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Abstract

Activity of inhibitory neuron with delayed feedback is considered in the frame-
work of point stochastic processes. The neuron receives excitatory input impulses
from a Poisson stream, and inhibitory impulses from the feedback line with a
delay. We investigate here, how does the presence of inhibitory feedback affect
the output firing statistics. Using binding neuron (BN) as a model, we derive
analytically the exact expressions for the output interspike intervals (ISI) proba-
bility density, mean output ISI and coefficient of variationas functions of model’s
parameters for the case of threshold 2. Using the leaky integrate-and-fire (LIF)
model, as well as the BN model with higher thresholds, these statistical quanti-
ties are found numerically. In contrast to the previously studied situation of no
feedback, the ISI probability densities found here both forBN and LIF neuron
become bimodal and have discontinuity of jump type. Nevertheless, the presence
of inhibitory delayed feedback was not found to affect substantially the output
ISI coefficient of variation. The ISI coefficient of variation found ranges between
0.5 and 1. It is concluded that introduction of delayed inhibitory feedback can
radically change neuronal output firing statistics. This statistics is as well distinct
from what was found previously, [23], by a similar method forexcitatory neuron
with delayed feedback.
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1. Introduction

A realistic neuronal network is normally characterized with a complicated sys-
tem of excitatory and inhibitory interconnections betweenindividual neurons the
network is composed of. Statistics of spiking activity of individual neurons can be
measured experimentally [9, 15, 18]. It would be interesting to understand how
the details of network’s construction might influence statistics of neuronal activ-
ity, when the network is driven with some stimulation, or allowed reverberating
freely. Exact theoretical analysis of this question in a developed network repre-
sents fair mathematical difficulties. At the same time, numerous studies suggest
that feedback and delays in the intercomponent communication can be essential
factors in determining activity of a composed system, see, e.g. [7, 4, 24].

In a real neural network, constructing elements can be found, which allow
exact mathematical treatment. The results of such a treatment can shed light on
the nature of transformations the neuronal activity might undergo while spreading
within a real neural network. One example is an excitatory neuron which sends its
output impulses onto its own dendritic tree — the neuron withexcitatory feedback.
This type of constructive element has been found in the olfactory bulb [1, 10].
Theoretical study of this construction fed with Poisson stream revealed interesting
peculiarities in its output activity statistics [23]. Another natural variant of this
construction is a neuron with inhibitory feedback. It seemsthat selfinhibition
happens more frequently in the brain, than selfexcitation.Selfinhibition can be
slow, due to potassium channels opening [3], or fast, due to chlorine channels
[2, 12]. It also can be direct (through autapses) [2, 10, 17],or acting through a
single intermediate neuron [12]. Also, it can be evoked not only by means of a
spike delivered to corresponding synaptic connection, butalso through extended
diffusion of some usual [17], or unusual [3] mediator.

In this paper, we consider situation of inhibitory neuron fed externally with ex-
citatory impulses from the Poisson stream. The neuron sendsits output impulses
to its own input through feedback line with delay. Both inputand output streams
are treated as point stochastic processes with no diffusionapproximation applied.
Our purpose is to find the probability density function (PDF)of the output inter-
spike intervals and to study its properties, as well as to compare those quantities
for two neuronal models, namely the binding neuron and the leaky integrate and
fire neuron.
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2. Methods

2.1. BN without feedback

The binding neuron model [20] is inspired by numerical simulation [19] of
Hodgkin-Huxley-type point neuron, as well as by the leaky integrate-and-fire
(LIF) model [16]. In the binding neuron, the trace of an inputis remembered for
a fixed period of time after which it disappears completely. This is in the contrast
with the above two models, where the postsynaptic potentials decay exponentially
and can be forgotten only after triggering. The finiteness ofmemory in the binding
neuron allows one to obtain exact mathematical conclusionsconcerning its firing
statistics beyond the diffusion approximation technique.Recently, the finiteness
is utilized for exact mathematical description of the output stochastic process if
the binding neuron is driven with the Poisson input stream inthe case of no feed-
back, [21], for BN with instantaneous feedback, [22] and forBN with delayed
excitatory feedback, [23].
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Figure 1: Binding neuron with feedback (see [20] for details). τ is similar to the “tolerance
interval” discussed in [8, p. 42]. Multiple input lines withPoisson streams are joined into a single
one here.

