
R

B
a

H
T
a

b

c

a

A
R
R
A

K
B
M
Q
W

1

o
(
n
(
t
B
o
a
p
p

U
T

(
t

P

1

0
h

BioSystems 111 (2013) 11– 17

Contents lists available at SciVerse ScienceDirect

BioSystems

journa l h o me  pa g e: www.elsev ier .com/ locate /b iosystems

esearch  Article

iomolecular  computation  with  molecular  beacons  for  quantitative
nalysis  of  target  nucleic  acids

ee-Woong  Lima,c,1,3,  Seung  Hwan  Leea,b,3,  Kyung-Ae  Yanga,2,  Suk-In  Yooa,c,
ai  Hyun  Parka,b,  Byoung-Tak  Zhanga,c,∗

Center for Biointelligence Technology, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea
School of Chemical and Biological Engineering, Bio-MAX Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-744, Republic of Korea
School of Computer Science and Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 151-742, Republic of Korea

 r  t  i  c  l  e  i  n  f  o

rticle history:
eceived 24 June 2011
eceived in revised form 23 June 2012
ccepted 11 September 2012

eywords:
iomolecular computation

a  b  s  t  r  a  c  t

Molecular  beacons  are  efficient  and  useful  tools  for quantitative  detection  of specific  target  nucleic acids.
Thanks  to  their  simple  protocol,  molecular  beacons  have  great  potential  as substrates  for  biomolecular
computing.  Here  we present  a molecular  beacon-based  biomolecular  computing  method  for  quantita-
tive  detection  and  analysis  of target  nucleic  acids.  Whereas  the  conventional  quantitative  assays  using
fluorescent  dyes  have  been  designed  for single  target  detection  or multiplexed  detection,  the  proposed
method  enables  us  not  only  to  detect  multiple  targets  but  also  to  compute  their quantitative  information
olecular beacon
uantitative analysis
eighted-sum

by  weighted-sum  of  the  targets.  The  detection  and  computation  are  performed  on a molecular  level  simul-
taneously,  and  the  outputs  are  detected  as  fluorescence  signals.  Experimental  results  show  the  feasibility
and  effectiveness  of  our  weighted  detection  and  linear  combination  method  using molecular  beacons.
Our  method  can  serve  as  a primitive  operation  of molecular  pattern  analysis,  and  we  demonstrate  suc-
cessful binary  classifications  of  molecular  patterns  made  of synthetic  oligonucleotide  DNA  molecules.
. Introduction

Many studies during the last decades have shown great potential
f biomolecular computing not only as a novel computing paradigm
Banzhaf et al., 1996; Seeman et al., 1998; Henkel et al., 2007) or as a
ew technique for tackling computationally intractable problems
Chen and Yang, 2010; Zhang and Liu, 2011) but also as a useful
ool for biological applications (Mills, 2002; Rinaudo et al., 2007;
enenson, 2009). Direct computation on biochemical information
n a molecular level provides us with an interface to manipulate

nd analyze biological systems for therapeutic or diagnostic pur-
oses more effectively. To this end, various approaches have been
roposed including Boolean logical circuits (Stojanovic et al., 2002;
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Macdonald et al., 2006; Seelig et al., 2006; Zhang et al., 2007),
arithmetic operations (Oliver, 1997; Mills et al., 1999, 2001; Lim
et al., 2010), molecular learning methods (Lim et al., 2003; Chen
et al., 2005; Zhang and Jang, 2005; Zhang, 2008), DNA nanodevices
(Simmel and Dittmer, 2005; Reif and LaBean, 2007; Ramlan and
Zauner, 2011) and output detection devices (Henkel et al., 2005;
Lee et al., 2008a). However, many of those works are DNA versions
of Boolean logic where all information is encoded in binary levels
and more sophisticated analog primitive operations are required to
fully utilize the potential of direct computation in molecular level
because primary target data are originally analog. Fluorescence-
based quantitative assay (Kricka, 2002; Waggoner, 2006) is not
only one of the basic wet-lab techniques in biology but also an
excellent and versatile candidate for a biomolecular computing
component. With an extensive range of applications, various mate-
rials and substrates have been developed (Mirkin et al., 1996;
Storhoff et al., 2004; Jamieson et al., 2007) and lots of variations
have been proposed coupled with enzymatic amplification meth-
ods (Heid et al., 1996; Tasara et al., 2003; Tani et al., 2007). However,
those conventional methods were limited to single target detection
or multiplexed detection, where each fluorescence signal reflects

only a single target quantity.

