arXiv:1107.3410v2 [g-bio.NC] 9 Sep 2013

Firing statistics of inhibitory neuron with delayed
feedback. I. Output ISI probability density

A. K. Vidybida, K. G. Kravchuk
Bogolyubov Institute for Theoretical Physics, Metroldgia str. 14-B, 03680 Kyiv, Ukraine

Abstract

Activity of inhibitory neuron with delayed feedback is catered in the frame-
work of point stochastic processes. The neuron receivesaexy input impulses
from a Poisson stream, and inhibitory impulses from the lfieell line with a
delay. We investigate here, how does the presence of inhybieedback affect
the output firing statistics. Using binding neuron (BN) as aded, we derive
analytically the exact expressions for the output intdespmtervals (ISI) proba-
bility density, mean output ISI and coefficient of variat@smfunctions of model’s
parameters for the case of threshold 2. Using the leaky rategnd-fire (LIF)
model, as well as the BN model with higher thresholds, théstestcal quanti-
ties are found numerically. In contrast to the previousilydstd situation of no
feedback, the ISI probability densities found here bothBbr and LIF neuron
become bimodal and have discontinuity of jump type. Neeetts, the presence
of inhibitory delayed feedback was not found to affect sabsally the output
ISI coefficient of variation. The ISI coefficient of variatidound ranges between
0.5 and 1. It is concluded that introduction of delayed intbity feedback can
radically change neuronal output firing statistics. Thagistics is as well distinct
from what was found previously, [23], by a similar method éxcitatory neuron
with delayed feedback.
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1. Introduction

A realistic neuronal network is normally characterizedwvatcomplicated sys-
tem of excitatory and inhibitory interconnections betwawtividual neurons the
network is composed of. Statistics of spiking activity adividual neurons can be
measured experimentally [9,/15, 18]. It would be intergstm understand how
the details of network’s construction might influence stats of neuronal activ-
ity, when the network is driven with some stimulation, ooaled reverberating
freely. Exact theoretical analysis of this question in aaleped network repre-
sents fair mathematical difficulties. At the same time, nwoue studies suggest
that feedback and delays in the intercomponent commuaitaan be essential
factors in determining activity of a composed system, seg,|&,/4, 24].

In a real neural network, constructing elements can be fowdch allow
exact mathematical treatment. The results of such a treditoae shed light on
the nature of transformations the neuronal activity migidergo while spreading
within a real neural network. One example is an excitatoyoe which sends its
output impulses onto its own dendritic tree — the neuron extitatory feedback.
This type of constructive element has been found in the wfgdoulb [1,/10].
Theoretical study of this construction fed with Poissoraitn revealed interesting
peculiarities in its output activity statistics [23]. Ama&r natural variant of this
construction is a neuron with inhibitory feedback. It sedimst selfinhibition
happens more frequently in the brain, than selfexcitatialfinhibition can be
slow, due to potassium channels opening [3], or fast, duehkorioe channels
[2,/12]. It also can be direct (through autapses) [2,/10, @7hcting through a
single intermediate neuron [12]. Also, it can be evoked mdy &y means of a
spike delivered to corresponding synaptic connectionalsd through extended
diffusion of some usual [17], or unusual [3] mediator.

In this paper, we consider situation of inhibitory neurod éxternally with ex-
citatory impulses from the Poisson stream. The neuron s&ndsatput impulses
to its own input through feedback line with delay. Both inpatl output streams
are treated as point stochastic processes with no diffegpnoximation applied.
Our purpose is to find the probability density function (P@F}he output inter-
spike intervals and to study its properties, as well as topammthose quantities
for two neuronal models, namely the binding neuron and takyiéntegrate and
fire neuron.