The BN works as follows (see Fig. 1 with the feedback line removed). All
excitatory input impulses have the same magnitude. Each oneof them is stored in
the BN for a fixed period of time,τ, and then it is forgotten. When the number
of stored excitatory impulses,Σ, becomes equal to the BN’s threshold,N0, the
BN fires an output spike, clears its internal memory, and is ready to receive fresh
inputs. Thus, the state just after firing corresponds to the resting state of excitable
membrane in real neurons, and the presence of impulses in theinternal memory
of BN corresponds to partially depolarized state. In this work, we take BN with
N0= 2 for analytic derivation. BNs with higher thresholds are studied numerically
in Sec. 4.2.3.

Normally, any neuron has a number of input lines. If input stream in each line
is Poissonian and all lines have the same weight, all of them can be joined into
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a single one, like in Fig. 1, with intensity,λ , equal to sum of intensities in the
individual lines.

The output statistics for BN withN0 = 2 and without feedback was studied
before. Here, we will need the ISI probability density function for BN without
feedback,P0(t), wheret > 0 denotes the output ISI duration, which was obtained
in [21, Eq. (3)] as

mτ ≤ t ≤ (m+1)τ ⇒ P0(t) = ym(t), m= 0,1, . . . , (1)

where the functionsym(t) are defined according to the following recurrent rela-
tion:

y0(t) = e−λ tλ 2 t, (2)

ym+1(t) = ym(t)+
λ m+3

(m+2)!
(t − (m+1)τ)m+2e−λ t

−
λ m+2

(m+1)!
(t− (m+1)τ)m+1e−λ t , m= 0,1, . . . . (3)

P0(t) is a uni-modal function, which reaches its maximum att = min(1/λ ;τ).
The first moment,W0

1 , of the probability density (1) was found in [21] as

W0
1 ≡

∫ ∞

0
t P0(t)dt =

1
λ

(

2+
1

eλτ −1

)

, (4)

which will be used later. Further, we also utilize the probability Π(t) to get from
BN without feedback an output ISI, which is longer thant:

Π(t)≡
∫ ∞

t
P0(t ′) dt′ = 1−

∫ t

0
P0(t ′) dt′.

We will need the expression forΠ(t) only in the domain 0≤ t ≤ τ, where it can
be found by substitutingy0(t ′), (2), instead ofP0(t ′) above:

Π(t) = (1+λ t) e−λ t , 0≤ t ≤ τ. (5)

2.2. Feedback line action

In this work, we consider the situation, when BN receives excitatory input
from the Poisson stream and inhibitory impulses from the feedback line.
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We assume, that time delay∆ of impulse in the feedback line is fixed and is
smaller than the BN’s memory duration,τ:

∆ < τ. (6)

It allows us to make analytic expressions shorter1.
If the line is empty, when neuron fires, an output impulse enters the line and

after delay∆ reaches neuron’s input. If the line already keeps an impulseat the
moments of BN firing, it does not accept a new one. It means, that at any given
moment, the feedback line either conveys one impulse, or it is empty. The state
of the nonempty feedback line can be described with a single number,s, s∈]0;∆],
which gives the time to live of the impulse in the feedback line. The time to live
determines position of the impulse in the feedback line, seeFig 1, thick part of
the feedback line. It equals to the time, which is required for the impulse to reach
the end of the feedback line, if starting from a given position. The values ofs are
used just at the moments of output ISI beginnings (just afterBN firings). At these
moments, the feedback line is never empty.

The inhibitory action of feedback impulses is modelled in the following way.
When the inhibitory impulse reaches BN, it annihilates all excitatory impulses
already present in the BN’s memory, similarly as Cl-type inhibition shunts depo-
larization of excitable membrane, see [14]. If at the momentof inhibitory impulse
arrival, the BN is empty, then the impulse disappears without any action, similarly
as Cl-type inhibition does not affect membrane’s voltage inits resting state. Such
inhibition is ”fast” in that sense, that the inhibitory impulses act instantaneously
and are not remembered by neuron.

2.3. Derivation outline
It is clear, that both the binding neuron and the feedback line operate in de-

terministic manner. Nevertheless, the probabilistic description is required for the

1We were unable to found experimental value for∆ in an autaptic connection. A crude estimate
can be made based on the action potential propagation velocity, v, and the connection length,l .
We putv= 0.5 m/s (the smallest known). Expect that the autaptic connection is confined within
a cortical minicolumn. The minicolumn diameter is about 50µm. This gives for the propagation
delay∆p ∼ 3 · l/v= 0.3 ms. In this case, the delay of the feedback communication,∆, is mainly
due to the EPSP rise time. The rise time usually falls between1 ms and 10 ms, which to an extent
supports (6) if one takes into account thatτ should be comparable with the membrane relaxation
constant,τM. If one expects that the connection is confined within a cortical hypercolumn, then
∆p ∼ 3 ms, which still does not refute (6). But if an autaptic connection is considerably longer,
then condition, which is opposite to (6) may be correct.
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output stream because of the stochastic nature of the driving Poisson process.
Let us denote byP∆(t) the ISI probability density function for neuron with

