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Abstract

We are investigating the distribution of the number of peptides for given masses, and especially 

the observation that peptide density reaches a local maximum approximately every 14 Daltons. 

This wave pattern exists across species (e.g. human or yeast) and enzyme digestion techniques. To 

analyze this phenomenon we have developed a mathematical method for computing the mass 

distributions of peptides, and we present both theoretical and empirical evidence that this 14-

Dalton periodicity does not arise from species selection of peptides but from the number-theoretic 

properties of the masses of amino acid residues. We also describe other, more subtle periodic 

patterns in the distribution of peptide masses. We also show that these periodic patterns are robust 

under a variety of conditions, including the addition of amino acid modifications and selection of 

mass accuracy scale.

The method used here is also applicable to any family of sequential molecules, such as linear 

hydrocarbons, RNA, single- and double-stranded DNA.

1 Introduction

One of the most important methods for characterizing and sequencing proteins is based on 

measuring their masses using mass spectrometry. This field has enjoyed considerable 

growth in recent years due to the improved quality of the instruments (e.g. [1]) and 

algorithms [2]. In particular, peptides and proteins can be fragmented into smaller pieces 

that, when measured in a mass spectrometer, provide information about the structure of the 

original object.

One of the reasons that mass spectrometry is so successful for analyzing peptides is that 

peptides are linear; that is, they consist of a sequence of amino acids in a particular order. 

Under ideal circumstances, the fragmentation of a peptide gives rise to a series of singly 

charged ions whose masses are distributed in two series, one in the forward direction and 

one in the reverse, such that adjacent masses differ by the mass of a single amino acid. A 

plot of the relative abundances of these ions in a fragmented sample is known as a mass 

spectrum (Figure 1). Good quality mass spectra have sharp peaks corresponding to masses 
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present in the sample. Unfortunately, mass spectra usually are missing some of these peaks 

and have extra peaks.

This addition and removal of mass peaks means that there are often many possible peptides 

to match the spectrum. As a result there are many different scoring algorithms, scoring a 

peptide/spectrum pairing [3,4,5,6,7]. One such scoring strategy is to compute a significance 

score based on the number of possible pairings with a certain score or better [8,9]. These 

techniques require knowing the number of peptides within a specified mass accuracy of a 

given mass. However, the current technology requires the enumeration of all possible 

sequences in order to count them.

To identify alternative methods for counting peptide sequences, we (and others [10,11,12]) 

investigated the distribution of peptides for given masses. In this investigation we noted, as 

the others have, a periodic pattern of approximately 14 Daltons. Note that our work here and 

in [13,14] refers to ordered sequences, whereas [10,11,12] refer to unordered sequences. For 

a general mathematical discussion of unordered sequences, see [15]. In this paper we also 

describe how this periodic pattern arises mathematically from the sequential addition of 

amino acids and investigate the robustness of this pattern and other, more subtle patterns. In 

addition, we point out that our mathematical analysis is applicable to any other family of 

sequential molecules, such as DNA, RNA, and linear hydrocarbons.

Finally, we note that the 14-Dalton periodic pattern, perhaps combined with sub-Dalton 

patterns, can be used to improve probability models of peptide distribution, as demonstrated 

in [11].

2 Wave Patterns in Databases

We are investigating the distribution of the number of peptides for given masses. Similar to 

[10,11,12] we started our investigation with a histogram of the in silico digests of natural 

proteomes (yeast, human, and mouse), although we counted the number of ordered 

sequences instead of the number of unordered sequences (i.e. compositions). This led to the 

observation that peptide density reaches a local maximum approximately every 14 Daltons 

(Figure 2). This wave pattern exists across species and enzyme digestion techniques (see 

[16] for a detailed description of modern mass spectrometry techniques).

