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ABSTRACT

P systems are computing models inspired by some basic features of biological membranes. In this work,
membrane division, which provides a way to obtain an exponential workspace in linear time, is
introduced into (cell-like) P systems with communication (symport/antiport) rules, where objects are
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1. Introduction

Membrane computing is a flexible and versatile branch of
natural computing, which arises as an abstraction of the com-
partmentalized structure of living cells, and the way biochemical
substances are processed in (or moved between) membrane
bounded regions Paun (2000). Membrane computing is a paradigm
providing computing devices called P systems, which are parallel,
non-deterministic and distributed computational models. Inspired
by that structure, two main classes of P systems have been inves-
tigated: (a) a hierarchical arrangement of membranes as in a cell
Paun (2000), processing information by multisets of symbols; and
(b) a net of processor units placed in the nodes of a directed graph,
inspired by the cell intercommunication in tissues Martin-Vide et
al. (2003) or inspired by the way neurons communicate with each
other by means of short electrical impulses, identical in shape
(voltage), but emitted at precise moments of time lonescu et al.
(2006). These models have two interesting properties: the
capability to solve as many problems as a Turing machine (com-
putational completeness) and the ability to solve computationally

never modified but they just change their places. The computational efficiency of this kind of P systems
is studied. Specifically, we present a (uniform) linear time solution to the NP-complete problem, Subset
sum by using division rules for elementary membranes and communication rules of length at most 3. We
further prove that such P system allowing division rules for non-elementary membranes can efficiently
solve the PSPACE-complete problem, QSAT in a uniform way.

hard problems in a feasible time, by trading space for time (compu-
tational efficiency). General information on membrane computing
can be found in Paun et al. (2010), Frisco (2009), and for the
most up-to-date references, one can refer to the P systems website
http://ppage.psystems.eu.

A basic P system is based on a cell-like arrangement of mem-
branes, that are placed in a nested hierarchical structure; each
membrane delimits a compartment (also called region) where mul-
tisets of objects and rules for evolving these objects are placed. A
membrane with no compartments inside is called elementary, oth-
erwise it is called non-elementary. The outmost membrane is called
a skin membrane, the space outside the skin membrane is called
the environment. There are two main types of evolution rules of
cell-like P systems associated with membranes: multiset rewrit-
ing rules and communication (symport/antiport) rules. The present
work focuses on a class of P systems with symport/antiport rules,
which were proposed in Paun and Paun (2002). Symport rules are
of form (u, in) or (u, out), and move objects of multiset u through a
membrane; antiport rules are of form (u, out; v, in), and move the
objects of multiset u outside a membrane while moving the objects
of multiset v inside.

Cell-like P systems have been studied widely. Up to now,
researchers have proposed lots of classes of cell-like P systems,
and many of them have been proved to be computationally com-
plete (see, e.g., Alhazov and Freund (2005), Alhazov et al. (2006),
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Bernardini and Gheorghe (2003), Ciobanu et al. (2007), Paun and
Paun (2002), Paun et al. (2005)). The computational efficiency of
cell-like P systems has also been investigated Paun et al. (2010).
A particularly interesting class of cell-like P systems is that of P
systems with active membranes Paun (2000), which contain object
evolution rules, in communication rules, out communication rules,
dissolving rules and membrane division rules. Membrane divi-
sion rules can generate an exponential workspace in polynomial
time (even in linear time). Therefore, P systems with active mem-
branes can be used to solve computationally hard problems by a
time-space trade-off Paun (2001), Pérez-Jiménez and Riscos-Nufez
(2004), Pérez-Jiménez and Riscos-Ntilez (2005).

In this work, membrane division is introduced into cell-like P
systems, and they evolve by means of symport/antiport or division
rules, that is, we present a class of P systems with symport/antiport
rules and membrane division, where objects are never modified but
they just change their places, moreover, objects can be commu-
nicated with the environment only through the skin membrane.
The computational efficiency of such kind of P systems is studied.
Specifically, we present polynomial time solutions to the Subset
sum problem by using division rules for elementary membranes and
for the gsAT problem by using division rules for non-elementary
membranes. In both cases, the solutions are uniform and they are
obtained by using communication rules of length at most 3.

2. Preliminaries

In this Section, we only introduce some basic notions and nota-
tions from formal languages theory. Readers can refer to Rozenberg
and Salomaa (1997) for details.

An alphabet ¥ is a non-empty set and their elements are called
symbols. An ordered finite sequence of symbols over ¥ forms a
string. The length of a string u, denoted by |u|, is the number of
occurrences of symbols it contains. We denote by ¥* the set of all
strings over X. The empty string (with length 0) is denoted by A,
and by X* = X*\ {A} we denote the set of non-empty strings.

For an alphabet X, a multiset over X is a pair (X, f) where
f: ¥ — Nisamapping, Nis the set of natural numbers. If m=(ZX, f)
is a multiset, then its support is defined as supp(m)={x € X|f(x) > 0}.
If supp(m)={ay, ..., ax} then we denote m = {¢{(@), ..., af{a)}. A
multiset is finite if its support is a finite set. We denote by ¢
the empty multiset and by M{X) the set of all finite multisets
over X. If my=(%, f1), my=(Z, f») are multisets over %, then the
union of m; and my, denoted by m; +mj;, is the multiset (%, g),
where g(x)=f1(x)+f,(x) for each xe X; the relative complement
of my in my, denoted by m; \ my, is the multiset (X, g), where
&8(x)=f1(x) - L(x) if f1(x) = f(x), and g(x) =0 otherwise.

