
E
w

B
a

b

K
C
S
M
S
Q

1

n
p
s
b
p
n
b
t
P
(
i
a
o
(
(
c
p

fficient solutions to hard computational problems by P systems
ith symport/antiport rules and membrane division

osheng Song a,b, Mario J. Pérez-Jiménez b, Linqiang Pan a
 Key Laboratory of Image Information Processing and Intelligent Control, School of Automation, Huazhong University of Science and Technology, Wuhan 430074, Hubei, China
 Research Group on Natural Computing, Department of Computer Science and Artificial Intelligenc, University of Sevilla, Avda. Reina Mercedes s/n, 41012 Sevilla, Spain

eywords:
ell-like P system

a b s t r a c t

P systems are computing models inspired by some basic features of biological membranes. In this work,
membrane division, which provides a way to obtain an exponential workspace in linear time, is
introduced into (cell-like) P systems with communication (symport/antiport) rules, where objects are
never modified but they just change their places. The computational efficiency of this kind of P systems
ymport/Antiport rule
embrane division

ubset Sum problem
SAT problem

is studied. Specifically, we present a (uniform) linear time solution to the NP-complete problem, Subset
Sum by using division rules for elementary membranes and communication rules of length at most 3. We
further prove that such P system allowing division rules for non-elementary membranes can efficiently
solve the PSPACE-complete problem, QSAT in a uniform way.

,

. Introduction

Membrane computing is a flexible and versatile branch of
atural computing, which arises as an abstraction of the com-
artmentalized structure of living cells, and the way biochemical
ubstances are processed in (or moved between) membrane
ounded regions Păun (2000). Membrane computing is a paradigm
roviding computing devices called P systems, which are parallel
on-deterministic and distributed computational models. Inspired
y that structure, two main classes of P systems have been inves-
igated: (a) a hierarchical arrangement of membranes as in a cell
ăun (2000), processing information by multisets of symbols; and

b) a net of processor units placed in the nodes of a directed graph,
nspired by the cell intercommunication in tissues Martín-Vide et
l. (2003) or inspired by the way neurons communicate with each
ther by means of short electrical impulses, identical in shape
voltage), but emitted at precise moments of time Ionescu et al.
2006). These models have two interesting properties: the
apability to solve as many problems as a Turing machine (com-
utational completeness) and the ability to solve computationally
hard problems in a feasible time, by trading space for time (compu-
tational efficiency). General information on membrane computing
can be found in Păun et al. (2010), Frisco (2009), and for the
most up-to-date references, one can refer to the P systems website
http://ppage.psystems.eu.

A basic P system is based on a cell-like arrangement of mem-
branes, that are placed in a nested hierarchical structure; each
membrane delimits a compartment (also called region) where mul-
tisets of objects and rules for evolving these objects are placed. A
membrane with no compartments inside is called elementary, oth-
erwise it is called non-elementary. The outmost membrane is called
a skin membrane, the space outside the skin membrane is called
the environment. There are two main types of evolution rules of
cell-like P systems associated with membranes: multiset rewrit-
ing rules and communication (symport/antiport) rules. The present
work focuses on a class of P systems with symport/antiport rules,
which were proposed in Păun and Păun (2002). Symport rules are
of form (u, in) or (u, out), and move objects of multiset u through a
membrane; antiport rules are of form (u, out; v, in), and move the
objects of multiset u outside a membrane while moving the objects
of multiset v inside.
Cell-like P systems have been studied widely. Up to now,
researchers have proposed lots of classes of cell-like P systems,
and many of them have been proved to be computationally com-
plete (see, e.g., Alhazov and Freund (2005), Alhazov et al. (2006),

dx.doi.org/10.1016/j.biosystems.2015.03.002
http://www.sciencedirect.com/science/journal/03032647
http://www.elsevier.com/locate/biosystems
http://crossmark.crossref.org/dialog/?doi=10.1016/j.biosystems.2015.03.002&domain=pdf
mailto:boshengsong@163.com
mailto:marper@us.es
mailto:lqpan@mail.hust.edu.cn
http://ppage.psystems.eu
dx.doi.org/10.1016/j.biosystems.2015.03.002

B
P
c
A
s
e
d
s
t
b
t
(

s
r
r
t
n
T
S
S
f
m
o

2

t
a

s
s
o
s
a

f
i
I
m
t
o
u
w
o
g

3
d

a
p
o
d
p

D
a
(

•
•
•
•

ernardini and Gheorghe (2003), Ciobanu et al. (2007), Păun and
ăun (2002), Păun et al. (2005)). The computational efficiency of
ell-like P systems has also been investigated Păun et al. (2010).

particularly interesting class of cell-like P systems is that of P
ystems with active membranes Păun (2000), which contain object
volution rules, in communication rules, out communication rules,
issolving rules and membrane division rules. Membrane divi-
ion rules can generate an exponential workspace in polynomial
ime (even in linear time). Therefore, P systems with active mem-
ranes can be used to solve computationally hard problems by a
ime-space trade-off Păun (2001), Pérez-Jiménez and Riscos-Núñez
2004), Pérez-Jiménez and Riscos-Núñez (2005).

In this work, membrane division is introduced into cell-like P
ystems, and they evolve by means of symport/antiport or division
ules, that is, we present a class of P systems with symport/antiport
ules and membrane division, where objects are never modified but
hey just change their places, moreover, objects can be commu-
icated with the environment only through the skin membrane.
he computational efficiency of such kind of P systems is studied.
pecifically, we present polynomial time solutions to the Subset
um problem by using division rules for elementary membranes and
or the QSAT problem by using division rules for non-elementary

embranes. In both cases, the solutions are uniform and they are
btained by using communication rules of length at most 3.

. Preliminaries

In this Section, we only introduce some basic notions and nota-
ions from formal languages theory. Readers can refer to Rozenberg
nd Salomaa (1997) for details.

An alphabet � is a non-empty set and their elements are called
ymbols. An ordered finite sequence of symbols over � forms a
tring. The length of a string u, denoted by |u|, is the number of
ccurrences of symbols it contains. We denote by �∗ the set of all
trings over �. The empty string (with length 0) is denoted by �,
nd by �+ = �∗ \ {�} we denote the set of non-empty strings.

For an alphabet �, a multiset over � is a pair (�, f) where
: � → N is a mapping, N is the set of natural numbers. If m = (�, f)

s a multiset, then its support is defined as supp(m) = {x ∈ �|f(x) > 0}.
f supp(m) = {a1, . . ., ak} then we denote m = {af (a1)

1 , . . ., af (ak)
k

}. A
ultiset is finite if its support is a finite set. We denote by ∅

he empty multiset and by Mf(�) the set of all finite multisets
ver �. If m1 = (�, f1), m2 = (�, f2) are multisets over �, then the
nion of m1 and m2, denoted by m1 + m2, is the multiset (�, g),
here g(x) = f1(x) + f2(x) for each x ∈ �; the relative complement

f m2 in m1, denoted by m1 \ m2, is the multiset (�, g), where
(x) = f1(x) − f2(x) if f1(x) ≥ f2(x), and g(x) = 0 otherwise.