The intriguing 14-Dalton periodic pattern observed in Figure 2 leads one to ask: did 

evolution select for proteins whose peptides exhibit this pattern? The counts of peptides 

from natural sources (yeast, human, and mouse) and those without selection (all possible 

peptides, with and without a large number of possible post-translational modifications) agree 

both in periodicity and phase (Figure 3). Not only does this pattern exist when we ignore 

biological selection, but it also remains robust when we ignore the fact that most of the 

peptides in our biological samples include a lysine (due to digest) and even if we add 41 

other masses to the mix (see the Supporting Table S2 for the list of 41 post-translational 

modifications). In other words, this pattern must somehow arise from the masses of the 

amino acids themselves – the only common factor between the four scenarios.
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3 Mathematical Model

As a simple example, let us consider the special case where there are just two “amino acids” 

A and B with masses 1 and 2, respectively. In this case, the number of “peptides” of mass M 

can be partitioned into two groups: those ending in A and those ending in B. This leads to 

the following recurrence relation:

Equation 1

which is the well-known recursion relation describing Fibonacci numbers[17,18]. The initial 

conditions (C(−1) = 0, C(0) =1) are different from the standard formulation of Fibonacci 

numbers, leading to a shift of the index. Table 1 shows the different types of solutions we 

use. Each of these representations has a different purpose, which we will discuss later.

We can generalize the recurrence relation of Equation 1 for an arbitrary list of integer 

masses:

Equation 2

where d is the number of amino acids (i.e., 20) and mj is the nominal (integer) mass of the jth 

amino acid. Numerical sequences generated by recurrence relationships in the form of 

Equation 2 are known as k-generalized Fibonacci numbers [19].

Next we describe a theoretical approach to the periodicity question by determining an 

explicit mathematical formula for the number of peptides, C(M), with a specific positive 

integer mass M.

3.1 General Solution to Sequence Counting Problem

Continuing our example of the Fibonacci numbers, note that the exact, closed-form solution 

to the well-known recurrence relation includes two terms summed together: the first and 

largest in magnitude is an exponential term while the second, being a negative number 

raised to an integer power, oscillates between positive and negative. In other words, the 

Fibonacci numbers increase exponentially with an oscillating term added to a pure 

exponential term.

The pattern found in this simple case turns out to be the pattern in general: all non-trivial 

sequence counting problems have a solution which is exponential in nature with a collection 

of periodic terms added, as described in the following theorem:

Theorem 1—Let C, a function of integer mass M, count how many sequences of a finite set 

of integer masses have a combined mass of M. If the characteristic polynomial of Equation 2 

has no multiple roots then there exist real constants k, c0, …, ck, r0, …, rk, θ1, …, θk, φ1, …, 

φk such that
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Equation 3

and r0 ≥ rj > 0 for j = 1, …, k.

Equation 3 follows from standard approaches to solving the difference equation, Equation 

2[20,21,22], and using r − θ notation and Euler’s equation to convert the results into an 

exponential times a complex number. We note that, by Descartes’ Rule of Signs, we can 

determine that there is exactly one positive root (which corresponds to the first, purely 

exponential term). Then, by grouping complex conjugates, we are left with exponentials 

times the sum on the right. Proving that the exponential term dominates the rest of the terms 

(i.e. that r0 ≥ rj > 0) requires more mathematical machinery[23,24] but generally follows 

from showing that the sum is negative infinitely often and, if the left term does not dominate 

the right term, the sum of the two must be negative infinitely often, which is a contradiction. 

See [14] or [25] for a rigorous mathematical proof and an extension of this theorem.

Application of Theorem 1 is described below. It should be noted that all of the chemically 

motivated cases described in this paper have solutions of this form (i.e. their characteristic 

polynomials have no multiple roots).

3.2 Specific Solution for Peptide Masses

By applying Theorem 1 and solving for the constants c0, …, ck, r0, …, rk, θ1, …, θk, and φ1, 

…, φk we obtain the results shown in Figure 4. The largest term, corresponding to the only 

positive root of the characteristic polynomial, has the r−θ coordinates in the complex plane 

of (1.0285, 0°), which correspond to a doubling time of approximately 24.7 Daltons.

The next largest terms, represented by the two red dots in Figure 4 (a), have r−θ coordinates 

in the complex plane of (1.0255, ±25.2157°), which correspond to a period of 14.2768 Da 

(360° / 25.2157°). The largest terms after that, (1.0214, ±177.9690°) have a period of 2.0228 

Da. In other words, the third period shows an even/odd relationship that reflects the fact that 

many of the amino acids have an odd mass number.