2. Methods

2.1. BN without feedback

The binding neuron model [20] is inspired by numerical siatioin [19] of
Hodgkin-Huxley-type point neuron, as well as by the leakiegnate-and-fire
(LIF) model [16]. In the binding neuron, the trace of an inputemembered for
a fixed period of time after which it disappears completelyisTs in the contrast
with the above two models, where the postsynaptic poterdiatay exponentially
and can be forgotten only after triggering. The finitenesae@mory in the binding
neuron allows one to obtain exact mathematical conclusionserning its firing
statistics beyond the diffusion approximation technigecently, the finiteness
is utilized for exact mathematical description of the ottpiochastic process if
the binding neuron is driven with the Poisson input streathéncase of no feed-
back, [21], for BN with instantaneous feedback, [22] and B with delayed
excitatory feedback, [23].
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Figure 1: Binding neuron with feedback (seel[20] for dejails is similar to the “tolerance
interval” discussed ir.[8, p. 42]. Multiple input lines wiBrpisson streams are joined into a single
one here.

The BN works as follows (see Fid.] 1 with the feedback line reed). All
excitatory input impulses have the same magnitude. Eaclfcthem is stored in
the BN for a fixed period of timet, and then it is forgotten. When the number
of stored excitatory impulse&, becomes equal to the BN’s threshold, the
BN fires an output spike, clears its internal memory, andaslyeo receive fresh
inputs. Thus, the state just after firing corresponds toekgrrg state of excitable
membrane in real neurons, and the presence of impulses intdraal memory
of BN corresponds to partially depolarized state. In thiskyave take BN with
No = 2 for analytic derivation. BNs with higher thresholds argds¢d numerically
in Sec[4.2.B.

Normally, any neuron has a number of input lines. If inpueain in each line
is Poissonian and all lines have the same weight, all of thembe joined into



a single one, like in Fid.]1, with intensity, equal to sum of intensities in the
individual lines.

The output statistics for BN wittNg = 2 and without feedback was studied
before. Here, we will need the ISI probability density fuontfor BN without
feedbackPO(t), wheret > 0 denotes the output ISI duration, which was obtained
in [21, Eq. (3)] as

mr <t < (m+1)T = P°(t) =ym(t),m=0,1,..., (1)

where the functiongm(t) are defined according to the following recurrent rela-
tion:

yo(t) = e A%t )
)\m+3
Ym1(t) = ym(t) + (mi2) (t— (m+1)7)™ 2 At
AT m+1—At
" (mr ) (t—(m+1)7)™e”, m=01... (3

PO(t) is a uni-modal function, which reaches its maximurh-atmin(1/A; 7).
The first moment\/vlo, of the probability densityl (1) was found in |21] as

W E/Omtpo(wdt:%(u@%l), (4)

which will be used later. Further, we also utilize the prabgbl(t) to get from
BN without feedback an output ISI, which is longer ttan

|‘|(t)z/too PO(t") dt’:l—/ot PO(t") dt’.

We will need the expression fdt(t) only in the domain 6<t < 1, where it can
be found by substitutingy(t'), (@), instead oP°(t’) above:

Nt)=1+At)e ™,  o<t<r. (5)

2.2. Feedback line action

In this work, we consider the situation, when BN receivesitakary input
from the Poisson stream and inhibitory impulses from theleek line.
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We assume, that time deldyof impulse in the feedback line is fixed and is
smaller than the BN’s memory duratiom,

A<T. (6)

It allows us to make analytic expressions shétter

If the line is empty, when neuron fires, an output impulse rsniige line and
after delayA reaches neuron’s input. If the line already keeps an impatiskee
moments of BN firing, it does not accept a new one. It means athany given
moment, the feedback line either conveys one impulse, srampty. The state
of the nonempty feedback line can be described with a singieber,s, s€]0;4],
which gives the time to live of the impulse in the feedbaclelifhe time to live
determines position of the impulse in the feedback line,Fgéll, thick part of
the feedback line. It equals to the time, which is requiredtie impulse to reach
the end of the feedback line, if starting from a given positibhe values of are
used just at the moments of output ISI beginnings (just &b¢firings). At these
moments, the feedback line is never empty.

The inhibitory action of feedback impulses is modelled ie tbllowing way.
When the inhibitory impulse reaches BN, it annihilates altitory impulses
already present in the BN's memory, similarly as Cl-typelition shunts depo-
larization of excitable membrane, see [14]. If at the mone¢nthibitory impulse
arrival, the BN is empty, then the impulse disappears withoy action, similarly
as Cl-type inhibition does not affect membrane’s voltagisimesting state. Such
inhibition is "fast” in that sense, that the inhibitory imigas act instantaneously
and are not remembered by neuron.