delayed inhibitory feedback. In order to calculateP∆(t), we use the procedure,
previously utilized for BN with excitatory delayed feedback [23]. For this purpose
we define an auxiliary random variableS, wich valuess∈]0;∆] are the values of
time to live of the impulse in the feedback line at the beginning of an interspike
interval. A possibility to introduce such a variable is ensured by the fact that, at
the beginning of any ISI, the feedback line is never empty, see pervious section.
It is clear that bothS and T outcomes are uniquely determined by the unique
outcome of the driving Poisson process. HereT denotes the ISI random variable.
The difference betweenT andS is that theSoutcome becomes known in physical
time before the corresponding outcome ofT is known. That is, if at the beginning
of an ISI, theS outcome iss, then thiss together with the consequent outcome
of the driving Poisson process determine the outcomet, corresponding to thiss.
Due to this fact it is natural to define the conditional probability density,P∆(t | s).
Namely,P∆(t | s)dt gives the probability to obtain an output ISI of duration within
interval[t; t+dt[, provided there was an impulse in the feedback line with timeto
live equals at the moment of this ISI beginning.

As the first step, we calculate the conditional probability density,P∆(t | s).
Then, we calculate the probability density,f (s), s∈]0;∆] for the variableS.
The output ISI probability density can be calculated based on the expressions

for P∆(t | s) and f (s), namely:

P∆(t) =
∫ ∆

0
P∆(t | s) f (s)ds. (7)

In order to find f (s), we first obtain the transition probability densityP(s′ |
s), s,s′ ∈]0;∆], which gives the probability that at the beginning of some output
ISI, the line has an impulse with time to live within the interval [s′;s′+ds′[, pro-
vided that at the beginning of the previous ISI it had impulsewith time to live
equals. f (s) is then found as normalized to 1 solution of the following equation:

∫ ∆

0
P(s′ | s) f (s)ds= f (s′). (8)

3. Main calculation

3.1. Conditional probability density P∆(t | s)
In order to deriveP∆(t | s), domainst < s and t ≥ s should be considered

separately.
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In the caset < s, the output impulse must be generated without the line impulse
involved. Therefore, probability density for such ISI values is the same as for BN
without any feedback:

P∆(t | s) = P0(t), t < s. (9)

HereP0(t) is the output ISI probability density for BN without feedback, given in
Eq. (1).

At the momentt = s, the inhibitory feedback impulse reaches the BN and BN
becomes empty. To trigger the neuron within the infinitesimal interval [s;s+dt[,
one needs to get two input impulses within this interval. Probability of this event
is of orderdt2. Therefore,P∆(t | s) = 0 att = s.

In order to obtain ISIt > s, two independent events must occur: (i) BN without
feedback fires no spikes during time interval]0;s]; (ii) BN without feedback starts
empty at momentsand is firstly triggered at momentt. These events are indepen-
dent since their realizations are defined by behavior of Poisson input stream on
disjoint intervals]0;s] and]s; t]. By definition ofΠ(t), see Eq. (5), the probability
to have (i) isΠ(s), and (ii) has the probabilityP0(t−s)dt. Therefore,

P∆(t | s) = Π(s) P0(t −s), t > s. (10)

Taking into account Eq. (5), (9) and (10) for the case∆ < τ one obtainsP∆(t | s)
as follows:

P∆(t | s) =











λ 2t e−λ t , t ∈]0;s[,

(1+λs) e−λsP0(t −s), t ≥ s.

(11)

The conditional probability densityP∆(t | s), given in (11), is normalized:
∫ ∞

0 P∆(t | s)dt = 1. Also, P∆(t | s) has a jump discontinuity of heightλ 2s e−λs at
t = s.

3.2. Transition probability density P(s′ | s)

From the definition of the transition probabilityP(s′ | s) given in the last para-
graph of Sec. 2.3 it follows that

s′ ≥ s and s′ 6= ∆ ⇒ P(s′ | s) = 0.

Indeed, consider the pair(t,s), whert is the ISI duration ands is the impulse time
to live in the feedback line when this ISI starts. If for this pair the inequalityt ≤ s
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takes place, thens′ = s− t ands′ < s with necessity. In the opposite situation
whent > s, the line becomes empty before the end of the ISIt. At the end oft,
the neuron starts next ISI by firing a spike, which charges theline with a fresh
impulse. This means that in the next pair(t ′,s′), with necessity,s′ = ∆. Therefore,
the set of values(s′,s), whereP(s′ | s) still has to be found is defined by the
following relations:

s′ < s or s′ = ∆.