Here, we propose a molecular beacon-based biomolecular
computing method for quantitative detection and analysis of tar-
get nucleic acids. Molecular beacons are very efficient and useful
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http://www.sciencedirect.com/science/journal/03032647
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Table 1
Target and molecular beacon sequences.

Name Sequencea

X1 ggtcaggctgCCTGGAAGGAGGCGAGAGTGTtcttgcagaa
X2 ccacatcgccTGCTTCACCTGCCACCAGTGTgcgcagcagc
X3 gcagacctcgCCTGTGGCAGATGCACCGAATattcttacaa
X4 ttggtatagaTGAAGAGCAAGGCCCTCAGGTatataagtgt
B1/Bc

1 Cy5/Cy3-cgcgaACACTCTCGCCTCCTTCCAGGtcgcg-BHQ2
B2/Bc

2 Cy5/Cy3-cgcgaACACTGGTGGCAGGTGAAGCAtcgcg-BHQ2
B3/Bc

3 Cy5/Cy3-cgcgaATTCGGTGCATCTGCCACAGGtcgcg-BHQ2
B4/Bc

4 Cy5/Cy3-cgcgaACCTGAGGGCCTTGCTCTTCAtcgcg-BHQ2
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Uppercase domains in Xi denote beacon-binding parts. Uppercase and lowercase
omains in Bi and Bc

i
denote loop and stem regions, respectively. All the sequences

re in the 5′ to 3′ direction.

aterials for detecting and quantifying specific target nucleic acids
Tyagi and Kramer, 1996; Vet et al., 1999; Kim et al., 2007), and

 theoretical DNA computing model has been proposed based on
his as well (Xiaohui et al., 2009). Especially, they emit fluorescence
nly upon hybridization with target molecules, so assays using
olecular beacons do not require a separation step of unbound

eacons. Unlike the conventional assays, our method enables us
o simultaneously detect and analyze multiple targets in vitro,
here each target species is assigned a respective weight and their

inear combination is computed. The computation is performed via
ompetitive hybridization reactions between target nucleic acid
olecules and molecular beacon mixtures, and then the outputs

re detected as fluorescence signals. Our method can also be used
s a primitive operation of a molecular pattern classifier. A series
f experimental results are demonstrated, including weighted
etection of a single target, a linear combination of two targets and
inary classifications of molecular patterns made of four synthetic
ligonucleotide DNAs. This paper is an extended written version
f the oral presentation given at the 14th International Meeting on
NA Computing (Lee et al., 2008b).

. Experimental details

.1. Target and molecular beacon preparation

Four oligonucleotide DNA sequences, Xi (i = 1, 2, 3, 4), as tar-
ets and four pairs of molecular beacons, Bi and Bc

i
(i = 1, 2, 3,

), were designed from the gene transcripts, fumarylacetoacetate
FAH), zyxin (ZYX), c-myb (MYB) and proteasome subunit alpha
ype 6 (PSMA6), respectively (Table 1). The two beacons, Bi and
c
i
, have the same sequences and differ only by the attached dyes.

n designing, thermodynamic properties were considered to avoid
ross-homology between Xi’s and crosstalk between Xi and Bj (Bj

c),
here i /= j. The melting temperatures of target–beacon duplexes
ere also designed to be similar to each other. DINAMelt server

Markham and Zuker, 2005) was used for predicting and design-
ng beacon structures. Target sequences were custom-made by
ioneer (Daejeon, Korea). Molecular beacons were custom-made
y Integrated DNA Technologies, Inc. (Coralville, IA, USA), where
y5 and Cy3 were used to label Bi and Bc

i
, respectively, and BHQ2

as used as a quencher. Each of 12 sequences was  brought to
 stock concentration at 100 �M in distilled water and stored at
20 ◦C.

