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Abstract: Recent experiments elucidated the structure and function of the cyanobacterial 

circadian oscillator, which is driven by sunlight intensity variation and therefore by 

Earth’s rotation. It is known that cyanobacteria appeared about 3.5 billion years ago and 

that Earth’s rotational speed is continuously decreasing because of tidal friction. What is 

the effect of the continuous slowdown of Earth’s rotation on the operation of the 

cyanobacterial oscillator? To answer this question we derived the oscillator’s equation of 

motion directly from experimental data, coupled it with Earth’s rotation and computed its 

natural periods and its resonance curve. The results show that there are two resonance 

peaks of the “cyanobacterial oscillator-rotating Earth” system, indicating that 

cyanobacteria used more efficiently the solar energy during the geological period in 

which the day length varied from about 11 to 15 hours and make more efficient use of 

solar energy at the geological period which started with a day length of 21 hours and will 

end at a day length of 28 hours.  
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1. Introduction 
 
  Earth’s rotation generates a periodically fluctuating environment in which 

organisms have to survive and evolve. Several species developed molecular time-keeping 

mechanisms, called circadian oscillators or clocks, to anticipate this environmental 

fluctuation and coordinate metabolism and gene expression (Imaizumi et al., 2007).  The 

metabolism of autophototrophic cyanobacteria is greatly dependent on the alteration of 

day and night  and they are the simplest organisms that developed an internal circadian 

oscillator (Kondo and Ishiura, 1999). The cyanobacterial circadian oscillator comprises 

three proteins: KaiA, KaiB and KaiC (Nakajima et al., 2005). When these proteins are 

mixed with ATP in a test tube they generate robust and sustained oscillations, which are 

expressed as the oscillation of the total amount of phosphorylated KaiC (Nishiwaki et al. 

2007; Ito et al. 2007). These circadian oscillations stem from the ordered phosphorylation 

of KaiC at the serine 431 (S) and threonine 432 (T) sites (Rust et al., 2007). The 

cyanobacterial circadian oscillator is driven by light and dark pulses during its operation 

result in phase shifts (Rust et al., 2011).  

The Moon formed, about 4.5 billion years ago and since then, Earth’s rotational 

speed decreases with time because of tidal friction (Canup and Asphaug, 2001; Sonett     

et al., 1996). Several organisms such as corals, bivalves and cephalopods record in their 

skeletons the astronomical cycles of the Sun-Earth-Moon system and from these records 

the number of days per month and the number of months in a year can be obtained as 

functions of time (Sonett et al., 1996; Sisterna and Vucetich, 1994) . Fossil record data 

and astronomic calculations show that the length of the terrestrial day increases about 20 

ms every one thousand years (Sisterna and Vucetich, 1994).  



 Cyanobacteria appeared about 3.5 billion years ago and their circadian oscillator 

has been driven by day-night alterations the period of which has varied from about 6 to 

24 hours. Every oscillator whether it is mechanical, electrical, molecular or quantum, has 

a natural frequency, which corresponds to a natural period. If the oscillator is not simple, 

it may have more than one natural periods. In the experiments of Rust et al. (Rust et al., 

2007) the structure and function of the cyanobacterial oscillator was studied in vitro with 

ATP in excess at all times, which corresponds to oscillations under constant illumination 

conditions throughout the duration of the experiments (Rust et al., 2011). It is therefore 

possible that the information about the natural period(s) of the cyanobacterial oscillator is 

hidden in these experimental data.  Furthermore, since this oscillator is driven by a 

periodic cause (Earth’s rotation), the period of which varies with time, it would be 

interesting to compute the resonance curve of the “cyanobacterial oscillator-rotating 

Earth” system and associate it with geological time and events. 

 
2. Resonances of the cyanobacterial oscillator-rotating Earth system 
 
 

With their experiments, Rust et al. revealed the details of the molecular 

cyanobacterial oscillator (Rust et al., 2007). The basic mechanism is the ordered 

phosphorylation and dephosphorylation of KaiC at both T and S sites, which is enhanced 

by KaiA. First, the amount of KaiC phosphorylated at the T site (T-KaiC) increases and 

shortly after that the amount of KaiC phosphorylated at both T and S sites (ST-KaiC) 

increases. When the concentration of ST-KaiC becomes high, KaiC starts to 

autodephosphorylate the T site and the amount of KaiC phosphorylated only at the S site 

(S-KaiC) increases.  With the help of KaiB, S-KaiC sequesters KaiA and without it, KaiC 



dephosphorylation predominates. KaiC dephosphorylation causes S-KaiC concentration 

to decrease, KaiA is released, KaiC begins to phosphorylate again, the amount of T-KaiC 

increases and so on.  