. P systems with symport/antiport rules and membrane
ivision

In this Section, we study P systems with symport/antiport rules,
class of computing devices aiming to abstract the active trans-

ort of molecules across the membranes. In this kind of P systems,
bjects are processed in a pure communicative way, that is, objects
o not evolve and only change their places during the computation
rocess. Membrane division rules are allowed in such P systems.

efinition 1. A P system with symport/antiport rules
nd membrane division of degree q ≥ 1 is a tuple � =
�, E, �,M1, . . .,Mq,R1, . . .,Rq, iout), where:
� is an alphabet (the working alphabet) and E ⊆ �;
� is a rooted tree with q nodes labeled by 1, . . ., q;
Mi, 1 ≤ i ≤ q, are finite multisets over �;
Ri, 1 ≤ i ≤ q, are finite sets of rules of the following forms:
(a1) Symport rules: (u, out) or (u, in), for u ∈ Mf(�), |u| > 0;
(a2) Antiport rules: (u, out; v, in), for u, v ∈ Mf (�), |u| > 0, |v| > 0;
(b) Division rules: [a]i → [b]i[c]i, for i ∈ {2, . . ., q}, i /= iout, a, b,

c ∈ �;
• iout ∈ {0, 1, . . ., q}.

A P system with symport/antiport rules and membrane divi-
sion of degree q ≥ 1 can be viewed as a set of q membranes labeled
by 1, . . ., q, arranged in a hierarchical structure of a rooted tree
(the root labeled by 1 is called the skin membrane), such that: (a)
M1, . . .,Mq represent the finite multisets of objects initially placed
in the q membranes of the system; (b) E is the set of objects initially
located in the environment of the system, all of them available in
an arbitrary number of copies; (c) R1, . . .,Rq are finite sets of rules
(Ri corresponds to the membrane i of �); (d) iout is a distinguished
region which will encode the output of the system. We use the term
region i (0 ≤ i ≤ q) to refer to membrane i in case 1 ≤ i ≤ q and to refer
to the environment in case i = 0. The length of a symport rule (u, out)
or (u, in) (an antiport rule (u, out; v, in), respectively) is defined as
|u| (|u| + |v|, respectively).

For each membrane i ∈ {2, . . ., q}, we denote by p(i) the parent of
membrane i in the rooted tree �, the “parent” of the skin membrane
is the environment, denoted by p(1) = 0.

A configuration of such a P system at any moment is described
by the current membrane structure (the rooted tree), together with
all multisets of objects over � associated with the regions of this
membrane structure and the multiset of objects over � \ E associ-
ated with the environment at that moment. The initial configuration
of (�, E, �,M1, . . .,Mq,R1, . . .,Rq, iout) is (�,M1, . . .,Mq; ∅).

A symport rule (u, out) ∈ Ri is applicable to a configuration at a
moment if membrane i contains multiset u at that moment. When
such a rule is applied, multiset u is sent to the parent of membrane
i. A symport rule (u, in) ∈ Ri is applicable to a configuration at a
moment if the parent of membrane i contains multiset u at that
moment. When such a rule is applied, multiset u enters membrane
i from the parent of i.

An antiport rule (u, out; v, in) ∈ Ri is applicable to a configura-
tion at a moment if membrane i contains multiset u and its parent
contains multiset v at that moment. When such a rule is applied,
multiset u from membrane i is sent out of membrane i, and simul-
taneously, multiset v enters region i from the parent of i.

A division rule [a]i → [b]i[c]i is applicable to a configuration at
a moment if the following conditions hold at that moment: (1)
membrane i contains object a; (2) membrane i is neither the skin
membrane nor the output membrane. When applying such a rule,
membrane i is divided into two membranes with the same label:
in the first copy, object a is replaced by object b, in the second
one object a is replaced by object c, and all the objects in the orig-
inal membrane, different from the object triggering the rule, are
replicated in the two new membranes. Besides, if membrane i is a
non-elementary membrane, then all membranes inside membrane
i as well as objects contained in them, will be replicated in each of
the new membranes.

The rules of a P system with symport/antiport rules and mem-
brane division are used in a maximally parallel way. At each step, a
maximal multiset of rules is applied (no further rule can be added
being applicable) with the following restriction: when a membrane
is divided, the division rule is the only one which is applied for
that membrane at that step, the objects inside that membrane do
not evolve by means of communication rules. The objects in the
new membranes resulting from division could participate in the
interaction with the objects in the (upper or lower) neighbor of

membranes by means of communication rules at the next step if
these new membranes are not divided once again.

Starting from the initial configuration and applying rules
as described above, one obtains a sequence of consecutive

c
c
c
a
i
(
e
c
t
t
s
c
p

3
m

(

D
a

�

s

•

•

•

•
•
•
•

t
i
w
o

o
m
s

3

u
(

D
n
f
t

1
2

onfigurations. Each passage from a configuration C to a next
onfiguration C′ is called a transition and denoted by C ⇒ C′. A
onfiguration is a halting configuration if no rule of the system is
pplicable to it. A computation of such a P system is a (finite or
nfinite) sequence of transitions between configurations such that:
1) the first term of the sequence is the initial configuration; (2)
ach non-first term of the sequence is obtained from the previous
onfiguration by applying rules in a maximally parallel way with
he above mentioned restriction; (3) if the sequence is finite,
hen the last term of the sequence is a halting configuration, and
uch a computation is called a halting computation. Only halting
omputations give a result, encoded by the multiset of objects
resent in the output region iout.

.1. Recognizer P systems with symport/antiport rules and
embrane division

Recognizer P systems were introduced in Pérez-Jiménez et al.
2006), as a natural framework to solve decision problems.

efinition 2. A recognizer P system with symport/antiport rules
nd membrane division of degree q ≥ 1 is a tuple

= (�, E, �, �,M1, . . .,Mq,R1, . . .,Rq, iin, iout),

uch that:

(�, E, �,M1, . . .,Mq,R1, . . .,Rq, iout) is a P system with sym-
port/antiport rules and membrane division of degree q ≥ 1;
� has two distinguished objects yes and no, with at least one
copy of them present in some multisets M1, . . .,Mq, but none of
them present in E;
� is an (input) alphabet strictly contained in �, and such that
E ⊆ � \ �;
M1, . . .,Mq are finite multisets over � \ �;
iin ∈ {1, . . ., q} is the input membrane, and iout = 0;
all computations halt;
if C is a computation of �, then either object yes or object no
(but not both) must have been released into the environment,
and only at the last step of the computation.

For each finite multiset w ∈ Mf (�), the computation of a P sys-
em with symport/antiport rules and membrane division with
nput w starts from a configuration of the form (�,M1, . . .,Miin

+
, . . .,Mq, ∅), where the input multiset w is added to the contents
f the input membrane iin.

