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Abstract 

Using computational algorithms to design tailored drug cocktails for highly active antiretroviral therapy (HAART) on 

specific populations is a goal of major importance for both pharmaceutical industry and public health policy 

institutions. New combinations of compounds need to be predicted in order to design HAART cocktails. On the one 

hand, there are the biomolecular factors related to the drugs in the cocktail (experimental measure, chemical structure, 

drug target, assay organisms, etc.); on the other hand, there are the socioeconomic factors of the specific population 

(income inequalities, employment levels, fiscal pressure, education, migration, population structure, etc.) to study the 

relationship between the socioeconomic status and the disease. In this context, machine learning algorithms, able to 

seek models for problems with multi-source data, have to be used. In this work, the first artificial neural network 

(ANN) model is proposed for the prediction of HAART cocktails, to halt AIDS on epidemic networks of U.S. 

counties using information indices that codify both biomolecular and several socioeconomic factors. The data was 

obtained from at least three major sources. The first dataset included assays of anti-HIV chemical compounds 

released to ChEMBL. The second dataset is the AIDSVu database of Emory University. AIDSVu compiled AIDS 

prevalence for >2300 U.S. counties. The third data set included socioeconomic data from the U.S. Census Bureau. 

Three scales or levels were employed to group the counties according to the location or population structure codes: 

state, rural urban continuum code (RUCC) and urban influence code (UIC). An analysis of >130,000 pairs (network 

links) was performed, corresponding to AIDS prevalence in 2310 counties in U.S. vs. drug cocktails made up of 

combinations of ChEMBL results for 21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 

possible experimental measures. The best model found with the original data was a linear neural network (LNN) with 

AUROC > 0.80 and accuracy, specificity, and sensitivity ≈ 77% in training and external validation series. The change 

of the spatial and population structure scale (State, UIC, or RUCC codes) does not affect the quality of the model. 

Unbalance was detected in all the models found comparing positive/negative cases and linear/non-linear model 

accuracy ratios. Using synthetic minority over-sampling technique (SMOTE), data pre-processing and machine-

learning algorithms implemented into the WEKA software, more balanced models were found. In particular, a 

multilayer perceptron (MLP) with AUROC = 97.4% and precision, recall, and F-measure >90% was found. 
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1. Introduction 

Computational algorithms may play an important role in the process of elucidation of structure–

activity relationships for many molecular systems and biological problems (Aguilera and Rodriguez-

Gonzalez, 2014, Barresi et al., 2013, Gonzalez-Diaz et al., 2011 and Munteanu et al., 2009). In particular, 

the theoretical biology has been useful in the study of anti-HIV drugs and/or their molecular targets (Jain 

Pancholi et al., 2014, Ogul, 2009, Speck-Planche et al., 2012, Weekes and Fogel, 2003 and Xu et al., 

2013). However, classic algorithms useful to connect the structure of a single molecule with its biological 

properties are unable to study the effect of combinations (cocktails) of drugs over epidemiological 

outbreaks in large populations with different social and economic factors. For instance, infections with 

HIV are commonly treated with antiretroviral drug combinations. These treatments could diminish the 

risk of HIV transmission (Castilla et al., 2005 and Ping et al., 2013). In addition, the rates of disease 

progression, opportunistic infections, and mortality decreased with the implementation of HAART, and 

the combination of anti-HIV drugs resulted in longer survival and a better quality of life for the people 

infected with the virus (Colombo et al., 2014). The most common drug treatment administered to patients 

consists of two nucleoside reverse transcriptase inhibitors combined with either a non-nucleoside reverse 

transcriptase inhibitor, a “boosted” protease inhibitor or integrase strand transfer inhibitors (INSTIs), 

which resulted in decreased HIV RNA levels (<50 copies/mL) at 48 weeks and CD4 cell increases in the 

majority of patients (Usach et al., 2013). Research indicates (McMahon et al., 2011) that despite HAART 

therapy, HIV infected individuals who are poor, homeless, hungry, or have less education, continue to 

have a higher risk of death. Additionally, researchers (McMahon et al., 2011) suggest that HIV-infected 

individuals of low socioeconomic status (SES) are more likely to have increased mortality rates than 

those who are not living under these adverse conditions. Therefore, resources for HIV testing care and 

proven economic interventions should be directed to areas of economically disadvantaged people 

(McDavid Harrison et al., 2008). 

