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In this paper, estimation of the dielectric properties of layered lossy structure using open-
ended coaxial probes is analyzed. Theoretical and empirical exponential approximations of
the relaxation process are generalized for two, three and four-layers structures. As mea-
surements are taken in the 10 MHz to 1 GHz frequency range, a wide frequency spectrum
measurement procedure is proposed, providing a fast method to approximate parameters
(thickness and dielectric properties) of each layer. Application of the methodology depends
on some prior knowledge of the properties of the dielectric layers (i.e. number of layers and
approximate values of their thicknesses and permittivities). A linear System Identification
method is proposed using time domain measurements to find the corresponding frequency
responses. Although these approaches and techniques have been already considered indi-
vidually, they are combined here, resulting in a novel methodology to process time domain
reflectometry data that is robust and numerically well-behaved. Simulations and experi-
mental results in phantom and a biological tissue are provided. Dielectric relaxation is
assumed to follow a Debye model, but comments on other parameterizations are also sum-
marized. Experimental frequency validation data are reliable up to 700 MHz.

� 2008 Elsevier Ltd. All rights reserved.
1. Introduction

Changes in physiological properties (e.g.: composition
[1], mineral content [2], tissue water content [3–6], thick-
ness) of biological tissues can provide significant informa-
tion from a clinical point of view. In some cases, these
variations produce changes in the dielectric properties of
the medium under measurement (MUM). For instance,
the stratum cornea water content in vivo can be estimated
by dielectric measurements [7]. In [8] it is shown that the
dielectric constant of subcutaneous fat goes from 25 for
normal skin to 10 for severe subcutaneous fibrosis. Besides,
a correlation of this dilectric constant with local oedema,
. All rights reserved.
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swollen tissue problems and fluid retention in humans is
also found. In bone tissues, variation in collagen content
is strongly correlated to relative permittivity [1]. Further-
more, changes in relaxation frequencies for natural and
demineralized bones are reported in [2,9].

Open ended coaxial lines (OECL) have been successfully
used for measuring dielectric properties of layered materi-
als [10–12]. Their wide frequency response allows the
study of different dielectric relaxation processes, providing
relevant information not achievable with other kind of
probes. As a non-invasive technique, it is well suited for
application in biological measurements in vivo, without
damaging the material under test [3,5]. The measurement
configuration used in this work, shown in Fig. 1, can be ap-
plied not only for biological tissues but also in many indus-
trial processes [10,13].

In search of suitable models, several authors have
developed mathematical [14,15], empirical [3,4,16,17]
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Fig. 1. Probe in contact with a layered geometry.
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and numerical [18] approaches. In particular, in this paper
the method presented by Alanen et. al [3] is used and ex-
tended to a four layer structure. The simple exponential
approximation is also tested and generalized. The resulting
approach is useful to represent measurements of stratified
biological tissues that can be dielectrically modeled by lay-
ers and to rapidly observe the behavior of the apparent
permittivity relaxation frequencies.

Time domain reflectometry (TDR), combined with OECL,
has been extensively used to obtain dielectric properties of
materials [19,7]. One of its advantages is the wide band
spectrum that can be ideally achieved in a single measure-
ment using Fourier transform techniques. Nevertheless, in
practice this is a rather complicated problem (see Section
2.3 and [20,21]). In this paper, we propose System Identifi-
cation tools [22–24] that avoid this problem and result in a
fast and robust analysis of TDR data. The technique imposes
that the structure under measurement is modeled as a cau-
sal linear time invariant (CLTI) system. Application of the
proposed methodology depends on a previous knowledge
of the kind of tissues under study and hence, on the ex-
pected values their dielectric properties can take. Devia-
tions from these values can suggest abnormal conditions.
A physical lumped differential circuit model is used [25],
which results in a numerically well-behaved approach.

The aim of this work is to adapt and test the System
Identification approach as a general signal processing tech-
nique to analyze TDR data. A generalization of the non-
invasive multi-layered OECL model is proposed, and a
methodology to obtain fast and robust measurements in
stratified lossy material is developed.