Therefore, we can explain the 14-Dalton periodicity using this simple mathematical model.

Another consequence of this mathematical model is that it shows that there is more than one 

periodicity. The largest magnitude terms in Equation 3 dominate the overall solution but 

many terms can play a role in its finer structure. Figure 5 shows the relative contribution of 

each term. Of particular interest is the fact that the contribution of the first three terms 

dominates the solution beyond 750 Daltons. Figure 6 shows how many terms are needed for 

adequate representation at various masses.

Figure 7 demonstrates this concept more explicitly. As the mass M gets larger, the 

approximation based on the first three terms improves (on a relative scale). The top panel of 

Figure 7 also illustrates the second most common periodicity (2.02 Da) is strongly 

represented within the range of 150–200 Daltons.
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We also considered other types of theoretical databases, including four different families of 

post-translational modifications (See Supporting Information).

4 Effect of Mass Accuracy on Period

Other researchers have found that certain units of mass are special in the sense that the 

amino acids are close to integer values of those units and, indeed, 1 Da is remarkably close 

to such a unit of mass (1.000416 Da) [26]. In principle the choice of units may play a role in 

forming the periodic pattern. After all, Figure 3 was obtained by using mass numbers, the 

integer form of the true masses. While the nominal (integer) mass has physical meaning, 

specifically the number of neutrons and protons in the ion, mass spectrometry measures 

mass, not mass number. Could our choice of units generate the 14-Dalton pattern?

4.1 Accuracy Effect on 14-Dalton Pattern

Using the accurate mass values of the 20 amino acids, we created histograms of the number 

of sequences for bin sizes ranging from 0.1 Da to 3 Da; for bin size b, we divided a mass by 

b and rounded down to determine in which bin a mass fell. We also used a mass that was 

unsynchronized to the standard mass units: 2.718281 Da (an approximation of the irrational 

number e). We performed an analysis similar to that of the previous experiment.

Figure 8 shows what happens when we round off using different accuracy levels. While the 

results for some scales appear more noisy (notably 0.1 Da), the 14-Da period appears in all 

cases. So, indeed, scale affects the appearance of the histograms but it does not change the 

existence of the 14-Da period.

4.2 Accuracy

The previous section describes a qualitative argument that the 14-Dalton period is robust 

under different accuracy levels. However, we would like to quantify that and also discuss 

the other periodicities implied by Theorem 1. One difficulty for quantifying periodicities 

across scales, though, is that the theorem assumes integer masses for the amino acids. In 

fact, this is a fundamental limitation of this technique; there are an infinite number of 

solutions to the analogue of the characteristic polynomial if we replace the masses with 

irrational numbers. However, it is possible to numerically solve the related polynomials 

where we multiply the masses by some common multiple. What happens to the periodicity 

as we increase the accuracy of our masses?

4.3 Periodicity Analysis

Using Matlab 6.1 (MathWorks Inc., Natick, MA, 2000) we computed the roots of the 

characteristic polynomial and converted them to the form of Theorem 1. Next we verified 

that that there are no multiple roots, allowing us to apply Theorem 1. We also computed the 

periodicity for each term , and the respective λj’s to verify that their values 

were comparable when the term’s magnitude was greater than 1.

We performed the above periodicity analysis for accuracies ranging from 0.05 to 1 Da. For a 

given accuracy a, we divided each amino acid mass by a and rounded to the nearest integer. 
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This led to characteristic polynomials of much higher degree. For example, an accuracy of 

0.1 Da led to a polynomial of degree 1861 since the mass of the heaviest amino acid, 

tryptophan, has a residue mass of 186.08.

This method of analyzing the effects of accuracy requires a change of variable from which 

we had to convert after finding the roots of the characteristic polynomial. In order to 

compare results across different accuracies we raised the magnitudes rj to the power of 1/a 

and multiplied the calculated periodicity by a, since periodicity is inversely related to 

frequency.

To determine the relative importance of each term, we computed the factor  for masses 

ranging from 0 to 2000 Da. This represents the amplitude of the periodic terms and the 

absolute size of the non-periodic term in Equation 3.