3. P systems with symport/antiport rules and membrane
division

In this Section, we study P systems with symport/antiport rules,
a class of computing devices aiming to abstract the active trans-
port of molecules across the membranes. In this kind of P systems,
objects are processed in a pure communicative way, that is, objects
do not evolve and only change their places during the computation
process. Membrane division rules are allowed in such P systems.

Definition 1. A P system with symport/antiport rules
and membrane division of degree g>1 is a tuple Il=
(T & w, My, ..., Mg, R, ..., Rgq, lout), Where:

¢ ['is an alphabet (the working alphabet) and £ C T;

e 1 is arooted tree with g nodes labeled by 1, .. ., g;

* M;, 1<i<gq, are finite multisets over I';

* R;, 1 <i<gq, are finite sets of rules of the following forms:

(ay) Symport rules: (u, out) or (u, in), for ue M{T'), |u| > 0;
(az) Antiport rules: (u, out; v, in), for u, v e Mg(I"), |u| >0, |v| > 0;
(b) Division rules: [a]; — [b]i[c];, for i€ {2, ..., q}, i # iou, a, b,
cel’;
®ioue{0,1,...q}

A P system with symport/antiport rules and membrane divi-
sion of degree g > 1 can be viewed as a set of ¢ membranes labeled

by 1, ..., q, arranged in a hierarchical structure of a rooted tree
(the root labeled by 1 is called the skin membrane), such that: (a)
My, ..., Mqrepresent the finite multisets of objects initially placed

in the ¢ membranes of the system; (b) £ is the set of objects initially
located in the environment of the system, all of them available in
an arbitrary number of copies; (c) Rq, ..., Rq are finite sets of rules
(R; corresponds to the membrane i of w); (d) oy is a distinguished
region which will encode the output of the system. We use the term
regioni(0<i<q)toreferto membraneiincase 1 <i<gqandtorefer
to the environment in case i = 0. The length of a symport rule (u, out)
or (u, in) (an antiport rule (u, out; v, in), respectively) is defined as
[u] (Ju| + |v|, respectively).

Foreach membraneie {2,.. ., q}, we denote by p(i) the parent of
membraneiin the rooted tree u, the “parent” of the skin membrane
is the environment, denoted by p(1)=0.

A configuration of such a P system at any moment is described
by the current membrane structure (the rooted tree), together with
all multisets of objects over I' associated with the regions of this
membrane structure and the multiset of objects over I" \ £ associ-
ated with the environment at that moment. The initial configuration
of (I, &, Mo, .. ., Mg, R1, ..., Ryq, four) is (p, M4, .. ., Mql@).

A symport rule (u, out) € R; is applicable to a configuration at a
moment if membrane i contains multiset u at that moment. When
such a rule is applied, multiset u is sent to the parent of membrane
i. A symport rule (u, in) € R; is applicable to a configuration at a
moment if the parent of membrane i contains multiset u at that
moment. When such a rule is applied, multiset u enters membrane
i from the parent of i.

An antiport rule (u, out; v, in) € R; is applicable to a configura-
tion at a moment if membrane i contains multiset u and its parent
contains multiset v at that moment. When such a rule is applied,
multiset u from membrane i is sent out of membrane i, and simul-
taneously, multiset v enters region i from the parent of i.

A division rule [a]; — [b]i[c]; is applicable to a configuration at
a moment if the following conditions hold at that moment: (1)
membrane i contains object a; (2) membrane i is neither the skin
membrane nor the output membrane. When applying such a rule,
membrane i is divided into two membranes with the same label:
in the first copy, object a is replaced by object b, in the second
one object a is replaced by object ¢, and all the objects in the orig-
inal membrane, different from the object triggering the rule, are
replicated in the two new membranes. Besides, if membrane i is a
non-elementary membrane, then all membranes inside membrane
i as well as objects contained in them, will be replicated in each of
the new membranes.

The rules of a P system with symport/antiport rules and mem-
brane division are used in a maximally parallel way. At each step, a
maximal multiset of rules is applied (no further rule can be added
being applicable) with the following restriction: when a membrane
is divided, the division rule is the only one which is applied for
that membrane at that step, the objects inside that membrane do
not evolve by means of communication rules. The objects in the
new membranes resulting from division could participate in the
interaction with the objects in the (upper or lower) neighbor of
membranes by means of communication rules at the next step if
these new membranes are not divided once again.

Starting from the initial configuration and applying rules
as described above, one obtains a sequence of consecutive



configurations. Each passage from a configuration C to a next
configuration C’ is called a transition and denoted by C=C. A
configuration is a halting configuration if no rule of the system is
applicable to it. A computation of such a P system is a (finite or
infinite) sequence of transitions between configurations such that:
(1) the first term of the sequence is the initial configuration; (2)
each non-first term of the sequence is obtained from the previous
configuration by applying rules in a maximally parallel way with
the above mentioned restriction; (3) if the sequence is finite,
then the last term of the sequence is a halting configuration, and
such a computation is called a halting computation. Only halting
computations give a result, encoded by the multiset of objects
present in the output region igy;.

3.1. Recognizer P systems with symport/antiport rules and
membrane division

Recognizer P systems were introduced in Pérez-Jiménez et al.
(2006), as a natural framework to solve decision problems.

