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Abstract 

Rücker's walk count (WC) indices are well-known topological indices (TIs) used in Chemoinformatics to 

quantify the molecular structure of drugs represented by a graph in Quantitative structure–activity/property 

relationship (QSAR/QSPR) studies. In this work, we introduce for the first time the higher-order (kth order) 

analogues (WCk) of these indices using Markov chains. In addition, we report new QSPR models for large 

complex networks of different Bio-Systems useful in Parasitology and Neuroinformatics. The new type of 

QSPR models can be used for model checking to calculate numerical scores S(Lij) for links Lij (checking or 

re-evaluation of network connectivity) in large networks of all these fields. The method may be summarized 

as follows: (i) first, the WCk(j) values are calculated for all jth nodes in a complex network already created; 

(ii) A linear discriminant analysis (LDA) is used to seek a linear equation that discriminates connected or 

linked (Lij = 1) pairs of nodes experimentally confirmed from non-linked ones (Lij = 0); (iii) The new model is 

validated with external series of pairs of nodes; (iv) The equation obtained is used to re-evaluate the 

connectivity quality of the network, connecting/disconnecting nodes based on the quality scores calculated 

with the new connectivity function. The linear QSPR models obtained yielded the following results in terms 

of overall test accuracy for re-construction of complex networks of different Bio-Systems: parasite–host 

networks (93.14%), NW Spain fasciolosis spreading networks (71.42/70.18%) and CoCoMac Brain Cortex 

co-activation network (86.40%). Thus, this work can contribute to the computational re-evaluation or model 

checking of connectivity (collation) in complex systems of any science field. 
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1. Introduction 

The study of networks lies within the frontiers of many science branches, from Chemistry and 

Molecular Biology to Neurobiology, Internet, World Trade, or social sciences. The most basic 

issues are structural: how does one characterize the connectivity patterns in those networks? Are 

there any unifying features underlying their topology? Different research groups have begun to 

shed light over these unifying aspects of the structure and dynamics of complex networks 

(Boccaletti et al., 2006; Bornholdt and Schuster, 2003; Dehmer and Emmert-Streib, 2009; 

Newman et al., 2002; Ratti et al., 2010; Strogatz, 2001, 2005; Watts and Strogatz, 1998). 

Networks are represented by means of a graph as a way to capture essential information. Graphs in 

turn are sets of items, drawn as dots, or nodes, interconnected by lines or arcs, which represent 

wires, ties, links, edges, bonds, or pair-wise relationships in general. Consequently, the nodes can 

represent atoms, molecules, proteins, nucleic acids, drugs, cells, organisms, parasites, people, 

words, laws, computers or any other part of a real system. Moreover, the lines represent 

relationships between the nodes such as chemical bonds, physical interactions, metabolic 

pathways, pharmacological actions, law recurrence or social ties (Bonchev, 2003, 2004; Bonchev 

and Buck, 2007; Bonchev and Rouvray, 2005; Duardo-Sanchez et al., 2011; Gonzalez-Diaz, 

2010a,b; Newman, 2003; Thomas and Bonchev, 2010; Vina et al., 2009). 

 

There are different experimental and/or theoretical methods that assign node–node links 

depending on the type of network to be created. Unfortunately, many of these methods are 

expensive in terms of time or resources. In addition, different methods that link nodes in the same 

type of network are not totally accurate and consequently they do not always coincide. A possible 

solution to this problem is the use of Quantitative Structure–Property/Activity Relationship 

(QSPR/QSAR) models. This methodology was traditionally used in Chemoinformatics. QSARs 

are used to predict the biological activity of drugs whereas QSPRs are used to model 

physicochemical properties of organic compounds. QSPR-like models use as input mostly 

structural parameters derived from the graph representation of the network-like system under study 

(Puzyn et al., 2010). Many authors refer to the numerical parameters of a graph as topological 

indices (TIs), mainly in the case of global studies (properties of full system). Node centralities or 

local TIs of a sub-graph can be used if we want to predict a local property of a given part of the 

system. Currently, the use of QSPR-like models in which the inputs are graph parameters is not 

limited to the study of molecules and has been extended to other complex systems (González-Díaz 

and Munteanu, 2010). 