We denote by CDeC(k) (CDneC(k), respectively) the class
f recognizer P systems with division rules for elementary
embranes (non-elementary membranes, respectively) whose

ymport/antiport rules have length at most k.

.2. Polynomial complexity classes of recognizer P systems

Next, we define the concept of polynomial time solvability (in a
niform way) by means of family of P systems (see Pérez-Jiménez
2005) for details).

efinition 3. A decision problem X = (IX, �X) is solvable in poly-
omial time by a family � = {�(n) | n ∈ N} of recognizer P systems

rom CDeC(k) or CDneC(k), in a uniform way, if the following condi-
ions hold:

. The family � is polynomially uniform by Turing machines.
. There exists a pair (cod, s) of polynomial-time computable func-
tions over IX such that: (a) for each instance u ∈ IX, s(u) is a natural
number and cod(u) is an input multiset of the system �(s(u));
(b) for each n ∈ N, s−1(n) is a finite set; and (c) the family �
is polynomially bounded, sound and complete with regard to
(X, cod, s).

We denote by PMCCDeC(k) (PMCCDneC(k), respectively) the set of
all decision problems which can be solved in a uniform way and
polynomial time by means of recognizer P systems from CDeC(k)
(CDneC(k), respectively).

4. Solving the Subset Sum problem by using CDeC(3)

Subset Sum problem is a numerical NP-complete problem,
which has been investigated widely in membrane comput-
ing. Specifically, different (uniform) polynomial time solutions
have been provided by using families of P systems with active
membranes Pérez-Jiménez and Riscos-Núñez (2005), P systems
with membrane creation Gutiérrez-Naranjo et al. (2005), and
tissue P systems with cell division Díaz-Pernil et al. (2007).
Next, we present a solution to the Subset Sum problem by
combining the symport/antiport rules used in tissue-like P sys-
tems and the membrane division of P systems with active
membranes.

The Subset Sum problem is described as follows: Given a finite
set A, a weight function, w : A → N, and a constant k ∈ N, determine
whether or not there exists a subset B ⊆ A, such that w(B) = k.

Let g : N× N→ N be the function defined by g(n,
k) = ((n + k)(n + k + 1)/2) + n. It is a primitive recursive and bijective
function. We denote g(n, k) = 〈n, k〉.

For each (n, k) ∈ N× N, we consider the recognizer P system
from CDeC(3)

�(〈n, k〉) = (�, E, �, �,M1,M2,R1,R2, iin, iout),

defined as follows:

• � = {q} ∪ {vi | 1 ≤ i ≤ n};
• E = {˛i | 1 ≤ i ≤ n + �logn� + �log(k + 1)� + 7} ∪ {ai | 1 ≤ i ≤

n + �logn� + �log(k + 1)� + 1} ∪ {bi | 1 ≤ i ≤ n + �logn� + �log(k +
1)� + 2} ∪ {ci | 1 ≤ i ≤ n + �logn� + �log(k + 1)� + 4} ∪ {di,j,l | 1 ≤
i ≤ n, 1 ≤ j ≤ �log(k + 1)�, 1 ≤ l ≤ n + j + 1} ∪ {e, p};

• � = � ∪ E ∪ {Ai, Bi | 1 ≤ i ≤ n} ∪ {g, h, m, n, z, yes, no};
• � = [[]2]1;
• M1 = {d1,1,1, . . ., d1,�log(k+1)�,1, d2,1,1, . . ., d2,�log(k+1)�,1, . . .,

dn,1,1, . . ., dn,�log(k+1)�,1, a1, b1, c1, n, ˛1, yes, no}; and
M2 = {g, h, m, A1, . . ., An};

• iin = 2istheinputmembrane; and iout = 0istheoutputregion;
• The set R1 consists of the following rules:

r1,i ≡ (˛i, out ; ˛i+1, in), 1 ≤ i ≤ n + � logn � + � log(k + 1) � +6.
r2,i ≡ (ai, out; a2

i+1, in), 1≤ i ≤ n + � logn � + � log(k + 1) �.
r3,i ≡ (bi, out; b2

i+1, in), 1 ≤ i ≤ n.
r4,i ≡ (bi, out ; bi+1, in), n + 1 ≤ i ≤ n + � logn � + � log(k + 1) � +1.
r5,i ≡ (ci, out; c2

i+1, in), 1 ≤ i ≤ n.
r6,i ≡ (ci, out ; ci+1, in), n + 1 ≤ i ≤ n + � logn � + � log(k + 1) � +3.

r7,i,j,l ≡ (di,j,l, out; d2
i,j,l+1, in)

{
1 ≤ i ≤ n, 1 ≤ j ≤ �log(k + 1)�
1 ≤ l ≤ n + j

r8 ≡ (an+�logn�+�log(k+1)�+1, out ; p, in).
r9 ≡ (bn+�logn�+�log(k+1)�+2, out ; e, in).
r10 ≡ (m n yes , out).
r11 ≡ (n ˛n+�logn�+�log(k+1)�+7 no, out).

• The set R2 consists of the following rules:
r12,i ≡ [Ai]2 → [Bi]2[z]2, 1 ≤ i ≤ n.
r13,i ≡ (Bi, out; d2

i,1,n+2, in), 1 ≤ i ≤ n.

2

{
1 ≤ i ≤ n, 1 ≤ j ≤ �log(k + 1)� − 1
r14,i,j,l ≡ (di,j,l, out; d
i,j+1,l+1

, in)
n + 2 ≤ l ≤ n + �log(k + 1)�

r15,i ≡ (di,�log(k+1)�,n+�log(k+1)�+1vi, out; p, in), 1 ≤ i ≤ n.
r16 ≡ (p q, out).
r17 ≡ (g, out ; e, in).

•

•

•

•

4

o
u
T

•

•

s
d
C

.
y
b

a
e
1
c
r
s
e
t

s
b
a
b
n
b
1
o

r18 ≡ (e p, out).
r19 ≡ (e q, out).
r20 ≡ (h, out ; cn+�logn�+�log(k+1)�+4, in).
r21 ≡ (e m cn+�logn�+�log(k+1)�+4, out).

The computation process can be divided in the following phases.

Generation phase: at the first n steps, all possible subsets of A are
generated by applying membrane division rules to membranes
with label 2. Simultaneously, 2n copies of objects di,j,n+1, an+1, bn+1,
cn+1 are produced in membrane 1, and the counter ˛i evolves in
membrane 1.
Pre-checking phase: after the generation phase, there are 2n copies
of membrane 2, each of them containing a subset of A. Then as
many copies of object p as the weight of the corresponding subset
are introduced in membrane 2. To this aim, we should introduce
enough copies of ai in membrane 1 first, then as many copies of
p as object an+�logn�+�log(k+1)�+1 will be introduced in membrane 1.
Checking phase: in each membrane with label 2, the number of
copies of objects p and q are compared by sending all possible
pairs (p, q) to membrane 1. After doing that, a membrane with
label 2 will encode a subset of A whose weight is equal to k if and
only if no object p or q remains in that membrane.
Output phase: after the checking phase, the system sends an affir-
mative answer to the environment if there exists at least one
membrane with label 2 without objects p or q; or a negative
answer if each membrane with label 2 contains some object(s)
p or q.