From the meaning ofP∆(t | s) it follows that Eq. (9) allows one to calculateP(s′ | s)
for s′ < s, namely:

P(s′ | s) = P∆(s−s′ | s) = P0(s−s′) = e−λ (s−s′)λ 2(s−s′), s′ < s∈]0;∆], (12)

where (1), (2) and (6) were used.
Consider the exact equalitys′ = ∆. It is fulfilled every time, when for previous

ISI the inequalityt ≥ s holds, and this inequality happens with non-zero prob-
ability. Therefore, the probability densityP(s′ | s) has singularity ofδ -function
type ats′ = ∆. For calculating its mass it is enough to utilize the normalization
condition:

∆
∫

0

P(s′ | s)ds′ = 1, s∈]0;∆],

which gives

P(s′ | s) =

{

e−λ (s−s′)λ 2(s−s′), s′ < s∈]0;∆],
(λ s+1) e−λ s δ (s′−∆), s′ ≥ s∈]0;∆].

(13)

3.3. Delays probability density

In order to find f (s), one should substituteP(s′ | s) from (13) into (8) and
solve the obtained equation. AsP(s′ | s) obtained here is exactly the same as for
BN with excitatory delayed feedback [23, Eq. (9)], the equation for f (s) and f (s)
itself will be the same also. In [23, Eq. (10)], the probability density f (s) was
obtained as

f (s) = aδ (s−∆)+g(s), (14)

whereg(s) – is an ordinary function, which vanishes out of interval]0;∆]:

g(s) =
aλ
2

(

1−e−2λ (∆−s)
)

, s∈]0;∆], (15)
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anda – is the dimensionless constant:

a= 4e2λ∆/
(

(2λ∆+3)e2λ∆ +1
)

, (16)

which gives the probability to find the impulse in the feedback line with time to
live ∆ at the beginning of any ISI.

3.4. Numerical simulations

Numerical simulations were carried out here for several purposes. The first
one was to check numerically correctness of the expressionsfound analytically.
The second one was to obtain ISI distributions for higher thresholds and for thresh-
old 2 with∆> τ. The third one was to compare the ISI distributions found here for
the binding neuron model with those for the leaky integrate and fire (LIF) model.

A C++ program was developed, which allows us to calculate all the necessary
probability distributions. The program includes the BNDF class, which analyzes
the input stream and fires in accordance with the rules, described above. The Pois-
son steams of various intensity were produced with the help of the GNU Scientific
Library2. With the help of our program, output stream samples were produced by
calculating up toN = 30000000 output spikes. The samples were scanned for in-
terspike intervals of various duration, and the probability density distribution was
then calculated by normalization.

The LIF neuron was simulated in its simplest version. Namely, the neuron’s
state at any moment of timeϑ is completely characterized by its membrane volt-
age at that moment,V(ϑ). Without stimulation, theV(ϑ) decays exponentially
to the resting state withV = 0:

V(ϑ + t) = e−t/τM V(ϑ),

whereτM – is the membrane relaxation time. An input impulse advancesV by a
fixed value,y0, instantaneously:

V → V +y0,

wherey0 mimics the EPSP peak value. If the resulting voltage satisfies the in-
equality

V +y0 >V0,

2see http://www.gnu.org/software/gsl/
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Figure 2: Example of ISI PDF.Left — calculation in accordance with Eqs. (21), (A.4), (A.5).
Right— numerical simulation. For both panels:τ = 10 ms,∆ = 8 ms,λ = 10 s−1, N0 = 2.

whereV0 – is the firing threshold, then the LIF neuron fires an output spike and
appears in the resting state.

For numerical simulations we chooseτM = 10 ms,y0 = 4 mV, V0 = 5 mV.
These values are comparable with those found in the inhibitory interneurons of
CA3 hippocampal region, [13]. The relation betweenV0 andy0 ensures that two
input impulses are able to trigger the LIF provided they are close in time. For
the inhibitory interneurons, this is because of their depolarized resting state, [6].
It is reported, [5], that even single impulse from a piramidal cell may trigger
interneuron of this type. Interesting, that selfinhibitionis found in the inhibitory
interneurons also, but in the neocortex, [2].