(a) 

 

(b) 

 

Fig. 1. (Color online) Time variation of TPh-KaiC. (a) Measurements of Rust et al. (◊ symbols) 
and time variation given by equation (1) (sold line). (b) Terms of equation (1).  Term [-0.171t] 
with green, [18.7 cos(0.235t+2.77)] with blue and [4.12 sin(0.472t+1.45)] with red line.  



  This ordered phosphorylation combined with the negative feed-back loop created 

by S-KaiC, KaiB and KaiA results in the circadian oscillation of the total amount of 

phosphorylated KaiC. The measurements of Rust et al. of the total phosphorylated KaiC 

(TPh-KaiC) variation with time are shown in Fig. 1(a). 

Schmidt and Lipson developed a method to obtain the natural laws that describe 

dynamical systems directly from experimental data and without any previous knowledge 

about the physics or the structure of the system (Schmidt and Lipson, 2009). Based on 

their method they developed a software tool and used it to find the equations of motion 

for simple and complex oscillating systems. We used the method of Schmidt and Lipson 

to obtain the equation that gives the variation of TPh-KaiC as a function of time. This 

equation is: 

 

C t( )= 35.2 + 4.12 sin 0.472 t + 1.45( )− 18.7 cos 0.235 t + 2.77( )− 0.171t                     (1) 

 

where C(t) represents the time variation of TPh-KaiC. Fig. 1(a) also shows the variation 

of TPh-KaiC given by this equation, which reproduces the experimental results with a 

mean absolute error equal to 0.12. Eq. (1) comprises three terms and a constant. These 

terms are shown in Fig. 1(b). As explained later on, the term (- 0.171 t) describes the slow 

decay of the oscillator proteins. The term, 4.12 sin(0.472 t + 1.45) describes a simple 

oscillation with period equal to 13.312 hours and stems probably from the 

phosphorylation  and  dephosphorylation of KaiC at the T site. The term,                      

18.7 cos(0.235 t + 2.77) is also a simple oscillation with period equal to 26.737 hours and 

stems probably from the phosphorylation  and  dephosphorylation of KaiC at the S site. 



Since in the experiment of Rust et al. the amounts of T-KaiC and ST-KaiC rise and peak 

almost simultaneously, the phosphorylation at T and S states increases with about the 

same rate and the larger period of this term probably arises from the slow 

dephosphorylation of S-KaiC, because of the negative feed-back loop formed by S-KaiC, 

KaiB and KaiA.  The experiment (Rust et al., 2007) was performed with KaiB in excess 

and it is therefore unknown what effect the limited availability of KaiB would have on 

the period of the third term. Eq. (1) suggests that since KaiB is the key component in the 

feed-back loop, it is not entirely improbable that cyanobacteria are able to adjust their 

circadian rhythms, to some extent, by varying the concentration of KaiB.  

 For oscillating systems, the equation of motion is the equation that gives the 

second derivative with respect to time of the oscillating variable. The oscillating variable 

for the cyanobacterial circadian oscillator is the total amount of TPh-KaiC. 

The second derivative of eq. (1) corresponds to the acceleration with which the 

oscillator changes state and is: 

 

d2 C t( )
dt 2 = −a1ω1

2 cos ω1 t + ϕ1( )− a2ω2
2 sin ω2 t + ϕ2( )                                                    (2) 

 

where ω1=0.235, ω2=0.472, α1=18.7, α2=4.12, φ2=1.45 and φ1=π+2.77=5.912.  Setting: 

                           

( ) ( ) ( ) ( )2211 sinty   andcos ϕωϕω +=+= tttx                                                         (3) 

 

eq. (2) becomes: 

 



d 2(x+ y)
dt 2 =

d 2x
dt 2 +

d 2y
dt 2 = −a1ω1

2 x − a2ω2
2 y                                                                      (4) 

 

where for simplicity the parentheses that indicate the time dependence of x and y were 

omitted. Eq. (4) is the equation of motion of the cyanobacterial circadian oscillator.  