The case of the United States (U.S.) is interesting for theoretical studies due to the abundance of 

epidemiological information. Holtgrave and Crosby (2003) found an important correlation (r = 0.469, 

p < 0.01) between the income inequality and the AIDS case rates at state level in the U.S. In addition, in 

2010, the U.S. National HIV Behavioural Surveillance System developed a study about HIV infection 

among heterosexuals at increased risk, involving a total of 12,478 persons. Out of 8473 participants, 197 

(2.3%) participants were positive for HIV infection, and prevalence was similar for men (2.2%) and 

women (2.5%). The research study shows a higher prevalence in persons who reported less than a high 

school education (3.1%), compared with those with a high school education (1.8%). Income inequality, 

employment, and other social variables also seem to be relevant on AIDS epidemiology. Prevalence was 

also higher in those with an annual household income of less than $10,000 (2.8%), compared to those 

with an income of $20,000 or more (1.2%) (CDC, 2013). Moreover, the percentage of HIV-infected 

individuals was higher in participants who reported being unemployed (1.1%) or disabled (and 

unemployed) (2.7%), compared to employed (0.4%) ones. Some authors, such as Mondal and Shitan 

(2013), commented in their study connections among life expectancy, income, educational attainment, 

fertility, health facilities, and HIV prevalence. 

Recently, large amounts of data have been accumulated in public databases about the scope of 

molecular biology. For instance, the ChEMBL database (https://www.ebi.ac.uk/chembl/) (Bento et al., 

2013, Gaulton et al., 2012 and Heikamp and Bajorath, 2011) provides data from life science experiments 

(Bento et al., 2013). In the same way, there are online resources containing epidemiological data of AIDS 

prevalence and data about socioeconomic factors at county level. These databases are AIDSVu 

(http://aidsvu.org), created by researchers at the Rollins School of Public Health at Emory University, and 

the U.S. Center for Disease Control and Prevention (CDC). In this context, the search of computational 

chemistry algorithms that may prove useful to carry out a mapping of structure–activity data of HAART-

drug cocktails over AIDS epidemiology networks and socioeconomic data is of major importance. In a 

recent paper (González-Díaz et al., 2014), ANNs have been used to link data related to AIDS in the U.S. 

counties to ChEMBL data about the chemical structure and preclinical activity of anti-HIV compounds. 

ANNs are prediction models, widely used in many areas of science, such as medicine, chemistry, 

biochemistry, as well as in drug development. In the latter, they are very useful for the prediction of 

properties of potential drugs. ANNs approximate the operation of the human brain with the ability to get 

results from complicated or imprecise data, which are very difficult to appreciate by humans or other 

computer techniques (Burbidge et al., 2001, Guha, 2013, Patel, 2013 and Speck-Planche et al., 2012). 

Indices of social networks and molecular graphs were used as input information. A Shannon information 

index based on the Gini coefficient was employed to quantify the effect of income inequality in the social 

network. In addition, Balaban’s information indices were used to quantify changes in the chemical 

structure of single anti-HIV drugs. Last, Box–Jenkins moving average operators (MA) were also 
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employed to quantify information about the deviations of drugs with respect to data subsets of reference 

(targets, organisms, experimental parameters, protocols). In our previous paper (González-Díaz et al., 

2014), the model found was able to link the deviations in the AIDS prevalence rates in the ath county to 

the changes in the biological activity of the qth drug (dq). 

However, the previous computational chemistry algorithm fails in accounting for drug cocktails and 

many socioeconomic factors. This work is aimed at developing, for the first time, a computational 

algorithm for network epidemiology which is able to map structure–activity data of HAART-drugs 

cocktails over complex networks of AIDS epidemiology and socioeconomic factors for >2000 U.S. 

counties. 

2. Materials and methods 

2.1. Socioeconomic factors 

2.1.1. Socioeconomic variables and Shannon-entropy transformation into information indices 

 

In total, 17 variables were withdrawn from AIDSVu, U.S. Census Bureau databases 

(http://www.census.gov/) and Internal Revenue Service (2014) (http://taxfoundation.org/). See the 

symbols and details of these variables in Table 1. All 17 socioeconomic variables (va) discussed 

previously come from very different original sources, describe different phenomena, and then use 

different scales. 

Table 1. U.S. socioeconomic variables. 

