate B as a relation between a 

sign and its alteration as a result of system responses. The relation between macrostate and 

microstate is a formal-causal one in the sense of section 2.2., because, as we have seen in the 

discussion of fig. 5, the assignment of probabilities to the microstate does not relate to any 

efficient-causal property of theirs. Thus, we can interpret the macrostate as a ‘sign’ in the 

Peircean sense. In this case the differentiation of macrostates is relative to an observer that 

only implicitly inheres in the fundamental triad, in the Peircean sense of a ‘possible’ 

observation (‘interpretability’ according to Short 2007: 188). In other words, the distinction 

between macrostates is relative to an observer, which, however, remains hidden in the 

fundamental assumptions about the state space that underlies the assignment of probabilities. 

Here, macrostate B is viewed as an interpretation, or response of the system to macrostate A, a 

description which conflates observer and system in the previous sense (see fig. 1). In the 

Gibbs-Jaynes approach this corresponds to the experimental setting in which certain 

dimensions of the state space are chosen to describe the macroscopic consequences of  

microstate evolution. If this act of defining the experimental setting is removed from the 

picture by abstraction, we end up with the conflation between observer and system. In this 
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case, thermodynamic macrostate B is being viewed as the interpretant in a semiotic relation to 

the sign, macrostate A. 

So, we can project figure 2 onto figure 5, resulting into figure 6. This figure shows that the 

concept of the ‘purpose’ here corresponds to the MaxEnt Principle. In the Gibbs/Jaynes view, 

and directly corresponding to the semiotic analysis, the relation between purpose and response, 

(macrostate B) is one of inference. This means that the transition from macrostate A to 

macrostate B generates information about the microstate, here viewed as the semiotic object.  

Here, this information relates to the constraints of the system (C), which correspond to Q in 

the extended form of semiosis shown in figure 2. So macrostate B reflects the information that 

inheres the object, hence the constraints that operate on the maximum entropy negotiations. 

For example, if there is a physical space structured by a number of compartments, the 

equidistribution of particles in this space will directly reflect information about the structure, 

while the positions of the particles will attain the maximum entropy state, relative to that 

structure. 

 

Figure 6: A semiotic view on thermodynamics 

 
Macrostate B is closer to thermodynamic equilibrium than macrostate A. The idea that the 

transition from A to B generates information is also implicit in the fact that only at equilibrium 

can the central thermodynamic magnitudes on the macrolevel be defined. That means that the 

equilibrium state here corresponds to Peirce’s notion of the ‘final interpretant,’ as compared 
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to the previously traversed immediate and dynamic interpretants, with the latter now 

conceivable as a sequence of non-equilibrium states relative to the final equilibrium condition. 

Compared to fig. 5, fig. 6 reaches the following insights. First, the semiotic object is 

conceived as a physical system that shows transitions between states that are subject to 

constraints. These constraints are being manifested in the particular courses taken by the 

efficient-causal processes that lead towards macrostate B, which relates with the maximally 

dispersed microstate, while multiple realizability holds, because there is a larger number of 

possible other microstates corresponding to that particular macrostate. Second, the distinction 

between macrostates A and B is a semiotic relation that allows for extraction of the 

information contained in the microstate of a system. Third, this extraction works via the 

prediction of macrostate B given the macrostate A, which is therefore a sign that relates 

formal-causally with the constraints C.  Fourth, macrostate B is therefore an interpretant in the 

sense that the information contained in the constraints C is extracted if and only if macrostate 

B reflects the maximum entropy state of the physical system under constraints. 

In this analysis we reach two fundamental conclusions. One is that ‘thermodynamic 

equilibrium’ is not conceived as one actual physical state, which is why we do not show a 

corresponding microstate in fig. 6. It would only be an actual physical state if we made the 

observer to which the construction of the macrostates refers explicit. Equilibrium is an 

interpretation based on the actual physical macrostate A. This is the fundamental reason why 

the MaxEnt approach can be applied on non-equilibrium systems. Indeed, one could say that 

the MaxEnt approach applies to non-equilibrium systems in general. It regards the notion of 

equilibrium as a property that is imposed by the inference process, but has no necessary 

particular physical interpretation in terms of ontology. The other conclusion is that MaxEnt, 

as is evident from the direct comparison between the directionality of the pertinent arrows in 

figs. 2 and 6, is not a physical property of the efficient-causal processes, causing the 

microstates to move towards macrostate B, but is an inference about the microstates that 

correspond to macrostate A. In a sense, this statement just reflects the fact that the meaning of 

‘disequilibrium’ can only be defined relative to an ‘equilibrium,’ independent from whether 

the latter could materialize or not. 

Now, we can also see the correspondence between the MaxEnt Principle and the notion of 

selection. The MaxEnt Principle selects a certain macrostate as the one in which all relevant 

information about an object will have been extracted. The question then becomes how to 

make the implicit notion of an observer explicit, while maintaining the general notion of 

selection (again, following Price 1975). Coming back to Short’s and R&S’s analysis, the 
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notion of purpose can relate to both natural selection and to intentionality, thus enabling us to 

see a direct correspondence between the notion of a human observer extracting information 

about an object and a general evolutionary process extracting information about the objects 

that are involved in that process. This directly corresponds to Maynard Smith’s (2000) 

treatment of the concept of information in biology. Selection is anisotropic, as it favours 

certain kinds of outcomes -- but not specific ones -- depending on the constraints. Hence the 

results of selection carry information, but not necessarily with reference to a human observer 

only. In the MaxEnt framework, selection corresponds to inference as a statistical process. 

That is -- and corresponding to Maynard Smith’s argument -- either the maximum entropy 

process is related to an observer who intentionally changes her belief about the state of an 

observed system by utilizing the MaxEnt Principle, or these criteria are generated 

endogenously by a natural process of selection from one moment to the next. The resulting 

information is ‘intentional’ in the very general sense of a reduction of possibilities by way of 

an historical process (concatenations of causal contingencies) that is independent of reference 

to a human observer. Clearly -- here we following R&S again -- this requires us to relate the 

endogenous interpretant to a larger context that we introduced previously as a system of 

interpretance. That is, fig. 6, when referring to a generalized notion of natural selection as a 

purely statistical process, would have to be enlarged in the way of fig. 3. Hence, the 

information generated by a physical interpretant relates to a compositional hierarchy of 

functions that emerge during the evolutionary process. 