4. Results

4.1. ISI probability density

In order to findP∆(t), one should substitute (11) and (14) into Eq. (7), which
gives:

P∆(t) = aP∆(t | ∆)+
∫ ∆

0
P∆(t | s)g(s)ds. (17)

The explicit expression forP∆(t), which can be obtained by further transforma-
tions of (17), will be different fort values belonging to different domains. This is
because the exact expression for theP∆(t | s) is different for different domains, see
top and bottom lines of Eq. (11) and Eq. (1). The boundaries ofdomains in which
P∆(t) does not change its formula are dictated both by the first and the second
term in (17). Namely, by taking (11) withs= ∆ and using (1) one concludes that
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Figure 3: ISI probability densityP∆(t), s−1. Left – BN without feedback [21];right – BN with
excitatory delayed feedback [23]. In both cases,τ = 10 ms,λ = 50 s−1, N0 = 2. For right pannel,
∆ = 8 ms.

the first term in (17) retains the same formula in the adjacentdomains separated
with points

t = 0, ∆, τ +∆, 2τ +∆, 3τ +∆, . . . . (18)

It appears that the second term in (17) as well retains the same formula in the do-
main bounded with first two points from (18) allowing one to obtain exact formula
for the first domain. Namely, ift ∈]0;∆], then the first term in (17) turns into

aP∆(t | ∆) = aλ 2t e−λ t , (19)

while integration domain in the second term should be split into two parts with
the points= t and use either top, or bottom line of Eq. (11) in the corresponding
part:
∫ ∆

0
P∆(t | s)g(s)ds

=
∫ t

0
(1+λs) e−λsλ 2(t−s)e−λ (t−s)g(s)ds

+

∫ ∆

t
λ 2te−λ t g(s)ds. (20)

By combining Eqs. (19) and (20), one obtains after transformations

P∆(t) =
2λ e−λ t

2λ∆+3+e−2λ∆ ·

(

1
6

λ 3t3−
1
2

λ 2t2

+λ t
(3

2
+

1
4

e−2λ∆ +
1
4

e−2λ (∆−t)
)

+λ 2t∆

)

, t < ∆. (21)
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Figure 4:Left —Mean output firing rate,λo, vsλ for inhibitory BN (N0 = 2) with delayed feedback
(1), for BN without feedback [22] (2) and for excitatory BN with delayed feedback [23] (3),
obtained analytically.Right —λo vsλ for inhibitory BN with delayed feedback forN0 = 2 (1),
obtained analytically, and forN0 = 4 (2) andN0 = 6 (3), found numerically. Hereτ = 10 ms for
all curves;∆ = 2 ms for (1), (3), left and (1)–(3), right.

Whent ≥ ∆, one needs only the bottom line of Eq. (11) for calculatingP∆(t),
and Eq. (17) turns into the following:

P∆(t) = a(1+λ∆) e−λ∆P0(t −∆)

+

∫ ∆

0
(1+λs) e−λsP0(t −s)g(s)ds, t ≥ ∆. (22)

Here, the first term cannot change its formula within any domain defined by
boundaries (18). This is not the case for the second term. We analyze the be-
havior of the second term and obtain explicit expression forP∆(t) for any t > 0
in the Appendix. Example graph ofP∆(t) found is given at Fig. 2,left. Com-
pare with p.d.f. for BN without feedback, Fig. 3, left, and BNwith excitatory
feedback, right.

4.2. Properties of the ISI probability density
Notice, that the explicit expressions forP∆(t) given in (21) and in the Ap-

pendix are not used here. All the properties discussed beloware derived from
representation (7) and expressions (11), (14)–(16).

4.2.1. Mean interspike interval
The mean output ISI,W∆

1 , can be defined as the first moment of the ISI prob-
ability density:

W∆
1 =

∫ ∞

0
tP∆(t)dt.

12



Taking into account Eq. (7), one obtains:

W∆
1 =

∫ ∞

0
t dt

∫ ∆

0
P∆(t | s) f (s)ds=

∫ ∆

0
ds f(s)

∫ ∞

0
tP∆(t | s)dt,

which taken together with Eq. (11) gives:

W∆
1 =

∫ ∆

0
ds f(s)

( s
∫

0

t2e−λ tλ 2dt++(1+λs) e−λs

∞
∫

s

tP0(t−s)dt

)

=
1
λ

∆
∫

0

ds f(s)
(

2+ e−λs(λW0
1 −2+(λW0

1 −1)λs
)

)

,

whereW0
1 is given in (4). Use here (14) and (15), which gives after transforma-

tions:
W∆

1 = a(∆+W0
1 ), (23)

wherea is given in (16).
Note that for∆ = 0, Eq. (23) turns into the following:

W∆
1

∣

∣

∣

∣

∆=0
=W0

1 .

This is consistent with the fact that for∆ = 0 P∆(t) turns into distribution for
neuron without feedback, which isP0(t) given in Eqs. (1)–(3), see Eq. (A.9).