 

There are many classes of TIs useful to quantify the structure of a system in QSPR-like studies. 

In this sense, Rucker and Rucker (2000) published a work about the use of walk count (WC) 

indices. In this previous work, it was demonstrated how the complexity of a (molecular) graph can 

be quantified in terms of walk counts, obtaining extremely easy graph invariants that depend on 

size, branching, cyclicity, and edge and vertex weights (w). Weights are important to numerically 

quantify properties that differentiate classes of nodes. This is the case of unsaturation or 

heteroatoms in small molecules. In 2001, the same authors (Rucker and Rucker, 2001) returned to 

the idea of WCs with a discussion about unsaturated compounds represented by multi-graphs and 

the necessity to distinguish between the notions of sub-structure and sub-graph. They introduced a 

new computer program able to construct and count all sub-structures and sub-graphs for a colored 

multi-graph (e.g., a molecular compound which may contain unsaturations and heteroatoms). 

 

In the same year, Gutman co-authored with Rücker and Rücker another paper about WCs 

(Gutman et al., 2001). They highlighted that WCs have been used for a long time in applications of 

Theoretical Chemistry based on the fact that the (i, j)-entry of the kth power of the adjacency 

matrix is equal to the number of walks starting at vertex i, ending at vertex j, and having length k. 

They discussed about the numbers of all walks of length k. These values are called molecular walk 

counts, mwc(k), in the case of molecular graphs. They also commented that the sum of mwc(k) 

from k = 1 to k = n − 1, called total walk count (twc), as quantities that are suitable for QSPR 

studies and capable of measuring the complexity of organic molecules. Next, they established a 

few general properties of mwc's and twc among which there are the linear dependence between the 

mwc's, the spectral decomposition of mwc's, and various connections between the walk counts and 

the eigenvalues and eigenvectors of the molecular graph. In 2003, the concept of atomic wc and 
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mwc was expanded by Lukovits and Trinajstic (2003) to zero and negative orders. They used a 

backward algorithm based on the usual procedure employed to obtain the values of mwc's. More 

recently, Bonchev has applied WCs and other TIs to the complexity analysis of yeast proteome 

network (Bonchev, 2004). 

 

All the above-mentioned aspects paved the way for at least two directions in the research of 

WCs. First, they focus on general walk counts of length k (WCk) as these TIs are promising for the 

QSPR study of any class of network-like systems, not only small molecules. In addition, the 

extension of WCs calculations using different mathematical models, seems to be suitable. Our 

group has introduced the software called MARCH-INSIDE (Markovian Chemicals In Silico 

Design), or shortly MI, which has become a very useful tool for QSAR/QSPR studies for drugs, 

proteins, and more complex systems (Aguero-Chapin et al., 2008a,b, 2009; Concu et al., 2009; 

Gonzalez-Diaz et al., 2008, 2010a,b,c, 2011; González-Díaz et al., 2003, 2007; Munteanu et al., 

2009; Ramos de Armas et al., 2004; Rodriguez-Soca et al., 2010; Santana et al., 2008). However, 

MI can perform a limited management of other complex networks. Recently, we have re-

programmed the MI application creating a new software application able to manage complex 

networks. The new program is called MI-NODES (MARCH-INSIDE NOde DEScriptors) and is 

compatible with other software such as Pajek or CentiBin (it is able to upload .mat, .net and .dat 

formats). A very interesting feature of MI-NODES is that it can calculate general versions of 

classic molecular TIs for large complex networks using Markov Chains theory. In previous works, 

we have introduced several types of Markov TIs such as Markov–Shannon Entropy (Berca et al., 

2011), Markov–Randić indices (Aguiar-Pulido et al., 2010), or Markov–Harary numbers (Riera-

Fernández et al., 2011). In these works, we have used the Markov-TIs in order to compare several 

types of complex networks from different fields such as Biology Linguistics, Technology, 

Sociology and Law. The obtained results have shown the usefulness of the Markov-TIs in 

network-based studies. 

