
九州大学学術情報リポジトリ
Kyushu University Institutional Repository

Scale-free dynamics of somatic adaptability in
immune system

Saito, Shiro
Department of Physics, Kyushu University

Narikiyo, Osamu
Department of Physics, Kyushu University

https://hdl.handle.net/2324/25463

出版情報：BioSystems. 103 (3), pp.420-424, 2011-03. Elsevier
バージョン：
権利関係：(C) 2010 Elsevier Ireland Ltd.



Scale-free dynamics of somatic adaptability in immune system 
 
Shiro Saito, Osamu Narikiyo* 
 
Department of Physics, Kyushu University, Fukuoka 812-8581, Japan 
 
 
 
ABSTRACT   
The long-time dynamics of somatic adaptability in immune system is simulated by a 
simple physical model defined in the shape space. The immune system described by the 
model exhibits a scale free behavior as is observed in living systems. The balance between 
the positive and negative feedbacks of the model leads to a robust immune system where 
the positive one corresponds to the formation of memory cells and the negative one to 
immunosuppression. Also the immunosenescence of the system is discussed based on the 
time-dependence of the epigenetic landscape of the adaptive immune cells in the shape 
space.  
 
 
Keywords:   
Adaptive immune system 
Scale-free network 
Robustness 
Self-organized criticality 
Epigenetic landscape 

 

 

 

 

 

 

 

 

 

 

* Corresponding author. 
  E-mail address: narikiyo@phys.kyushu-u.ac.jp (O. Narikiyo) 



1. Introduction 
 
Theoretical studies of the immune system have a long and diverse history. Among them 
the network model introduced by Jerne (Jerne, 1974) is one of the most popular models 
for physicists and has developed into many variants (Perelson and Weisbuch, 1997). In 
these models the adaptive immune system is described as a dynamical network which 
evolves according as experienced attacks by antigens. In this paper we succeed to the 
development and study the long-time dynamics of the network based on a physical model 
which we propose.  

Recently many biological phenomena have been analyzed in terms of network (Junker 
and Schreiber, 2008) at various hierarchies. Especially the scale-free network (Barabasi 
and Albert, 1999; Jeong et al., 2000; Albert et al., 2000; Albert and Barabasi, 2002) has 
been attracting many attentions. One of the most important properties of the scale-free 
network is its robustness. The robustness is necessary for systems to survive and 
biologically significant factor.  

In the studies of the adaptive immune system such a scale-free network is observed 
experimentally (Naumov et al., 2003) in the repertoire of memory T-cells. Theoretical 
explanation of the experiment has been already attempted (Ruskin and Burns, 2006) by 
the small-world construction (Albert and Barabasi, 2002) which is one of the scenarios 
leading to the scale-free network. In this paper we propose another scenario of the 
scale-free behavior in the adaptive immune system starting from a minimal model of the 
immune response against repeated attacks by antigens. Our minimal model describes the 
population dynamics of immune cells in the so-called shape space. Using this minimal 
model we perform long-time simulations and obtain the sequences of epigenetic 
landscapes in the shape space.  

Although the minimal model leads to a scale-free behavior, it becomes fragile against 
random attacks by antigens after long-time adaptation. By a positive feedback of the 
model the populations of the cells become large at the positions, which have been attacked 
by antigens, in the shape space so that the cells are absent at the other positions, which are 
security holes of immune response, since the total number of immune cells is limited to be 
finite. Such fragility corresponds to immunosenescence by aging in living systems. The 
immunosenescence has been discussed theoretically from the view point of highly 
optimized tolerance (Stromberg and Carlson, 2006) which is one of the scenarios leading 
to the scale-free behavior.  

Since the immunosenescence results from a positive feedback in the minimal model, we 
add a negative feedback to balance with it. This negative feedback corresponding to 
immunosuppression is implemented by the avalanche in the population of immune cells. 
In the study of non-equilibrium statistical physics the avalanche in the sand-pile model 



(Bak et al., 1987; Bak et al., 1988) is known as the dynamics of self-organized criticality 
and is expected to be a universal description of a wide class of dynamical phenomena. The 
self-organized criticality is also one of the scenarios leading to the scale-free behavior. We 
identify the dynamical network of the adaptive immune system as a self-organized critical 
state. Our model reinforced with the avalanche feedback reduces the immunosenescence 
substantially. At the same time it becomes robust against the perturbation to the adaptive 
immune network. Such robustness is expected and desirable.  
 