.1. An overview of the computation

First, we consider a pair (cod, s) of polynomial time functions
ver the set of instances of the Subset Sum problem. For that, let
= (A, w, k) be an instance of the problem and A = {z1, z2, . . ., zn}.

hen,

cod(u) = {vj
i
| w(zi) = j ∧ 1 ≤ i ≤ n} ∪ {qk}„ where vj

i
(j copies of

object vi) represents that j is the weight of element zi.
s(u) = 〈n, k〉.

In this situation, instance u = (A, w, k) will be processed by
ystem �(s(u)) with input multiset cod(u). In what follows, we
escribe informally how the recognizing P system �(s(u)) from
DeC(3) with input cod(u) works.

At the initial configuration, we have objects a1, b1, c1, n, ˛1, d1,1,1,
. ., d1,�log(k+1)�,1, d2,1,1, . . ., d2,�log(k+1)�,1, . . ., dn,1,1, . . ., dn,�log(k+1)�,1,
es,no in membrane 1, objects A1, . . ., An, g, h, m, cod(u) in mem-
rane 2.

The generation phase spends n steps and the division rules r12,i
re applied in membrane 2 producing 2n copies of membrane 2,
ach of them contains a subset of A; simultaneously, in membrane
, by using rules r2,i, r3,i, r5,i, r7,i,j,l, objects ai, bi, ci, di,j,l will be dupli-
ated until getting 2n copies in exactly n steps; besides, by applying
ule r1,i, the counter object ˛i increases its subscript by 1 at each
tep. Rule r1,i will be applied in the whole computation process
xcept for the last step in the case that the answer is negative. Note
hat object z is an idle object in cells with label 2.

The pre-checking phase starts at step n + 1. In this phase, we
hould introduce enough copies of object p in each membrane 2,
ut those objects are first introduced in membrane 1. Specifically,
t step n + 1, 2n+1 copies of objects di,j,n+2 are produced in mem-
rane 1 by applying rules r7,i,j,n+1 (1≤ i ≤ n, 1 ≤ j ≤ � log(k + 1) �). At

ext step, by using rules r13,i, one copy of object Bi in each mem-
rane 2 is exchanged with two copies of object di,1,n+2 in membrane
(at that step, in all membranes 2 there are at most 2n copies of

bject Bi, and in membrane 1, there are 2n+1 copies of object di,1,n+2).
Besides, at step n + 2, objects di,j,n+2 (1≤ i ≤ n, 2 ≤ j ≤ � log(k + 1) �)
are duplicated by using rules r7,i,j,n+2, and 2n+2 copies of objects
di,j,n+3 are produced in membrane 1. At step n + 3, objects di,j,n+3
(1≤ i ≤ n, 3 ≤ j ≤ � log(k + 1) �) are duplicated by using rules r7,i,j,n+3,
and 2n+3 copies of objects di,j,n+4 are produced in membrane 1.
Simultaneously, each copy of object di,1,n+2 in all membranes 2 is
exchanged with two copies of object di,2,n+3 in membrane 1 (at that
step, in all membranes 2 there are at most 2n+1 copies of object
di,1,n+2, and in membrane 1, there are 2n+2 copies of object di,2,n+3).
By applying rules r7,i,j,l and r14,i,j,l as many times as possible, at step
n + � log(k + 1) � +1, in each membrane 2 that contains object Bi, we
obtain 2�log(k+1)� copies of object di,�log(k+1)�,n+�log(k+1)�+1, so at least
k + 1 copies will be available.

From step n + 1 to step n+ � logn � + � log(k + 1) �, object ai will be
duplicated by using rule r2,i, that is, at step n+ � logn � + � log(k + 1) �,
there are 2n+�logn�+�log(k+1)� copies of object an+�logn�+�log(k+1)�+1 in
membrane 1. In this process, counters bi, ci increase their subscripts
by applying r4,i, r6,i.

At step n + � logn � + � log(k + 1) � +1, object an+�logn�+�log(k+1)�+1 in
membrane 1 is exchanged with object p from the environment by
using rule r8. All copies of objects bi, ci increase their subscripts at
this step.

At step n + � logn � + � log(k + 1) � +2, object bn+�logn�+�log(k+1)�+2 has
2n copies in membrane 1 and each such copy is exchanged with
object e from the environment (rule r9). By using rule r6,i, 2n copies
of object cn+�logn�+�log(k+1)�+3 will present in membrane 1. Simul-
taneously, by applying rules r15,i in all membranes 2, for each
element Bi in the subset associated with the membrane we get
min{2�log(k+1)�, w(si)} copies of object p.

The checking phase starts at step n + � logn � + � log(k + 1) � +3. In
this step, by using rule r16, all pairs of objects p and q present in
any membrane with label 2 are sent to membrane 1. In this way,
if the weight of the subset associated with a membrane 2 is equal
to k, then no object p or q remains in this membrane at the next
step. Otherwise, at least one copy of object p or q will remain in
the membrane. Simultaneously, in every membrane 2 object g is
exchanged with object e in membrane 1 (rule r17), that is, each
membrane 2 will contain one copy of object e; object ci increases
its subscript, and 2n copies of object cn+�logn�+�log(k+1)�+4 appear in
membrane 1.

When the checking phase finishes, the output phase starts at
step n + � logn � + � log(k + 1) � +4. There are two cases.

• There exists at least one membrane 2 with a subset whose weight
is equal to k. In this case, at step n + � logn � + � log(k + 1) � +4, if a
membrane 2 contains at least one copy of object p or q, then object
e will be sent to membrane 1 by using rule r18 or r19; otherwise,
object e will remain in that membrane. Simultaneously, object h
in all membranes 2 is exchanged with object cn+�logn�+�log(k+1)�+4
by using rule r20 (each membrane 2 will contain one copy of
object cn+�logn�+�log(k+1)�+4). At the next step, by applying rule r21,
objects e, m, cn+�logn�+�log(k+1)�+4 are sent to membrane 1 in case
the weight of the subset in that membrane 2 is equal to k. At step
n + � logn � + � log(k + 1) � +6, by using rule r10, objects m, n, yes are
sent to the environment and the computation halts. Thus, the
answer of the system is affirmative.

• There is no membrane 2 with a subset whose weight is equal
to k. In this case, at step n + � logn � + � log(k + 1) � +4, object e
is sent to membrane 1 from each membranes 2 by using rule
r18 or r19. Simultaneously, by applying rule r20, each mem-
brane 2 will contain one copy of object cn+�logn�+�log(k+1)�+4. At
the next two steps, only the counter object ˛i evolves by apply-

ing rule r1,i. At step n + � logn � + � log(k + 1) � +7, by using rule r11,
objects n, ˛n+�logn�+�log(k+1)�+7, no are sent to the environment
and the computation halts. Thus, the answer of the system is
negative.