 

In this work, we introduce the new Rücker–Markov indices and use them, for the first time, as 

inputs to seek QSPR-like models able to assess the quality of the connectivity of new complex 

networks. The idea is to search for a QSPR-like model that uses as input the WCk(j) values for all 

possible pairs of nodes in a network to decide which pairs of nodes are linked and which are not. 

This class of model will allow us to computationally re-evaluate all the links in any complex 

network so that we do not have to rely upon experimentation to confirm the existence or not of a 

link between all pairs of links. By using this model, we should experimentally confirm only those 

connections predicted by the model with low link score and/or simply remove them from the 

network depending on the cost/benefit ratio. In order to illustrate the use of the new method, we 

have used three types of networks. In each case, we report for the first time new QSPR models 

useful to re-evaluate connectivity quality of different types of networks. The flowchart of the 

method is shown in Fig. 1. In the first case, we studied different biological networks of parasite-

host interactions (PHIs). In the second case, we used two macroscopic landscape parasitism-

spreading networks for cattle fasciolosis in NW Spain. The third case consisted of carrying out a 

study regarding connectivity quality in the CoCoMac cerebral cortex co-activation network 

(Modha and Singh, 2010). Therefore, this method will bring new possibilities for the assessment 

of the connectivity quality in new complex networks. 

  

http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0215
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0050
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0005
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0005
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0005
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0035
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0035
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0020
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0300
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0300
http://www.sciencedirect.com/science/article/pii/S0303264713000324#fig0005
http://www.sciencedirect.com/science/article/pii/S0303264713000324#bib0245


 
 

 
Fig. 1. General workflow for connectivity re-evaluation in complex networks. 

2. Materials and methods 

2.1. Datasets used 

2.1.1. Parasite–host complex networks 

In this work we have used four bipartite parasite–host networks: parasite–fish, parasite–

ungulates, parasite–carnivores and parasite–primates, which have been reported before by our 

group (Riera-Fernandez et al., 2012). In these networks the first set of nodes represent the parasites 

and the second one the hosts. Two nodes are connected if the parasite interacts with the host. 

2.1.2. Complex network for fasciolosis spreading in NW Spain 

The nodes of these networks are represented by farms. The Boolean or connectivity matrix C 

quantifies the propensity Cij = 1 of disease to spread between farms immediately after treatment. 

On the other hand, matrix L includes two criteria: the pre-existence of a high propensity of disease 

spreading Cij = 1 and the experimental confirmation of a high risk ratio (RRij) of prevalence after 

treatment (PATj) of the disease. See the definition of these networks in mathematical terms in our 

previous works (Riera-Fernandez et al., 2012). The original dataset used here was collected by 

Mezo et al. (2008) and employed to create a network of farm-to-farm spreading of fasciolosis in 

cattle in Galicia (NW Spain), discussed in other work carried out by our group (González-Díaz et 

al., 2010). 
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2.1.3. Macaque cerebral cortex co-activation network 

We use the information contained in the Collation of Connectivity data on the Macaque 

(CoCoMac) brain network (Modha and Singh, 2010), a Neuroinformatics dataset consisting of 383 

hierarchically organized regions spanning cortex, thalamus, and basal ganglia, with 6602 directed 

long-distance connections (http://www.cocomac.org) (see Fig. 2). 

 
 

 
Fig. 2. Innermost core for the undirected version of CoCoMac network. The innermost core is a central sub-network that is 
far more tightly integrated than the overall network. 

2.2. Computational methods 

2.2.1. The Markov–Rücker centralities 

We implemented the new centralities in the MI-NODES (MARCH-INSIDE for NOde 

DEScriptors) software and used them to calculate the node centralities of the networks studied in 

this work. MI-NODES is a GUI Python/wxPython application developed by our group that can 

manage any kind of complex network. The program builds a Markov matrix (
1
Π) for each network 

using as input the connectivity matrix L. The elements of this stochastic matrix are the node–node 

transition probabilities (pij). The probability matrix is raised to the power k, resulting (
1
Π)

k
. The 

resulting matrices 
k
Π, which are the kth natural powers of 

1
Π, contain the transition probabilities 

k
pij. These are the probabilities to reach the jth node moving from the ith node throughout a walk 

of length k for each k. The generalization of the classic W to general Markov–Rücker indices of 

order kth is straightforward to carry out by simply substituting the values of dij with these 

probabilities 
k
pij. In so doing, we can obtain k values of the new Markov–Rücker (or probabilistic 

walk counts) indices WCk(G) for a graph G. In addition, we can run the sum only over all the jth 

nodes linked to one specific node i (the number of these nodes is symbolized here as j → I and is 

equal to δi (the degree of i). In this simple case we can obtain a total of k values of new Markov–