 
2. Population Model  
 
As a minimal model for the adaptive immune system we propose a model of population 
dynamics of immune cells. The cells are characterized by the position in the so-called 
shape space. The position represents not only the shape of the antibodies but also 
physico-chemical properties. Hereafter we only employ 2-dimensional shape space for 
simplicity of the implementation. We do not distinguish the species (naïve, effector, 
memory, B-, T-, etc.) of the cells but characterize the cells by their lifetime. We introduce 
an abstract cell and the lifetime of the cell is prolonged if it experiences the attack by 
antigens. We assume that the lifetime is determined by the state of the network among 
immune cells but do not explicitly construct the network and treat it as the background 
that allows the change of the lifetime. The network is maintained by interactions among 
cells, e.g. signal transduction via effector molecules such as cytokines or ligands (Murphy 
et al., 2008). Thus each cell in the adaptive immune network is characterized by the 
position in the shape space and by the lifetime in our minimal model.  
  Based on above assumptions we simulate the population dynamics of immune cells by 
the following rule. (ⅰ) We prepare a square lattice with LL×  sites on which immune 
cells are distributed. Each site is represented by the coordinate  with 

. The population of the cell at the site  and at the time  is denoted 
as . The total number of immune cells is set as 
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(ⅱ) In the initial state LLNN ××− )'(  cells are uniformly distributed and LLN ××'  
cells are randomly distributed. (ⅲ) The time evolution of the adaptive immune system 
starts with the attack by an antigen to the site  which is randomly chosen. The 
antigen introduced at the time  is deleted if the condition  
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is satisfied where the constant Z  is the threshold for the ability to delete the antigen. 



Otherwise the antigen remains at the site  until the condition is satisfied. Here the 
summation over the team, the cell at  and its nearest neighbor cells, takes into 
account the cooperative immune response of the underlying network. Then even if the cell 
at  alone does not have enough ability, the team can respond to the antigen. For 
example, the smallest team is a pair of T
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),( ji

),( ji

H1 cell and macrophage or a pair of helper T cell 
and B cell (Murphy et al., 2008). The immune response to delete the antigen is completed 
at the next time step . At the same time the population of the team is increased as  1+t
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with the constant P . This increase reflects the formation of memory cells and the 
adaptive strengthen of the related part of the network. (ⅳ) During the next  time 
steps randomly chosen  cells are forced to die according to the rate for death 

. Consequently the total number of the immune cells becomes back to the value 
 at the stationary state. The rate is defined by the inverse of the population 
 as  
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where  is only assigned to the site with 1);,( −tlkz 0);,( ≠tlkz . Thus the lifetime of the 
cell is set to be longer at the site with larger population. This rule implements the memory 
effect (Murphy et al., 2008). (ⅴ) During the next  time steps naïve cells are supplied 
to randomly chosen  sites. Such randomness implements the diversity of immune cells 
generated by gene rearrangements (Murphy et al., 2008). At each time step a naïve cell is 
added at randomly chosen site  as  
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and a cell is removed from randomly chosen site  according to the rate  as  ),( lk );,( tlkd
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to keep the total number of cells being constant. (ⅵ) After these  time steps interval 
we introduce the next attack by an antigen to a randomly chosen site and repeat the 

Q



procedures, (ⅲ), (ⅳ), and (ⅴ), sequentially. The number of the repeated cycle is denoted 
by A  which is also the total number of antigens experienced by the adaptive immune 
system.  
  In the following the parameters are chosen as )1000,10,3(),,( =QPZ .  
  In Fig. 1 the distribution of the population is shown. In the region of relatively large 
population the distribution is scale-free; it shows a power-law behavior as is observed in 
living systems (Naumov et al., 2003). A scale-free behavior is expected from our rule of 
the rate for death which has some resemblance to the rule of the small-world construction 
(Albert and Barabasi, 2002) which is one of the scenarios leading to the scale-free 
network. In the small-world case a new link is attached to a node with the probability 
which is proportional to the number of links already attached to it. Thus a positive 
feedback which favors the hubs with many links is implemented. Our rule with the control 
of lifetimes also favors the cells with large populations. Such a positive feedback 
magnifies the difference between the rich and the poor.  