4

T
f
n
m

•

•
•
•

•

t

i
c
y
n
b

p
p
l

T

C

P
S
P
c

5

t
w
a
b

m
ϕ
i
a
e
e

f
.
s

f
a

•

•

•

.2. Some formal details

Family � = {�(〈n, k〉) | n, k ∈ N} is polynomially uniform by
uring machines, because the rules of a system �(〈n, k〉) of the
amily are defined recursively from the values n and k. Besides, the
ecessary resources for defining each such system are of polyno-
ial order.

size of the alphabet: ((2n2 + 3n + 8) · � log(k + 1) � + n · � log(k + 1) � 2

+ 12n + 8 � logn � +46)/2 ∈ O(n2 · � logk � + n · � logk � 2);
initial number of membranes: 2 ∈ O(1);
initial number of objects: n · � log(k + 1) � + n + 10 ∈ O(n · � logk �);
number of rules: ((2n2 − 3n + 8) · � log(k + 1) � +3n · � log(k + 1) � 2

+ 8 � logn � +20n + 40)/2 ∈ O(n2 · � logk � + n · � logk � 2);
maximum length of a rule: 3 ∈ O(1).

Hence, there exists a deterministic Turing machine that builds
he system �(〈n, k〉) in a polynomial time with respect to n and k.

According to the above mentioned computation process,
t is clear that P system �(〈n, k〉) with input multiset
od(u) always halts and sends to the environment object
es (at step n + � logn � + � log(k + 1) � +6) or object no (at step
+ � logn � + � log(k + 1) � +7). Therefore, there exists a polynomial
ound for the number of steps of the computation.

Hence, the family � of recognizer P systems with sym-
ort/antiport rules and membrane division solves the Subset Sum
roblem in polynomial time according to Definition 3. So, the fol-

owing result is obtained.

heorem 1. SubsetSum ∈ PMCCDeC(3).

orrolary 1. NP ∪ co − NP ⊆ PMCCDeC(3).

roof 1. It suffices to make the following observations: the Subset
um problem is NP-complete, SubsetSum ∈ PMCCDeC(3) and the class
MCCDeC(3) is closed under polynomial time reduction, and is also
losed under complement. �

. Solving the QSAT problem by using CDneC(3)

In this Section, we provide a (uniform) polynomial time solu-
ion to the QSAT problem (quantified satisfiability problem), a
ell-known PSPACE-complete problem Papadimitriou (1994), by
family of P systems with division rules for non-elementary mem-
ranes and symport/antiport of length at most 3.

Given a Boolean formula ϕ(x1, . . ., xn) in conjunctive nor-
al form, with Boolean variables x1, . . ., xn, the sentence

* = ∃ x1 ∀ x2 . . . Qnxnϕ(x1, . . ., xn) (where Qn is ∃ if n is odd, and Qn

s ∀ otherwise) is said to be the (existential) fully quantified formula
ssociated with ϕ(x1, . . ., xn). We say that ϕ* is satisfiable if there
xists a truth assignment, 	, over {i : 1 ≤ i ≤ n ∧ i odd} such that
ach extension, 	*, of 	 over {1, . . ., n} verifies 	*(ϕ(x1, . . ., xn)) = 1.

The QSAT problem is the following one: Given the (existential)
ully quantified formula ϕ∗ associated with a Boolean formula ϕ(x1,
. ., xn) in conjunctive normal form, determine whether or not �* is
atisfiable.

The solution proposed follows a brute force algorithm in the
ramework of recognizer P systems with symport/antiport rules
nd membrane division, and it consists of the following phases:

Generation phase: using membrane division for non-elementary
membranes, all truth assignments for the variables associated
with the Boolean formula are produced.

Checking phase: checking whether or not the formula ϕ(x1, . . ., xn)
is satisfied.
Quantifier phase: checking whether the whole formula ϕ* with
quantifiers is satisfied.
Fig. 1. The initial membrane structure of the P system.

• Output phase: the system sends to the environment the right
answer according to the results of the previous phase.

We define a family � = {�(t) | t ∈ N} of recognizer P systems
from CDneC(3) such that each system �(t) will process all instances
of the QSAT problem with n variables and m clauses, where t = 〈m,
n〉, provided that the appropriate input multiset is supplied to the
system.

For each (m, n) ∈ N× N, we consider the recognizer P system
from CDneC(3),

�(〈m, n〉) = (�, E, �, �,M1, . . .,M2n+3,R1, . . .,R2n+3, iin, iout),

defined as follows:

• � = {xi,j, xi,j | 1 ≤ i ≤ n, 1 ≤ j ≤ m}.
• E = {di, gi | 0 ≤ i ≤ n2 + 3n + 2m + 3 − k} ∪ {gn2+3n+2m+4−k}

(where k = � n
2 � is the number of universal quantifiers in ϕ*).

• � = � ∪ E ∪ {ai, bi, ti, fi | 1 ≤ i ≤ n} ∪ {Ei | 0 ≤ i ≤ m + 1} ∪
{t, yes, no}.

• � = [[[[. . .[[[]2n+1]n[]2n−1]n−1. . .]
2
[]n+1]

1
[]2n]

2n+2
]
2n+3

(the root

is the membrane with label 2n + 3 whose child is labeled by
2n + 2; this membrane has two children labeled by 2n and 1,
respectively; each membrane with label i, 1 ≤ i ≤ n − 1, contains
a non-elementary membrane with label i + 1 and an elementary
membrane with label n + i, see Fig. 1).

• M1 = {a1},Mn+i = {bi}, 1 ≤ i ≤ n, M2n+2 = Mi = ∅, 2 ≤ i ≤ n.
• M2n+1 = {t, a2, . . ., an, E0, E1, . . ., Em+1}, M2n+3 =

{d0, g0, yes, no}.
• iin = 2n + 1istheinputmembrane, and iout = 0istheoutputregion.
• The sets of rules are defined below:

• Rules in Ri (1 ≤ i ≤ n): r1,i ≡ [ai]i → [ti]i[fi]i.
• Rules in Ri (2 ≤ i ≤ n): r2,i,j ≡ (tj, in) and r3,i,j ≡ (fj, in), 1 ≤ j ≤ i − 1.
• Rules in Ri (3 ≤ i ≤ n): r4,i,j ≡ (aj, out), 2 ≤ j ≤ i − 1.
• Rules in R2n+1:

r5,i ≡ (ai+1, out ; ti, in), 1 ≤ i ≤ n − 1.
r6,i ≡ (ai+1, out ; fi, in), 1 ≤ i ≤ n − 1.
r7 ≡ (E0 E1, out ; tn, in).

r8 ≡ (E0 E1, out ; fn, in).
r9,i,j ≡ (ti xi,j, out ; Ej, in), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
r10,i,j ≡ (fi xi,j, out; Ej, in), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
r11,i,j ≡ (Ej+1, out ; ti xi,j, in), 1 ≤ i ≤ n, 1 ≤ j ≤ m.