2.3. Derivation outline

It is clear, that both the binding neuron and the feedback ¢iperate in de-
terministic manner. Nevertheless, the probabilistic dpson is required for the

1We were unable to found experimental value/idn an autaptic connection. A crude estimate
can be made based on the action potential propagation tyglecand the connection length,
We putv = 0.5 m/s (the smallest known). Expect that the autaptic commeet confined within
a cortical minicolumn. The minicolumn diameter is aboutts@. This gives for the propagation
delayAp ~ 3-1/v=0.3 ms. In this case, the delay of the feedback communicafipis, mainly
due to the EPSP rise time. The rise time usually falls betvtems and 10 ms, which to an extent
supports[(B) if one takes into account thathould be comparable with the membrane relaxation
constant,y. If one expects that the connection is confined within a cattiypercolumn, then
Ap ~ 3 ms, which still does not refutgl(6). But if an autaptic cortiwn is considerably longer,
then condition, which is opposite td (6) may be correct.
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output stream because of the stochastic nature of the giRaisson process.

Let us denote byP?(t) the ISI probability density function for neuron with
delayed inhibitory feedback. In order to calcul&@e(t), we use the procedure,
previously utilized for BN with excitatory delayed feedBd23]. For this purpose
we define an auxiliary random varialfiewich valuess €]0;4A] are the values of
time to live of the impulse in the feedback line at the begugnof an interspike
interval. A possibility to introduce such a variable is ergliby the fact that, at
the beginning of any ISlI, the feedback line is never empty,grvious section.
It is clear that bothS and T outcomes are uniquely determined by the unique
outcome of the driving Poisson process. Heérdenotes the ISI random variable.
The difference betweeh andSis that theS outcome becomes known in physical
time before the corresponding outcomelas known. That is, if at the beginning
of an ISI, theS outcome iss, then thiss together with the consequent outcome
of the driving Poisson process determine the outconeerresponding to this.
Due to this fact it is natural to define the conditional prabldensity, PA(t | s).
Namely,P2(t | s) dt gives the probability to obtain an output ISI of durationhvit
interval(t;t 4 dt[, provided there was an impulse in the feedback line with tione
live equals at the moment of this ISI beginning.

As the first step, we calculate the conditional probabilipsity,PA(t | s).

Then, we calculate the probability densifys), s €]0;A| for the variableS.

The output ISI probability density can be calculated basethe expressions
for PA(t | s) and f(s), namely:

PA(t) = /OA PA(t| 9)f(s)ds 7)

In order to findf(s), we first obtain the transition probability denskys |
s), s,§ €]0;4], which gives the probability that at the beginning of somepat
ISI, the line has an impulse with time to live within the intak[s’;s + ds|, pro-
vided that at the beginning of the previous ISl it had impus#h time to live
equals. f(s) is then found as normalized to 1 solution of the following &tipn:

/OA P(< |'s) f(s)ds= f (). ®)

3. Main calculation

3.1. Conditional probability density“®t | s)
In order to deriveP?(t | s), domainst < s andt > s should be considered
separately.



In the casé < s, the output impulse must be generated without the line isgul
involved. Therefore, probability density for such ISI vedus the same as for BN
without any feedback:

PAt|s)=Pot), t<s (9)

HerePO(t) is the output ISI probability density for BN without feedtagiven in
Eq. ().

At the moment = s, the inhibitory feedback impulse reaches the BN and BN
becomes empty. To trigger the neuron within the infinitesimarval [s; s+ dt],
one needs to get two input impulses within this interval.batwlity of this event
is of orderdt?. ThereforeP?(t |s) =0 att =s.