County variables (v) Description 

  

G Gini measure of income inequality in 2010 

LIP Percentage living in poverty in 2010 

FIT Federal income tax burden as a percentage of adjusted gross income in 2004 

LHS Percent of persons with less than high school 2006–2010 

OHS Percent of persons with only a high school degree 2006–2010 

SC Percent of persons completing some college, 2006–2010 

CD Percent of persons with a college degree (at least a 4 year degree), 2006–2010 

CPOP 4/1/2010 resident Census 2010 population 

ChR Numeric change in resident total population 4/1/2010 to 7/1/2010 

B Births 2010 

Nat Natural increase in period 4/1/2010 to 6/30/2010 

IntM Net international migration in period 4/1/2010 to 6/30/2010 

DMIG Net domestic migration in period 4/1/2010 to 6/30/2010 

NMIG Net migration in period 4/1/2010 to 6/30/2010 

CLF Civilian labor force 2010 

EMP Employed 2010 

UEMP Unemployed 2010 

RUC 2003 Rural urban continuum code 

UIC 2003 Urban influence code 

  

 
Less than high school (LHS): in 1990, 2000, 2006–2010 the share includes those who did not 
receive a high school diploma or its equivalent (such as a GED), but did not report college 

experience. Only high school degree (OHS): in 1990, 2000, and 2006–2010 the share includes 

those who completed 12th grade and received a high school diploma or its equivalent (such as a 
GED), but did not report college experience. Some college (SC): in 1990, 2000, and 2006–2010 the 

share includes those who reported completing at least one year of college but did not receive a 

bachelor’s degree. College graduate (CD): in 1990, 2000, and 2006–2010 the share includes those 
who received a bachelor’s or higher degree. 
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In order to perform an uniform and scale unbiased representation of information, all these variables 

were transformed into Shannon entropy information indices Ia(v). These information indices depend on 

the values of variables rescaled into probabilities as follows: 

 

𝐼𝑎(𝑣) = −𝑝𝑎(𝑣) × log𝑝𝑎(𝑣) 
 

𝑝𝑎(𝑣) = (
𝑣 − 𝑣min + 𝜖

𝑣max − 𝑣min + 𝜖
) 

 

This transformation guarantees that the new probability values become 1 for the maximum value 

(vmax) and approach to 0 for values close to minimum value (vmin). The scaling parameter ϵ = 0.0001 was 

used to avoid values of pa(v) = 0 with the subsequent undefined results of the entropy function for 

logarithm log (0). Table 2 shows a short example of the results of the consecutive probability and 

Shannon entropy scaling procedures for some variables. 

2.1.2. Demographic scale levels of socioeconomic information indices 

 

The variability of these 17 socioeconomic variables was studied on two different demographic scales. 

One of them refers to the geopolitical level and the other to the local population structure level. The first 

level was identified as the grouping of counties into 51 different states. Actually, there are only 47 states 

in our dataset. The second level was measured with two alternative codes: rural-urban continuum codes 

(RUCC), which distinguishes metropolitan counties by the population size of their metro area and 

nonmetropolitan counties by degree of urbanization and adjacency to a metro area. However, in this work 

the 2003 RUCC classification was used to preserve causality relationships. 2003 RUCC is the 

classification reported prior to the AIDSVu epidemic data, which is from 2010, and 2013 RUCC, which is 

posterior and could cause–effect relationships. The standard Office of Management and Budget (OMB) 

metro and nonmetro categories were subdivided into three metro and six nonmetro categories. Each 

county in the U.S. is assigned with one of the nine codes. This scheme allows researchers to break county 

data into finer residential groups, beyond metro and nonmetro, particularly for the analysis of trends in 

nonmetro areas that are related to population density and metro influence. In addition, the urban influence 

codes (UIC) distinguish metropolitan counties by population size of their metro area, and 

nonmetropolitan counties by size of the largest city or town and proximity to metro and micropolitan 

areas. The OMB metro and nonmetro categories were subdivided into two metro and 10 non-metro 

categories, resulting in a 12-part county classification. Table 3 shows the RUCC and UIC classification 

codes. 
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Table 2. Process of transformation of original socioeconomic variables into MA operators. 