Paper is organized as follows. In Sections 2.1 and 2.2 a
short overview of the theoretical and the empirical model
of the apparent permittivity using open ended coaxial lines
is presented, and the corresponding equations for a four
layered structure are developed. In Section 2.3 the lumped
circuit model used is reviewed and a brief introduction of
Orthonormal Bases identification methods [24] is given.
The exponential approximations, together with the physi-
cal model already mentioned, are used to match the
physical boundary conditions of the identification method-
ology. Finally, in Sections 3 and 4, simulations with litera-
ture values, phantom, and biological layered tissue
measurements are reported.
2. Theory

2.1. Theoretical model

The static capacitance of an arbitrary structure with two
conductors at potential zero and V0, respectively [3], can be
expressed as follows:

C ¼ 1
V2

0

Z
v

eðDVÞ2dv; ð1Þ

where v is the volume of the capacitor, V is the electric po-
tential and e is the permittivity of the material under mea-
surement. It is assumed that the system operates at such a
frequency that only the fundamental TEM mode propa-
gates in the coaxial line. Evanescent TMon modes are also
assumed to exist in the coaxial line near the probe end.
This is necessary to match boundary conditions at the
probe-material contact and between each layer interface.
According to the assumptions and formulations in [3],
the capacitance of an OECL in contact with either a half-
infinite material or a layered geometry is given by

C ¼ 2pe1�0

V2
0
ðP00 þ 2g1P01 þ 2g2P02 þ 2g1g2P21 þ . . .

þg2
1P11 þ g2

2P22 þ . . .Þ þ 2pet�0
PI

i¼1
g2

i piti

ð2Þ

for I = 2, coefficients gi are solved from:
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0

et
e1
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where:

ti ¼
b2

2
½aiJ1ðpibÞ þ biY1ðpibÞ�

2 � a2

2
½aiJ1ðpiaÞ þ biY1ðpiaÞ�

2
:

Ji and Yi are the Bessel functions of the first and second
kind. The coefficients ai, bi and pi are determined numeri-
cally from the boundary conditions: Ti(a) = Ti(b) = 0, where
Ti(q) = aiJ0(piq) + biY0(piq) and the normalization condition
a2

i þ b2
i ¼ 1. The coefficients Pmn depend on the material

under test and the number of layers. This result can be ex-
tended for a four layered structure and the respective def-
initions of Eqs. (2) and (3) are shown in Appendix A.

In the above formulations it should be noted that the
electrostatic model approximation limits the frequency
range. Therefore probe dimensions should be much smal-
ler than the wavelength in the tissues, in other words 2a/
k� 1.

2.2. The empirical model

As noted in the previous section, the permittivities of
each layer can not be directly solved, see Eq. (2). Hence,
iterative methods must to be used. In [3] an empirical
approximation was proposed. Under some assumptions, it
allows solving the apparent complex dielectric permittiv-
ity ðe�appÞ seen by the probe:

e�app ¼
C � Cf

C0
; ð4Þ
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where the coefficients C0 and Cf are determined from cali-
bration measurements. Although the theoretical capaci-
tance is a more exact expression Eq. (2), it implies
numerical integration, which is not convenient in practice.
The value of the sample permittivity can be easily solved
from Eq. (4). This empirical model can also be used to esti-
mate the apparent complex permittivity ðe�appÞ of an open
ended coaxial line in contact with a layered geometry
(see [3]). The equations for a bi-layered structure are

e�app ¼ ðe1 � e2Þð1� e�qdÞ þ e2 when e1 > e2; ð5Þ
1

e�app
¼ 1

e1
� 1

e2

� �
ð1� e�qdÞ þ 1

e2
when e1 < e2; ð6Þ

where q is a constant depending on the probe size. As the
formula to be applied depends on the material under test,
an a priori estimation of each layer permittivity value is re-
quired. In [3] the empirical formulas are extended for a par-
ticular three-layer model, taking into account skin dielectric
values. In this work the empirical formula is extended to
other three-layered structure and also to a four-layer model,
by combining the above equations. The permittivity value
estimations chosen for each layer are similar to those to
be used in the experimental set-up of Section 4, resulting:

e�2�4 ¼ e2ð1� e�q2d2 Þ þ e3e4

e3e�q3d3 þ e4ð1� e�q3d3 Þ e
�q2d2 ; ð7Þ

e�app ¼
1

ð1� e�q1d1 Þ 1
e1
� 1

e�2�4

� �
þ 1

e�2�4

; ð8Þ

q1, q2 and q3 are constants generally found by numerical
fitting with Eq. (2).