•
•

•

•
•
•

5

w
n

o
t
2

p
a
c
c
x
c
u
a

s
(
n
s
t
t
i
r
n
W
s
a
i
r
e
x
x
o
a
s
e
t
v
A
o
(
a
p
t
F

r12,i,j ≡ (Ej+1, out; fi xi,j, in), 1 ≤ i ≤ n, 1 ≤ j ≤ m.
r13 ≡ (t, out ; Em+1, in).

Rules in Rn: r14 ≡ (t, out).
If Qi+1 =∀ (1 ≤ i ≤ n − 1):
(
) Rules in Rn+i: r15,i ≡ (bi, out ; t, in).
(
) Rules in Ri: r16,i ≡ (bi t, out).
If Qi+1 =∃ (1 ≤ i ≤ n − 1):
(
) Rules in Rn+i: r17,i ≡ (t, in) and r18,i ≡ (bi t, out).
(
) Rules in Ri: r19,i ≡ (bi t, out).
Rules in R2n: r20 ≡ (t, in) and r21 ≡ (bn t, out).
Rules in R2n+2: r22 ≡ (bn t, out).
Rules in R2n+3:

r23 ≡ (dn2+3n+2m+3−k t yes, out).
r24,i ≡ (di, out ; di+1, in), 0 ≤ i ≤ n2 + 3n + 2m + 2 − k.
r25,i ≡ (gi, out ; gi+1, in), 0 ≤ i ≤ n2 + 3n + 2m + 3 − k.
r26 ≡ (dn2+3n+2m+3−k gn2+3n+2m+4−k no, out).

.1. An overview of the computation

In what follows, we informally describe how P system �(s(ϕ*))
ith input multiset cod(ϕ*) works. Let us recall that k denotes the
umber of universal quantifiers in ϕ*, that is, k = � n

2 �.
At the initial configuration, we have object a1 in membrane 1,

bject bi (1 ≤ i ≤ n) in membrane n + i, objects a2, . . ., an, E1, . . ., Em+1,
, cod(ϕ*) in membrane 2n + 1, objects g0, yes, no in membrane
n + 3.

Let us start with the generation phase. This phase has two
arallel processes. On the one hand, the system assigns truth-
ssignments to all variables xi (1 ≤ i ≤ n). When generation phase
ompletes, we produce 2n copies of membrane 2n + 1, each of them
ontains a different truth assignments of the variable set {x1, . . .,
n} associated with the Boolean formula. On the other hand, the
ounter objects di, gi in membrane 2n + 3 grow their subscripts by
sing rules r26,i, r27,i. We describe the process of generation phase
s follows.

With the appearance of object ai in each membrane i at the same
tep, the system starts to assign truth-assignment of variable xi
1 ≤ i ≤ n − 1). Specifically, by using rule r1,i in all membranes i, each
on-elementary membrane i is divided into two copies with the
ame label, which contain objects ti (representing the truth value
rue) and fi (representing the truth value false), respectively. Note
hat all the membranes and objects placed inside the membrane
are replicated in the new copies. At next steps, all object ti (fi,
espectively) in membranes with label i will be sent to membranes

by using rules r2,j,i (r3,j,i, respectively) (i + 1 ≤ j ≤ n) one by one.
hen object ti (fi, respectively) appears in each membrane n at the

ame step, rule r5,i (r6,i, respectively) is enabled and applied, object
i+1 in membrane 2n + 1 is exchanged with object ti (fi, respectively)
n membrane n. When object ai+1 appears in membranes n, by using
ules r4,j,i+1 (i + 2 ≤ j ≤ n) one by one, object ai+1 will be presented in
ach membrane i + 1 at the same step. Similar to the case of variable
i, the system continues to assign a truth-assignment to variable
i+1. It is easy to see that the process of assigning truth-assignment
f variable xi (1 ≤ i ≤ n − 1) takes 2n − 2i + 1 steps. With the appear-
nce of object an in membranes n at the same step, the system
tarts to assign truth-assignment of variable xn. By using rule r1,n,
ach non-elementary membrane n is divided into two copies at
he same step, which contain objects tn (representing the truth
alue true) and fn (representing the truth value false), respectively.
t the next step, rule r7 (r8, respectively) is enabled and applied,
bjects E0, E1 in membranes 2n + 1 are exchanged with object tn

fn, respectively) in membranes n. The process of assigning a truth-

ssignment to variable xn takes two steps. Hence, the generation
hase takes n2 + 1 steps. The membrane structure of the system at
hat moment when the generation phase completes is shown in
ig. 2.
Fig. 2. The membrane structure of the system when the generation phase com-
pletes. Numbers at nodes indicate labels of membranes.

The checking phase takes 2m steps and consists of m loops (each
loop takes 2 steps). In parallel with checking whether there is a
truth assignment that makes the formula ϕ evaluate to be true, the
counter objects di, gi also grow their subscripts by one for each step
in membrane 2n + 3.

At the first step of the j-th loop (1 ≤ j ≤ m) of checking
phase, objects ti, xi,j (fi, xi,j , respectively) in membrane 2n + 1 are
exchanged with object Ej in membrane n by using rule r9,i,j (r10,i,j,
respectively), in case membrane 2n + 3 encodes a truth assignment
making clauses C1, . . ., Cj true. Note that for any membrane 2n + 1,
which contains a truth assignment that does not make the clause
Cj true, the computation in that membrane stops at the time when
r9,i,j or r10,i,j is applied. At the second step of the j-th loop (1 ≤ j ≤ m)
of checking phase, with the appearance of objects ti, xi,j (fi, xi,j ,
respectively) in membrane n, by using rule r11,i,j (r12,i,j, respec-
tively), object Ej+1 in membrane 2n + 1 is exchanged with the objects
ti, xi,j (fi, xi,j , respectively) in membrane n.

After n2 + 2m + 1 steps, we have checked whether or not formula
ϕ is satisfied by the corresponding truth assignment. For each clause
Cj which is satisfied, the subscript j of E is increased by one; hence
object Em+1 will appear in membrane n if and only if its lower neigh-
bor membrane 2n + 1 encodes the truth assignment that satisfies
all clauses. At step n2 + 2m + 2, if membrane n contains Em+1 then
by using rule r13, object t in membrane 2n + 1 is exchanged with
object Em+1 in membrane n. At the next step, if object t appears in
membrane n, by applying rule r14, then it will be sent to membrane
n − 1.

The quantifier phase starts at the (n2 + 2m + 4)-th step. In mem-
brane 2n + 3 the counter objects di, gi grow their subscripts by one
for each step. A membrane with label i corresponds to the quanti-
fier Qj, where 1 ≤ i ≤ n − 1, j = i + 1, and a membrane with label 2n + 2
corresponds to the quantifier Q1. If Qj =∀, object t is passed to the
upper level only if it comes from both lower level membranes, that
is, the respective clauses are satisfied for both truth values of xj. If
Qj =∃, then a single object t coming from lower level is enough. In
what follows, we describe how the system simulates quantifiers ∀
and ∃.