U.S. County U.S. Variable (va) (step 1) 
 

Probability pa(v) (step 2) 

Name State G LIP FIT LHS 
 

pa (G) pa (LIP) pa (FIT) pa (LHS) 

           

Colfax County NE 0.412 10.9 0.0604 26.7949  0.2558 0.1995 0.4224 0.5078 

Dawson County NE 0.403 11.7 0.0554 24.4983  0.2271 0.2200 0.4017 0.4631 

Anoka County MN 0.371 7.4 0.0968 7.2105  0.1249 0.1100 0.5732 0.1268 

Beltrami County MN 0.429 20.8 0.0767 10.9661  0.3101 0.4527 0.4898 0.1998 

Baldwin County GA 0.457 27 0.0634 21.9876  0.3996 0.6113 0.4346 0.4143 

Fulton County GA 0.529 17.7 0.1508 10.3541  0.6295 0.3734 0.7974 0.1879 

Livingston County IL 0.41 11.5 0.0836 15.9262  0.2494 0.2148 0.5187 0.2963 

Greenbrier County WV 0.45 20.8 0.0771 22.2466  0.3772 0.4527 0.4914 0.4193 

Knox County KY 0.507 33.9 0.0440 37.2290  0.5592 0.7877 0.3541 0.7108 

Wexford County MI 0.424 17 0.0739 12.5700  0.2942 0.3555 0.4785 0.2310 

Becker County MN 0.43 14.6 0.0787 10.0182  0.3133 0.2941 0.4981 0.1814 

Benton County MN 0.39 10.5 0.0895 9.7819  0.1856 0.1893 0.5429 0.1768 

Choctaw County MS 0.434 23.4 0.0360 19.2685  0.3261 0.5192 0.3210 0.3614 

Lafayette County MO 0.389 11.9 0.0707 15.0247  0.1824 0.2251 0.4653 0.2788 

           

 

U.S. County U.S. Shannon entropy Ia(v) (step 3)  Box–Jenkins MA operator ΔIa (L,v) (step 4) 

Name State pa (G) pa (LIP) pa (FIT) pa (LHS) 
 

ΔIa (S,G) ΔIa (S,LIP) ΔIa (S,FIT) ΔIa (S,LHS) 

           

Colfax County NE 0.1515 0.1397 0.1581 0.1495  0.0060 −0.0006 0.0127 0.0158 

Dawson County NE 0.1462 0.1447 0.1591 0.1548  0.0007 0.0044 0.0138 0.0212 

Anoka County MN 0.1128 0.1054 0.1385 0.1137  −0.0286 −0.0274 −0.0036 −0.0181 

Beltrami County MN 0.1577 0.1558 0.1518 0.1398  0.0163 0.0230 0.0097 0.0079 

Baldwin County GA 0.1592 0.1307 0.1573 0.1585  0.0088 −0.0084 0.0045 0.0100 

Fulton County GA 0.1265 0.1598 0.0784 0.1364  −0.0239 0.0207 −0.0744 −0.0121 

Livingston County IL 0.1504 0.1435 0.1479 0.1565  0.0025 −0.0002 0.0045 0.0108 

Greenbrier County WV 0.1597 0.1558 0.1516 0.1583  0.0042 0.0040 −0.0011 0.0071 

Knox County KY 0.1412 0.0816 0.1597 0.1054  −0.0115 −0.0606 0.0077 −0.0411 

Wexford County MI 0.1563 0.1597 0.1532 0.1470  0.0041 0.0083 0.0090 0.0061 

Becker County MN 0.1579 0.1563 0.1508 0.1345  0.0165 0.0235 0.0087 0.0027 

Benton County MN 0.1357 0.1368 0.1440 0.1330  −0.0056 0.0040 0.0019 0.0012 

Choctaw County MS 0.1587 0.1478 0.1584 0.1597  0.0076 0.0199 0.0042 0.0099 

Lafayette County MO 0.1348 0.1458 0.1546 0.1547  −0.0150 −0.0042 0.0028 0.0044 

           

 

  



Table 3. Values of the RUCC and UIC codes in the U.S. in 2003. 

RUCC 
 
UIC 

Code Description 
 
Code Description 

 

Metro counties: 

1 Counties in metro areas of 1 million population or 
more 

 1 In large metro area of 1+ million residents 

2 Counties in metro areas of 250,000 to 1 million 

population 

 2 In small metro area of less than 1 million residents 

3 Counties in metro areas of fewer than 250,000 

population 

 – – 

  

Non-metro counties: 

4 Urban population of 20,000 or more, adjacent to a 

metro area 

 3 Micropolitan area adjacent to large metro area 

5 Urban population of 20,000 or more, not adjacent to 

a metro area 

 4 Noncore adjacent to large metro area 

6 Urban population of 2500–19,999, adjacent to a 
metro area 

 5 Micropolitan area adjacent to small metro area 

7 Urban population of 2500 to 19,999, not adjacent to a 

metro area 

 6 Noncore adjacent to small metro area and contains a town of at 

least 2500 residents 

8 Completely rural or less than 2500 urban population, 

adjacent to a metro area 

 7 Noncore adjacent to small metro area and does not contain a 

town of at least 2500 residents 

9 Completely rural or less than 2500 urban population, 
not adjacent to a metro area 

 8 Micropolitan area not adjacent to a metro area 

– –  9 Noncore adjacent to micro area and contains a town of at least 

2500 residents 

– –  10 Noncore adjacent to micro area and does not contain a town of 

at least 2500 residents 

– –  11 Noncore not adjacent to metro or micro area and contains a 
town of at least 2500 residents 