.2. Hybridization and fluorescence signal detection

The hybridization reactions were performed in 50 �l reac-

ion buffer containing 3.5 mM MgCl2, 50 mM KCl and 10 mM
ris–HCl (pH 8.0). Target and beacon concentrations were varied
ccording to experimental settings. A reaction buffer contain-
ng targets and beacons was incubated at 95 ◦C for 3 min  and
s 111 (2013) 11– 17

the temperature was  steadily lowered to 10 ◦C by 0.5 ◦C/min
using a thermal cycler (iCycler, Bio-Rad, Hercules, CA, USA). After
the hybridization, fluorescence signal intensities were measured
using a computer-controlled fluorescence plate reader (GENios
Pro, Tecan, Mannedorf, Switzerland) at the wavelength of 590 nm
and 670 nm for Cy3 and Cy5, respectively. The two  intensi-
ties were adjusted to the same level by detecting fluorescence
signals from equal amount of Cy3-modified (and Cy5) linear
probes.

3. Results and discussion

3.1. Weighted detection and analysis of target nucleic acids

Our weighted detection and analysis method enables us to
detect multiple targets and compute a linear combination of their
quantities simultaneously. The detection and computation are per-
formed via a set of competitive hybridization reactions between
target molecules and molecular beacon mixtures in a test tube,
and the results are detected as fluorescence signals. Quantitative
assays are very basic and essential techniques in biology. They are
used for producing quantitative information on target biomarkers
to be used in a subsequent analysis procedure. For example, distin-
guishing a diseased tissue from healthy ones is often performed
via a mathematical function of target biomarker concentrations
such as RNAs or microRNAs (Golub et al., 1999; Lu et al., 2005).
In those works, fluorescence-based quantitative assays allow us to
measure the expression levels of targets such as genomic DNAs,
RNAs or microRNAs and produce raw input data for the mathemat-
ical function. Conventional assays are either single target detection
or multiplexed detection (Fig. 1a). Even in the multiplexed detec-
tion, each target is detected independently as a fluorescence signal
at a specific wavelength whose intensity is proportional to the
target quantity. In this scheme, however, detection and analysis
are separately performed in different phases, in vitro and in silico,
respectively.

To describe the method in more detail, let us consider a set of
n nucleic acid targets, Xi (i = 1, . . .,  n). Unlike conventional assays,
our method uses a pair of molecular beacons (Tyagi and Kramer,
1996; Vet et al., 1999), Bi and Bc

i
, for each Xi. Bi and Bc

i
have the

same nucleotide sequences and differ only by the fluorescent dyes
at 5′ ends, where Bi’s are labeled with Cy5 and Bc

i
’s are labeled with

Cy3 for all i. In a test tube, Bi and Bc
i

competitively bind to a com-
mon  target, Xi, to form hetero-duplexes, Hi and Hc

i
, respectively, as

follows:

Xi + Bi → Hi

Xi + Bc
i

→ Hc
i

i = 1, . . . , n. (1)

Assuming excess amounts Bi and Bc
i
, complete reaction of Xi

and thermodynamic symmetry of the two  competitive reactions
because of the same nucleotide sequences, then the resulting
amounts of hetero-duplexes, hi and hc

i
, after the reaction are totally

determined by the initial configuration. Specifically, the initial
amount of Xi and the mixing ratio of Bi and Bc

i
are:

hi = xibi

bi + bc
i

, hc
i = xib

c
i

bi + bc
i

, (2)
where bi, bc
i

and xi denote the initial amount of the reactants, Bi, Bc
i

and Xi, respectively. When all these hybridization reactions occur
in a test tube, we can formulate two linear combinations of targets,
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Fig. 1. Quantitative detection and analysis. (a) Conventional quantitative detection assay. Conventional assays are either single target detection or multiplexed detection,
where each fluorescence signal represents corresponding single target only. Detected fluorescence intensities are given to a mathematical function as inputs and analyzed to
produce  index information that can be used as scores for the final decision-making. In this procedure, the detection step and the analysis step are separated. (b) Our quantitative
detection and analysis method. Using biomolecular computation, the analysis step can be integrated into the detection step, where both are performed simultaneously on a
molecular level to produce index information directly. (c) Weighted detection using molecular beacons. For each target, Xi , a pair of molecular beacons, Bi and Bc

i
, are used as

probes, where Bi ’s (Bc) are labeled with the same fluorophore for all i = 1, . . .,  n. Bi and Bc
i

have the same nucleotide sequences but differ by the attached fluorophore so that
t result
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hey  competitively bind to Xi to form hetero-duplexes, Hi and Hc

i
, respectively. The 

he  mixing ratios of Bi and Bc
i
. When these competitive reactions occur in a test tube