Definition 2. A recognizer P system with symport/antiport rules
and membrane division of degree g > 1 is a tuple

M=(,& X%, u, My, .. > Mg, R, .., Ry, Iin, lout),
such that:
o (I & w, My, ..., Mg, R1, ..., Rgq, lout) is a P system with sym-

port/antiport rules and membrane division of degree q > 1;

e [' has two distinguished objects yes and no, with at least one
copy of them present in some multisets My, ..., Mg, but none of
them present in &;

e ¥ is an (input) alphabet strictly contained in I', and such that
EcT\ %;

® My, ..., Mg are finite multisets over I'\ 3;

® ii,€{1,...,q} is the input membrane, and ioyr =0;

e a]l computations halt;

e if C is a computation of I, then either object yes or object no
(but not both) must have been released into the environment,
and only at the last step of the computation.

For each finite multiset w € Mf(X), the computation of a P sys-
tem with symport/antiport rules and membrane division with
input w starts from a configuration of the form (x4, My, ..., M;, +
w, ..., Mg, ¥), where the input multiset w is added to the contents
of the input membrane ij,.

We denote by CD.C(k) (CDn.C(k), respectively) the class
of recognizer P systems with division rules for elementary
membranes (non-elementary membranes, respectively) whose
symport/antiport rules have length at most k.

3.2. Polynomial complexity classes of recognizer P systems

Next, we define the concept of polynomial time solvability (in a
uniform way) by means of family of P systems (see Pérez-Jiménez
(2005) for details).

Definition 3. A decision problem X=(I, fx) is solvable in poly-
nomial time by a family IT = {I1(n) | n € N} of recognizer P systems
from CD.C(k) or CD;,.C(k), in a uniform way, if the following condi-
tions hold:

1. The family IT is polynomially uniform by Turing machines.

2. There exists a pair (cod, s) of polynomial-time computable func-
tions over Iy such that: (a) for each instance u € I, s(u) is a natural
number and cod(u) is an input multiset of the system IT(s(u));
(b) for each n e N, s~1(n) is a finite set; and (c) the family IT

is polynomially bounded, sound and complete with regard to
(X, cod, s).

We denote by PMCcp,c(k) (PMCcp,.c(k), Tespectively) the set of
all decision problems which can be solved in a uniform way and
polynomial time by means of recognizer P systems from CD.C(k)
(CDReC(k), respectively).

4. Solving the subset Sum problem by using CD.C(3)

Subset Sum problem is a numerical NP-complete problem,
which has been investigated widely in membrane comput-
ing. Specifically, different (uniform) polynomial time solutions
have been provided by using families of P systems with active
membranes Pérez-Jiménez and Riscos-Nufiez (2005), P systems
with membrane creation Gutiérrez-Naranjo et al. (2005), and
tissue P systems with cell division Diaz-Pernil et al. (2007).
Next, we present a solution to the Subset Sum problem by
combining the symport/antiport rules used in tissue-like P sys-
tems and the membrane division of P systems with active
membranes.

The subset sum problem is described as follows: Given a finite
set A, a weight function, w : A — N, and a constant k € N, determine
whether or not there exists a subset BC A, such that w(B) = k.

let g:NxN—-N be the function defined by g(n,
k)=((n+k)n+k+1)/2)+n. It is a primitive recursive and bijective
function. We denote g(n, k) = (n, k).

For each (n, k) € N x N, we consider the recognizer P system
from CD.C(3)

H((ns k)) = (F7 g, Es M, M] ) MZs R1, Ra2, iins iout)»

defined as follows:

e X={qiufy|1<i<n)

e &={u;j|1<i<n+logn]+loglk+1)1+7}U{a;|1<i=<
n+ [logn] + rlog(k + 1)1+ 1} U {b; | 1 <i < n+ [logn] + [log(k +
D1+2)U{c |1 <i<n+Tlogn]+log(k+1)1+4uU{d;j;| 1=
i<n,1<j<Tloglk+1)],1<l<n+j+1}U{e, p};

e ['=XYUEU{A;,Bj |1 <i<njuig, h,m,n,z, yes, no};

e w=Ill:
® M1 ={d1,1,15 - - -» A1, flog(k+1)1,1> 42,1,15 - - - D2 [log(k1)7,15 « - -
dn1,15 -+ dufogks1)1, @1, b1, ¢1, n, aq, yes, no}; and

My ={g, h,m,Aq,..., An};
® i;, = 2istheinputmembrane; and iy = Oistheoutputregion;
e The set R consists of the following rules:
r1i= (o4, out; o, in), 1<i<n+[logni+log(k+1)7+6.
rp.; = (a;, out; ai2+1 ,in), 1<i<n+Tlogn7+[log(k+1)7.
r3; = (b, out; b? ,,in), 1<i<n.
r4i=(b;, out;bjsq,in),n+1<i<n+[logn]+[log(k+1)]+1.
rs; = (c;,out;cZ 1, in), 1<i<n.
16i=(cj, out; cpq,in),n+1<i<n+[logn7+log(k+1)7+3.
IT<i<n, 1<j</logk+1)

r7,ij1 = (djj 1, out; d? i< Zi=n "

ij,1+1°

18 = (An+[logn]+[log(k+1)1+1, OUL ; P, in).
rg= (bn+(logn]+(10g(k+1)w+2v out;e, m)~
rio=(mnyes, out).
rii=(n A p+rlogn)+log(k+1)]+7 110, out).

e The set R, consists of the following rules:
r2,i = Al = [Bil[zly, 1<i<n.