The output intensity,λo, defined as the mean number of impulses per time
unit, is the inverseW∆

1 :

λ ∆
o =

1

W∆
1

=
(2λ∆+3+e−2λ∆)(1−e−λτ)

4(λ∆+2− (λ∆+1)e−λτ)
λ , (24)

where Eqs. (4), (16) and (23) were used. At large input rates the following relation
takes place

lim
λ→∞

(

λ
2
−λ ∆

o

)

=
1

4∆
. (25)

This limiting relation, which is derived directly from Eq. (24), can be understood
as follows. At moderate stimulation some input spikes are lost without influenc-
ing output due to high probability of long input ISI. At high intensity, every two
consecutive excitatory input impulses trigger the BN and send impulse into the
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Figure 5: Left — Coefficient of variationvs x= λ τ for BN (N0 = 2) with inhibitory delayed
feedback for∆ = 2 ms (1), ∆ = 5 ms (2), obtained analytically, and for∆ = 20 ms (3), found
numerically.Right —Coefficient of variationvs xfor BN with inhibitory delayed feedback (∆ =
18) forN0 = 2 (1), N0 = 4 (2) andN0 = 6 (3), found numerically.τ = 10 ms for all curves.

feedback line, provided it is empty. Thus, output intensityshould beλ/2 minus
firings, inhibited by the line. The maximum rate of inhibitory impulses, which
can be delivered by the feedback line to the neuron’s input, is 1/∆, and this rate is
attainable whenλ → ∞. Each inhibitory impulse either cancels one excitatory im-
pulse in the neuron, or does nothing if neuron appears empty at the moment of the
feedback line dejection. For high input rates, the probabilities to find the neuron at
any moment of time either empty, or storing one impulse seem both approaching
0.5. Thus, due to feedback line activity, about 1/(2∆) excitatory impulses will be
eliminated every second from the input stream, and about half as much from the
output stream, which explains (25).

Graphs ofλ ∆
o vs λ are shown at the Fig. 4.

4.2.2. Coefficient of variation
The coefficient of variation (CV)c∆

v of output ISIs is defined as dimensionless
dispersion:

c∆
v ≡

√

W∆
2

(W∆
1 )

2
−1,

whereW∆
2 is the second moment of the ISI probability density:

W∆
2 ≡

∫ ∞

0
t2 P∆(t)dt =

∫ ∆

0
ds f(s)

∫ ∞

0
t2 P∆(t | s)dt.
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Figure 6:Left —Coefficient of variationvsλ for BN with inhibitory delayed feedback (1), without
feedback [22] (2) and with excitatory delayed feedback [23] (3), obtained analytically. Curves
(1)–(3): N0 = 2, τ = 10 ms.Right —Coefficient of variationvsλ for LIF neuron with inhibitory
delayed feedback (1), without feedback (2) excitatory delayed feedback (3), found numerically.
∆ = 2 ms for (1), (3) in both panels.

By calculating integrals here and taking into account Eq. (4), one obtains:

(c∆
v )

2 =
B1 e2λτ +2 B2 eλτ +B3

8
(

(2+λ∆) eλτ −λ∆−1
)2 −1, (26)

where

B1 =3 e−4λ∆ −8 e−3λ∆ +2(6λ∆+13) e−2λ∆−

−8(2λ∆+3) e−λ∆ +12λ 2∆2+52λ∆+51,

B2 =−2 e−4λ∆ +4 e−3λ∆ +2(−5λ∆+λτ −7) e−2λ∆+

+4(2λ∆+3) e−λ∆ −12λ 2∆2+4λ 2∆τ −34λ∆+6λτ −24,

B3 =e−4λ∆ +2(4λ∆+3)e−2λ∆ +12λ 2∆2+24λ∆+9

(27)

see Fig. 5,left, 6, left.
It is clear, that for∆ = 0 Eqs. (26), (27) must give the output ISI coefficient of

variation of BN without feedback,c0
v. And indeed, substituting∆ = 0 to (26) and

(27), one obtains

c2
v

∣

∣

∣

∣

∆=0
=

1

(2eλτ −1)2
·
(

2 e2λτ +2(λτ −1) eλτ +1
)

=
(

c0
v

)2
,

wherec0
v was previously found in [22, Sec. 5.3].
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Figure 7: ISI PDF (in s−1), found numerically.Left — inhibitory BN with delayed feedback for
N0 = 2, τ = 10 ms,λ = 50 s−1; right — inhibitory LIF neuron with delayed feedback.∆ = 18 ms
in both panels.