(x; w)  and sc(x; w),  where x = (x1, x2, . . .,  xn) and w = (w1, w2, . . .,
n), from the reactant–product quantitative relations:

s(x; w) ≡
n∑

i=1

hi =
n∑

i=1

xiwi

sc(x; w) ≡
n∑

i=1

hc
i =

n∑
i=1

xi(1 − wi),

(3)

here

i = bi

bi + bc
i

. (4)

In this way, we can assign an arbitrary weight, wi ∈ [0,1], to each
arget and compute their linear combinations, s(x; w) and sc(x; w),
nd then detect their results as fluorescence signals of Cy5 and Cy3,
espectively. Note that s(x; w)  and sc(x; w) are complementary
o each other in the sense that their sum always equals the sum
f xi.

The competitive hybridization is a thermodynamically well-
stablished technique and widely used in two-dye microarray
ystems (Lipshutz et al., 1999). Previously, we have also used com-
etitive hybridization reactions to implement a molecular pattern
lassifier (Lim et al., 2010). However, it required affinity bead sepa-
ation to remove unbound probes before the final output detection,
hich was the main source of error and brought about a signif-

cant increase of overall computation time (Khodor and Gifford,
997). Using molecular beacons helps us to overcome these draw-
acks. Molecular beacons do not fluoresce in the absence of targets

y keeping the fluorophore and quencher in close proximity; but,
hen hybridized with target strands, they undergo a conforma-

ional change to become fluorescent. Therefore, using molecular
eacons does not require an additional step to remove unbound
robes before signal detection.
ing amounts of Hi and Hc
i

after the reaction depend on the initial quantity of Xi and
ll i, the detected fluorescence signals form linear combinations of target quantities.

3.2. Experimental results: weighted detection of single target

As mentioned earlier, our weighted detection scheme assumes
thermodynamic symmetry of two  competitive hybridization reac-
tions between targets and differentially labeled molecular beacons.
As a proof-of-principle experiment, we performed a series of
hybridization reactions using single targets and a pair of corre-
sponding beacons under various target levels and mixing ratios of
the beacons to validate our assumption. A target DNA, X4, and a pair
of beacons, B4 and Bc

4, in Table 1 were used in the experiment. Target
levels, x, were 2, 5 and 8 pmol per reaction. The total amount of B4
and Bc

4 was set to be 50 pmol constantly; but their mixing ratio was
varied to be (1:9), (3:7), (5:5), (7:3) and (9:1), i.e. w = 0.1, 0.3, 0.5,
0.7 and 0.9. We  repeated the experiment three times (see Section
2 for experimental details), and Fig. 2 shows the average relative
fluorescence unit (RFU) and standard errors. As can be seen in the
figure, for a constant amount of target, the RFU showed symmetric
and linear increase with the ratio of the corresponding beacon. And
the RFU increased linearly with the target level as well.

3.3. Experimental results: linear combination of two targets

We  also performed linear combinations of two  targets under
various weight settings. Two  target DNAs, X2 and X3, and two pairs
of beacons, B2/Bc

2 and B3/Bc
3, in Table 1 were used in the experi-

ment. Target levels, x2 and x3, were set to be 5 pmol equally and
constantly. For each target, 50 pmol of a beacon pair was  used,
but their mixing ratio was varied to be (2:8), (4:6), (6:4) and (8:2),
i.e. wi = 0.2, 0.4, 0.6 and 0.8. Consequently, a total of 16 combina-
tions of hybridization reactions were performed. We repeated the

experiment three times (see Section 2 for experimental details),
and Fig. 3 shows the average computation results and standard
errors. Fluorescence signals from Cy5 representing the results of
x2w2 + x3w3 increased linearly with both w2 and w3 as shown in
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Fig. 2. Weighted detection of single targets. Resulting relative fluorescence unit
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Table 2
Target patterns in molecular pattern classification.a