Rücker or probabilistic walk count centralities WCk(i) for the node ith; see equations: 
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2.2.2. MI-NODES software for the calculation of Markov indices 

MI-NODES calculates new types of node Centralities 
k
Cc(j) based on Markov normalized node 

probabilities without a prior removal of each node to perform calculations. It also calculates 

Markov generalizations of different topological indices 
k
TIc(G) of class c and power k for the 

graph G. The tool can read Pajek and CentiBin networks such as *.net, *.dat and *.mat. 

2.2.3. Linear discriminant analysis (LDA) models 

Linear discriminant analysis (LDA) is possibly the most common technique used in 

QSPR/QSAR studies with TIs of molecular graphs, protein and RNA structure networks, and bio-

molecular complex networks. Let be S(Lij) the output variable of a model used to score the quality 

of the connection between two nodes ith and jth (Lij = 1). We can use LDA to seek a linear 

equation with coefficients ai, aj, aij and a0 (Eq. (3)). These are the coefficients of the TIs used as 

input (in this case local node centralities) in the QSPR-like model and the independent term. The 

terms aik and ajk refer to all nodes that lie within the kth neighborhood (placed at least at a 

topological distance d = k) of ith or jth single nodes respectively. The term aijk refers to the 

differences between the neighborhoods of a pair of nodes, which may be connected or not. We can 

use different statistical parameters to evaluate the statistical significance and validate the 

goodness-of-fit of LDA equation: n = number of cases, χ
2
 = Chi-square, p = error level, as well as 

accuracy, specificity, and sensitivity of both training and external validation series (Hill and 

Lewicki, 2006). We can write a general linear equation for an LDA-based QSPR-like model with 

the parameters mentioned above. In general, this type of LDA-based QSPR/QSAR models has 

been used before for many research studies, mainly for small molecules (Casanola-Martin et al., 

2006, 2007, 2008; Estrada et al., 2001, 2002, 2006, 2010; Marrero-Ponce et al., 2007a,b, 2010; 

Speck-Planche and Cordeiro, 2011; Speck-Planche et al., 2009, 2011a,b,c; Vilar et al., 2005). The 

LDA model based on the new Rücker–Markov indices is shown in the following formula: 

 

 

𝑆(𝐿𝑖𝑗) = ∑𝑎𝑖𝑘 ⋅ 𝑊𝐶𝑘(𝑖)

5
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5
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5

𝑘=0

+ 𝑎0 (3) 

 

 

2.2.4. Graphical representation and description of the networks 

The information used to create the networks was obtained from connectivity matrices in the 

case of the observed networks and from the output of the LDA models in the case of the 

reconstructed networks. CentiBin (v.1.4.3) (Junker et al., 2006) was used to prepare the networks 

in *.mat files (http://centibin.ipk-gatersleben.de/index.php) in order to calculate the graph 

diameter, Rücker index and average distance. The density (taking into account whether the graph 

is unipartite or bipartite), average degree and Randić index were also calculated using Pajek 

(v.1.26) (Batagelj and Mrvar, 1998; De Nooy et al., 2005). This program was used to represent 

graphically the prepared versions of the observed and reconstructed networks 

(http://vlado.fmf.uni-lj.si/pub/networks/pajek/). 
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3. Results and discussion 

3.1. Model 1: parasite–host networks 

The parasite–host interactions (PHIs) became increasingly important to understand the role of 

phylogenetic and ecological factors on the parasite–host specificity (Desdevises et al., 2002; 