It should be remarked that assuming a Debye (lossy
material) behavior of the sample:

e�i ðjxÞ ¼ �1 þ
D�

1þ j x
xr

; ð9Þ

where D� = �s � �1, Eqs. (4)–(8) can be seen as rational sta-
ble functions of frequency.

2.3. System identification approach

The measurement procedure proposed involves identi-
fication of a linear relation between a step voltage applied
to the MUM (input) and the corresponding reflected wave
(output). Considering f2(t) as the difference between sam-
ple and short circuit and f3(t) as the difference between
open circuit and sample, a CLTI system approximation
can be stated [2]:

HðsÞ ¼ C0Z0eðsÞ þ
f3ð1Þ
f2ð1Þs

¼ F3ðsÞ
sF2ðsÞ

; ð10Þ

where F2(s) and F3(s) are the Laplace transform of f2(t) and
f3(t), respectively, and s is the Laplace variable. C0 and Z0

are the cell capacity and characteristic impedance, respec-
tively. Although the method were developed and tested for
invasive measurements [2], it is possible to apply the same
reasoning to non-invasive OECL. Assuming a Debye (or
constant) behavior of each layer, replacing e (s) by eapp(s)
and taking an empirical formula (for instance Eq. (8)) a
CLTI system is obtained. It should be noted that the poles
of this system are coincident with those of eapp(s).
From the above results, the problem reduces to estimat-
ing the transfer function of the CLTI system Eq. (10). This
may be done by a simply division of numerical Fourier
transforms of f2(t) and f3(t). However, in practice, the mea-
sured data are corrupted by errors due to measurements
errors, noise, etc. This often yields divergent results
([20,21]). Here a System Identification technique is used,
using f2(t) as input and the integral of f3(t) as the output.
On the other hand, the transfer function of a CLTI system
can be approximated by the following equation:

HðsÞ � nðsÞ
dðsÞ ¼

n0sm þ n1sm�1 þ . . .þ nm

sn þ d1sn�1 þ . . .þ dn
; ð11Þ

where for stable transfer functions m 6 n. However, the
nature of the problem imposes some additional restric-
tions to the degrees of n(s) and d(s). Actually, the boundary
conditions are: 0 < �apps

<1 and 0 < �app1 <1 (where
�apps

and �app1 are the limits for s tends to 0 and to 1,
respectively) then n = m, n0 = � 1 and dn = nm. Further de-
tails are explained in [2].

Most identification methods are developed for discrete
time systems. However, once the discrete system is identi-
fied, a continuous one can be obtained by any suitable con-
version method (e.g. zero-order hold). Here we apply an
Orthonormal Based with Fixed Poles (OBFP) model struc-
ture. It allows incorporation of a priori information of sys-
tem dynamics in the identification process. Another
advantage is that the input–output equation can be writ-
ten as a linear regression and therefore the estimate is ro-
bust and consistent even when the model noise is not
white. A detailed analysis of OBFP identification can be
found in [24]. Generally speaking, output-error (OE) mod-
els can be expressed as

yk ¼ HdðqÞuk þ mk; ð12Þ

where Hd(�) is the discrete version of H(s), q is the shift
operator and yk, uk and mk are the output, input and mea-
surement noise vectors at time k (e.g. yk = y(kTs), where
Ts is the sample time), respectively. In the particular case
of OBFP, Eq. (12) is defined as

yk ¼
X1
i¼0

biBiðqÞuk þ mk; ð13Þ

where bi are the unknown parameters and fBiðqÞg1i¼0 are
rational orthonormal bases defined by

B‘ðq�1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�jn‘ j2
p

q�1�n‘

� � Q‘�1

i¼0

1�niq�1

q�1�ni
; ‘ > 0;

B0ðq�1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffi
1�jn0 j2
p

q�1�n0
;

ð14Þ

where n‘ are stable modes ( jn‘j < 1) arbitrary chosen.
In the OBFP identification process, modified routines

developed in [24] are used. Matlab System Identification
toolbox [23] routines were also used but results will not
be shown here. In this particular case, the model structure
chosen was OE model and no a priori information of the
system dynamic can be assumed. As a result, excepting
for the model order, an ‘‘almost” black-box model
approach is applied. This identification method could be
applied when there is a poor knowledge of system
dynamics.