For quantifier Qi+1 =∀ (1 ≤ i ≤ n − 1 and i is odd), one copy of
object t can be sent to the upper level membrane if and only if there
are two copies of object t in a membrane i, where each lower level
membrane provides one copy of object t. Specifically, by using rule
r15,i, object bi in membranes n + i is exchanged with object t in their

upper level membranes i. Note that there is one copy of object bi in a
membrane n + i, thus, only one copy of object t is sent to membrane
n + i from a membrane i. At the next step, objects bi, t in membranes
i are sent to their upper level membranes by applying rule r16,i.

i
l
t
m
i
t
l
r
2

a
(
t

i
L
c
a

–

–

5

d
t
t
t

a
r

•
•
•
•
•

s

t
a
i
a
n
p

p
p
l

In case Qi+1 =∃ (1 ≤ i ≤ n − 1 and i is even), by using the rule r17,i
n all membranes n + i, all copies of object t will be sent to their
ower level membranes n + i. At the next step, objects bi, t are sent
o membrane i by using rule r18,i. If there are two copies of object t in

embrane n + i, then only one copy of object t is sent to membrane
because there is only one copy of object bi in a membrane n + i. At
he next step, objects bi, t in membranes i are sent to their upper
evel membranes by using rule r19,i. As Q1 =∃, by using the rules r20,
21, r22 one by one, one copy of object t is sent to the membrane
n + 3.

Hence, the simulation of all universal quantifiers takes 2k steps,
nd the simulation of all existential quantifiers takes 3(n − k) steps
the number of such quantifiers is n − k). Thus, the quantifier phase
akes 3n − k steps.

The output phase starts at the (n2 + 3n + 2m + 4 − k)-th step, and
t takes 1 step (affirmative answer) or 2 steps (negative answer).
et us recall that membrane 2n + 3 at configuration Cn2+3n+2m+3−k
ontains objects dn2+3n+2m+3−k, gn2+3n+2m+3−k, yes and no. There
re two cases.

Affirmative answer: if object t appears in membrane 2n + 3 at con-
figuration Cn2+3n+2m+3−k, then rules r23 and r25,n2+3n+2m+3−k are
applicable and objects dn2+3n+2m+3−k, t and yes are sent to the
environment. Membrane 2n + 3 at configuration Cn2+3n+2m+4−k
only contains objects gn2+3n+2m+4−k and no. Therefore, the com-
putation halts.
Negative answer: if object t does not appear in membrane 2n + 3
at configuration Cn2+3n+2m+3−k, then only rule r25,n2+3n+2m+3−k is
applicable. Thus, that membrane at configuration Cn2+3n+2m+4−k
contains objects yes, no, gn2+3n+2m+4−k, dn2+3n+2m+3−k. At the
next step, by using rule r26, objects gn2+3n+2m+4−k, dn2+3n+2m+3−k
and no are sent to the environment and membrane 2n + 3 at con-
figurationCn2+3n+2m+5−k only contains object yes, so it is a halting
configuration.

.2. Some formal details

In order to show that the family � = {�(〈m, n〉) | m, n ∈ N}
efined above is polynomially uniform by Turing machines we need
o prove that �(〈m, n〉) is built in polynomial time with respect to
he size parameter m, n of instances of the QSAT problem (recalling
hat k ≤ n).

It is easy to show that the rules of a system �(〈m, n〉) of the family
re defined recursively from the values m, n, and the necessary
esources to construct �(〈m, n〉) are as follows:

size of the alphabet: 2n2 + 2nm + 10n + 5m − 2k + 12 ∈ O(n2 + nm);
initial number of membranes: 2n + 3 ∈ O(n);
initial number of objects: 2n + m + 7 ∈ O(n + m);
number of rules: (7n2 + 8nm + 23n + 8m − 4k + 20)/2 ∈ O(n2 + nm);
maximum length of a rule: 3 ∈ O(1).

Thus, there exists a deterministic Turing machine that builds the
ystem �(〈m, n〉) in a polynomial time with respect to m and n.

By the above checking of the computation process, we can prove
hat the P system �(〈m, n〉) with input multiset cod(ϕ*) always halts
nd sends to the environment object yes or no in the last step, that
s, at step n2 + 3n + 2m + 4 − k, object yes is sent to the environment
nd the system halts; object no is sent to the environment at step
2 + 3n + 2m + 5 − k and the system halts. Therefore, there exists a
olynomial bound for the number of steps of the computation.
Hence, the family � of recognizer P systems with sym-
ort/antiport rules and membrane division solves the QSAT
roblem in polynomial time according to Definition 3. So, the fol-

owing result is obtained.
Theorem 2. QSAT ∈ PMCCDneC(3).

Since the complexity class PMCCDneC(3) is closed under polyno-
mial time reductions, we have the following result.

Corrolary 2. PSPACE ⊆ PMCCDneC(3).

6. Conclusions and discussion

The computational efficiency of different computing devices in
membrane computing has been established. With regard to cell-
like computing devices, efficient solutions to hard problems have
been given in the framework of P systems with active membranes
that use evolution, send-in, send-out, dissolution and division rules.
Specifically, polynomial time solutions to the SAT problem Pérez-
Jiménez et al. (2003) (in a uniform way by using electrical charges)
and the QSAT problem Alhazov and Pérez-Jiménez (2007) (in a
semi-uniform way, without electrical charges and allowing division
for non-elementary membranes) have been proposed. With regard
to tissue-like computing devices, an efficient (uniform) solution to
the HAM-CYCLE problem by a family of tissue P systems with cell
division and symport/antiport rules of length at most 2, has been
given Porreca et al. (2012).

In this work, the computational efficiency of cell-like polar-
izationless P systems with symport/antiport rules and membrane
division has been investigated. Specifically, a (uniform) linear time
solution to the NP-complete problem Subset Sum by using divi-
sion rules for elementary membranes and communication rules of
length at most 3, has been given. We further proved that such P
system can efficiently solve the PSPACE-complete problem QSAT
problem, in a uniform way, when division rules for non-elementary
membranes are allowed. It is worth noting that the solution to QSAT
given in the paper can be adapted to a uniform solution bearing in
mind that for (existential) fully quantified formula associated with
ϕ(x1, . . ., xn), the number of universal quantifiers is � n

2 �.
We propose some open problems related to the role of commu-

nication rules in cell-like P systems with membrane division from
a computational complexity point of view.

(a) In the solution to QSAT proposed in this paper, division rules for
non-elementary membranes have been considered. Is it pos-
sible to provide an efficient solution to QSAT by using only
division rules for elementary membranes?

(b) The P systems constructed in Section 4 and in Section 5 have
both symport rules and antiport rules. What about the compu-
tational efficiency of P systems with membrane division that
use only either symport or antiport rules?

(c) It is known that NP ∪ co − NP ⊆ PMCTDC(2) Porreca et al. (2012).
What about the computational efficiency of CDeC(2)?