13, = (B;, out; diz,l,n+2’ in),1<i<n.
. 1<i<n, 1<j<Tloglk+1)1-1
— A2
Naiji = (dijpoutidy; o in) { n+2<l<n+logk+1)

T'15,i = (i rlog(k+1),n+Tlog(k+1)1+1Vi»> OUt; p, in), 1 <i<n.
rie=(pq, out).
ri7=(g, out;e, in).



rig =(ep, out).

ri9 =(eq, out).

rpo=(h, out; Cn+logn+log(k+1)]+4» in).
rp1=(em Cn+[logn]+[log(k+1)]+4» out).

The computation process can be divided in the following phases.

e Generation phase: at the first n steps, all possible subsets of A are
generated by applying membrane division rules to membranes
with label 2. Simultaneously, 2" copies of objects d;j n+1, an+1, by+1,
cp+1 are produced in membrane 1, and the counter «; evolves in
membrane 1.

Pre-checking phase: after the generation phase, there are 2" copies
of membrane 2, each of them containing a subset of A. Then as
many copies of object p as the weight of the corresponding subset
are introduced in membrane 2. To this aim, we should introduce
enough copies of g; in membrane 1 first, then as many copies of
P as object au.iogny+iog(k+1y1+1 Will be introduced in membrane 1.
Checking phase: in each membrane with label 2, the number of
copies of objects p and q are compared by sending all possible
pairs (p, q) to membrane 1. After doing that, a membrane with
label 2 will encode a subset of A whose weight is equal to k if and
only if no object p or g remains in that membrane.

Output phase: after the checking phase, the system sends an affir-
mative answer to the environment if there exists at least one
membrane with label 2 without objects p or g; or a negative
answer if each membrane with label 2 contains some object(s)

porg.

4.1. An overview of the computation

First, we consider a pair (cod, s) of polynomial time functions
over the set of instances of the subset Sum problem. For that, let
u = (A, w, k) be an instance of the problem and A={zy, z5, .. ., zn}.
Then,

e cod(u) = {vi: Iw(z;)=jA1<i<n}u{q¥}, where vi (j copies of
object v;) represents that j is the weight of element z;.
e s(u)=(n, k).

In this situation, instance u = (A, w, k) will be processed by
system [1(s(u)) with input multiset cod(u). In what follows, we
describe informally how the recognizing P system I(s(u)) from
CD.C(3) with input cod(u) works.

At theinitial configuration, we have objects aq, by, cq,n,a1,d1 11,
< A flogkr 1,1 2,115 -+ o0 2 flog(k+ 11,15 « « - An 115 - - - Gnflog(k+1)1.15
yes,no in membrane 1, objects Ay, ..., Ap, g h, m, cod(u) in mem-
brane 2.

The generation phase spends n steps and the division rules rq,;
are applied in membrane 2 producing 2" copies of membrane 2,
each of them contains a subset of A; simultaneously, in membrane
1, by using rules rp, 13, I's j, I'7,j,, Objects a;, by, ¢;, d;j; will be dupli-
cated until getting 2" copies in exactly n steps; besides, by applying
rule ry;, the counter object «; increases its subscript by 1 at each
step. Rule r1; will be applied in the whole computation process
except for the last step in the case that the answer is negative. Note
that object z is an idle object in cells with label 2.

The pre-checking phase starts at step n+1. In this phase, we
should introduce enough copies of object p in each membrane 2,
but those objects are first introduced in membrane 1. Specifically,
at step n+1, 2™1 copies of objects d;jn+2 are produced in mem-
brane 1 by applying rules r7;;q+1 (1<i<n, 1<j<Tlog(k+1)1). At
next step, by using rules ry3;, one copy of object B; in each mem-
brane 2 is exchanged with two copies of object d; 1 5+ in membrane
1 (at that step, in all membranes 2 there are at most 2" copies of
object B;, and in membrane 1, there are 2"*! copies of object d; 1 n+2).

Besides, at step n+2, objects djju+> (1<i<n, 2<j<Tlog(k+1)1)
are duplicated by using rules r7;;n4+2, and 2™2 copies of objects
d;jn+3 are produced in membrane 1. At step n+3, objects d;;jn+3
(1=i<n,3<j<Tllog(k+1)1) are duplicated by using rules r7;; .3,
and 2™3 copies of objects d;jn+a are produced in membrane 1.
Simultaneously, each copy of object d;1 54+, in all membranes 2 is
exchanged with two copies of object d;, ,+3 in membrane 1 (at that
step, in all membranes 2 there are at most 2™ copies of object
d; 1 n+2, and in membrane 1, there are 2™2 copies of object d; 3 +3)-
By applying rules r7;;; and rq4;;; as many times as possible, at step
n+[log(k+1)]+1, in each membrane 2 that contains object B;, we
obtain 2M1°8k+1)1 copies of object d; fiog(k+ 1) n+log(k+1)1+1- SO at least
k+1 copies will be available.

From step n+1 to step n+[logn1+[log(k+1)1], object a; will be
duplicated by using rule r, ;, that is, at step n+ [logn 1+ [log(k+ 1)1,
there are 2n*flogni*floglk* D copies of object ap+fiogny+fiogke1)+1 iN
membrane 1. In this process, counters b;, ¢; increase their subscripts
by applying r4, 16

At step n+[logn1+[log(k+1)]+1, object apsfiogni+iog(k+1y+1 iN
membrane 1 is exchanged with object p from the environment by
using rule rg. All copies of objects b;, ¢; increase their subscripts at
this step.

Atstepn+[logn]+[log(k+1)7+2, object by iogny+iog(k+1)1+2 has
2" copies in membrane 1 and each such copy is exchanged with
object e from the environment (rule rg). By using rule rg;, 2" copies
of object Cpifiogn+riog(k+1)1+3 Will present in membrane 1. Simul-
taneously, by applying rules rq5; in all membranes 2, for each
element B; in the subset associated with the membrane we get
min{2Mogk+11 w(s;)} copies of object p.