 The fact that a term originating from (-0.171 t) does not appear in the equation of 

motion, means that it does not describe any part of the oscillator. In other words it is not a 

damping factor but it rather stems from the slow decay of the oscillator proteins. This 

term and the constant 35.2 are the integration constants, which arise when eq. (4) is 

integrated twice to give the time variation of the oscillating variable.  

The circadian oscillation is not damped because it is sustained by continuous 

consumption of ATP. The linearity of the equation of motion indicates that the 

cyanobacterial oscillator comprises two simple independent oscillators, one with period 

equal to 13.312 hours and one with period equal to 26.737 hours. It is reasonable to 

assume that since cyanobacteria experienced a day length variation that ranged from 

about 6 hours to 24 hours, they developed first an oscillator with a smaller period and 

then as the day length increased they evolved this oscillator to cope with longer days. The 

equation of motion indicates that the present molecular oscillator mechanism incorporates 

the older one. 

 In another experiment, Rust et al. showed that the amount of phosphorylated 

KaiC depends on the ADP/(ATP+ADP) ratio (Rust et al., 2011). In the case of an 

ADP/(ATP+ADP) ratio equal to 75%, the final amount of phosphorylated KaiC saturates 

at about 50%, in the case of an ADP/(ATP+ADP) ratio equal to 50% it saturates at about 



62% and when only ATP is present phosphorylated KaiC saturates at about 75%. This 

experiment showed that the amplitude of the circadian oscillation depends on the ATP 

concentration which cyanobacteria synthesize using solar radiation energy. Therefore the 

energy that drives the oscillator comes from sunlight and solar light intensity plays the 

same role that mechanical forces play in mechanical oscillators.  

 Solar energy is not available during the whole length of a terrestrial day, because 

of Earth’s rotation. It is not available at night and its intensity is small in the morning 

hours, peaks at noon and becomes small again in the evening hours. Therefore the 

cyanobacterial circadian oscillator is driven by an energy source that is periodic but not 

sinusoidal. Furthermore, the period of that source is not constant but varies with 

geological time.   

ATP provides the energy that drives the cyanobacterial circadian oscillator. 

Cyanobacteria synthesize ATP using solar radiation. Solar radiation intensity is not 

constant but varies as the Earth rotates around its axis. Therefore the period of the driving 

cause of the oscillator is equal to the period of Earth’s rotation. Solar engineers developed 

very effective models to compute the daily variation of solar radiation intensity. One of 

the simpler and most useful models describes the variation of solar energy as a rectified 

sinusoidal function (Goswami et al., 2000). The Fourier series expansion of this function 

is well known. The amplitude of this periodic function is larger at places near the equator 

and smaller at places near the poles, but the period remains constant at all places. After 

that, the solar light radiation intensity is given by: 

 

L t( )= Φ 0.50sin ω t( )− 0.21cos 2ω t( )− 0.04 cos 4ω t( )( )                                             (5) 



 

where Φ is power per unit area and equals to 930 W/m2 . Φ is the solar radiation intensity 

on Earth’s surface when the Sun is found at the zenith. It is also known as air mass 1 

(AM1) solar constant. Cyanobacteria use a part of this solar energy to synthesize ATP 

and we assume that the rate of ATP synthesis is proportional to solar radiation intensity 

and call s the proportionality constant. The oscillator consumes ATP and the consumption 

rate is proportional to the rate at which the concentration of TPh-KaiC increases 

(Terauchi et al., 2007).   

The amount of ATP that contributes to the ADP/(ATP+ADP) ratio which drives 

the oscillation is the difference between the ATP synthesis and consumption rates (Rust 

et al., 2011) and is given by: 

A t( )= s L t( )− g
d x + y( )

dt
                                                                                  (6) 

 

where A(t) is the time variation of the aforementioned ATP amount, (x+y) is TPh-KaiC 

and g is the proportionality constant that relates ATP consumption to TPh-KaiC variation 

and is estimated to be 0.05 mM/24h (Terauchi et al., 2007).  