This view establishes a direct connection between the notions of evolution and 

thermodynamics that differs from the commonly held view that evolution works against the 

Second Law. This common view confuses levels in the sense that the constraints themselves 

correspond to physical states that are imposing order on the evolving system. For a simple 

example, material structures emerging from gravitational pull directly manifest the Second 

Law by adjusting each moment to the most likely next state, but they also represent 

constraints for other processes, such as chemical ones that might be taking place on their 

surfaces, as posited in theories about the origin of life. These dependent processes will reflect 

the constraints, and thus respond to what for them is informative, in spite of the fact that the 

constraints themselves have emerged spontaneously from a process following the Second Law 

any which way. Analysis of the autocatalytic cycle is the central paradigm for this, because 

the cycle as such can be seen as a structure that accumulates information in the sense of 

restricting its range of actualisations in a space of possible relations. But this view results 

from a focus on the level of formal causation, and overlooks the factual dynamics on the level 



 27

of efficient causation, where all the underlying processes tend to maximize entropy 

production via the maximization of throughput while proximally maximizing power. 

As we see from this argument, in the case of the autocatalytic cycle there is a natural 

extension from the MaxEnt approach to the thermodynamic view in the sense of the physical 

process of energy dissipation. We will now explore this argument, relying on its generality. 

Recently, Annila and collaborators (Tuisku et al. 2009; Annila and Kuismanen 2009; Annila 

and Salthe 2010; Salthe, 2004) have shown that the emergence of hierarchies can be seen to 

reflect the Second Law because they manifest energy dissipation of available energy gradients 

in such a way as to tend to maximize entropy production under given physical constraints. 

This view can be related to figure 7 -- that is, to the notion of a chain of responses / 

interpretants, which has been postulated by Peirce in the conception of infinite semiosis, 

especially in his early writings (Atkin 2009). Infinite semiosis follows from the fact that every 

interpretant can be a sign relative to another interpretant (indicated by the arrows that connect 

response R with signs X, relative to the next response R’, and so forth). So also, every 

response is embedded in a hierarchy of responses in living systems -- cellular, organismic and 

ecological. The increasing complexity of this hierarchy in no wise implies that reference to 

the ultimate physical purpose – the maximization of entropy production – becomes obviated. 

All the levels conspire together to maximize local entropy production given the constraints 

(Salthe 2007). Hence, increasing order, as reflected in the emergence of hierarchies, can be 

seen to be an expression of the Second Law. 

 

Figure 7: Infinite semiosis 

 
From this follows another Peircean insight. This is that the final macrostate carries 

information about bearing constraints, but not about the initial macrostate nor about the 

transient microstates, which are just drawn sequentially from among various most probable 
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ones locally. The information about macrostate A is lost because the system could arrive at 

macrostate B from any number of possible macrostates caused by microstates far from the 

maximum entropy configuration, and the information about the microstates is lost because the 

microstates have maximized their informational entropy from any prior configurations. This 

provides a deeper insight into why Peirce distinguishes between the final and the dynamical 

interpretants, and, in his later writings no longer focused on infinite semiosis, being mainly 

concerned with the question how ultimately the reality of the object is constituted in the 

semiotic process, which corresponds to the question how information emerges from that 

process. However, if a configuration carries information, it could be interpreted as a sign by 

another process, which in turn accumulates information about the constraints under which that 

process proceeds. So, a claim that a triadic process generates information is inexact because a 

single triadic thermodynamic process would not generate any information at all, but only 

maximizes informational entropy (informational carrying capacity). The information 

embodied in the final state can only be actualised in relation to another triadic process, in 

which the interpretant (qua equilibrium state of the former process) functions as a sign. This 

corresponds to our previous analysis that it is not the smoke that embodies the information 

about the fire, but the responses of other systems to the smoke, all embedded in a system of 

interpretance. In this fundamental sense, the semiotic relation between thermodynamics and 

evolution can only be discerned if the process of evolution is considered in its entirety, and 

not just during an arbitrarily selected single step. 

 

3.3. The thermodynamics of semiosis 

We can now invert the direction of the analysis and apply the thermodynamic perspective to 

semiosis. This was already implicit in interpreting the macrostate at thermodynamic 

equilibrium as a final interpretant. Following our analysis of the autocatalytic cycle, this leads 

us to ask three questions. 

 First, can we interpret the relation between the response, R, and the object, O, in terms of 

the Maximum Entropy principle? 

 Second, does the application of the MaxEnt principle here have a physical meaning?  

 Third, if so, what is the relation between MaxEnt and the Maximum Entropy Production 

Principle (MEPP)? 

Regarding the first, we can directly rely on Dewar’s (2005, 2009) recent explication of 

MaxEnt as an inference process that corresponds to Jaynes’ classical treatment of entropy. 

Dewar uses this argument to show that MaxEnt is a methodological approach by which a 
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physical theory can identify the constraints that operate on an observed physical system, such 

that the information loss from all unobserved properties is minimized, validating the ‘other 

things being equal’ stipulation. The MaxEnt state, given the constraints, means that it is 

unnecessary to have more information about those states than what the equiprobability 

assumption implies -- i.e. Laplace’s ‘principle of indifference’. This argument can be 

naturalized, if we consider that the observer can be any sort of evolving physical system, 

which we might call an ‘inference device’ (Wolpert 2008) – an entity that stands in a general 

relation of observation with what is therefore an observed system.  

 

Fig. 8: MaxEnt and selection 

 
This inference device is a system of functions that trigger responses to observations (see fig. 