In order to obtain ISt > s, two independent events must occur: (i) BN without
feedback fires no spikes during time interj@ls|; (i) BN without feedback starts
empty at momerg and is firstly triggered at momentThese events are indepen-
dent since their realizations are defined by behavior ofgdoisnput stream on
disjoint intervals|0;s| and]s;t]. By definition ofl(t), see Eq.[(5), the probability
to have (i) isf(s), and (i) has the probabilitp®(t — s) dt. Therefore,

PAt|s)=N(s)Pot—s), t>s (10)

Taking into account Eq[15).19) and (10) for the cése T one obtain®’(t | s)
as follows:

Ate M t€]od,
PAt[s) = (11)
(14+2As) e POt —sg), t>s.
The conditional probability densit?(t | s), given in [I1), is normalized:

[ PA(t | s)dt = 1. Also, PA(t | s) has a jump discontinuity of height’s e S at
t=s

3.2. Transition probability density(® | s)

From the definition of the transition probabiliB(s’ | s) given in the last para-
graph of Sed. 2]3 it follows that

s>s and §#A = P(s|s)=0.

Indeed, consider the pdit, s), whert is the ISI duration andis the impulse time
to live in the feedback line when this ISl starts. If for th&ipthe inequalityt <'s
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takes place, thed = s—t ands < s with necessity. In the opposite situation
whent > s, the line becomes empty before the end of thetISAt the end oft,
the neuron starts next ISI by firing a spike, which chargedittfeewith a fresh
impulse. This means that in the next pairs'), with necessitys' = A. Therefore,
the set of valuegs,s), whereP(s' | s) still has to be found is defined by the
following relations:

s<s o s=A

From the meaning d?(t | ) it follows that Eq. [9) allows one to calcula®és’ | s)
for s < s, namely:

P(S|s)=P*(s—¢|s)=P%s—5)=e*)2(s—¢), ¢ <se]04], (12)

where [(1),[(2) and (6) were used.

Consider the exact equaliy= A. It is fulfilled every time, when for previous
ISI the inequalityt > s holds, and this inequality happens with non-zero prob-
ability. Therefore, the probability densi(s' | s) has singularity o®-function
type ats' = A. For calculating its mass it is enough to utilize the noraation
condition:

A
/P(s’ (9ds =1, s€0;a),
0

which gives
e A 9A2(s—d), ¢ <s€]0;A]
P ls) = {()\ s+1)e?s5(d-A), ¢>s€|0A]. (13)

3.3. Delays probability density

In order to find f(s), one should substitute(s | s) from (13) into [8) and
solve the obtained equation. &S’ | s) obtained here is exactly the same as for
BN with excitatory delayed feedback [23, Eq. (9)], the egprafor f(s) andf(s)
itself will be the same also. In_[23, Eq. (10)], the probapiliensity f (s) was
obtained as

f(s)=ad(s—A)+9(s), (14)
whereg(s) — is an ordinary function, which vanishes out of inter)gi\|:

g(s) = % <1— e‘”‘(A‘S)> ., s€l0A), (15)



anda - is the dimensionless constant:
a:4e2’\A/<(2)\A+3)e2"A+l>, (16)

which gives the probability to find the impulse in the feedbhlie with time to
live A at the beginning of any ISI.

3.4. Numerical simulations

Numerical simulations were carried out here for severappses. The first
one was to check numerically correctness of the expresémumal analytically.
The second one was to obtain ISI distributions for highexgholds and for thresh-
old 2 withA > 1. The third one was to compare the ISI distributions foune: fer
the binding neuron model with those for the leaky integraie fare (LIF) model.

A C*T program was developed, which allows us to calculate all deessary
probability distributions. The program includes the BND&ss, which analyzes
the input stream and fires in accordance with the rules, testabove. The Pois-
son steams of various intensity were produced with the HelpeoGNU Scientific
Libran@. With the help of our program, output stream samples werdumred by
calculating up tdN = 30000000 output spikes. The samples were scanned for in-
terspike intervals of various duration, and the probabdensity distribution was
then calculated by normalization.

The LIF neuron was simulated in its simplest version. Nantbky neuron’s
state at any moment of tim# is completely characterized by its membrane volt-
age at that momenY/($). Without stimulation, th&/(3) decays exponentially
to the resting state witii = O:

V(I +t)=e My (9),

wherety — is the membrane relaxation time. An input impulse advaNcbyg a
fixed value yp, instantaneously:

\% - V + Yo,
whereyp mimics the EPSP peak value. If the resulting voltage sagisfie in-

equality
V +VYo > Vo,

2see http://www.gnu.org/software/gsl/


http://www.gnu.org/software/gsl/
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Figure 2: Example of ISI PDR.eft — calculation in accordance with Eqd._{21), (A.4). (A.5).
Right— numerical simulation. For both panels=10 ms,A=8ms,A =10s 1, Ng=2.

where\y — is the firing threshold, then the LIF neuron fires an outpikespnd
appears in the resting state.