Group 1 Group 2

Number x1 x2 x3 x4 Number x1 x2 x3 x4

1 7 3 7 1 6 3 5 7 5
2  5 3 5 1 7 1 5 7 3
3  5 3 5 7 8 1 3 7 1
4 5 1 3 7  9 1 7 5 5
5 3  1 1 7 10 1 5 5 3

a

F
v
t
l
b
0

eacon mixture. The black solid symbols and the white symbols can be viewed as
he  computation results of xw and x(1 − w), respectively. The correlation coefficients
ere 0.998, 0.998, 0.999, 0.997, 0.997 and 0.994 in the order of the legend.

ig. 3a. Fluorescence signals from Cy3 representing the results of
2(1 − w2) + x3(1 − w3) were also measured simultaneously from
he same test tubes; they decreased linearly with both w2 and w3
s expected (Fig. 3b), i.e. increased with both (1 − w2) and (1 − w3).
hese symmetric results confirm the validity of the two-target lin-
ar combination.

.4. Experimental results: application to molecular pattern
lassification

Many biological problems involve pattern classification tasks,
.e. assigning a class label to a given input pattern which is typically
oisy. The quantitative information on target biomarkers naturally
epresents a real-valued vector x = (x1, x2, . . .,  xn) as a target pat-
ern, each xi of which is the molecular quantity of a biomarker Xi. As

omputing a linear combination of inputs plays a key role in many
attern classifiers, our weighted detection and analysis method can
e used for biomolecular pattern classification. However, whereas
he weights in conventional classifiers may  be either positive or
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ig. 3. Linear combinations of two targets. Two targets were weighted and summed, wher
aried  to be 0.2, 0.4, 0.6 and 0.8 for each target. A total of 16 combinations of computatio
he  computation results of x2w2 + x3w3 increases linearly with both w2 and w3. (b) RFU f
inearly  with both w2 and w3. Higher ratios of Cy5 beacons mean lower ratios of Cy3 bea
eacons. These two results were measured simultaneously from the same test tubes. The
.997  and 0.994 in (b) in the order of the legend.
Each row denotes the composition of molecular patterns used in the classifica-
tion. Each column, xi , denotes the amount (pmol) of the corresponding target, Xi , in
the patterns.

negative, it is not tractable to represent negative weights explic-
itly by molecular quantities or ratios. Instead, we  have developed a
DNA-based molecular pattern classifier in our previous work (Lim
et al., 2010), where the weights are represented as the mixing ratios
of differentially labeled linear probes that is calculated from the
original weights (see appendix for brief mathematical formulation).
It is also possible to build an equivalent classifier by using molecu-
lar beacons and the two  complementary linear combinations, s(x;
w) and sc(x; w) to obtain classification scores in the same way.

As a final application example, we  built a binary linear classi-
fier using our method and performed a classification of synthetic
molecular patterns. We  prepared two groups of molecular patterns
made of four oligonucleotide DNAs, Xi (i = 1, 2, 3, 4), in Table 1,
as a model system. Target patterns were prepared via the same
procedure as in the previous work (Lim et al., 2010): An arbitrary
hyperplane in a four-dimensional space was determined as a deci-
sion boundary between two  groups with a normal vector w0 = (0.9,
0.3, −0.6, −0.3); five points were selected from each side of the
hyperplane as representative patterns in close proximity to the
hyperplane; then Xi’s were mixed according to the coordinates as
shown in Table 2. In the model system, we  set the bias to be zero for
convenience without loss of generality. This is reasonable because
the bias term does not affect the general computation scheme.