8). In the evolutionary turn of the argument, it is important that the observing system is a 

member of a population of systems competing under natural selection. In this perspective, we 

can interpret the Dewar argument as describing the results of selection that has acted upon a 

population of observing systems. Any sort of physical inference device, as a member of a 

selected population of them, will tend towards a state in which the constraints operating on 

the observed system will be inferred from a particular macrostate configuration such that the 

inference device will in all other respects manifest a maximum entropy state with regard to all 

possible mappings between microstates of the observed system and microstates of the 

inference device. In this way the macrostate configuration of the object acts as the sign in a 

triadic relationship, which is mapped onto macrostates of the observing system, i.e. the 

inference device. Thus, constraints on the observed system are turned into constraints 

operating on the observing system, defining certain evolving structural properties, which in 
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turn function as objects for other observing systems, thus constituting evolution as a sequence 

of semioses. 

 

Fig. 9: The semiotic view on MaxEnt 

 
Now we can project this view onto the semiotic triad (fig. 9). The labels are as in figures 2 

and 4. The observing / inferring system under selection (Q, R) constructs a macrostate as a 

sign (X), which guides its inferences and responses (interpretants) with respect to the object 

(O). In other respects the system assumes a maximum entropy stance of readiness to react to 

changes in its relation with O. Then we can see that the MaxEnt hypothesis is an hypothesis 

about the co-evolution of the object and Q, which changes its structure under natural selection. 

In a population of entities with the property Q, this property will show shared constraints, 

reflecting constraints operating upon the object system, and a maximum variety in all other 

respects. In the context of biology, this is the relation between species’ characteristics, related 

to the relevant ecological niche, and the irreducible individuality found among the members 

of the population of a species. Therefore, we can conclude that the biological notion of a 

‘species’ is a semiotic category, and corresponds to the role of the autocatalytic structure in 

our analysis above. And so the species, as does an autocatalytic cycle, functions as a formal 

cause. Thus, the semiotic analysis allows for a reinterpretation of the perennial tension 

between the adaptationist - population genetic concept of a species (which reflects the strand 

of efficient causality in the semiotic model) and the taxonomic - morphological ones (which 

reflect the formal and final causality in the semiotic model). 
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This insight is not new, viewed from another angle, because it is another expression of 

Ashby’s (1958) principle of ‘requisite variety’. The inference device will evolve into a 

structure that reflects external constraints on object systems, and at the same time will 

maximize information capacity, hence the possibility to generate variety, which also 

maximizes its future potential for information generation – to evolve.  This was the major 

thrust of the Dobzhansky school of the ‘modern synthesis’ (Lewontin, 1974).  So, we can 

relate the MaxEnt principle with fundamental assumptions about the evolutionary process, in 

particular with the idea that evolution simultaneously drives the emergence of order and 

permits an exuberance of the variety of life forms. Recently, Frank (2009a,b) has provided the 

analytical foundations for this conception in showing that different statistical distributions in 

nature can be explained as expressions of the maximum entropy approach in nature. This 

reasoning supposes that evolution is a statistical process which interacts with other 

phenomena in nature that also are stochastic, such as variations in climate. The general idea is 

that, as a result, statistical distributions of biological phenomena reflect the constraints that are 

imposed on living systems by environmental conditions, such that all fluctuations tend toward 

the maximum entropy state. Thus, the statistical properties of living systems, such as the 

distribution of species in an ecosystem, can be explained by the MaxEnt principle (for related 

approaches, see Dewar and Porté 2008, and Grönholm and Annila 2007).  

Another approach that is apposite to ours is Ulanowicz’s (Ulanowicz 1997, Ulanowicz et al. 

2009) information-theoretic conception of ecological ‘ascendency.’ Ascendency relates the 

mutual information of matter-energy flows in an ecosystem -- hence a measure of the 

constraints (which correspond to Q in our conceptual model) exerted upon those flows  -- to 

the total system throughput. Ascendency, numerically determined as the product of TST 

(Total System Throughput) and AMI (Average Mutual Information), is one part of the total 

developmental capacity of a system, which also depends on the available information capacity, 

that is, the ‘unorganised complexity’ of a system. Clearly, this corresponds to the notion of 

constraints versus the maximum entropy postulate in our semiotic approach. Ulanowicz 

(Ulanowicz and Hannon, 1987), emphasize the role of living systems in creating a tendency to 

maximal energy dissipation across all hierarchical levels, even though this is not necessarily 

the case for any given system under particular environmental conditions, such as strongly 

resource-constrained ones (Meysman and Bruers 2010). Hence, it is central to observe the 

conceptual consistency and coherence of the maximum entropy approach, which implies that 

the principle itself has to be conceived as a probabilistic one, which necessarily implies that 

there will be spatial and temporal deviations from it. Yet, this also means that, for example, 
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maximum entropy production will hold over the longer time spans that cover the evolutionary 

trajectories of living systems (Vallino 2010), or, that there is an increasing variability of the 

distribution of flux gradients, and that entropy production is maximized over this entire range 

(Niven 2010). Indeed, the standard argument that complexity counters the sway of the Second 

Law can be summarily disposed of in considering the entire tree of life reflecting one 

stochastic fluctuation under certain constraints (Gould 2003: 899ff.), such that this fluctuation 

is the relevant unit of thermodynamic analysis. 

In our thermodynamic view on the semiotic triad, one piece is still missing. This involves the 

proper interpretation of the P in figure 9 – that is, of the role of selection. This leads us to the 

contested issue whether MaxEnt also implies the Maximum Entropy Production Principle. It 

is central to see that we have already taken MaxEnt beyond being a mere methodological  

principle, because we assume that MaxEnt entails the maximization of the informational 

entropy of physical states of observing systems. In Salthe’s (1993) terms, this corresponds to 

an internal entropy, or observer relative entropy (Herrmann-Pillath 2010). Obviously, the 

observing system’s entropy is not the same as the entropy of the entire ensemble of observing 

and observed system, or, as the physical entropy production of the complete semiotic process, 

a distinction which is easy to overlook and which lies at the root of the long-standing 

controversies about Maxwell’s demon (Maroney 2009).  