For numerical simulations we choosg = 10 ms,yo =4 mV, Vo =5 mVW.
These values are comparable with those found in the inmbitderneurons of
CAS3 hippocampal region, [13]. The relation betwagmandyg ensures that two
input impulses are able to trigger the LIF provided they dose in time. For
the inhibitory interneurons, this is because of their dapaéd resting state, |[6].
It is reported, |[5], that even single impulse from a piranhicall may trigger
interneuron of this type. Interesting, that selfinhibitierfound in the inhibitory
interneurons also, but in the neocortex, [2].

4. Resaults

4.1. 1Sl probability density

In order to findP”(t), one should substitute (111) and{14) into Eg. (7), which
gives:

PA(t) = aPA(t | A)—l—/OAPA(t | s)g(s)ds (17)

The explicit expression foP”(t), which can be obtained by further transforma-
tions of (17), will be different fot values belonging to different domains. This is
because the exact expression for®i¢t | s) is different for different domains, see
top and bottom lines of Eq._(1L1) and EfQl (1). The boundarie®ofains in which
PA(t) does not change its formula are dictated both by the first hads¢cond
term in (17). Namely, by taking (11) with= A and using[(ll) one concludes that
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Figure 3: ISI probability density?”(t), s*. Left— BN without feedback [21]right — BN with
excitatory delayed feedback [23]. In both cases, 10 ms,A =50 s'1, Ny = 2. For right pannel,
A=8ms.

the first term in[(1l7) retains the same formula in the adjadentains separated
with points
t=0,AT+A 2T+A, 3T+A,.... (18)

It appears that the second term[inl(17) as well retains the $amrmula in the do-
main bounded with first two points fror ({18) allowing one tdaib exact formula
for the first domain. Namely, if €]0;4A], then the first term i .(17) turns into

aPA(t|A) =art e, (19)

while integration domain in the second term should be spti two parts with
the points=t and use either top, or bottom line of EQ.11) in the corresjpmm
part:

/OAPA(t |9)g(s)ds
= /Ot(1+)\s) e A 2(t—s)e? (t-s) g(s)ds

A
+/ AteMg(s)ds (20)
t

By combining Eqs.[(119) and (20), one obtains after transétions

21 e/t 1 1
®) 2AA+3+e 222 |\ 6 2

+At(g+%em+%emmt>>+A2tA>, t<A (21)
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Figure 4:Left —Mean output firing rate},, vsA for inhibitory BN (Ng = 2) with delayed feedback
(1), for BN without feedback([22]2) and for excitatory BN with delayed feedback |[23) (
obtained analyticallyRight —A, vs A for inhibitory BN with delayed feedback fd¥g = 2 (1),
obtained analytically, and fd¥y = 4 (2) andNgy = 6 (3), found numerically. Here = 10 ms for
all curvesA = 2 ms for (1), (3), leftand @)—(3), right.

Whent > A, one needs only the bottom line of EQ.J(11) for calculaf4gt),
and Eq.[(1) turns into the following:

PA(t) =a(1+AA) e *2PO(t—A)
_|_/OA(]_—|—}\S) e POt_s)g(s)ds t>A (22)

Here, the first term cannot change its formula within any donuefined by
boundaries[(18). This is not the case for the second term. Nalyze the be-
havior of the second term and obtain explicit expressiorPRit) for anyt > 0

in the Appendix. Example graph &2(t) found is given at Figi12left. Com-

pare with p.d.f. for BN without feedback, Fig.] 3, left, and BWMth excitatory
feedback, right.

4.2. Properties of the ISI probability density

Notice, that the explicit expressions fBf(t) given in [Z1) and in the Ap-
pendix are not used here. All the properties discussed batewderived from
representatiori{7) and expressidns (11)] (14)—(16).