4.2.3. Numerical Simulations
The numerical simulations were performed as described in Sec. 3.4. BN firing

statistics is represented in terms ofP∆(t), f (s), λ ∆
o and c∆

v . In parallel to the
analytic expressions, all these quantities were calculated numerically for various
sets of parametersτ, ∆, λ . Numerically calculated curves were then compared
with corresponding analytic expressions given in Eqs. (21), (A.4) – (A.8), (14)
– (16), (24), (26) and (27). It was found, that numerically obtained curves fit
perfectly with mentioned analytic expressions, see example in Fig. 2.

The set of numerical simulations was performed for the case∆ > τ and/or
N0 > 2, which is not covered by the analytic expressions obtained. The curves
obtained are given in Fig. 4,right, (2) and (3), Fig. 5, left, (3), right, (1)-(3), Fig.
7, left, Fig. 8.

A number of numerical simulations were performed for the LIFneuron model
with parameters given in Sec. 3.4. The data obtained is presented in Fig. 6,right,
Fig. 7,right.

5. Discussion

The statement of the problem adopted in this work expects transformation of
the input ISI PDF into the output ISI PDF. In the contrast to widely used diffu-
sion approximation, which lacks the input ISI PDF, we treat both input and output
streams as objects of the same mathematical nature, namely,the point stochastic
processes. This is necessary if one expects to study activity of a neuron involved
in the interneuronal communication with the time-coding asopposed to the rate-
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Figure 8: ISI probability densityP∆(t) (measured in s−1) found numerically forτ = 10 ms,∆ = 8
ms,λ = 50 s−1. Left — N0 = 4, right — N0 = 6. In both cases 3·107 triggerings were taken.

coding paradigm. This approach allowed us to consider a system, where output
impulses are conveyed directly to its input — neuron with feedback — the sim-
plest case of interneuronal communication. The feedback isinhibitory here, which
is in concordance with numerous self-inhibitory neurons observed in nature, see
[2, 10, 17]. As a result, we obtained exact expressions for several quantities char-
acterizing the activity of binding neuron with feedback, compared those quantities
with those calculated numerically for the LIF neuron and made the following con-
clusions.

5.1. Conclusions

In this paper the binding neuron model with delayed self-inhibition is studied.
The neuron is stimulated with point stochastic process — Poisson stream of given
intensity. The ISI PDF was found as an exact function of the input intensity,λ ,
delay time,∆ and neuronal internal memory duration time,τ for the BN neuron
with thresholdN0 = 2. The ISI PDF for higher thresholds is found numerically.
The course of the PDFs found is bimodal due to a trough att = ∆, see Figs. 2,
7, 8. The nature of the trough is the same as is the nature of peak in the case
of excitatory feedback, which was discussed by L.Ricciardi, [11], and exactly
calculated for the BN in [23].

Exact mathematical expressions are found for the mean interspike interval, and
coefficient of variation. Those same quantities are found numerically for the leaky
integrate and fire model with shunting type delayed self-inhibition. Both models
studied deliver qualitatively similar results. We conclude that the character of
dependencies found is mainly due to the presence of inhibitory feedback line.
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Appendix A.

Let us introduce a new variable of integration,u= t −s in the Eq. (22):

P∆(t) = a(1+λ∆) e−λ∆P0(t −∆)

+
∫ t

t−∆
(1+λ (t−u))e−λ (t−u)P0(u)g(t−u)du. (A.1)

Here, due to (1)–(3), both the first term and the second one canchange its formula
with changingt value. The first term changes its form every time whent − ∆
crosses integer multiple ofτ. This gives the boundary points (18). The second
term in (A.1) can change its value every time when eithert, or t−∆ crosses integer
multiple of τ. This gives the following boundary points

t = 0, ∆, τ, τ +∆, 2τ, 2τ +∆, 3τ, 3τ +∆, . . . . (A.2)

If the t value varies between two consecutive points from (A.2), then both terms
in (22) or (A.1) retain their algebraic expression. In orderto find explicit form of
that expression at any domain oft defined by (A.2), we introduce two groups of
domains,Bm andCm, namely:

Bm = [mτ +∆;(m+1)τ] , m= 0,1, . . . ,

Cm = ](m+1)τ;(m+1)τ +∆[ , m= 0,1, . . . .

Note, that the full range]0;∞[ of possible ISI values is covered by alternate do-
mainsBm andCm, m= 0,1, . . . and the domain]0;∆[ for which we already have
the explicit formula (21).

If t ∈ Bm, thenmτ ≤ t −∆ < t ≤ (m+ 1)τ, and one should substituteym(t)
from (3), corresponding to thatm, instead ofP0(u) in the (A.1). If t ∈ Cm, then
mτ < t−∆ < (m+1)τ < t. Therefore, the domain of integration in the Eq. (A.1)
should be split into two with point(m+1)τ, and asP0(u) one should substitute
eitherym(t), or ym+1(t).