(d) The environment is not relevant for tissue P systems with sym-
port/antiport rules and cell division from a complexity point
of view Pérez-Jiménez et al. (2013). What about the efficiency
of recognizer P systems from CDC(k) when the alphabet of the
environment is an empty set?

P systems capture the inherent degree of freedom present in
biological systems through the non-determinism. With the inclu-
sion of this ingredient, P systems are able to solve hard problems in
an “efficient” way at the theoretical level by trading time for space.
New boundaries between tractability and NP-hardness, in terms of
syntactical ingredients of P systems, provide new tools to tackle the
P versus NP problem.

Different simulators for P systems running on conventional

computers have been developed during the last decade. The addi-
tion of parallel computing techniques, like those based on GPU, is
accelerating these simulators. With the aid of P systems simulators,
researchers aim to solve larger instances of NP hard problems than

t
H
i
m
t
p

A

N
6
t
H
s
(

R

A

A

A

B

C

D

F

efficiency of tissue P systems with cell division. In: Proceedings of the Tenth
he best ones provided so far, running on electronic computers.
owever, we would like to stress that such simulators are not real

mplementation of P systems. Obviously, an efficient real imple-
entation of P systems would provide a “constructive” proof of

he result P=NP, that is, similarly to what would happen with a
ractical implementation of non-deterministic Turing machines.

cknowledgements

The work of B. Song and L. Pan was supported by National
atural Science Foundation of China (61033003, 91130034, and
1320106005), Ph.D. Programs Foundation of Ministry of Educa-
ion of China (2012014213008), and Natural Science Foundation of
ubei Province (2011CDA027). The work of M.J. Pérez-Jiménez was

upported by “Ministerio de Economía y Competitividad” of Spain
TIN2012-37434), cofunded by FEDER funds.

eferences

lhazov, A., Freund, R., 2005. P systems with one membrane and symport/antiport
rules of five symbols are computationally complete. In: Proceedings of Third
Brainstorming Week On Membrane Computing, Sevilla, Spain, pp. 19–28.

lhazov, A., Rogozhin, Yu., 2006. Towards a characterization of P systems with min-
imal symport/antiport and two membranes. In: Vol. 4361 of Lecture Notes in
Computer Science. Springer, Berlin/Heidelberg, pp. 135–153.

lhazov, A., Pérez-Jiménez, M.J., 2007. Uniform solution of QSAT using polariza-
tionless active membranes. In: Vol. 4664 of Lecture Notes in Computer Science.
Springer, Berlin/Heidelberg, pp. 122–133.

ernardini, F., Gheorghe, M., 2003. On the power of minimal symport/antiport. In:
Proceedings of the 3rd Workshop on Membrane Computing, Tarragona, pp.
72–83.

iobanu, G., Pan, L., Păun, Gh., Pérez-Jiménez, M.J., 2007. P systems with minimal
parallelism. Theor. Comput. Sci. 378, 117–130.

íaz-Pernil, D., Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Riscos-Núñez, A., 2007.

A linear solution for Subset Sum problem with tissue P systems with cell division.
In: Vol. 4527 of Lecture Notes in Computer Science. Springer, Berlin/Heidelberg,
pp. 170–179.

risco, P., 2009. Computing with Cells: Advances in Membrane Computing. Oxford
University Press, Oxford.
Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J., 2005. A linear
solution of subset sum problem by using membrane creation. In: Vol. 3561 of
Lecture Notes in Computer Science. Springer, Berlin/Heidelberg, pp. 258–267.

Ionescu, M., Păun, Gh., Yokomori, T., 2006. Spiking neural P systems. Fund. Inform.
71 (2–3), 279–308.

Martín-Vide, C., Pazos, J., Păun, Gh., Rodriguez-Paton, A., 2003. Tissue P systems.
Theor. Comput. Sci. 296 (2), 295–326.

Papadimitriou, C.H., 1994. Computational Complexity. Addison-Wesley, Reading,
Mass.

Păun, A., 2000. On P systems with active membranes. In: Proceedings of the Second
International Conference on Unconventional Models of Computation, UMC’2K,
Brussels, Belgium, pp. 187–201.

Păun, A., Păun, Gh., 2002. The power of communication: P systems with sym-
port/antiport. New Gener. Comput. 20 (3), 295–305.

Păun, Gh., 2000. Computing with membranes. J. Comput. Syst. Sci. 61 (1), 108–143.
Păun, Gh., 2001. P systems with active membranes: attacking NP-complete prob-

lems. J. Auto. Lang. Comb. 6, 75–90.
Păun, Gh., Pazos, J., Pérez-Jiménez, M.J., Rodríguez-Patón, A., 2005. Symport/antiport

P systems with three objects are universal. Fund. Inform. 64, 1–4.
Păun, Gh., Rozenberg, G., Salomaa, A., 2010. The Oxford Handbook of Membrane

Computing. Oxford University Press, Oxford.
Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F., 2003. Complexity

classes in models of cellular computing with membranes. Nat. Comput. 2 (3),
265–285.

Pérez-Jiménez, M.J., Riscos-Núñez, A., 2004. A linear time solution to the Knapsack
problem using P systems with active membranes. In: Vol. 2933 of Lecture Notes
in Computer Science. Springer, Berlin/Heidelberg, pp. 250–268.

Pérez-Jiménez, M.J., Riscos-Núñez, A., 2005. Solving the Subset-Sum problem by
active membranes. New Gener. Comput 23, 367–384.

Pérez-Jiménez, M.J., 2005. An approach to computational complexity in mem-
brane computing. In: Vol. 3365 of Lecture Notes in Computer Science. Springer,
Berlin/Heidelberg, pp. 85–109.

Pérez-Jiménez, M.J., Romero-Jiménez, A., Sancho-Caparrini, F., 2006. A polynomial
complexity class in P systems using membrane division. J. Auto. Lang. Comb. 11
(4), 423–434.

Pérez-Jiménez, M.J., Riscos-Núñez, A., Rius-Font, M., Romero-Campero, F.J., 2013. A
polynomial alternative to unbounded environment for tissue P systems with
cell division. Int. J. Comput. Math. 90 (4), 760–775.

Porreca, A.E., Murphy, N., Pérez-Jiménez, M.J., 2012. An optimal frontier of the
Brainstorming Week on Membrane Computing, Volume II, Sevilla, Spain, pp.
141–166.

Rozenberg, G., Salomaa, A., 1997. Handbook of Formal Languages, vol. 3. Springer-
Verlag, Berlin.

	Efficient solutions to hard computational problems by P systems with symport/antiport rules and membrane division
	1 Introduction
	2 Preliminaries
	3 P systems with symport/antiport rules and membrane division
	3.1 Recognizer P systems with symport/antiport rules and membrane division
	3.2 Polynomial complexity classes of recognizer P systems

	4 Solving the Subset Sum problem by using CDeC(3)
	4.1 An overview of the computation
	4.2 Some formal details

	5 Solving the QSAT problem by using CDneC(3)
	5.1 An overview of the computation
	5.2 Some formal details

	6 Conclusions and discussion
	Acknowledgements
	References