R.M. Irastorza et al. / Measurement 42 (2009) 214–224 217
2.4. System validation

After a particular model is obtained its consistency
must be verified, a process known in System Identification
as model validation. In this work two validation tests are
proposed: time and frequency validation. In the former
the same input (f2(t)) is applied to both the sample
and the model, and their outputs are compared. In the
latter the magnitude of the reflexion coefficient of the
OECL with the MUM (jC*(s)jmeas with s = jx) is measured
in the frequency range of interest and compared with the
predicted values. Such comparison is performed by

FITf ¼ 100
½1� normðjC�ðjxÞjid � jC

�ðjxÞjmeasÞ�
norm½jC�ðjxÞjmeas � jC

�ðjxÞjmeas�
; ð15Þ

where jC*(jx)jid is the magnitude of the reflection coeffi-
cient calculated with the resulting admittance of the iden-
tification process:

YðjxÞjid ¼ jxðC0e
�
appðjxÞjid þ Cf Þ: ð16Þ

A similar FIT definition is applied to the time validation
test.

The whole identification procedure is summarized as
follows:

(1) Estimate dominant dynamics. For instance, in a three
layer material, if e1 > e2 and e2 < e3, therefore Eq. (5) is
applied for the first and second layer and then com-
bined with Eq. (6) for the third. The (approximately
known) parameters of each layer (thickness and
dielectric properties) must to be used.

(2) Find the approximated discrete poles (of Eq. 10),
through n‘ = exp(p‘Ts), where the n‘ are the discrete
poles, p‘ are the continuous ones and Ts is the sample
period.

(3) Generate the bases with the poles found in the pre-
vious step using Eq. (14).
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Fig. 2. Apparent dielectric constant of a four-layer structure seen by 16 mm pro
curves). The empirical parameters obtained were: q1 = 0.86, q2 = 0.75 and q3 = 0
(4) Obtain a least square estimate and check the time
and frequency Eq. (15) validation parameters.
Repeat the previous steps if necessary.

It is worth noting that the identification method does
not just imply fitting of the experimental data; it generates
a linear model which approximates the dynamics of the
real system under test.

3. Simulations

The process to find the empirical parameters of a lay-
ered geometry is similar to that applied in [3]. C0 and Cf

are previously calculated using the approximation C(ei) = -
C0ei + Cf, where C(ei) is obtained by Eq. (2) applied to a
semi-infinite material. In our case, two probes of different
sizes were used (2b = 10 mm and 2b = 16 mm). The result-
ing values for C0 and Cf were: 6.4/8.5 � 10�2 pF and 3.4/
3.6 � 10�2 pF, respectively. Then a fitting of the theoretical
and empirical approaches (e.g. in a four layer structure Eqs.
2 and 8)is performed. The simulation values used are
imposed by the biological material of interest and the
experimental set-up and. For instance, Fig. 2 shows a com-
parison between the theoretical and the empirical approx-
imation in a four layer structure with a 16 mm probe (it
results in the Eq. 8). The thickness of the second layer
(d2) is changed from 0.6 mm to 1.8 mm and d1 = 0, 20,
40 lm. The dielectric constant of the four layers were as-
sumed to be 10, 50, 8 and 40. These values are consistent
with calibration media values (see Section 4). Similar re-
sults were found when the other parameters were chan-
ged. The obtained values were: 0.86/0.75/0.56 mm�1 and
0.54/0.74/0.61 mm�1 for q1, q2 and q3 for the 10 mm and
16 mm probes, respectively.

In Fig. 3 the three layer empirical model is tested for the
16 mm probe. First, the dielectric constant of the three lay-
ers were set in order to accomplish e1 > e2 and e2 < e3 (see
.2 1.4 1.6 1.8
[mm]

d1=20 μm

d1=40 μm 

be. Variational method (full curves) and empirical approximation (dotted
.56.
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Fig. 3. Comparison between empirical (+ and � curves) and theoretical (full and dashed curves) model in a three layered geometry. In (a) and (c) e1 > e2 and
e2 < e3 (the dielectric constant were assumed to be 70, 5, 20 (full curves) and 50, 10, 30 (dashed curves)). In (b) and (d) e1 > e2 and e2 > e3 (the dielectric
constant were assumed to be 70, 40, 20 (full curves) and 70, 30, 10 (dashed curves)).
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Fig. 3a and c). It is noted that the approximation is not so
accurate when the lowest dielectric constant layer thick-
ness is changed. Second, in Fig. 3b and d e1 > e2 and
e2 > e3. A good agreement is observed in this case. It should
be noted that the empirical parameters were different in
the two configurations.