The checking phase starts at step n+ [logn]+[log(k+1)1+3.In
this step, by using rule ryg, all pairs of objects p and g present in
any membrane with label 2 are sent to membrane 1. In this way,
if the weight of the subset associated with a membrane 2 is equal
to k, then no object p or g remains in this membrane at the next
step. Otherwise, at least one copy of object p or g will remain in
the membrane. Simultaneously, in every membrane 2 object g is
exchanged with object e in membrane 1 (rule ry7), that is, each
membrane 2 will contain one copy of object e; object ¢; increases
its subscript, and 2" copies of object Cy+fiogny+fiog(k+1)1+4 APPeAr in
membrane 1.

When the checking phase finishes, the output phase starts at
stepn+[logn]+[log(k+1)]+4. There are two cases.

® There exists at least one membrane 2 with a subset whose weight
is equal to k. In this case, at step n+[logn]+[log(k+1)]+4,if a
membrane 2 contains at least one copy of object p or g, then object
e will be sent to membrane 1 by using rule ryg or r1g; otherwise,
object e will remain in that membrane. Simultaneously, object h
in all membranes 2 is exchanged with object Cy+iogny+log(k+1)1+4
by using rule ryp (each membrane 2 will contain one copy of
Object Cpiriogm +rlog(k+1)1+4)- At the next step, by applying rule raq,
objects e, m, Cp+iogn +log(k+1)+4 are sent to membrane 1 in case
the weight of the subset in that membrane 2 is equal to k. At step
n+[logn]+[log(k+1)]+6, by using rule ryg, objects m, n, yes are
sent to the environment and the computation halts. Thus, the
answer of the system is affirmative.

¢ There is no membrane 2 with a subset whose weight is equal
to k. In this case, at step n+[logn]+[log(k+1)]+4, object e
is sent to membrane 1 from each membranes 2 by using rule
rig or rig. Simultaneously, by applying rule rg, each mem-
brane 2 will contain one copy of object Cp+fiogm+riog(k+1)+4- At
the next two steps, only the counter object «; evolves by apply-
ing rule ry ;. At step n+[logn1+[log(k+1)]+7, by using rule ry1,
objects 1, Gp+fiogni+log(k+1))+7, N are sent to the environment
and the computation halts. Thus, the answer of the system is
negative.



4.2. Some formal details

Family IT = {I1((n, k)) | n, k € N} is polynomially uniform by
Turing machines, because the rules of a system I1((n, k)) of the
family are defined recursively from the values n and k. Besides, the
necessary resources for defining each such system are of polyno-
mial order.

e size of the alphabet: ((2n2+3n+8)-[log(k+1)1+n-[log(k+1)712
+12n+8[logn|+46)/2c0(n? - [logk]+n-[logk]2);

e initial number of membranes: 2 € O(1);

e initial number of objects: n- [log(k+1)1+n+10€0(n-[logk1);

number of rules: ((2n2 —3n+8)-log(k+1)7+3n-[log(k+1)72

+8[logn1+20n+40)/2c0(n? - [logk]+n-[logk]?2);

maximum length of a rule: 3¢ 0(1).

Hence, there exists a deterministic Turing machine that builds
the system I1((n, k)) in a polynomial time with respect to n and k.

According to the above mentioned computation process,
it is clear that P system TII((n, k)) with input multiset
cod(u) always halts and sends to the environment object
yes (at step n+[logn]+[log(k+1)]+6) or object no (at step
n+[logn+log(k+1)]+7). Therefore, there exists a polynomial
bound for the number of steps of the computation.

Hence, the family II of recognizer P systems with sym-
port/antiport rules and membrane division solves the subset Sum
problem in polynomial time according to Definition 3. So, the fol-
lowing result is obtained.

Theorem 1. SubsetSum € PMCcp,c(3).
Corrolary 1. NP U co — NP € PMCcp,¢(3)-

Proof1. Itsufficestomake the followingobservations: the subset
Sum problem is NP-complete, SubsetSum e PMCcp,c(3) and the class
PMCcp,c(3) is closed under polynomial time reduction, and is also
closed under complement. OJ

5. Solving the osAT problem by using CD;,C(3)

In this Section, we provide a (uniform) polynomial time solu-
tion to the QsAT problem (quantified satisfiability problem), a
well-known PSPACE-complete problem Papadimitriou (1994), by
a family of P systems with division rules for non-elementary mem-
branes and symport/antiport of length at most 3.

Given a Boolean formula ¢(xq, ..., X;) in conjunctive nor-
mal form, with Boolean variables x;, ..., x;, the sentence
@ =3x VX ...Quxn@(X1, ..., xn) (Where Qy is 3 if n is odd, and Q,
is V otherwise) is said to be the (existential) fully quantified formula
associated with ¢(xq, ..., X;). We say that ¢ is satisfiable if there
exists a truth assignment, o, over {i: 1<i<n A i odd} such that
each extension, o, of o over {1, ..., n} verifies 6" (@(x, . . ., xn))=1.

The gsaT problem is the following one: Given the (existential)
fully quantified formula ¢* associated with a Boolean formula ¢(x1,
..., Xp) in conjunctive normal form, determine whether or not @' is
satisfiable.