In the region of relatively small population it deviates from the power-law, because the 
total number of immune cells is limited to be finite and is short to link all the cells 
together as a scale-free network. Then cells with small population which do not respond 
against antigens are separated from the part of the network with large populations. 
Namely the deviation results from the lack of the resource. The finiteness of the resource 
is not taken into account in the case of small-world construction (Albert and Barabasi, 
2002).  
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Fig. 1.  The number of sites  with the population  for )(zN z 128=L  and .  64,32,16=A

 



A mean-field approximation to the small-world construction (Albert and Barabasi, 
2002) leads to the power of . The absolute values of the power seen in Fig. 1 are 
larger than 3 corresponding to the fact that the growth of the cells with the largest 
populations is slower than that of the number of links attached to hubs in the small-world 
construction. The growth in our case is relative and indirect which is the consequence of 
the survival, while the hubs grow by the direct increase of links. The growth by the 
indirect mechanism is slower than that by the direct one. The absolute values of the power 
become smaller as 

3−

A  is increased. The reason is discussed in terms of the epigenetic 
landscape later.  
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Fig. 2.  The number of sites  with the population for 
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  In Fig. 2 the distribution of the population is shown for various system sizes at the same 
A . The powers depicted by the straight lines are nearly the same and independent of the 
system size in the region of these simulations.  

In Fig. 3 the active site which is able to respond to the attack by antigens is plotted by 
the dot. As A  is increased, the relatively uniform distribution at earlier stage changes 
into a scattered distribution of clusters at later stage. Since the population in the cluster 
increases by the positive feedback, the total area covered by the clusters, namely the total 
number of active sites, decreases due to the finiteness of the resource as shown in Fig. 4. 
This decrease corresponds to the immunosenescence by aging in living systems. Figure 3 
is the epigenetic landscape and Fig. 4 describes quantitatively the progress of the 
immunosenescence. The change in the power seen in Fig. 1 depending on A  is due to 
the merger of clusters which accelerate the growth of the cell populations in the survived 



cluster.  

  

 

 

  

 

 

 

Fig. 3.  The epigenetic landscape in the shape space where the site which satisfies Eq. (1) and is 
able to respond the antigen is depicted by the square dot for )64,128(),( =AL . The left sparse 

landscape is obtained for the population model. The right dense landscape is for the avalanche 
model.  
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Fig. 4.  The number of active sites , which satisfy Eq. (1) and can respond the antigen, 

after 

)(AN
A  times of attacks for . The solid line is obtained for the avalanche model. The 

broken line is for the population model.  
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The immunosenescence has been discussed theoretically from the view point of highly 

optimized tolerance (Stromberg and Carlson, 2006) which is one of the scenarios leading 
to the scale-free behavior. It is the fragility caused by the positive feedback and the lack of 



resources. In our model the fragility is severe and the active sites decreases substantially 
after the experience of repeated attacks by antigens. Then in order to construct a robust 
immune system we introduce a negative feedback, which balances with the positive one, 
in the following improved model.  
 
 
3. Avalanche Model  
 
Our population model only takes a positive feedback into account as a minimal model. 
Such a feedback magnifies the difference between the rich and the poor and leads to a 
fragile state with heavy immunosenescence where the oligopoly of the finite resource by 
the rich results in unbalanced distribution of the cell population. In order to obtain a robust 
immune system we introduce a negative feedback to redistribute the resource to the poor. 
This negative feedback implements the immunosuppression in living systems.  

We implement the redistribution by making avalanches among the populations. The 
dynamics of the interaction among cells are represented by avalanches. It is known that 
the avalanches in the sand-pile model (Bak et al., 1987; Bak et al., 1988) lead to the state 
of self-organized criticality with a scale-free distribution of the sizes of avalanches. Such a 
model is expected to be a universal description of a wide class of dynamical phenomena. 
We identify the dynamical network of the adaptive immune system as a self-organized 
critical state.  

In the following we focus on the dynamics of the interaction network, while the 
population model mainly deals with stationary property.  