In the simulations performed, dielectric permittivities
of each layer were set to constant values. In Fig. 4a and b
a calibration geometry comprising saline solution (litera-
ture values of 0.45% NaCl and d1 = 0.5 mm)/ nylon film
(e2 = 3 and d2 = 0.1 mm)/ 2-propanol (see [26]) was simu-
lated at T = 25�C. Debye dielectrics (see Eq. 8) and a
10 mm probe were assumed. Linear system transfer func-
tions Eq. (11) were directly fitted (in frequency domain)
with the theoretical curve Eq. (2). It can be seen that with
a system of order 2, the approximation is very bad. How-
ever, good results were obtained with systems of order 3
and 4. The empirical approximation is also shown and con-
sidering the formulations in Section 2.4, a 3 order system is
obtained with an acceptable agreement. Fig. 4c and d show
real and imaginary parts of the apparent permittivity of 1-
propanol (d1 = 0.5 mm)/nylon film d2 = 0.1 mm/2-propa-
nol. Note that the first and last layers have comparable
complex permittivity values with relaxation frequencies
of 474 and 434 MHz (literature values). Linear (directly fit-
ted in frequency domain) and empirical models are in very
close agreement with the theoretical one.

It is well known that dielectric properties of materials
can be parameterized in frequency domain (Debye, Cole–
Cole (C–D), Cole–Davidson (C–D) or more general Havril-
iak–Negami (H–N)) and in time domain (Kohlrausch–Wil-
liams–Watts (KWW), see [27]). As it was mentioned, if a
Debye parameterization is assumed the material can be di-
rectly approximated by a CLTI system. Instead, with C–C,
C–D, H–N and K–W–W dielectrics, non-linear systems are
obtained. Fig. 5 shows their respective Cole–Cole plots
and linear system approximations (directly fitted in fre-
quency domain). In the identification procedure, assuming
a semi-infinite material, step (1) must be modified (Section
2.4). For the general frequency model of a H–N dielectric,
the complex permittivity could be approximated by

e�i ðjxÞ ¼ �1 þ
D�

1þ j x
xrH�N

� �ah ib �
nðjxÞ
dðjxÞ

¼ n0ðjxÞm þ . . .þ nm

ðjxÞn þ . . .þ dn
ð17Þ

with 0 < a < 1 and 0 < b < 1. Starting from some a priori
known â and b̂, estimate the parameters ni and di, by fitting
theoretical curves to rational functions of jx. On the other
hand, for a K–W–W time domain parametrization it was
shown in [27] that there is an exact analytical Fourier
transform defined as

e�i ðjxÞ � �1
D�

¼
1�

P1
k¼0

ð�1ÞkC kþ1
bð Þ

bCðkþ1Þ ð�jxsbÞkþ1 when jjxsbj ! 0;

1�
P1
k¼0

ð�1ÞkCðbkþ1Þ
Cðkþ1Þ ð�jxsbÞ�bk when jjxsbj > 0;

8>><>>:
ð18Þ



10—1 100 10110

20

30

40

freq [GHz]

R
e(

ε* ap
p)

10—1 100 101
0

10

20

30

10—1 100 1010

5

10

15

20

10—1 100 1010

2

4

6

8

R
e(

ε* ap
p)

Im
ag

(
ε* ap

p)
Im

ag
(

ε* ap
p)

freq [GHz]

freq [GHz]freq [GHz]

a b

dc

Fig. 4. Simulations of three layered structure with Debye dielectrics and their fitted linear systems. (a) and (b) real and imaginary part of e�appðjxÞ of: saline
solution/ nylon film/2-propanol and its fitted systems (m = n = 2 and 3 in dotted and � curves, respectively), theoretical (full curves) and empirical (dashed
curves) models. (c) and (d) real and imaginary part of 1-propanol (d1 = 0.5 mm)/nylon film d2 = 0.1 mm/2-propanol. Fitted systems (m = n = 2 and 3 in
dotted and � curves, respectively), theoretical (full curves) and empirical (dashed curves) models.