The answer to the question of how MaxEnt relates with MEPP requires analysis of the causal 

relationship between the observed system and the observing system. This is the reverse side of 

the inference process. Inferences result from causal interactions, as in the case of a bacterium 

that searches for nutrients and follows certain chemical gradients which emanate from the 

nutrients. 

A straightforward way to theorize this causal relationship is to use the maximum power 

principle. The MPP has been made a cornerstone of evolutionary analysis by Vermeij (2004) 

recently, and directly follows a long sequence of contributions going back to Lotka’s original 

contribution (1922a,b), such as Odum (2008). It states that living systems will tend to 

maximize power (energy throughput) during their causal interactions with the environment, 

while also being subject to natural selection. Salthe (1975) presented evidence that selection is 

most intense during intense behavioral activity. A related argument has been deployed in 

positing the so-called ‘constructal law,’ which states that physical flow systems will always 

evolve into states in which access to the energy gradients is maximized (Bejan and Lorente 

2006, 2010). MEP occurs over the entire time scale of the processes of a flow system, with 

the intermediate stage of maximum power production, at which a tendency of minimization of 
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dissipation holds place, thus driving the efficacy of work generated during the life cycle of the 

flow system. That means, MPP can be seen as a roundabout way in the manifestation of 

MEPP, which ultimately realizes states with higher entropy production, compared to states 

that do not manifest the structural properties underlying maximization of flows.  

We can establish a conceptual relation between MPP and MaxEnt by means of the distinction 

between physical work and dissipation. MPP refers to the maximization of exergy 

consumption in a useful way. That is, we can distinguish between two levels of the causal 

interaction between two systems. One is the macroscopic interaction, which we assimilate to 

physical work, and the other is the microscopic interaction, which we define as dissipation. 

All causal interactions are energy transfers (Bunge 1977: 240, 326). Those transfers can have 

two shapes. One associates with transfers that relate a macroscopic property of one system 

with a macroscopic property of another system; this is classified as ‘work.’ The other is the 

microscopic interaction -- dissipation, such as via the friction co-occurring with the 

macroscopic interaction. The central point is that the categorization of a causal impact as 

‘work’ is relative to the macrostates of the receiving system in the causal interaction. 

Now, the point about MPP is that, under natural selection, a system will evolve in the 

direction of maximizing the energy utilization for work in its own interactions with the 

environment, that is, maximizing the energy flows that carry the exergy used to produce 

useful work, with the criteria of ‘usefulness’ having been determined by the natural selection 

of functions. 

This statement relates to MaxEnt because it implies a direct connection with the inference 

process. Maximizing power requires a tendency to approach a global macroscopic state in 

which the relevant macroscopic states of the object system are identified, and such that all 

other causal interactions with the object system become temporarily irrelevant -- that is, they 

tend towards the maximum entropy state. In other words, under natural selection, a system 

will tend towards maximizing its derivation of exergy from other systems while minimizing 

dissipation. Now, as is well known from related theorems in engineering, this relation results 

in an optimum energy flow rate (not the most efficient rate) (for applications of this principle 

in the earth sciences, see Kleidon 2009, 2010). Together with the ongoing dissipative 

processes, we conclude that the entire process chain results in maximum entropy production 

to the extent possible given the constraints. That is, the system has become organized by 

selection in such a way that increased power can be achieved by increasing work rate up to a 

point, and increased power necessarily associated as well with increased dissipation over the 
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entire developmental trajectory of the system exerting work on its environment. Maximum 

power is therefore the avatar of Maximum Entropy Production in complex systems.  

We summarize these connections in figure 10. This shows that the centerpiece of an MEPP 

process  is the semiotic process of the observing system. This results from three determinants. 

One is that MEPP can be regarded as the ultimate purpose that reigns over the natural 

selection of any local purposes (as in figure 9), as well as over the various intermediate 

functions in systems of interpretance connected via infinite semiosis. This materializes in two 

different processes. One is MPP, which directly follows from the workings of natural 

selection, following Lotka’s conjecture, and related theories, such as Bejan’s constructal law 

approach. The other is MaxEnt, which here functions as the principle of preserving and 

increasing information capacity during natural selection. No adaptation can be complete and 

perfect, but leaves a system with overhead for flexible responses, shown in figure 10 as the 

‘accumulation of information capacity’, a point made often by Lewontin in regard to genetic 

variability in populations (e.g. 2003).  

 

Figure 10: Relationship between MaxEnt, MPP and MEPP 

 
From this overview we conclude that the standard view, originating from Schrödinger (1944), 

that life is a phenomenon counteracting the Second Law, is wrong, because it focuses only on 

the macroscopic side and the aspect of information generation. The entire process in fact 

follows the Second Law, because the emerging semiotic structures speed up energy 

dissipation during the marshalling of ever more complex intermediating structures during 
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semiosis. This process can be compared to that of capital formation in the economy, as well as 

with the functions of human technology. All of these can, in the context of a disequilibrated 

universe, be viewed most generally as occasions for bringing the universe closer to 

thermodynamic equilibrium in situations where energy gradients do not spontaneously 

dissipate by conduction. Clearly, compared with the agricultural economies of the past, 

modern industrial technologies harness vastly larger amounts of exergy, much of it having 

been sequestered deep in the earth. This is made possible via capital formation, that is, 

investing in more complex intermediating structures, which also reflect the rapid 

accumulation of knowledge about the management of physical processes. So, in the end 

human technological systems maximize energy throughput, which, in spite of all 

improvements in energetic efficiency, and economic growth reflects the working of the 

Second Law (Ayres and Warr 2003, 2005; Annila and Salthe 2009). 

This approach allows us to clarify a discussion in the literature in which the process of 

evolution is seen as generating information that harnesses energy for the creation and 

maintenance of ordered structures -- for example, Corning’s (2005) notion of ‘control 

information.’ Our point here is that, while control information may require much less energy 

throughput to be maintained than the energy throughput that is actualised by means of it, this 

does not contradict the argument presented here, because it implies that MPP holds for the 

system of which embodied control information is a part. In other words, it is MPP that is 

actualised by means of control information, and this pushes MEPP to the limits possible in 

these structures, leaving unrealized energy flows and systemic collapse (and lost MEPP) as 

the default option.  