Detwiler and Janovy, 2008; Poulin et al., 2011) and to know how parasites affect the ecosystem 

functioning (Anderson and May, 1979; Hatcher et al., 2006; Price et al., 1986). Thus, network 

theory became a useful tool for analyzing this type of interaction (Poulin, 2010). Due to the high 

experimental difficulty inherent to the in situ accurate determination of PHIs, the computational 

models are very effective tools to correct the PHIs networks. In this work, we have used χk to seek 

a QSPR-like model able to score the quality of PHIs in known networks. The best model found 

was the following: 

 

 

𝑆(𝐿𝑖𝑗) = −258.93 ⋅ [𝑊𝐶1(𝑝𝑖) −𝑊𝐶1(ℎ𝑗)] + 283.69 ⋅

[𝑊𝐶2(𝑝𝑖) −𝑊𝐶2(ℎ𝑗)] − 88.75 ⋅ [𝑊𝐶4(𝑝𝑖) −𝑊𝐶4(ℎ𝑗)] + 0.25

𝑛 = 49,218; 𝜒2 = 22,297; 𝑝 < 0.001

  (4) 

 

 

In this equation, S(Lij) is a real-valued output variable that scores the propensity of the ith 

parasite specie (pi) to infect a given host specie (hj). The Chi-square statistic (χ
2
) shows a low p-

level < 0.001, which indicates a significant discrimination between well-established host–parasite 

relationships and not confirmed parasitism. The model shows good values of accuracy, sensitivity, 

and specificity for the recognition of parasite–host relationships (links) both in training and 

external validation series (see Table 1, Model 1). Consequently, with this simple linear model we 

could re-evaluate connectivity quality in the already known PHIs networks in a fast and non-

expensive way (without experimentally resampling all PHIs in the corresponding ecological 

niche). The giant components of the observed and reconstructed networks are described 

numerically and graphically in Table 2. 
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Table 1. Training and validation results for all models developed in this work. 

QSPR model Training series 
 

Model parameters 
 

Validation series 

 
NL L 

 
%  

 
 % 

 
NL L 

  

1 Parasite–host networks 

42,503 2125 NL 95.24  Specificity  95.43 NL 14,120 676 

1227 3363 L 73.27  Sensitivity  70.81 L 444 1077 

  
Total 93.19  Accuracy  93.14 Total 

  
2a NW Spain fasciolosis landscape-spreading network (C) 

15,000 5983 NL 71.49  Specificity  71.55 NL 5035 2002 

902 2278 L 71.64  Sensitivity  70.54 L 312 747 

  
Total 71.51  Accuracy  71.42 Total 

  
2b NW Spain fasciolosis landscape-prevalence network (L) 

15,934 6688 NL 70.44  Specificity  70.16 NL 5337 2270 

404 965 L 70.49  Sensitivity  70.44 L 133 317 

  
Total 70.44  Accuracy  70.18 Total 

  
3 Cerebral cortex co-activation network 

30,161 3957 NL 88.40  Specificity  88.30 NL 10,068 1334 

1256 3696 L 74.64  Sensitivity  73.27 L 441 1209 

  
Total 86.66  Accuracy  86.40 Total 

  
            

 
Rows: observed classifications; columns: predicted classifications. 



Table 2. Comparison of original vs. re-constructed parasite–host networks (giant components). 

Observed network Network descriptors a Reconstructed network 

 

Parasites–fish 

 

298 n 229 

 

 
239 np 208 

 

 
59 nh 21 

 

 
912 m 505 

 

 
6.12 Ad 4.41 

 

 
0.0647 den 0.116 

 

 
95.77 R 58.40 

 

 
298,626 W 178,232 

 

 
7 D 6 

 

 
3.37 AD 3.41 

 
Parasites–ungulates 

 

793 n 716 

 

 
701 np 677 

 

 
92 nh 39 

 

 
1863 m 1439 

 

 
4.70 Ad 4.02 

 

 
0.0289 den 0.0545 

 

 
191.02 R 142.48 

 

 
2,534,140 W 1,971,820 

 

 
10 D 8 

 

 
4.03 AD 3.97 

 
Parasites–carnivores 

 

619 n 542 

 

 
537 np 508 

 

 
82 nh 34 

 

 
1343 m 1014 

 

 
4.34 Ad 3.74 

 