R.M. Irastorza et al. / Measurement 42 (2009) 214–224 219
where C(x) denotes the complementary complete gam-
ma function and 1

sb
¼ xrKWW is the relaxation frequency.

Therefore Eq. (18) must be generated in order to fit it
with a rational function, as in the frequency case. Fig.
5d shows simulations of Eq. (18) where series were trun-
cated at k = 200. Linear systems were fitted, for this par-
ticular case a good agreement is observed for systems of
order 8.

Limitations with non linear dielectric parametrizations
can be summarized as follows:

(1) Linear system estimation must be performed to esti-
mate the dominant system dynamic.

(2) If a K–W–W time domain parametrization is
assumed, Eq. (18) must be calculated first.

(3) The number of parameters that must be estimated is
incremented.

(4) System order is incremented.
(5) If a semi-infinite sample is assumed, rational func-

tion poles (CLTI system, Eq. 17), in general, do not
coincide with the relaxation frequencies of the
dielectric, as in the linear system case.

It is remarked that in the theoretical simulations of the
capacitances C(ei,di) (see Eq. 2), the series were truncated
at I = 3 and the coefficients Pij were numerically calculated
with a Gauss–Newton algorithm.
4. Measurements and results

4.1. Phantom measurements

Multi-layer models were tested from 10 MHz to 1 GHz,
by comparing simulated (with lossy materials of known
electric properties, e.g.: water, saline solution and n-alco-
hols at 25 �C) and measured values. The experimental
set-up is shown in Fig. 6. For instance, in a four layer geom-
etry, the probe, covered with a nylon film, is attached to a
liquid chamber filled with water and provided with a mo-
vable glass with a nylon film as bottom and filled with the
alcohol to form a four-layer structure, nylon/water/nylon/
alcohol. Since the alcohol layer is thick (10 mm) the fourth
layer can be considered to have an infinite thickness.

A Hewlett–Packard TDR/Sampler 1815B plug in a Hew-
lett–Packard 1801A oscilloscope and a sampler head
HP1106A with a tunnel diode HP1106 was used in the
identification procedure. Therefore a fast step voltage
(time rise of 35 ps.) was applied to the sample. The reflec-
tion coefficient magnitude of the probe attached to the
media were also measured by a Scalar Network Analyzer
(SNA) HP8711A from 10 to 1300 MHz. These data were
used in the validation process. Two OECL with type N con-
nector were manufactured to test our technique, with
2b = 10 mm and 16 mm, respectively. Temperature was
controlled by a cryostat LAUDA RE106.
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In order to obtain C0 and Cf a calibration of a half-infi-
nite structure was performed first, these data will not be
published here.

Identification procedure of a particular four layer cali-
bration structure (nylon film/ water/ nylon film/ 1-butanol
with thicknesses 0.01/0.5/0.1/1mm, respectively) is per-
formed next:

(1) Estimate the dominant dynamics. Using Eq. (8),
0.03/0.45/0.14 mm (approximated values of the
thicknesses), e1 = e2 = 3 and literature values for
water and 1-butanol, the obtained apparent permit-
tivity is
e�appðsÞ ¼
3:4216ðsþ 3:811� 1011Þðsþ 3:45� 109Þ
ðsþ 8:1� 1010Þðsþ 2:894� 109Þ

:

(2) Find the approximated discrete poles.
n0¼expðp0TsÞ¼expð�2:894�109 s�114 psÞ’0:9621;

n1¼expðp1TsÞ¼expð�8:1�1010 s�114 pÞ’0:3396:
(3) Generate the bases with Eq. (13): B0ð qÞ and B1ðqÞ.
(4) Obtain a least square estimate and check the time

and frequency Eq. (15) validation parameters. In this
example:
yk ¼
X1

i¼0

b̂iBiðqÞuk þ mk

which can be re-arranged as

yk ¼ uT
k b̂ ¼ ½B0ðqÞuk;B1ðqÞuk� 	

b̂0

b̂1

" #
;

where b� means ‘‘estimate” and b̂ can be analytically
solved (see details in [24]).
Repeat the previous steps modifying the parameters in
step 1. Results of the whole procedure are shown in Fig.
7. Frequency validation data (see Fig. 7c) show a FITf

parameter of 86%. Comparison were also performed with
theoretical and empirical simulations (Fig. 7d). Good
agreement is observed. It should be remarked that
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Fig. 7. Calibration procedure in a four layer geometry using a 16 mm probe: nylon film (d1 = 0.01 mm)/water (d2 = 0.5 mm)/nylon film (d3 = 0.1 mm)/ 1-
butanol. (a) Filtered time domain measurements. (b) Time domain validation data. Estimated model (full curve) and measured (dotted curve). (c) Frequency
domain validation data. Estimated model (full curve) and measured (dotted curve). (d) Complex apparent relative permittivity estimated (full curve),
empirical (x curve) and theoretical (dashed curve).