So, we can summarize the relation between the different principles in fig. 11. This reveals the 

fundamental division between the internal and external concepts of the actualisation of 

entropy increase.  These distinctions are indispensable for understanding the role of semiosis 

under the influence of the Second Law, and which at the same time entails an important 

epistemological conclusion. This is that the scientific observer, as part of the interactive 

systems, cannot directly access the information needed to measure the flow of entropy 

generated according to the Second Law. A living system can only operate below the line 

separating internal and external concepts of entropy in the figure. This conclusion corresponds 

to the Jaynes conception of entropy, which states, in a famous expression, that “entropy is an 

anthropomorphic concept” (Jaynes 1965). Jaynes, in his framework, refers to the fact that 

there is no unified measure of entropy across all possible experimental configurations, which 

impose different kinds of constraints upon physical systems. This is a general feature also of 
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information-theoretic measures of informational entropy, which always explicitly refer to an 

observer and the corresponding partitioning of the state space (Kåhre 2002: 181ff.). 

 

Fig. 11: The Second Law in its relation to MEPP, MPP and MaxEnt  

 
So, this conjunction of the different entropy related theorems can serve as the theoretical 

framework in which the general physical regularities of information-generating evolution can 

be analyzed, extending and detailing earlier cosmological approaches such as that of Chaisson 

(2001). In this framework, life is not seen as counteracting the Second Law, but as expressing 

it through the emergence of structures which increase the speed and efficacy of entropy 

production. This view concurs with non-equilibrium thermodynamics, but adds the 

perspective of semiotics. Only in the semiotics view can we understand how the dissipation of 

energy relates with the accumulation of information. We think that a philosophical approach 

following Peirce will be indispensable in order to complete the recently emerging ‘physics of 

information’ paradigm. 

 

 

4. Conclusion 
 

The transition from dyadic to triadic conceptual structures is a fundamental methodological 

shift that allows for the cogent analysis of the conjunction of different forms of causality in 

information-generating evolution. In his original contributions, Peirce consistently 
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emphasized the distinction between ‘Firstness,’ ‘Secondness’ and ‘Thirdness,’ which for 

some may seem to be a conceptual panacea to accommodate almost any thinkable theoretical 

approach, given the open references of the terms that are exploited by Peirce himself (Burch 

2010). In this paper, we elect to relate the triadic framework to the conjunction of efficient, 

formal and final causality in the semiotic process. This is possible if we follow the path 

opened up by Peirce himself, namely understanding semiosis as a physical phenomenon. This 

is possible if we eschew the Cartesian reference of  ‘interpretation’ to mental substances, and 

view the Peircean interpretant as ‘responses’ or functions of evolving systems. 

We think that triadic conceptual structures will help to clarify many open issues in 

evolutionary theory, especially in terms of reintegrating alternative approaches that emerged 

in the past decades, which continue to struggle with the widespread perception that 

evolutionary theory is about another kind of causality (Hull et al. 2001), a position that is as 

old as Darwinian theory itself (Blitz 1992). For example, in the Peircean framework it is 

straightforward to relate natural selection in the narrow NeoDarwinian sense (which 

conceptually builds on efficient causality alone) to the theory of signal selection proposed by 

the Zahavis (Zahavi and Zahavi 1997), which even a staunch NeoDarwinian like Dawkins 

(1989) had perceived as a major paradigmatic challenge. Signal selection builds on a 

synthesis of meaning and function in the analysis of evolving traits in living systems, and thus 

implicitly introduces a triadic viewpoint, fusing two alternative dualisms in the analysis of 

adaptation, namely organism / environment and organism / organism. Similarly, the theory of 

niche construction (Odling-Smee et al. 2003) acquires a straightforward interpretation in the 

light of triadic structures, as it merges two other dualisms, namely adaptation of organism to 

environment and adaptation of environment to organism. As a final example, in recent 

extensions of the Darwinian paradigm, the ‘interpretive’ functions of the cell and of the 

organismic environment in mediating gene expression have been demonstrated empirically, 

with the possible consequence of merging the theories of biological and cultural evolution 

(Jablonka and Lamb 2006). Putting different evolutionary processes into the universal 

framework of Peircean semiotics should help to clarify important issues in these debates. 

However, as we have seen, the triadic framework also changes even more foundational 

assumptions about the physics of evolution. This is because it offers a new view on the 

relation between statistical and phenomenological thermodynamics. We have generalized 

over the Bayesian approach to statistical mechanics in the sense of resolving what could be 

called a ‘second-order mind projection fallacy’. Jaynes (2003) had argued that assigning the 

status of objective propensities to probabilities suffers from that fallacy, that is, projecting 
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states of knowledge of the observer onto the real physical world. We radicalize this idea by 

substituting for the ‘mind’, i.e. the observer, an information-generating evolutionary process. 

This turns ‘mind’ into a physical phenomenon that is part and parcel of the physical systems 

under scrutiny. Specifically, this step allows for a conceptual integration of the MaxEnt 

principle, which is Bayesian in origin, with the physical MEPP. 

One of the fundamental problems tackled by Peirce was the question of how regularities 

become possible in a random world. Use of his triadic structure shows that this “habit 

formation” happens when a random fluctuation relates causally with a process that is 

entrained by final causation. This is the case if the environment in which a random fluctuation 

takes place imposes constraints on (or contextualizes) further change, which then becomes 

manifest in the consequences of that fluctuation, which maximizes entropy production in the 

process of reflecting those constraints. This view comes close to Bateson’s (1971) classical 

definition of information as a difference that makes a difference (to some system of 

interpretance). A random fluctuation would have different consequences against different 

background conditions, since the fluctuation causes responses that could go off in different 

directions according to conditions. Thus, the difference becomes manifest in some system of a 

higher logical type than the random variation, and this corresponds to the notions of both 

‘macrostate’ and ‘sign.’ This perspective has also been taken in recent attempts to interpret 

basic quantum processes and information processes, which see physical evolution as a result 

of quantum computation (Lloyd 2006). Peirce himself might be viewed as having implicitly 

followed such a model when trying to understand how ‘habits’ emerge from randomness. 