 
0.0305 den 0.0587 

 

 
159.16 R 117.23 

 

 
1,587,048 W 1,181,852 

 

 
9 D 9 

 

 
4.15 AD 4.14 

 
Parasites–primates 

 

913 n 766 

 

 
757 np 704 

 

 
156 nh 62 

 

 
1993 m 1482 

 

 
4.37 Ad 3.87 

 

 
0.0169 den 0.0340 

 

 
252.66 R 180.73 

 

 
3,609,008 W 2,469,592 

 

 
10 D 12 

 

 
4.33 AD 4.27 

 
     

 
a Network descriptors: total number of connected nodes (n), number of connected parasites (np), number of connected hosts (nh), number of edges (m), average 

degree (Ad), density (den), Randić connectivity index (R), Rücker index (W), diameter (D) and average distance (AD). The size of each node is proportional to its 

normalized degree. The outer nodes are parasites and the inner nodes are hosts
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3.2. Model 2: fasciolosis spreading network (NW Spain) 

Fasciolosis is a parasitic infection caused by Fasciola hepatica (liver fluke) that has become an 

important cause of lost productivity in livestock worldwide. Considered a secondary zoonotic 

disease until the mid-1990s, human fascioliosis is at present emerging or re-emerging in many 

countries, including increase of prevalence as well as intensity and geographical expansion. In 

fact, research studies in recent years have justified the inclusion of fascioliosis in the list of 

important human parasitic diseases. At present, fasciolosis is the vector-borne disease showing the 

widest latitudinal, longitudinal and altitudinal distribution known. In addition, it shows a range of 

epidemiological characteristics related to a wide diversity of environments (Mas-Coma, 2005). In 

this sense, the study of geographical spreading of fasciolosis became a subject of great interest. In 

fact, in a recent work we have created a network (with two versions, C and L) to study the 

landscape spreading of fasciolosis in Galicia (NW Spain) (González-Díaz et al., 2010). However, 

we do not have quantitative criteria on the quality of the network connectivity, and re-sampling of 

all data in order to re-evaluate this connectivity in a field study is a hard and expensive task in 

terms of time and resources. This situation has prompted us to seek models in order to assess the 

quality of the networks previously assembled. The best QSPR models found for C and L were: 

 

 

𝑆(𝐶𝑖𝑗) = 2.86 ⋅ [𝑊𝐶1(𝑓𝑖) −𝑊𝐶1(𝑓𝑗)] − 0.38, 𝑛 = 24,163; 𝜒2 = 4,148; 𝑝 < 0.001 (5) 

  

𝑆(𝐿𝑖𝑗) = 8.34 ⋅ [𝑊𝐶1(𝑓𝑖) −𝑊𝐶1(𝑓𝑗)] − 2.17 ⋅ [𝑊𝐶5(𝑓𝑖) −𝑊𝐶(𝑓𝑗)] − 0.56, 𝑛

= 23,991; 𝜒2 = 1965; 𝑝 < 0.001 

(6) 

 

 

The values WCk(fi) and WCk(fj) used in this equation quantify information about the 

connectivity patterns between farms in the network. As it can be seen in the equations described in 

the Materials and, Methods Section, the connectivity of C depends on the spatial coordinates (xi, 

yi) of the farm (fi), the altitude of the place (hi), and the anti-parasite drug treatment (Trj) used to 

prevent fasciolosis on this farm. Consequently, the matrix C quantifies the a priori propensity 

Cij = 1 of this disease to spread between farms immediately after treatment depending on 

geographical conditions. On the other hand, matrix L includes both criteria: (i) the preexistence of 

a high propensity of disease spreading Cij = 1 and (ii) the experimental confirmation Lij = 1 of a 

high risk ratio (RRij) of prevalence after treatment (PATj) for this disease on farms. The developed 

QSPR models show good values of accuracy, sensitivity, and specificity (see Table 1, Models 2a, 

2b). Both observed and reconstructed networks (giant components) are described and represented 

graphically in Table 3. 
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Table 3. Comparison of observed vs. re-constructed NW Spain fasciolosis spreading networks and CoCoMac Brain Cortex 

network (giant components). 