Figure 9 shows that the higher periodicities are remarkably consistent across different 

accuracy levels, both in period and magnitude; we find that the 14-Da period is 14.2795 ± 

0.0034 Da if we treat the four scales as four separate random trials. Also, what appears to be 

noise in Figure 8 contains useful information – we now know that there are a variety of 

periodicities that exist regardless of scale (assuming that it is less than 1), most notably 

106.6 Da, 56.2 Da, 32.2 Da, 18.8 Da, and 14.28 Da. Only the last is easily observable in the 

original data. However, the periodic patterns present at finer scales, such as periods around 

2, 1, and 0.5 Daltons are common and strong for higher accuracy data.

5 Why 14.28 Daltons?

While the solutions to the characteristic polynomial are concrete numbers with which we 

can describe our results, it is not very satisfying to explain that the 14.28-Dalton periodicity 

arises because it is the zero of a polynomial. Is there some chemical significance to 14.28? It 

is tempting to simply pay attention to the integer part and recognize that the nominal mass of 

CH2 is 14. After all, CH2 is a chemical component that is seen quite often in amino acid 

structure and, indeed, in organic molecules in general. In fact, many of the amino acids 

differ by exactly the mass of CH2.

However, the fractional part, 0.28, is troubling. Table 2 shows that this is not a matter of 

round-off error; multiples of 14.28 are remarkably close to several of the masses, as 

compared to other candidates (14 and 14.02). In fact 70% of the amino acids fall within 10% 

of a multiple of 14.28, whereas only 30% of the amino acids are close to multiples of either 

14.01 or 14. Note that we did not take the phase into account here; the phase on the 14.28-

Dalton period is small, allowing us to ignore it for this analysis.

We should also point out that a period around 14 Daltons is reasonable since the amino acid 

residues can all be constructed (with rearrangement) from five groupings of elements, a kind 

of elemental basis: C, CH2, NH, O, and S, with nominal masses of 12, 14, 15, 16, and 32, 

respectively. Since S is only in two of the twenty amino acids, it is reasonable to suppose 

that the other four constituent components would have an effect in a periodic pattern arising 

from objects made up of this basis.
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6 Conclusions

We have explained the observed 14-Dalton periodicity in the histogram of masses of natural 

peptides. We proved that a better approximation of this period is 14.28 Daltons and that it 

arises from mathematical properties of the amino acids masses.

This phenomenon occurs even if we vary species, cleavage enzyme (not shown), scale, or 

include of post-translational modifications. It also exists if we include every possible amino 

acid sequence, rather than just the ones found in nature. In other words, the periodic pattern 

is not a by-product of natural selection.

We can calculate an arbitrary number of periodicities but the larger periodicities remain 

fairly robust regardless of the scale of our approximation. While a periodicity of exactly 14 

Daltons would be very satisfying from a chemical point of view (when working with integer 

masses), the actual periodicity is closer to 14.28 Daltons. We suggest an explanation of this 

result by noting that many more amino acid masses are closer to being integer multiples of 

14.28 than to 14.01 (the mass of CH2) or 14 (the nominal mass of CH2). However, the fact 

that this number is probably irrational (i.e. not a ratio of two integers) means that local 

maxima in the histograms will shift in a quasi-periodic pattern. This is consistent with the 

observation by Yu et al. [12] that the distance between adjacent peaks varied from 14 to 16 

Daltons.

In addition to information about the periodic pattern, our analysis also provides useful 

information about the size of a database: we only need the first term to estimate how large a 

database should be in order to list all sequences up to a particular mass. Another way to look 

at this is to consider the largest mass Mmax that will fit into a database of a particular size. 

Note that Mmax is similar for different conditions, such as a large number of modifications 

(see Supporting Information, Table S-3). The exponential nature of these problems tells us 

that, no matter how much storage space we have, a database storing all potential sequences 

will not contain masses much beyond 600 Daltons. It also tells us that most of the sequences 

will have masses within 26 Da of the cut-off.

The methods described in this paper can be used at various scales and allow for considering 

masses at sub-Dalton resolution as long as all masses under consideration are integer 

multiples of the same common unit.