The solution proposed follows a brute force algorithm in the
framework of recognizer P systems with symport/antiport rules
and membrane division, and it consists of the following phases:

e Generation phase: using membrane division for non-elementary
membranes, all truth assignments for the variables associated
with the Boolean formula are produced.

e Checking phase: checking whether or not the formula ¢(x1, . . ., xs)
is satisfied.

e Quantifier phase: checking whether the whole formula ¢* with
quantifiers is satisfied.

2n + 1

Fig. 1. The initial membrane structure of the P system.

e Output phase: the system sends to the environment the right
answer according to the results of the previous phase.

We define a family IT = {I1(t) | t € N} of recognizer P systems
from CD;.C(3) such that each system I'1(t) will process all instances
of the gsaT problem with n variables and m clauses, where t= (m,
n), provided that the appropriate input multiset is supplied to the
system.

For each (m, n) e N x N, we consider the recognizer P system
from CDpC(3),

M(m,n)) =T, & X, u, My, ..., Many3, Ri, . . ., Rong3, din, lout)s

defined as follows:

e Y={,Xjl1<i<n1<j<m)

® £={d;, g 10 <i<n?+3n+2m+3 -k U{g2, 3ni2miat)
(where k = | 5] is the number of universal quantifiers in ©).

L4 F=EU8U{ai,bi,f,‘,fi |1 gign}U{Ei\0§i§m+l}U
{t, yes, no}.

o = [l Tallan Ly gLy Unaa) lonly, oL,
is the membrane with label 2n+3 whose child is labeled by
2n+2; this membrane has two children labeled by 2n and 1,
respectively; each membrane with label i, 1 <i<n -1, contains
a non-elementary membrane with label i+1 and an elementary
membrane with label n+1i, see Fig. 1).

o My ={a1}, Mpyi=1{b}, 1 <i<n Mya=M;=92<i<n.

® Mopiq ={t,ay,...,an,Eg, Eq, ..., Em+1},
{do, go, yes, no}.

e ij, =2n+ listheinputmembrane, and iy, = Oistheoutputregion.

¢ The sets of rules are defined below:

5 (the root

Maonys =

® RulesinR; (1<i<n): ry; = [a]; = [t][fi];

® RulesinR; (2<i<n):ry;j=(t, in)and r3;j=(f;, in), 1<j<i-1.
® RulesinR; (3<i<n):ry;j=(qjout),2<j<i-1.

e Rulesin Rypy1:

5= (01, 0ut; t;,in), 1<i<n-1.

rgi= (a1, 0ut; f,in), 1<i<n-1.

r7 =(Eg Eq, out ; t, in).
TgE(EOE1.0Ut:fn.in).

ro,ij=(tiX;j, out; Ej,in), 1<i<n,1<j<m.
r0,ij = (fiXij, out; Ej, in), 1<i<n,1<j<m.

11, = (Eje1, out;; tix;, in), 1<i<n, 1<j<m.



ro,ij = (Ejﬂ,out;fii,;j, in),1<i<n,1<j<m.
ri13 =(t, out; Epyq, in).
e Rules in Ry: r14 =(t, out).
e [fQi=Y(l<i<n-1):
(x) Rules in R, ;: r15;=(b;, out; t, in).
(x) Rules in R;: r16;=(b; t, out).
e IfQu=3(1<i<n-1):
(*) Rules in R, ;: r17;=(t, in) and ryg; = (b; t, out).
(x) Rules in R;: r19; =(b; t, out).
e Rules in Ry,: o0 =(t, in) and 131 =(bn t, out).
e Rules in Ryp,2: 22 =(bn t, out).
e Rules in Ropy3:
123 = (dp2 4 3n2m43-k LYES, OUL).
rya;=(d;, out;diq,in),0<i<n?+3n+2m+2 —k.
I5i=(gi, out; gir1, in),0<i<n?+3n+2m+3 —k.
126 = (Ap2. 304 2m-3-k 8n2 - 3n42m-+4—k 110, OUL).

5.1. An overview of the computation

In what follows, we informally describe how P system T1(s(¢"))
with input multiset cod(¢") works. Let us recall that k denotes the
number of universal quantifiers in ¢, that is, k = 5]

At the initial configuration, we have object a; in membrane 1,
objectb; (1 <i<n)inmembrane n+i,objectsa,,...,an, E1,...,En+,
t, cod(¢") in membrane 2n+1, objects gy, yes, no in membrane
2n+3.

Let us start with the generation phase. This phase has two
parallel processes. On the one hand, the system assigns truth-
assignments to all variables x; (1 <i<n). When generation phase
completes, we produce 2" copies of membrane 2n + 1, each of them
contains a different truth assignments of the variable set {xq, ...,
Xn} associated with the Boolean formula. On the other hand, the
counter objects d;, g; in membrane 2n+ 3 grow their subscripts by
using rules ryg;, 127, We describe the process of generation phase
as follows.