Appendix A.1. ISI probability density at the domains Bm

Thus, in the caset ∈ Bm, one obtains forP∆(t):

P∆(t) = a(1+λ∆) e−λ∆ym(t −∆)

+

∫ ∆

0
(1+λs) e−λsym(t −s)g(s)ds, t ∈ Bm, (A.3)
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which after integration gives:

P∆(t) = a(1+λ∆) e−λ∆ ·ym(t −∆)−
a
2

eλ (∆−τ) ·ym+1(t−∆+ τ)

+
a
2

eλτ ·ym+1(t + τ)+
aλ
2

e−λ t
m+1

∑
k=1

k

∑
l=0

Kklλ k−l (t− (k−1)τ)k−l

−
aλ
2

e−λ t
m

∑
k=1

k

∑
l=0

Kklλ k−l (t−kτ)k−l , t ∈ Bm, (A.4)

where

Kkl =
1

2l+2(k− l)!

(

l +1
(l +2)!

(−2λ∆)l+2+ l +1

− (l −1)e−2λ∆ −2
l

∑
i=0

(−2λ∆)l−i

(l − i)!

(

1+
l +1

l +1− i
·λ∆

))

.

Appendix A.2. ISI probability density at the domains Cm

Consider the caset ∈ Cm. Taking into account Eqs. (1)–(3), one can rewrite
(A.1) as follows

P∆(t)

∣

∣

∣

∣

t∈Cm

= a(1+λ∆) e−λ∆ym(t −∆)+
∫ t−(m+1)τ

0
(1+λs) e−λsym+1(t−s)g(s)ds

+
∫ ∆

t−(m+1)τ
(1+λs) e−λsym(t −s)g(s)ds

= a(1+λ∆) e−λ∆ym(t −∆)+
∫ ∆

0
(1+λs) e−λsym(t−s)g(s)ds

+
λ m+3

(m+2)!
e−λ t

∫ t−(m+1)τ

0
(1+λs)(t−s− (m+1)τ)m+2g(s)ds

−
λ m+2

(m+1)!
e−λ t

∫ t−(m+1)τ

0
(1+λs)(t−s− (m+1)τ)m+1g(s)ds.

It is useful to denote asP∆
B,m(t) the right-hand side of Eq. (A.3) defined for allt:
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P∆
B,m(t)=a(1+λ∆)e−λ∆ym(t−∆)+

∫ ∆

0
(1+λs) e−λsym(t−s)g(s)ds, t >0.

With this notation, one obtains:

P∆(t)

∣

∣

∣

∣

t∈Cm

= P∆
B,m(t)+

aλ
2

e−λ t ·ρ∆
m(λ (t − (m+1)τ)) , (A.5)

where

ρ∆
m(x) =

2
aλ

1
(m+2)!

x
∫

0

(1+v)(x−v)m+2g
( v

λ

)

dv

−
2

aλ
1

(m+1)!

x
∫

0

(1+v)(x−v)m+1g
( v

λ

)

dv, m= 0,1, . . . . (A.6)

Here the dimensionless variable of integrationv= λswas introduced.
Performing integration in (A.6) one obtains:

ρ∆
m(x) =

m+4

∑
l=0

Kl xl −e−2λ∆+2x ·
m+3

∑
l=0

Dl xl , (A.7)

where

Dl =
1

2m+4−l ·
l

∑
i=0

(−1)l−i · (m−1− i)
i! (l − i)!

,

Kl =
(m−1− l)

2m+4−l · l !
e−2λ∆, l = 0, . . .m+1,

Km+2 =
1

4 · (m+2)!
e−2λ∆ −

1
(m+2)!

,

Km+3 =
m+2

∑
i=1

(−1)i i
(m+2− i)! (i +1)!

+
1

(m+3)!
,

Km+4 =
m+2

∑
i=0

(−1)i (i +1)
(m+2− i)! (i +2)!

,

Dm+2 =
1
4

m+2

∑
i=0

(−1)i · (i +1)
i! (m+2− i)!

, Dm+3 =
1
2

m+2

∑
i=0

(−1)i

i! (m+2− i)!
.

(A.8)
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Note, that in the case∆ = 0, ISI probability density is completely defined by
Eq. (A.4), which turns into probability distribution for BNwithout feedback given
in (1):

P∆(t)|∆=0 = P0(t), t > 0. (A.9)

This indeed should be the case, because when∆ = 0, inhibitory impulses always
enter empty neuron and, therefore, the feedback line have nochance to affect the
output stream. Naturally, the output ISI distribution for∆ = 0 coincides with that
found for BN without feedback.
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