Knowing how many peptide sequences exist at particular masses may be useful for 

estimating the probability that a particular novel sequence comes from a natural source[27]. 

Furthermore, all of these techniques are applicable to other settings such as the addition of 

more masses (e.g. post-translational modifications), RNA, or DNA fragment masses, or 

even linear hydrocarbons.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Sample mass spectrum of a peptide fragment
Each line in the spectrum represents the mass-to-charge ratio of a peptide fragment. If we 

assume that each fragment is singly charged, then each line in the spectrum represents the 

mass of a fragment. One of the main goals of mass spectrometry in proteomics is to infer the 

sequence of peptides based on a mass spectrum.
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Figure 2. Wave pattern found in peptide databases
This pattern and periodicity exists regardless of species (e.g. yeast, human, or mouse), digest 

(e.g. Lys-C or Trypsin), and number of missed cleavages (MC), even though the absolute 

numbers change. This data was generated from in silico digests.
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Figure 3. Wave pattern is not caused by natural selection or by specific selection of amino acids
The 14-Dalton wave pattern exists, both in relative magnitude and phase, when we include 

all theoretically possible peptides. The values represent number of peptides found per mass 

number (nominal mass). All + PTMs is a histogram including all possible peptides plus the 

inclusion of all 41 PTMs in Table S2. Note that the y-axis uses a log-scale, allowing us to 

compare the different accuracy levels of these objects.
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Figure 4. Roots (top) and constants (bottom) of the characteristic polynomial for integer masses 
of amino acids
The two blue dots correspond to the real roots, one of which is the dominating term and the 

other a negative root (with zero constant). The red dots correspond to the second largest 

terms, which account for most of the periodicity observed in Figure 2 and Figure 3.
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Figure 5. Relative contribution of each term
The relative contribution of each term is computed by looking at the magnitude of the term, 

ignoring the phase in the complex plane. The dominant blue curve shows the relative 

contribution of the term corresponding to the positive root of the characteristic polynomial. 

The relative magnitudes of all 186 terms are shown but most of them are insignificant, 

especially beyond 500 Daltons.
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Figure 6. Required number of terms to achieve proportion of the total number of sequences
The percentage calculation is the same as measured in Figure 5. Note the log scale in the y-

axis.
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Figure 7. Effectiveness of first three terms in approximating number of amino acid sequences
Results are plotted in three different mass ranges: (top) 150–200 Daltons, (middle) 450–500 

Daltons, and (bottom) 950–1000 Daltons. Note that, while the x-axis ranges are similar, the 

y-axis ranges are vastly different. Even though the y-axis ranges differ, we did not use a log 

scale, as we have on previous figures. This illustrates that the periodic patterns increase in 

absolute size (the wave increases as we look from left to right in each plot above). On the 

other hand, the relative size of the wave decreases (see Figure 3).
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Figure 8. Wave pattern exists regardless of bin size
Each peptide mass was divided by the bin size (0.1 to 3) and rounded down. We used 

2.718281 to illustrate the effect of selecting a scale unrelated to amino acids. The mass range 

was selected to be illustrative; this pattern is observable up to at least 1500 Daltons. Notice 

that the y-axis uses a log scale, allowing us to more easily see the periodic pattern.
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Figure 9. Consistency of Periodicities by Scale
Each amino acid mass was divided by the scale and rounded to the nearest integer. The 

periods θj and factors  were then calculated as described in the text. We used the size of 

the factor at 100 Daltons, i.e., , to compare all of the different accuracy levels and to 

visualize the relative amplitudes. We left out all the points corresponding to magnitudes rj 

less than one, since they do not influence the final count significantly.
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Table 1

Example of solutions to an Ordered Masses Problem – Masses of 1 and 2 (Fibonacci numbers)

Solution Mode Example Solution

Sequence 1, 1, 2, 3, 5, 8, ….

Recursion Relation C(M) = C(M − 1) + C(M − 2)

Exact Closed-Form Solution

Approximate Formula C(M) = (0.723607)(1.618034)M

Sequence Analysis The dominant term increases exponentially (doubling time of 1.44042), while the other term has period 2 and 
decays exponentially (half-life of 1.44042).
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