  After that, the equation of motion of the cyanobacterial oscillator driven by 

Earth’s rotation is: 

 

d 2x
dt 2 +

d2y
dt 2 +a1ω1

2 x + a2ω2
2 y = s L t( )− g

d x
dt

+
d y
dt

⎛
⎝⎜

⎞
⎠⎟

                                                   (7) 

 

in which the left hand side describes the time motion of the oscillating variable and the 

right hand side the cause that drives the oscillation.  



 Eq. (7) has the same form with the equation that describes a forced oscillation and 

taking into account the linearity of the equation, its resonance curve is given by: 

ρ 2 =
1

1 / 0.5 s( )2 ω 2 − a1ω1
2( )2 + g2ω 2⎡

⎣
⎤
⎦

+
1

1 / 0.5 s( )2 ω 2 − a2ω2
2( )2 + g2ω 2⎡

⎣
⎤
⎦

+

1

1 / 0.21s( )2 2ω( )2 − a1ω1
2( )2 + g2ω 2⎡

⎣⎢
⎤
⎦⎥

+
1

1 / 0.21s( )2 2ω( )2 − a2ω2
2( )2 + g2ω 2⎡

⎣⎢
⎤
⎦⎥

1

1 / 0.04 s( )2 4ω( )2 − a1ω1
2( )2 + g2ω 2⎡

⎣⎢
⎤
⎦⎥

+
1

1 / 0.04 s( )2 4ω( )2 − a2ω2
2( )2 + g2ω 2⎡

⎣⎢
⎤
⎦⎥
 

(8) 

 

After that, we computed the resonance curve of the cyanobacterial circadian 

oscillator, which is shown in Fig. 2.  

The quantity ρ2 is proportional to the square of the amplitude of the oscillation 

and represents the energy that the driving cause transfers to the oscillator, which becomes 

larger as the period of the cause reaches the natural periods of the oscillating system and 

peaks when it becomes equal to these periods.  

Since the cyanobacterial circadian oscillator regulates metabolism and gene 

expression, increasing oscillation amplitude means that cyanobacteria make more 

efficient use of solar energy. It is therefore reasonable to assume that, according to Fig. 2, 

cyanobacteria used more efficiently the solar energy during the geological period in 

which the day length varied from about 11 to 15 hours and make more efficient use of 



solar energy at the geological period which started with a day length of 21 hours and will 

end at a day length of 28 hours.  

 

 
Fig. 2. (Color online). Resonance curve of the cyanobacterial circadian oscillator. In the x-axis, 
the angular frequency of Earth’s rotation, ω, has been replaced with the corresponding period 
(τ=2π/ω), which is the day length in hours. 
 

 Oxygen production is a result of cyanobacteria metabolism and the amount of 

oxygen produced by the cyanobacteria species during geological time is an indication of 

the efficient use of solar energy. Therefore, one expects higher oxygen levels in Earth’s 

atmosphere at geological periods near the resonance peaks. The great oxidation event and 

the Cambrian explosion are two events that have a possible relation to increased oxygen 

production.  The great oxidation event happened about 2.3 to 2.4 billion years ago when 

the day length was about 11 hours and Cambrian explosion happened about 530 to 550 

million years ago when the day length was about 21 hours. Both events happened at 



about the onset of the two resonance peaks, when cyanobacteria were making more and 

more efficient use of solar energy. Although these two events are probably due to a 

combination of many factors, the resonances of the “cyanobacterial oscillator-rotating 

Earth” system may have had some contribution. 

 

3. Conclusion 

 

Recent experiments elucidated the structure and function of the cyanobacterial 

circadian oscillator. We now know enough about this oscillator to take the next step and 

couple it with its driving cause, Earth’s rotation. There is a good reason for this. 

Cyanobacteria appeared about 3.5 billion years ago and since then Earth’s rotational 

speed is continuously decreasing because of tidal friction. We tried to investigate the 

effect of the continuous slowdown of Earth’s rotation on the operation of the 

cyanobacterial oscillator and on oxygen production. We constructed the equation of 

motion of the cyanobacterial oscillator directly from experimental data using a well-

known method, coupled it with Earth’s rotation and computed the resonance curve of the 

“cyanobacterial oscillator-rotating Earth” system. From this resonance curve one can see 

that the great oxidation event and the Cambrian explosion occurred at the onset of the two 

resonance peaks. It is therefore possible that the resonances of “cyanobacterial oscillator-

rotating Earth” system may be related to those events.  
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