We performed the classification task under two  different sett-
ings: correct weights as a main task and incorrect weights as a
control experiment. This model system is motivated by diagnostic

situations under which multiple biomarkers are considered (Golub
et al., 1999; Lu et al., 2005). Although even one species of biomarker
can be an informative feature for diagnosis in some cases, it is essen-
tial to incorporate multiple biomarkers for more accurate diagnosis.
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rom Cy3 representing the computation results of x2(1 − w2) + x3(1 − w3) decreased
cons. The RFU in both (a) and (b) linearly increases with the ratio of corresponding

 correlation coefficients were 0.989, 0.995, 0.998 and 0.995 in (a) and 0.998, 0.998,
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Fig. 4. Molecular pattern classification. (a) Plot of s(x; w) vs. sc(x; w) showing the classification results. Two  groups of patterns were successfully classified without overlap,
where the diagonal solid line denotes a decision boundary between Groups 1 and 2. (b) Correlation between measured RFU in (a) and predicted computation results. As s(x;

w)  and sc(x; w) are represented as the molecular quantities of target–beacon hetero-duplexes, the predicted computation results were obtained by calculating
∑4

i=1
xiwi and∑4

i=1
xi(1 − wi) numerically. High correlation between predicted results and measured RFU supports the accuracy of the linear combinations as well as the soundness of the

classification results. (c) Plot of s(x; w)  vs. sc(x; w) showing the classification results of a control experiment using incorrect weights. Two groups of patterns overlap across the
decision boundary. This result demonstrates the importance of weights in pattern classifications. (d) Correlation between measured RFU and predicted computation results
in  the control experiment. Although the pattern classification was not successful in (c) as intended, the linear combinations are still accurate and show high correlation with
the  predicted results.
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urthermore, although many DNA-based logical analysis models
ave been developed (Macdonald et al., 2006; Yin et al., 2008), the
inary quantitative information is often not sufficient because the
elative importance of markers may  be different from each other.

eights in a classifier represent such a relative importance of each
arget, i.e. marker, and thus appropriate weights are crucial infor-

ation for correct classification.
First, we determined w = (0.95, 0.65, 0.2, 0.35) for a molecu-

ar pattern classifier from the above original normal vector, w0,
sing (A.3). Four pairs of beacons, Bi/Bc

i
(i = 1, 2, 3, 4), in Table 1

ere mixed according to wi for weight assignment. The weighted
etection and analysis method was performed for each pattern
nd the results of s(x; w) and sc(x; w) were measured as fluo-
escence signals (see Section 2 for experimental details). Fig. 4a
hows the classification result, where the two  groups of patterns
ere classified successfully without overlap. The diagonal line is

he decision boundary between the two groups because decision-
aking is done by comparing the two scores, s(x; w) and sc(x;
). We  repeated the classification three times and still the com-

utation results showed only small standard errors. As shown in
ig. 4b, the measured RFU also showed high correlation with the
redicted molecular quantities of the corresponding target–beacon
etero-duplexes, which was obtained by calculating

∑4
i=1xiwi and
∑4
i=1xi(1 − wi) numerically. The Pearson correlation coefficient

was 0.988, which is higher than 0.96 in our previous work (Lim
et al., 2010). This high correlation supports the soundness of the
classification results as well as the computation accuracy of our
method.

Then, we performed the second classification task using the
same patterns but wrong weights as a control experiment. In this
experiment, we  ignored the original w0 and newly set w0 = (1, 1,
−1, −1). And w for a molecular pattern classifier was  determined
to be (1, 1, 0, 0) from the new w0 using (A.3). The experimental pro-
cedure and target patterns were the same with the first one except
for the weights. Fig. 4c shows the classification result, where the
two groups were overlapped across the decision boundary. Again,
this result was intentional to show the importance and meaning
of the weights in pattern classification. Mathematically speaking,
weights in a binary linear classifier means an orientation of the
decision boundary, i.e. a normal vector. In a diagnostic context, for
example, each biomarker has its own priority for the diagnosis or
classification depending on the distribution of its expression level

according to the tissue types under consideration. If we ignore such
relative importance and treat all the biomarkers equally, i.e. with
same weights, it could lead to misdiagnosis as in Fig. 4c. However,
still the measured RFU showed high correlation with the predicted
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olecular quantities as shown in Fig. 4d, which suggests the accu-
acy of the molecular beacon-based computation itself.

It should be noted that the accuracy of the operation was  sig-
ificantly improved in comparison to the previous one (Lim et al.,
010). The main reason is that we removed the affinity bead sep-
ration step, which is the most time-consuming and vulnerable
o human errors, from the computation procedure. Wet-lab tech-
iques used in biomolecular computing take relatively long time
nlike the operations in electronic computers. Moreover, the more
uman intervention in a biomolecular computer, the more poten-
ial of errors it has. Therefore, it is a critical issue to reduce the
umber of experimental steps in biomolecular computing. Molec-
lar beacons are excellent substrates for this purpose.