With the appearance of object @; in each membrane i at the same
step, the system starts to assign truth-assignment of variable x;
(1 =<i<n-1).Specifically, by using rule r; ; in all membranes i, each
non-elementary membrane i is divided into two copies with the
same label, which contain objects t; (representing the truth value
true) and f; (representing the truth value false), respectively. Note
that all the membranes and objects placed inside the membrane
i are replicated in the new copies. At next steps, all object ¢; (f;,
respectively) in membranes with label i will be sent to membranes
n by using rules ryj; (r3;;, respectively) (i+1<j<n) one by one.
When object t; (f;, respectively) appears in each membrane n at the
same step, rule 5 ; (g ;, respectively) is enabled and applied, object
a;+1 in membrane 2n + 1 is exchanged with object t; (f;, respectively)
in membrane n. When object a;,1 appears in membranes n, by using
rules rgj;+1 (i+2 <j<n)one by one, object a;; will be presented in
each membranei+1 at the same step. Similar to the case of variable
X;, the system continues to assign a truth-assignment to variable
Xi+1. It is easy to see that the process of assigning truth-assignment
of variable x; (1 <i<n—1) takes 2n — 2i+ 1 steps. With the appear-
ance of object a; in membranes n at the same step, the system
starts to assign truth-assignment of variable x;. By using rule rq ,,
each non-elementary membrane n is divided into two copies at
the same step, which contain objects t, (representing the truth
value true) and f, (representing the truth value false), respectively.
At the next step, rule r; (rg, respectively) is enabled and applied,
objects Eg, E; in membranes 2n+1 are exchanged with object t,
(fn, respectively) in membranes n. The process of assigning a truth-
assignment to variable x, takes two steps. Hence, the generation
phase takes n? + 1 steps. The membrane structure of the system at
that moment when the generation phase completes is shown in
Fig. 2.

2n +1 2n + 1 2n +1 2n +1

Fig. 2. The membrane structure of the system when the generation phase com-
pletes. Numbers at nodes indicate labels of membranes.

The checking phase takes 2m steps and consists of m loops (each
loop takes 2 steps). In parallel with checking whether there is a
truth assignment that makes the formula ¢ evaluate to be true, the
counter objects d;, g; also grow their subscripts by one for each step
in membrane 2n + 3.

At the first step of the j-th loop (1<j<m) of checking
phase, objects t;, x;; (f;, X; j, respectively) in membrane 2n+1 are
exchanged with object E; in membrane n by using rule rg;; (r1;,
respectively), in case membrane 2n +3 encodes a truth assignment
making clauses Cy, .. .,  true. Note that for any membrane 2n+1,
which contains a truth assignment that does not make the clause
G true, the computation in that membrane stops at the time when
Io;j OT T'10,ij is applied. At the second step of the j-th loop (1 <j <m)
of checking phase, with the appearance of objects t;, x;; (f;, X; j,
respectively) in membrane n, by using rule ryy;; (r2,j, respec-
tively), object Ej, in membrane 2n + 1 is exchanged with the objects
ti, x;j (fi, X; j, respectively) in membrane n.

After n? + 2m+ 1 steps, we have checked whether or not formula
@issatisfied by the corresponding truth assignment. For each clause
C; which is satisfied, the subscript j of E is increased by one; hence
object E;;+; will appear in membrane n if and only if its lower neigh-
bor membrane 2n+1 encodes the truth assignment that satisfies
all clauses. At step n?+2m+2, if membrane n contains Ep.+q then
by using rule rq3, object t in membrane 2n+1 is exchanged with
object E;;+1 in membrane n. At the next step, if object t appears in
membrane n, by applying rule r14, then it will be sent to membrane
n—1.

The quantifier phase starts at the (n2 + 2m+4)-th step. In mem-
brane 2n + 3 the counter objects d;, g; grow their subscripts by one
for each step. A membrane with label i corresponds to the quanti-
fier Q. where1<i<n-1,j=i+1,and amembrane with label 2n +2
corresponds to the quantifier Q. If Q;=V, object t is passed to the
upper level only if it comes from both lower level membranes, that
is, the respective clauses are satisfied for both truth values of ;. If
Q; =3, then a single object t coming from lower level is enough. In
what follows, we describe how the system simulates quantifiers V
and 3.

For quantifier Qj+1 =V (1<i<n-1 and i is odd), one copy of
object t can be sent to the upper level membrane if and only if there
are two copies of object t in a membrane i, where each lower level
membrane provides one copy of object t. Specifically, by using rule
r15,, object b; in membranes n +iis exchanged with object t in their
upper level membranes i. Note that there is one copy of object b; in a
membrane n +1i, thus, only one copy of object t is sent to membrane
n+ifrom a membrane i. At the next step, objects b;, t in membranes
i are sent to their upper level membranes by applying rule ryg;.



In case Q.1 =3 (1 <i<n-1andiis even), by using the rule ry7;
in all membranes n+i, all copies of object t will be sent to their
lower level membranes n +i. At the next step, objects b;, t are sent
to membrane i by using rule ryg ;. If there are two copies of object tin
membrane n+i, then only one copy of object t is sent to membrane
i because there is only one copy of object b; in a membrane n +i. At
the next step, objects b;, t in membranes i are sent to their upper
level membranes by using rule rqg;. As Q; =3, by using the rules rg,
21, T2z one by one, one copy of object t is sent to the membrane
2n+3.

Hence, the simulation of all universal quantifiers takes 2k steps,
and the simulation of all existential quantifiers takes 3(n — k) steps
(the number of such quantifiers is n — k). Thus, the quantifier phase
takes 3n — k steps.

The output phase starts at the (n? +3n+2m+4 — k)-th step, and
it takes 1 step (affirmative answer) or 2 steps (negative answer).
Let us recall that membrane 2n+3 at configuration C
contains objects d
are two cases.

n24+3n4+2m+3—k

n243n+2m+3—k» 8n24+3n12m4+3—k» Yes and no. There

- Affirmative answer if object t appears in membrane 2n + 3 at con-
ﬁgur.atlon Cr2 4 3n42m 13-k then rules rp3 and rys p2, 34,213k are
applicable and objects d,;2, 3, 2m. 3k t and yes are sent to the
envnronmgnt. Mgmbrane 2n+3 at configuration C2_ 3, 2m44—k
only contains objects g2 3,244 and no. Therefore, the com-
putation halts.