We can summarize this conclusion in a ‘universal triad’ (fig. 12) which shows the relation 

between the three kinds of causality, as discussed in the course of our argument.  

 

Figure 12: The universal triad 

 
 



 39

References 
 
Annila, Arto / Kuismanen, Esa (2009): Natural Hierarchy Emerges from Energy 

Dispersal, BioSystems  95: 227-233. 
Annila, Arto / Salthe, Stanley (2009): Economies Evolve by Energy Dispersal, 

Entropy 11: 606-633. 
Ashby, W.R. (1958): Requisite variety, and its implications for the control 

of complex systems.  Cybernetica 1: 1-17. 
Atkin, Albert, "Peirce's Theory of Signs", The Stanford Encyclopedia of 

Philosophy (Spring 2009 Edition), Edward N. Zalta (ed.), URL = 
<http://plato.stanford.edu/archives/spr2009/entries/peirce-semiotics/>.  

Ayala, Francisco J./Dobzhansky, Th., eds. (1974): Studies in the Philosophy 
of Biology. Reduction and Related Problems, Berkeley/Los Angeles: 
University of California Press. 

Ayres, Robert U. / Warr, Benjamin (2003): Exergy, Power and Work in the US 
Economy in: Energy- The International Journal 28: 219-273 

Ayres, Robert U. / Warr, Benjamin (2005):. Accounting for Growth: The Role 
of Physical Work, in: Structural Change and Economic Dynamics 16(2): 
181-209. 

Baeyer, Hans Christian von (2003): Information. The New Language of Science, 
Cambridge and London: Harvard University Press. 

Baird, Davis / Scerri, Eric / McIntyre, Lee, eds. (2006): Philosophy of 
Chemistry. Synthesis of a New Discipline, Dordrecht: Springer. 

Bejan, Adrian / Lorente, Sylvie (2006): Constructal Theory of Generation of 
Configuration in Nature and Engineering, Journal of Applied Physics 100: 
041301. 

Bejan, Adrian / Lorente, Sylvie (2010): The Constructal Law of Design and 
Evolution in Nature, Philosophical Transactions of the Royal Society B, 
365: 1335-1347. 

Bhushan, Nalini / Rosenfeld, Stuart, eds. (2000): Of Minds and Molecules. 
New Philosophical Perspectives on Chemistry, New York: Oxford 
University Press. 

Blitz, David (1992): Emergent Evolution. Qualitative Novelty and the Levels 
of Reality, Dordrecht et al.: Kluwer. 

Brier, Søren (2008): Cybersemiotics. Why Information Is Not Enough! Toronto 
/ Buffalo / London: University of Toronto Press. 

Burch, Robert, "Charles Sanders Peirce", The Stanford Encyclopedia of 
Philosophy  (Spring 2010 Edition), Edward N. Zalta (ed.), forthcoming 
URL = <http://plato.stanford.edu/archives/spr2010/entries/peirce/>. 

Chaisson, Eric J. (2001): Cosmic Evolution. The Rise of Complexity in 
Nature. Cambridge and London: Harvard University Press. 

Chaisson, Eric J. (2005): Non-equilibrium Thermodynamics in an Energy-Rich 
Universe, in: Kleidon and Lorenz (2005): 21-31. 

Cohen, E.G.D. (1996): Boltzmann and Statistical Mechanics, arXiv:cond-
mat/9608054. 

Corning, Peter A. (2005): Holistic Darwinism. Synergy, Cybernetics, and the 
Bioeconomics of Evolution, Chicago and London: Chicago University Press. 

Dawkins, Richard (1989): The Selfish Gene. New edition. Oxford/New York: 
Oxford University Press. 

Del Re, Guiseppe (1998): Ontological Status of Molecular Structure, HYLE 
4(2): 81-103. 

Dewar, Roderick C. (2005): Maximum-Entropy Production and Non-Equilibrium 
Statistical Mechanics, in: Kleidon and Lorenz (2005): 41-55. 

Dewar, Roderick C. (2009): Maximum Entropy Production as an Inference 
Algorithm that Rranslates Physical Assumptions into Macroscopic 
Predictions: Don’t Shoot the Messenger, Entropy 2009, 11: 931-944. 

Dewar, Roderick C. (2010): Maximum Entropy Production and Plant 
Optimization Theories, Philosophical Transactions of the Royal Society 
B, 365: 1429-1435. 



 40

Dewar, Roderick, C. / Porté, Annabel (2008): Statistical Mechanics Unifies 
Different Ecological Patterns, Journal of Theoretical Biology 251: 389-
403. 

El-Hani, Charbel Nino / Queiroz, João / Emmeche, Claus (2006): A Semiotic 
Analysis of the Genetic Information System, Semiotica 160: 1-68. 

Elitzur, A. C. ( 2005) When form outlasts its medium: A definition of life 
integrating Platonism and thermodynamics. In Seckbach, J. (Editor) Life 
as We Know it. Dordrecht: Kluwer Academic Publishers, 607-620. 

Faye, Jan, "Copenhagen Interpretation of Quantum Mechanics", The Stanford 
Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. Zalta (ed.), 
URL = <http://plato.stanford.edu/archives/fall2008/entries/qm-
copenhagen/>. 

Fisher, R.A. (1929/1958): The Genetical Theory of Natural Selection. New 
York: Dover Publications (Variorum edition, Oxford University Press, 
2000). 

Floridi, Luciano (2003a): Information, in: Floridi (2003b), 40-61. 
Floridi, Luciano (2007): Semantic Conceptions of Information, The Stanford 

Encyclopedia of Philosophy (Spring 2007 Edition), Edward N. Zalta (ed.), 
URL = <http://plato.stanford.edu/archives/spr2007/entries/information-
semantic/>. 

Floridi, Luciano, ed. (2003b): The Blackwell Guide to the Philosophy of 
Computing and Information, Oxford: Blackwell. 