Observed network Network descriptorsa Reconstructed Network 

Fasciolosis spreading (C) 

 

270 n 270 

 

 
3048 m 3020 

 

 
22.58 Ad 22.37 

 

 
0.0839 den 0.0831 

 

 
126.35 R 126.29 

 

 
245,570 W 246,816 

 

 
9 D 9 

 

 
3.38 AD 3.40 

 

Fasciolosis spreading (L) 

 

259 n 248 

 

 
1798 m 1268 

 

 
13.88 Ad 10.23 

 

 
0.0538 den 0.0414 

 

 
114.47 R 103.74 

 

 
273,596 W 259,744 

 

 
11 D 13 

 

 
4.09 AD 4.24 

 

Macaque brain 

 

360 n 357 

 

 
5208 m 3829 

 

 
28.93 Ad 21.45 

 

 
0.0806 den 0.0603 

 

 
145.98 R 118.60 

 

 
292,892 W 295,056 

 

 
5 D 5 

 

 
2.27 AD 2.32 

 
     

 
a Network descriptors: total number of connected nodes (n), number of edges (m), average degree (Ad), density (den), 
Randić index (R), Rücker index (W), diameter (D) and average distance (AD). The size of the drawn nodes is proportional 

to its normalized degree.
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3.3. Model 3: cerebral cortex co-activation network 

Connectivity is the key to understanding distributed and cooperative brain functions. Detailed 

and comprehensive data on large-scale connectivity between primate brain areas have been 

collated systematically from published reports of experimental tracing studies (Kotter, 2004). The 

eventual impact and success of connectivity databases, however, will require the resolution of 

several methodological problems that currently limit their use. These problems comprise four main 

points: (i) objective representation of coordinate-free, parcellation-based data; (ii) assessment of 

the reliability and precision of individual data, especially in the presence of contradictory reports; 

(iii) data mining and integration of large sets of partially redundant and contradictory data; and (iv) 

automatic and reproducible transformation of data between incongruent brain maps (Stephan et al., 

2001). In order to address (ii) and (iv), we have developed a specific model for the collation of 

connectivity data on the macaque brain (CoCoMac) database (http://www.cocomac.org). The best 

model found was the following: 

 

 

𝑆(𝐿𝑖𝑗) = 1.92 ⋅ 𝑊𝐶1(𝑖) + 2.14 ⋅ 𝑊𝐶2(𝑗) − 1.68, 𝑛 = 39,070; 𝜒2 = 20,602; 𝑝 < 0.001 (7) 

 

 

In this equation, S(Lij) is a real-valued output variable that scores the propensity of the ith 

cerebral cortex region to undergo co-activation with the jth region in the CoCoMac network. The 

parameter χk quantifies the information related to the position of the ith region and their direct 

neighbors (jth regions) in the network after K steps. As in the previous equation the χ
2
 = 4449 

statistics corresponds to a p-level < 0.001, which indicates a significant discrimination between co-

activated regions and not co-activated ones. The model shows very good values of accuracy, 

sensitivity, and specificity (see Table 1, Model 3). The giant components of the observed and 

reconstructed networks are described numerically and graphically in Table 3. 

4. Conclusions 

This work is aimed to introducing for the first time a new node descriptor, the Rücker–Markov 

invariants with two examples of network connectivity re-evaluation in Parasitology and 

Neuroinformatics: parasite–host networks, Fasciolosis spreading network (NW Spain) and Brain 

Cortex co-activation network. This new class of indices represents a modified version of the well-

known Rücker's walk count (WC) index, by using Markov Chains, and they have been calculated 

with the MI-NODES tool. The descriptors have been used to create QSPR-like models in order to 

re-evaluate the links between the network nodes using the linear discriminant analysis. The overall 

accuracy for re-construction of complex networks of different Bio-Systems have been calculated: 

parasite–host networks (93.14%), NW Spain fasciolosis spreading networks (71.42/70.18%) and 

CoCoMac Brain Cortex co-activation network (86.40%). Therefore, we recommend the use of 

QSPR-like models based on Rücker-Markov descriptors as an alternative to high cost experimental 

re-evaluation of all links in any type of complex network. 
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