4.2.1. Mean interspike interval
The mean output ISWA, can be defined as the first moment of the ISI prob-
ability density:

WA = /OootPA(t)dt.
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Taking into account EqL{7), one obtains:

WlA:/Oootdt/oAPA(Hs)f(s)ds: /OAdsf(s>/0°°tPA(t|s)dt,

which taken together with Ed. (IL1) gives:

A : r
sz/ ds f(s) (/tze)‘t}\zdt++(1+)\s) eAS/tPO(t—s)dt>
0
0 S

A
= /\l/ds f(s) (2-;— e S (AW -2+ (AWf—l)As)) :
0

whereW, is given in [4). Use heré (14) and (15), which gives aftergfarma-
tions:
WL =a(A+Wyp), (23)

wherea is given in [16).
Note that forA = 0, Eq. [23) turns into the following:

WA =wP.
A=0

This is consistent with the fact that fér= 0 P2(t) turns into distribution for
neuron without feedback, which B(t) given in Eqgs.[(11)-£(3), see Eq. (A.9).

The output intensityd,, defined as the mean number of impulses per time
unit, is the invers&VA:

—2AA A= AT
Agz%:(z/\mue J(-e’) (24)
W/ AAA+2— (AA+1)eAT)

where Eqs[(4)[(16) and (23) were used. At large input ratefalowing relation

takes place
: A A 1
am, (5 —Ao) ~ (25)

This limiting relation, which is derived directly from Eq24), can be understood
as follows. At moderate stimulation some input spikes aséwithout influenc-
ing output due to high probability of long input ISI. At hightensity, every two
consecutive excitatory input impulses trigger the BN anmudsienpulse into the
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Figure 5: Left — Coefficient of variatiorvs x= A1 for BN (Np = 2) with inhibitory delayed
feedback forA =2 ms (1), A =5 ms @), obtained analytically, and fok = 20 ms @), found
numerically. Right —Coefficient of variatiorvs xfor BN with inhibitory delayed feedback\(=

18) forNp = 2 (1), Np = 4 (2) andNp = 6 (3), found numericallyr = 10 ms for all curves.

feedback line, provided it is empty. Thus, output intenstpuld beA /2 minus
firings, inhibited by the line. The maximum rate of inhibjgdmpulses, which
can be delivered by the feedback line to the neuron’s inpu/A, and this rate is
attainable whed — . Each inhibitory impulse either cancels one excitatory im-
pulse in the neuron, or does nothing if neuron appears enbitg aoment of the
feedback line dejection. For high input rates, the proli#slito find the neuron at
any moment of time either empty, or storing one impulse seetin &pproaching
0.5. Thus, due to feedback line activity, aboyt2A) excitatory impulses will be
eliminated every second from the input stream, and abo@iekahuch from the
output stream, which explains (25).

Graphs ofA% vs A are shown at the Fig] 4.

4.2.2. Coefficient of variation
The coefficient of variation (CV§4 of output ISIs is defined as dimensionless
dispersion:
wp
Wz ™

b =

whereW2A is the second moment of the ISI probability density:

0o A 00
_ 2 _ 2
WA:/O t PA(t)dt—/O ds f(s)/o 2 PA(t | s)dt.
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Figure 6:Left —Coefficient of variatiorvsA for BN with inhibitory delayed feedbacl], without
feedback|[22] 2) and with excitatory delayed feedback [23),(obtained analytically. Curves
(1)-3): Np = 2, T = 10 ms.Right —Coefficient of variatiorvs A for LIF neuron with inhibitory
delayed feedbackl], without feedback?) excitatory delayed feedbacB)( found numerically.
A =2 ms for (), (3) in both panels.