Fontana, Walter (2007): The Topology of the Possible, 
www.santafe.edu/research/publications/workingpapers/03-03-017.pdf - 
2007-05-02 

Frank, Steven A. (1995): George Price’s Contribution to Evolutionary 
Genetics, Journal of Theoretical Biology 175: 373-388. 

Frank, Steven A. (2009a): Natural Selection Maximizes Fisher Information, 
Journal of Evolutionary Biology 22: 231-244. 

Frank, Steven A. (2009b): The Common Patterns in Nature, Journal of 
Evolutionary Biology 22: 1563-1585. 

Godfrey-Smith, Peter, Sterelny, Kim (2008): "Biological Information", The 
Stanford Encyclopedia of Philosophy (Fall 2008 Edition), Edward N. 
Zalta (ed.), URL = 
<http://plato.stanford.edu/archives/fall2008/entries/information-
biological/>. 

Gould, Stephen Jay (2002): The Structure of Evolutionary Theory. Cambridge 
and London: Belknap. 

Grönholm, Tiia / Annila, Arto (2007): Natural Distribution, Mathematical 
Biosciences 210: 659-667. 

Herrmann-Pillath, Carsten (2010): Entropy, Function, and Evolution: 
Naturalizing Peircian Semiosis, Entropy 12, no. 2: 197-242 

Hull, David L. / Langman, Rodney E. / Glenn, Sigrid S. (2001): A General 
Account of Selection: Biology, Immunology and Behavior, Behavioral and 
Brain Sciences 24(2): 511-573. 

Hoffmeyer, Jesper (1999): Signs of Meaning in the Universe, Bloomington: 
Indiana University Press. 

Jablonka, Eva / Lamb, Marion J. (2006): Evolution in Four Dimensions. 
Genetic, Epigenetic, Behavioral and Symbolic Variation in the History 
of Life, Cambridge and London: MIT Press. 

Jaynes, E.T. (1965): Gibbs vs. Boltzmann Entropies, American Journal of 
Physics, 33(5): 391-398. 

Jaynes, E.T. (2003): Probability Theory. The Logic of Science, Cambridge: 
Cambridge University Press. 

Kåhre, Jan (2002): The Mathematical Theory of Information, Boston / 
Dordrecht / London: Kluwer. 

Kleidon, Axel (2009): Non-equilibrium Thermodynamics and Maximum Entropy 
Production in the Earth System: Applications and Implications, 
Naturwissenschaften 96: 653-677. 

Kleidon, Axel (2010): Non-equilibrium Thermodynamics, Maximum Entropy 
Production and Earth-system evolution, Philosophical Transactions of 
the Royal Society A, 368: 181-196. 



 41

Kleidon, Axel / Malhi, Yadvinder / Cox, Peter M. (2010): Maximum Entropy 
Production in Environmental and Ecological Systems, Philosophical 
Transactions of the Royal Society B 365: 129 

Kleidon, Axel and Ralph Lorenz (2005a): Entropy Production in Earth System 
Processes, in: Kleidon and Lorenz (2005b): 1-20. 

Kleidon, Axel and Ralph Lorenz, eds. (2005b): Non-equilibrium 
Thermodynamics and the Production of Entropy. Life, Earth, and Beyond, 
Heidelberg et al.: Springer. 

Lahav, Noam / Nir, Shlomo / Elitzur, Avshalom C. (2001): The Emergence of 
Life on Earth, in: Progress in Biophysics and Molecular Biology 75: 75-
120. 

Layzer, David (1988): Growth of Order in the Universe, in: Weber et al. 
(1988): 23-40. 

Lewontin, R.C., 1974.  The Genetic Basis of Evolutionary Change.  New York: 
Columbia University Press. 

Lewontin, R.C., 2003. Work in progress: four complications in understanding 
the evolutionary process.  Santa Fe Bulletin 18 (1), Winter, 2003 

Lloyd, Seth (2006): Progamming the Universe. A Quantum Computer Scientist 
Takes on the Cosmos, New York: Knopf. 

Lotka, Alfred (1922a): Contribution to the Energetics of Evolution, in: 
Proceedings of the National Academy of Sciences 8: 147-151. 

Lotka, Alfred (1922b): Natural Selection as a Physical Principle, 
Proceedings of the National Academy of Sciences 8: 151-154. 

Macdonald, Graham / Papineau, David, eds. (2006b): Teleosemantics. New 
Philosophical Essays, Oxford / New York: Oxford University Press. 

Maroney, Owen, Information Processing and Thermodynamic Entropy, The 
Stanford Encyclopedia of Philosophy (Fall 2009 Edition), Edward N. 
Zalta (ed.), URL = 
<http://plato.stanford.edu/archives/fall2009/entries/information-
entropy/>. 

Matsuno, K. and S.N. Salthe (2002): The origin and development of time.  
International Journal of General Systems  31: 377-393. 

Matsuno, K. and R. Swenson (1999): Thermodynamics in the present 
progressive mode and its role in the context of the origin of life.  
BioSystems 51: 53-61. 

Maynard Smith, John/Szathmáry, Eörs (1995): The Major Transitions in 
Evolution, Oxford/New York: Freeman. 

Meysman, Filip J.R. / Bruers, Stijn (2010): Ecosystem Functioning and 
Maximum Entropy Production: A Quantitative Test of Hypotheses, 
Philosophical Transactions of the Royal Society B 365: 1405-1416. 

Millikan, Ruth (1989): Biosemantics, Journal of Philosophy 86: 281-297. 
Niven, Robert K. (2009): Jaynes’ MaxEnt, Steady State Flow Systems and the 

Maximum Entropy Production Principle, arXiv:0908.0990v1 
Niven, Robert K. (2010): Minimization of a Free-energy-like Potential for 

Non-Equilibrium Flow Systems as Steady State, Philosophical 
Transactions of the Royal Society B 365: 1323-1331. 

Odling Smee, F. John / Laland, Kevin N. / Feldman, Marcus W. (2003): Niche 
Construction. The Neglected Process in Evolution, Princeton:Princeton 
University Press. 