. Conclusion

The main idea of biomolecular computing has been to take
dvantage of innate massive parallelism in biochemical reactions.
owever, contemporary electronic computers are doing excellent

obs and their performance is growing fast. Instead, biomolecu-
ar computing still has a potential as an application to biological
roblems themselves, where biochemical information are natu-
ally represented as biomolecules and direct computations are
erformed on the information in a molecular level. However, tar-
et bio-data to be processed are originally analog. Therefore, to
ully utilize the advantage of the direct computation, we need
ppropriate primitive analog operators that can be a building block
or large scale applications in conjunction with other biomolecu-
ar computing operations. To this end, we developed a molecular
eacon-based biomolecular computing method for quantitative
etection and analysis of target nucleic acids. Our method allows
s not only to detect multiple nucleic acid targets but also compute

 linear combination of their quantities by assigning an arbitrary
eight on each target. We  improved the accuracy and reduced the

verall computation time by removing an affinity bead separation
tep from our previous work (Lim et al., 2010). A series of experi-
ental results were presented to prove the underlying principles

ncluding the weighted detection of single targets and the linear
ombinations of two targets. Successful binary classifications of
olecular patterns were also demonstrated for synthetic patterns

f oligonucleotide DNA molecules.
Although we are using molecular beacons here, it should

e noted that concrete physical mechanisms to implement our
eighted detection and analysis method, in principle, are not nec-

ssarily restricted to molecular beacons. There could be various
lternatives such as aptamer–proteins interaction, protein–protein
nteractions or hybridization reactions of various DNA derivatives
s far as they satisfy the assumptions mentioned earlier. It is
lso important to note that both detection and analysis for pat-
ern classification were done directly on a molecular level in vitro.
lthough we assumed that the weights are known for the target
roups, the point is that we can use that information to prepare

 weight-encoding molecular beacon mixture and apply it to the
lassification of target patterns without knowing their quantita-
ive information explicitly. In a diagnostic context, determining
ppropriate weights and preparing molecular beacon mixtures can
e viewed as manufacturing disease diagnosis kits; applying our
ethod for pattern classification would correspond to actual diag-

oses. More sophisticated techniques are yet to be developed and
ncorporated for the proposed method to be realized in clinical

ituations. Molecular signal amplifiers (Zhang and Seelig, 2010)
o preprocess raw level information, more intuitive visualization
echniques (Lee et al., 2008a), or DNA-based learning (Zhang and
im, 2006; Lee et al., 2011) for learning weights for classifiers would
e good examples.
s 111 (2013) 11– 17
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Appendix A. Mathematical formulation of a molecular
pattern classifier

Here we briefly summarize the mathematical formulation of a
molecular pattern classifier in our previous work (Lim et al., 2010)
which builds the basis of the present work. A conventional binary
linear classifier takes a real-valued vector, x = (x0, x1, . . .,  xn), as an
input pattern, computes a linear combination of its elements and
compares the result to a threshold for classification as follows:

g(x; w0) =

⎧⎪⎨
⎪⎩

G1, if
n∑

i=0

xiw
0
i ≥ 0

G2, otherwise

, (A.1)

where G1 and G2 are class labels, w0 = (w0
0, w0

1, . . . , w0
n), w0

0 is a
bias term and x0 = 1 as a dummy  input for the bias. In this model,
w0

i
may  be either positive or negative. In the meantime, a molecu-

lar pattern classifier computes two linear combinations of pattern
elements, and then compares them for final decision-making as
follows:

f (x; w) =
{

G1, if s(x; w) ≥ sc(x; w)

G2, otherwise
, (A.2)

where w = (w0, w1, . . .,  wn) and w0 is a bias term. Unlike the con-
ventional classifier, wi is always nonnegative, so that it can be
represented by molecular mixing ratios. (A.2) can be made equiv-
alent to (A.1) by setting wi as follows.

wi = 1 + �w0
i

2
, i = 0, 1, . . . , n, (A.3)

where � is a scaling constant to keep wi in the range [0,1].
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