The above simulation rule is modified by adding the following procedure at each time 
step of (ⅴ). If there is an excess site as  where  is the threshold constant 
( ), the avalanche around it is introduced so that the populations are redistributed as  
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This procedure is continued within the time step until the excess site disappears. In 
general several avalanches, isolated or series of, occur within the time step.  
  Although we do not distinguish effector cells and memory cells in the population model, 
here in the avalanche model it is taken into account as a more faithful description that 
memory cells are differentiated from effector cells (Murphy et al., 2008). In the presence 
of antigens effector cells are activated and act to delete antigens. The populations of 
effector cells become large during the period of activation. The suppression of the 



activation is a negative feedback of the adaptive immune network. A key actor of this 
immunosuppression is regulatory T cell (Murphy et al., 2008). After the disposal of 
antigens most of effector cells die by apoptosis and memory cells are differentiated from 
remaining effector cells (Murphy et al., 2008). Eq. (6) implements this differentiation 
where the effector cell is located at  and the memory cell at ),( ji ),1( ji ±  or )1,( ±ji . 
On the other hand, we do not implement the process of the apoptosis, since we are 
interested in the stationary distribution well after the end of the apoptosis.   
  In the following the parameters are chosen as )8,1000,10,3(),,,( =CQPZ .  
  As seen in Fig. 4 the immunosenescence is substantially suppressed by the negative 
feedback.  

In Fig. 5 the distribution of the area of the avalanche  is shown. The distribution is 
scale-free; it shows a power-law behavior. A scale-free behavior is expected from our rule  
for the avalanche which is the same as that in the sand-pile model (Bak et al., 1987; Bak et 
al., 1988) of self-organized criticality which is one of the scenarios leading to the 
scale-free network. In the region of the largest avalanches it deviates from the power-law, 
because the size of the avalanche is cut off by the finite size of the shape space. At the 
same time the larger avalanche is harder to occur because of the lack of the resource.  
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Fig. 5.  The number of avalanche events  with the avalanche size  for  and 

.  counts all the avalanche events during 
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number of sites involved in an avalanche event.  
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  In Fig. 6 the distribution of the area is shown for various system sizes at the same A . 
The powers depicted by the straight lines are nearly the same and independent of the 



system size in the region of these simulations.  
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Fig. 6.  The number of avalanche events  with the avalanche size  for 
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In the sand-pile model (Bak et al., 1987; Bak et al., 1988) the absolute value of the 
power is about 1. The value in Figs. 5 and 6 is larger than 1. This difference comes from 
the finiteness of the resource not taken into account in the sand-pile model. The larger 
avalanche is harder to occur in our model because of the lack of the resource.  
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 7.   The number of sites  which experienced  times avalanche events for 

 and .  is the total number of experiences during 
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  In Fig. 7 the distribution in terms of the number of events of avalanches in a time step is 
shown. It is the number of interactions among cells and represents the activity of the 
underlying dynamical network. This activity also exhibits a scale-free behavior.  
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Fig. 8.  The number of active sites , which satisfy Eq. (1) and can respond the antigen, 

after 

)(xN
x  destruction events for  and 128=L 256,128,64=A . The destruction events are 

introduced into the system which experienced A  times of attacks. A single destruction event is 
defined as the procedure  at a randomly chosen site where .  0);,( →tjiz 0);,( ≠tjiz

 
  In Fig. 8 we show the robustness of our adaptive immune network against the 
perturbation destroying the elements. It has been shown that the scale-free network by the 
small-world construction (Albert and Barabasi, 2002) is highly tolerant to such a 
perturbation and robust. Our scale-free network is also tolerant and robust.  
 
 
 
 
 
 
 
 
 
 
 



4. Conclusion 
 
We have introduced a simple physical model to describe the long-time dynamics of 
somatic adaptability in immune system. The population model, the tentative version of the 
model, exhibits a scale free behavior as is observed in living systems. However, the 
population model leads to a fragile state with heavy immunosenescence. This 
immunosenescence is the consequence of the positive feedback of the model. The positive 
feedback corresponds to the formation of memory cells in living systems and has a similar 
effect as in the case of the small-world network. In order to construct a robust system we 
have introduced a negative feedback which balances with the positive one. The negative 
feedback corresponds to the immunosuppression in living systems and is implemented by 
the avalanche among the populations. The dynamics of the interaction network 
represented by the avalanche exhibits a scale free behavior similar to the self-organized 
criticality of the sand-pile model. The avalanche model leads to a robust state which 
heavily reduces the immunosenescence and becomes tolerant against perturbations. The 
time-dependence of the immunosenescence is visualized as the epigenetic landscape in the 
shape space.  
  Although our model is highly abstract, we expect that it supplies a simple tool for 
long-time simulation and captures important features of the dynamics of adaptive immune 
system.  
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