By calculating integrals here and taking into account E}. ¢de obtains:
()’ =

BleZ)‘T-i-ZBzeAT-i-Bg

8<(2+)\A)e“—AA—1)2_17 )

where
By =3e M2 _8e P21 2(6AA+13) e A
—8(2AA+3) e M2+ 1202A2 4+ 520 A+ 51,
By=—2e 21432 2(—BAA+AT—7) e PPy (27)
+4(2AA+3) e M 120272 + 4N 2AT — 34\ A+ 6AT — 24,
Bs = M2+ 2(4AA+3)e P2 1 120 2A% + 240 A+ 9
see Figl bleft, [, left.
It is clear, that foA = 0 Egs. [(26),[(217) must give the output ISI coefficient of

variation of BN without feedbaclk). And indeed, substituting = 0 to (26) and
(217), one obtains

1 T T
Vo™ a1 (92T = (@)

wherecS was previously found in [22, Sec. 5.3].
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Figure 7: ISI PDF (in st), found numerically.Left — inhibitory BN with delayed feedback for
No = 2,7 =10 ms,A =50 s1; right — inhibitory LIF neuron with delayed feedback.= 18 ms
in both panels.

4.2.3. Numerical Simulations

The numerical simulations were performed as describedarnX®4. BN firing
statistics is represented in termsRA(t), f(s), AS andc}. In parallel to the
analytic expressions, all these quantities were calatilatenerically for various
sets of parameters, A, A. Numerically calculated curves were then compared
with corresponding analytic expressions given in EQsl,(2AM) — (A.8), (14)
— (16), [24), [(26) and (27). It was found, that numericallyaded curves fit
perfectly with mentioned analytic expressions, see exanmiFig.[2.

The set of numerical simulations was performed for the @aset and/or
No > 2, which is not covered by the analytic expressions obtairiéte curves
obtained are given in Fidl 4ight, (2) and @), Fig.[5,left, (3), right, (1)-(3), Fig.
[7, left, Fig.[8.

A number of numerical simulations were performed for the héeiron model
with parameters given in Sec. B.4. The data obtained is ptesgén Fig[6right,
Fig.[4,right.

5. Discussion

The statement of the problem adopted in this work expeatsfoamation of
the input ISI PDF into the output ISI PDF. In the contrast taely used diffu-
sion approximation, which lacks the input ISI PDF, we traathinput and output
streams as objects of the same mathematical nature, nahelypint stochastic
processes. This is necessary if one expects to study gativit neuron involved
in the interneuronal communication with the time-codingppposed to the rate-
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Figure 8: ISI probability densit?®(t) (measured ins?) found numerically for = 10 ms,A =8
ms,A =50 s L. Left— Ny = 4, right — Ng = 6. In both cases 3L0’ triggerings were taken.

coding paradigm. This approach allowed us to consider @&sysivhere output
impulses are conveyed directly to its input — neuron withdfesck — the sim-
plest case of interneuronal communication. The feedbaokibkitory here, which
is in concordance with numerous self-inhibitory neuronsesbed in nature, see
[2,120,17]. As a result, we obtained exact expressions faeraéquantities char-
acterizing the activity of binding neuron with feedbackygmared those quantities
with those calculated numerically for the LIF neuron and entlet following con-
clusions.

5.1. Conclusions

In this paper the binding neuron model with delayed selfbition is studied.
The neuron is stimulated with point stochastic process —sdmi stream of given
intensity. The ISI PDF was found as an exact function of thmiinntensity,A,
delay time, A and neuronal internal memory duration tintefor the BN neuron
with thresholdNg = 2. The ISI PDF for higher thresholds is found numerically.
The course of the PDFs found is bimodal due to a trough=at\, see Figs.12,
[7,[8. The nature of the trough is the same as is the nature &fipethe case
of excitatory feedback, which was discussed by L.Ricciajiil], and exactly
calculated for the BN in [23].

Exact mathematical expressions are found for the mearspiterinterval, and
coefficient of variation. Those same quantities are founderically for the leaky
integrate and fire model with shunting type delayed selfaitlon. Both models
studied deliver qualitatively similar results. We condutthat the character of
dependencies found is mainly due to the presence of iniybigedback line.
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Appendix A.

Let us introduce a new variable of integration= t — sin the Eq. [22):
PA(t) =a(1+AA) e M2PO(t—A)
t
+ / (1+A(t—u))e?UPO(uyg(t —u)du. (A1)
t—A

Here, due tol([1)£(3), both the first term and the second oneltamge its formula
with changingt value. The first term changes its form every time whenA
crosses integer multiple af. This gives the boundary points {(18). The second
term in (A1) can change its value every time when eithert — A crosses integer
multiple of 1. This gives the following boundary points

t=0AT1,T+A, 21,21 +A,31,3T+A,.... (A.2)

If the t value varies between two consecutive points from|(A.2)n theth terms
in (22) or (A.1) retain their algebraic expression. In orttefind explicit form of
that expression at any domaintoflefined by[(A.2), we introduce two groups of
domains By, andCy,, namely:

Bm= [mr+A;(m+1)1], m=0,1,...,
Cn= |(IMm+1)T;(Mm+1)T+A][, m=0,1,....