Table 1
Two layer calibration structure compared with the empirical approach
using a 10 mm probe (using q = 0.85 as empirical parameter)

Identified Empirical

�s �1 FITf (%) �s �1

2-Propanol 11.8 6.2 63 7.9 2.5
1-Butanol 7.5 2.9 68 7.3 2.5
Ethanol 9.8 2.6 63 9.6 3.0
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although the frequency relaxation of 1-butanol is 314 MHz
(fourth layer), the transfer function has a pole in 460 MHz.
Therefore the model and the experiment demonstrate that
the whole dynamic of the system does not coincide with
the dynamic of a particular layer.

A two layer calibration geometry was also tested, with a
thin layer (d1 = 0.5 mm) of an n-alcohol and a second teflon
layer (see Table 1).

Fig. 8 shows a comparison between the theoretical,
empirical and measured three layered models. Note that
results are in relative close agreement up to around
700 MHz. For higher frequencies the accuracy is poor. This
may be due to the input signal used. To ensure good iden-
tification results, the input signal must excite all the dy-
namic modes of the system in the frequency range of
interest. Unfortunately, as the power components of a step
signal decrease with frequency, the ‘‘persistence of excita-
tion” condition is not fully guaranteed ([22]).

Table 2 shows the frequency FITf parameters obtained in
three and four layer calibration media, using the 10 mm
and 16 mm probe, respectively. In the three layered exper-
iment, the structure 1 was: water/nylon/ 2-propanol. In
structure 2 the first layer was changed to a 0.45% saline
solution. In the four layer calibration structure the
16 mm probe was covered with a nylon film and the three
layered calibration structure already mentioned were mea-
sured again. Fig. 9 shows the four layered structure 2 fre-
quency validation data.
In phantom measurements performed above, time vali-
dation FITt parameters were always greater than 90%.

4.2. Biological tissue measurement

In addition to the literature application of the multi-lay-
ered models [3,4,8,11,12], an illustrative example of a bio-
logical measurement is presented next. Measuring in a
biological solid inhomogeneous surface (for instance bone
surface) has many difficulties. The main problem in solids
[28] is the contact between the probe and the material: an
small air gap may severely alter the measurement. A solu-
tion to this problem may be the application of multi-layer
models of OECL, which allow making corrections to exper-
imental data in order to compensate both measurements
errors or the effect of layers whose properties are not of
interest. Fig. 10a shows a simulation of measuring a solid



10—3 10—2 10—1 100

0

10

20

30

40

50

freq [GHz]

R
ea

l p
ar

t r
el

at
iv

e 
pe

rm
itt

iv
ity

d1=1mm

d1=0.5mm

d1=0.0mm

Fig. 8. Comparison between theoretical (full curves), empirical (dashed curves) and measured (�,5 and dotted curves) models. The three layer calibration
geometry was: water (with variable thickness)/nylon film (d2 = 0.1 mm)/2-propanol and the 10 mm probe was used.