Odum, Howard T. (2007): Environment, Power, and Society for the Twenty-
First Century. The Hierarchy of Energy, New York: Columbia University 
Press. 

Oyama, Susan (2001): The Ontogeny of Information. Developmental Systems and 
Evolution. Durham: Duke University Press. 

Padgett, John F. (1997): The Emergence of Simple Ecologies of Skills: A 
Hypercycle Approach to Economic Organization, in: Arthur et al. (1997): 
199-221. 

Padgett, John F. / Lee, Doowan / Collier, Nieck (2003): Economic Production 
as Chemistry, Industrial and Corporate Change 12(4):843-877. 

Peirce, Charles Sanders (1992): The Essential Peirce. Selected 
Philosophical Writings, Volume 1 (1867-1893), eds. Nathan Houser and 
Christian Kloesel, Bloomington and Indianapolis: Indiana University 
Press. 



 42

Peirce, Charles Sanders (1998): The Essential Peirce. Selected 
Philosophical Writings, Volume 2 (1893-1913), eds. Peirce Edition 
Project, Bloomington and Indianapolis: Indiana University Press. 

Penrose, Roger (2006): The Road to Reality. A Complete Guide to the Laws of 
the Universe. New York: Knopf. 

Price, R. George (1995/1973) The Nature of Selection, Journal of 
Theoretical Biology 175: 389-396. 

Ramsey, Jaffry L. (2000): Realism, Essentialism, and Intrinsic Properties. 
The Case of Molecular Shape, in: Bhushan / Rosenfeld (2000): 117-128. 

Reid, R. G. B. (2007): Biological Emergences: Evolution by Natutral 
Experiment.  Cambridge, MA:  MIT Press. 
Rensch, Bernhard (1974): Polynomistic Determination of Biological Processes, 

in: Ayala/Dobzhansky (1974): 241-258. 
Robinson, Andrew / Southgate, Christopher (2010): A General Definition of 

Interpretation and Its Application to Origin of Life Research, Biology 
and Philosophy 25: 163-181. 

Salthe, S.N. (1975): Problems of macroevolution (molecular evolution, 
phenotype definition, and canalization) as seen from a hierarchical 
viewpoint.  Amer. Zool. l5: 295-314. 

Salthe, S.N. (1986): Evolving Hierarchical Systems: Their Structure and 
Representation.  New York: Columbia Uiversity Press. 

Salthe, S.N. (1993): Development And Evolution: Complexity And Change In 
Biology. Cambridge, MA: MIT Press. 

Salthe, S.N. (2002): Summary  of the principles of hierarchy theory.  
General Systems Bulletin  31: 13-17. 

Salthe, S.N. (2004): The origin of new levels in dynamical hierarchies.  
Entropy 2004, 6 [3], 327 -343. 

Salthe, S.N. (2007): The natural philosophy of work. Entropy 2007, 9: 83-99. 
Salthe, S.N. (2009): The system of interpretance: meaaning as finality.  

Biosemiotics 1: 285-294. 
Salthe, S.N. under review. The case for pansemiotics. Cybernetics and Human 

Knowing. 
Schneider, E.D. and Kay, J.J. (1994): Life as a manifestation of the Second 

Law ofthermodynamics. Mathematical and Computer Modelling 19: 25-48. 
Seager, William and Sean Allen-Hermanson (2007): Panpsychism, The Stanford 

Encyclopedia of Philosophy (Spring 2007 Edition), Edward N. Zalta (ed.), 
URL = <http://plato.stanford.edu/archives/spr2007/entries/panpsychism/>. 

Sklar, Lawrence, "Philosophy of Statistical Mechanics", The Stanford 
Encyclopedia of Philosophy (Summer 2009 Edition), Edward N. Zalta (ed.), 
URL = <http://plato.stanford.edu/archives/sum2009/entries/statphys-
statmech/> 

Stone, Thomas L. (2007): Peirce’s Theory of Signs, Cambridge: Cambridge 
University Press. 

Tuisku, Petri / Pernu, Tuomas K. / Annila, Arto (2009): In the Light of 
Time, Proceedings of the Royal Society A, 465: 1173-1198. 

Ulanowicz, Robert E. (1997): Ecology, the Ascendent Perspective, New York: 
Columbia University Press. 

Ulanowicz, R.D.and B.M. Hannon (1987): Life and the production of entropy.  
Proceedings of the Royal Society B 232: 181-192. 

Vallino, Joseph J. (2010): Ecosystem Biogeochemistry Considered as a 
Distributed Metablic Network Ordered by Maximum Entropy Production, 
Philosophical Transactions of the Royal Society B, 365: 1417-1427. 

Vehkavaara, Tommi (2002): Why and How to Naturalize Semiotic Concepts for 
Biosemiotics, Sign System Studies 30(1):293-313. 

Vemulapalli, G.K. (2006): Physics in the Crucible of Chemistry: Ontological 
Boundaries and Epistemological Blueprints, in: Baird et al. (2006): 
191-206. 

Weber, Bruce H., David J, Depew, and James D. Smith, eds. (1988): Entropy, 
Information, and Evolution. New Perspectives on Physical and Biological 
Evolution, Cambridge and London: MIT Press. 

Whitfield, John (2007): Survival of the Likeliest? PloS Biology 5(5): 962-
965. 



 43

Wilson, Edward O. (1998): Consilience. The Unity of Knowledge, London: 
Abacus. 

Wilson, Robert A. (2004): Boundaries of the Mind. The Individual in the 
Fragile Sciences: Cognition, Cambridge et al.: Cambridge University 
Press. 

Wolpert, David H. (2001): Computational Capabilities of Physical Systems, 
Physical Review E, 65, 016128. 

Wolpert, David H. (2008): Physical Limits to Inference, arXiv:0708.1362v2 
Zahavi, Amotz / Zahavi, Avishag (1997): The Handicap Principle. A Missing 

Piece of Darwin’s Puzzle, New York / Oxford: Oxford University Press. 
Zeilinger, Anton (1999): A Foundational Principle for Quantum Mechanics, in: 

Founda-tions of Physics 29(4): 631-643. 
 