- Negative answer: if object t does not appear in membrane 2n+3
at copﬁguratlon Ch243n42m43—k» thenonly rule 725,12 43n+2m+3—k 1S
applicable. Thus, that membrane at configuration C,2 , 3, om14—k
contains object.s ves, no, gn%+3n+2m+4_,<, dn2+3n+2m+3_k. At the
next step, by using rule rag, 0bjects 8,2, 3 amsa—k> Dn243ns2m43—k
and no are sent to the environment and membrane 2n + 3 at con-
figuration Cr2 43n42m 45k only contains objectyes, soitisahalting
configuration.

5.2. Some formal details

In order to show that the family II = {T1((m,n)) | m,n e N}
defined above is polynomially uniform by Turing machines we need
to prove that I1((m, n)) is built in polynomial time with respect to
the size parameter m, n of instances of the 9sAT problem (recalling
that k <n).

Itis easy to show that the rules of a system I1((m, n)) of the family
are defined recursively from the values m, n, and the necessary
resources to construct I1({m, n)) are as follows:

size of the alphabet: 2n2 +2nm+10n+5m — 2k +12 € O(n? + nm);
initial number of membranes: 2n+3 e O(n);

initial number of objects: 2n+m+7 € O(n+m);

number of rules: (7n2 +8nm+23n+8m — 4k +20)/2 € O(n? + nm);
maximum length of a rule: 3 0(1).

Thus, there exists a deterministic Turing machine that builds the
system I1((m, n)) in a polynomial time with respect to m and n.

By the above checking of the computation process, we can prove
that the P system IT((m, n)) with input multiset cod(¢") always halts
and sends to the environment object yes or no in the last step, that
is, at step n2 +3n+2m+4 — k, object yes is sent to the environment
and the system halts; object no is sent to the environment at step
n2+3n+2m+5—k and the system halts. Therefore, there exists a
polynomial bound for the number of steps of the computation.

Hence, the family II of recognizer P systems with sym-
port/antiport rules and membrane division solves the QSAT
problem in polynomial time according to Definition 3. So, the fol-
lowing result is obtained.

Theorem 2. QSAT € PMCcp,c(3).

Since the complexity class PMCcp,,c(3) is closed under polyno-
mial time reductions, we have the following result.

Corrolary 2. PSPACE < PMCcp,,(3).
6. Conclusions and discussion

The computational efficiency of different computing devices in
membrane computing has been established. With regard to cell-
like computing devices, efficient solutions to hard problems have
been given in the framework of P systems with active membranes
that use evolution, send-in, send-out, dissolution and division rules.
Specifically, polynomial time solutions to the SAT problem Pérez-
Jiménez et al. (2003) (in a uniform way by using electrical charges)
and the gsat problem Alhazov and Pérez-Jiménez (2007) (in a
semi-uniform way, without electrical charges and allowing division
for non-elementary membranes) have been proposed. With regard
to tissue-like computing devices, an efficient (uniform) solution to
the HAM-CYCLE problem by a family of tissue P systems with cell
division and symport/antiport rules of length at most 2, has been
given Porreca et al. (2012).

In this work, the computational efficiency of cell-like polar-
izationless P systems with symport/antiport rules and membrane
division has been investigated. Specifically, a (uniform) linear time
solution to the NP-complete problem Subset Sum by using divi-
sion rules for elementary membranes and communication rules of
length at most 3, has been given. We further proved that such P
system can efficiently solve the PSPACE-complete problem QSAT
problem, in a uniform way, when division rules for non-elementary
membranes are allowed. It is worth noting that the solution to gsaT
given in the paper can be adapted to a uniform solution bearing in
mind that for (existential) fully quantified formula associated with
@(X1, ..., Xn), the number of universal quantifiers is [ 5].

We propose some open problems related to the role of commu-
nication rules in cell-like P systems with membrane division from
a computational complexity point of view.

(a) In the solution to QsAT proposed in this paper, division rules for
non-elementary membranes have been considered. Is it pos-
sible to provide an efficient solution to QsaT by using only
division rules for elementary membranes?

(b) The P systems constructed in Section4 and in Section5 have
both symport rules and antiport rules. What about the compu-
tational efficiency of P systems with membrane division that
use only either symport or antiport rules?

(c) Itis known that NP U co — NP € PMCyp(z) Porreca et al. (2012).
What about the computational efficiency of CD.C(2)?

(d) The environment is not relevant for tissue P systems with sym-
port/antiport rules and cell division from a complexity point
of view Pérez-Jiménez et al. (2013). What about the efficiency
of recognizer P systems from CDC(k) when the alphabet of the
environment is an empty set?

P systems capture the inherent degree of freedom present in
biological systems through the non-determinism. With the inclu-
sion of this ingredient, P systems are able to solve hard problems in
an “efficient” way at the theoretical level by trading time for space.
New boundaries between tractability and NP-hardness, in terms of
syntactical ingredients of P systems, provide new tools to tackle the
P versus NP problem.

Different simulators for P systems running on conventional
computers have been developed during the last decade. The addi-
tion of parallel computing techniques, like those based on GPU, is
accelerating these simulators. With the aid of P systems simulators,
researchers aim to solve larger instances of NP hard problems than



the best ones provided so far, running on electronic computers.
However, we would like to stress that such simulators are not real
implementation of P systems. Obviously, an efficient real imple-
mentation of P systems would provide a “constructive” proof of
the result P=NP, that is, similarly to what would happen with a
practical implementation of non-deterministic Turing machines.
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