Table 2
Frequency validation data

3 Layers (10 mm o.d.) 4 Layers (16 mm o.d.)

d1 [mm] 
0.0 0.5 1.0 0.01

d2 [mm] 0.1 
0.0 0.5 1.0

Structure 1 75% 74% 84% 81% 82% 78%
Structure 2 50% 55% 62% 51% 72% 61%

FITf parameters for the three and four layer calibration media.
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with e2 = 15, in which the air gap is replaced by a thin layer
of water (ew = 78 and d1 ’ 0.5 mm). It can be seen that the
change of Deapp (where D eapp = eapp(d1) � eapp(d1 = 0) for
air or Deapp = eapp(d1) � eapp(d1 = 0.5) for water) is greater
in the air case.
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Fig. 9. Frequency validation data for a four layer calibration structure using th
(d1 = 0.01 mm)/0.45% NaCl solution/nylon film (d3 = 0.1 mm)/ 2-propanol.
Fig. 10b and c show a typical application in cortical
bones. Two kind of measurements were compared: inva-
sive (more controlled, see our laboratory previous experi-
ments [2]) and non-invasive. We do not intend to show a
biological discussion here, therefore we will briefly dis-
cribe the sample preparation. For invasive configuration,
cortical bovine bones samples were machined into cylin-
ders of 7 mm diameter with a concentric hole of 3 mm
diameter. After that, the samples were immersed in bi dis-
tilled water and finally thawed just prior to measurements
(for details see [2]). For the non-invasive measurements,
after carefully removing the periosteum, the tissue was
cut into 1 cm cubes. The samples were totally immersed
in bidistilled water with a thin water layer (d1 ’ 0.5 mm)
between the 10 mm probe and the sample. The frequency
10—1 100

 [GHz]

e 16 mm probe with variable thickness of the second layer: nylon film
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validation FITf parameters are high. Differences in the static
value of the permittivity are notorious. It may be due to the
high water content of the non-invasive configuration.
Relaxation frequencies of both system are in relative good
agreement together with their respective D� parameters.

It should be remarked that the gain of our invasive sen-
sor (a coaxial line filled with the sample as dielectric) is
approximately 2.6 times greater than the non-invasive
10 mm probe. Therefore replacing the air by water can be
also interpreted as an increment in the gain sensor.

5. Conclusions

The variational formulation of an OECL in contact with a
layered geometry was experimentally confirmed with cal-
ibration measurements of two, three and four layers. Sim-
ple empirical approximations were also tested and
generalized showing a relative good agreement. We ob-
served that empirical parameters found by numerical fit-
ting with the variational formulation are, in general, well
approximated in calibration measurements.

Orthonormal Bases with Fixed Poles were proposed as a
System Identification method to process time domain data.
This approach results in a fast and robust measurement
configuration. A previous knowledge of the kind of tissue
and hence, on the expected values their dielectric proper-
ties can take are needed. Therefore, this methodology is
suitable to detect deviations from normal conditions. If
the MUM is poorly known, other identification methods
can also be applied. On the other hand, non-Debye com-
plex permittivity parameterization are also detectable with
this technique at the cost of increasing the model order
(see Fig. 5). Some limitations in regard to this topic were
summarized in Section 3 together with simulation
examples.

Validation of the identified systems were performed in
frequency domain. High FITf parameters were obtained. It
independently demonstrates that good model estimates
can be achieved by System Identification methods together
with TDR.

As it was shown in Fig. 8, persistence of excitation is not
guaranteed for frequencies above 700 MHz, which affects
our methodology. Nevertheless, recent advances in the
development of very fast pulse generators and fast sam-
plers make the TDR approach a very attractive technique
for wide-band analysis. Together with the variational mod-
el of the OECL and System Identification methods a relative
low cost and robust tool to measure dielectric properties of
lossy dielectrics can be obtained.

Finally, we also shown a comparison between a typical
invasive and non-invasive measurement of cortical bovine
bone. Ulterior studies involving this method as starting
point could contribute to a more in-depth knowledge of
bone dielectric properties for in vivo conditions.
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Appendix A. Theoretical formulas for a four layer
structure

Definitions of theoretical equations for a four layered
structure:

Pij ¼
Z 1

0
FiðkÞFjðkÞ

1� RT e�2kd2

1þ RT e�2kd2
k2dk; ðA:1Þ

where RT is defined as follows:

RT ¼
R1 � Rt2 e�2kd2

1þ R1Rt2 e�2kd2
ðA:2Þ

and

Rt2 ¼
R2 � R3e�2kd3

1þ R2R3e�2kd3
; ðA:3Þ

Ri ¼
ei � eiþ1

ei þ eiþ1
; ðA:4Þ

where di and ei are the thickness and the relative complex
permittivity of layer i. The rest of the definitions are:

F0ðkÞ ¼
V0

k2 lnða=bÞ
½J0ðbkÞ � J0ðakÞ�;

FiðkÞ ¼
V0p2

i

p2
i � k2 fbJ0ðbkÞ½aiJ1ðpibÞ þ biY1ðpibÞ�

� aJ0ðakÞ½aiJ1ðpiaÞ þ biY1ðpiaÞ�g:
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