Note, that the full rangé¢0; [ of possible ISI values is covered by alternate do-
mainsBmy andCp, m= 0,1,... and the domaif0;A[ for which we already have
the explicit formulal(211).

If t € By, thenmt <t—A <t < (m+1)71, and one should substituyg(t)
from (3), corresponding to tham, instead ofP°(u) in the (AJ). Ift € Cy, then
mr <t—A < (m+1)1 <t. Therefore, the domain of integration in the Hq. (A.1)
should be split into two with poinm+ 1)1, and asP®(u) one should substitute

eitherym(t), or ymy1(t).

Appendix A.l1. ISl probability density at the domains B
Thus, in the casec By, one obtains foPA(t):

PA(t) = a(1+AA) e Myt —A)

A
+ [@er9 et -9g9ds tebn (A3)

20



which after integration gives:

PAt) = a(1+2A4) & M yin(t —2) —

+ 2 @ T Yt +1) 2 e_Mmil k KA (t = (k= 1)7)*"!
2 2 k:lI;)

ATy a(t—A+ 1)

—ﬂe“g s KAt —kn) ' teBn (A4)
2 k:lI;
where
B 1 l+1 14+2
Kk'_2'+2(k—l)!((l+2)!( D)1+

—q —1)e—2M—2g(_(|2{Ai;:i (1+ | Hil -)\A)).

Appendix A.2. ISI probability density at the domains C

Consider the casee Cn,. Taking into account Eqs[](1}4(3), one can rewrite
(A7) as follows

PA(t)

teCm

—a(l+AA) e Myt —A) +/Ot(m+l)r(1+)\s) e M Symra(t —)g(s)ds
+/A (1+AS) € Sym(t —s)g(s)ds
t—(m+1)T

A
— a(1+A4) e—Mym(t—A>+/o (14+78) & ym(t —s)g(s)ds

A3 at t—(m+-1)T M2
e © /0 (1+A8) (t—s— (m+1)7)™2g(s)ds
A2 at t—(m+-1)T Lo A8t 1yt q
~ i) e /0 (14+As) (t—s— (m+1)1)™ "g(s)ds

It is useful to denote aBém(t) the right-hand side of Eq._(A.3) defined for ll
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Rn(t) =a(1AB) e yn(t—8)+ [ (1449 e Ynlt - 5)g(s)ds

With this notation, one obtains:

where

P = 25 7 jz)! o/ (1+v) (x—v)™2g (Y ) dv

Here the dimensionless variable of integratioa A swas introduced.
Performing integration i (Al6) one obtains:

m+4

m+3
_ %KI W _ @A+ %DI N
1= =

where
1 L (=) (m=—1-i)
D = . . . ,
| omea i; i (I—i)!
(M=1—1) _5a
1 oA 1
K = —
™2 A mr2) © (m+2)!”
m+2 ( 1)I 1

i

K3 = Z Mt2— (41! " (m+3)
m+2 ( 1) |+1>

)

K”‘+4:.Z)(m+2—| (|+2)
1m+2 1m+2 (_1>i
D2 4%.. m+2_.>’ Ome2=5 2 imi2-1"

22

/Xl+v (X— vm“gc\/)dv, m=0,1,....
0

t>0.

(A.5)

(A.6)

(A7)

(A.8)



Note, that in the cas& = 0, ISI probability density is completely defined by
Eq. (A.4), which turns into probability distribution for Biithout feedback given
in (@):

PA(t)|amo = P°(t), t>0. (A.9)
This indeed should be the case, because wherD, inhibitory impulses always
enter empty neuron and, therefore, the feedback line hacharace to affect the
output stream. Naturally, the output ISI distribution o= 0 coincides with that
found for BN without feedback.
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