– –  12 Noncore not adjacent to metro or micro area and does not 

contain a town of at least 2500 residents 

     

 

2.1.3. Box–Jenkins MA operators of socioeconomic variables at different levels 

 

The moving average operators of Box–Jenkins (MA) were used in order to measure the variability of 

the Ia(v) on two different demographic scales (state and population). In so doing, the average parameters 

<Ia(v)L> were calculated for different levels of population L = u, r, s. Consequently, the average values 

<Ia(v)s>, <Ia(v)r>, <Ia(v)u> were obtained for all the Ia(v) values. The parameters <Ia(v)s> are the averages 

of Ia(v) for all the counties in the same state (L = s). The parameters <Ia(v)r> are the averages of Ia(v) for 

all the counties with the same population structure according to the RUCC code (L = r). The parameters 

<Ia(v)u> are the averages of Ia(v) for all the counties with the same population structure according to the 

UIC code (L = u) ( Brown et al., 1976 and Ghelfi and Parker, 1997). 

After calculating the averages <Ia(v)L>, the values of the MA operators were determined for each 

county. The values of <Ia(v)s> were tabulated for 47 states. The values of <Ia(v)r> and <Ia(v)u> were also 

calculated for 9 and 12 different types of population structures according to the RUCC and UIC codes, 

respectively (see Table SM1 of Supplementary material). Some examples of MA operators for selected 

counties at State, RUCC, and UIC levels are shown in Table 4, see also other examples at state level in 

the last columns of Table 2.The formulae of these MA operators are: 

 

Δ𝐼𝑎(𝑣)𝐿 = 𝐼𝑎(𝑣) −〈𝐼𝑎(𝑣)𝐿〉  Δ𝐼𝑎(𝑣)𝑟 = 𝐼𝑎(𝑣) −〈𝐼𝑎(𝑣)𝑟〉 

   

Δ𝐼𝑎(𝑣)𝑠 = 𝐼𝑎(𝑣) −〈𝐼𝑎(𝑣)𝑠〉  Δ𝐼𝑎(𝑣)𝑢 = 𝐼𝑎(𝑣) −〈𝐼𝑎(𝑣)𝑢〉 
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Table 4. Examples of MA operators for different scales and population structures for the selected counties 

U.S. County name U.S. state AIDSCR ΔIa (L,v) 

   
ΔIa (S,G)s ΔIa (S,LIP)s ΔIa (S,FIT)s ΔIa (S,LHS)s 

       

Perry County PA 71 −0.066 −0.012 0.009 0.007 

Sedgwick County KS 177 0.011 0.011 −0.016 0.012 

Mercer County PA 66 0.004 0.014 0.004 0.002 

Montgomery County KS 50 0.006 0.012 0.006 0.017 

Westmoreland County PA 47 0.007 −0.010 −0.006 −0.021 

Boyd County KY 112 0.004 0.017 −0.015 0.010 

Northampton County PA 153 0.003 −0.008 −0.009 0.002 

Riley County KS 59 0.007 0.008 −0.009 −0.034 

Montgomery County PA 140 0.008 −0.066 −0.056 −0.031 

Pottawatomie County KS 48 0.006 −0.023 0.002 −0.019 

Lebanon County PA 101 −0.006 −0.006 0.004 0.009 

Monroe County PA 173 −0.007 0.005 0.004 −0.005 

Wyoming County PA 45 −0.013 0.004 0.003 −0.007 

Boyle County KY 89 0.001 0.017 −0.006 0.012 

County Name State AIDSCR ΔIa (R,G) ΔIa (R,LIP) ΔIa (R,FIT) ΔIa (R,LHS) 

Perry County PA 71 −0.066 −0.014 0.010 0.009 

Sedgwick County KS 177 0.008 0.010 −0.008 0.002 

Mercer County PA 66 0.004 0.012 0.005 0.004 

Montgomery County KS 50 0.004 0.015 0.009 0.009 

Westmoreland County PA 47 0.013 0.002 0.005 −0.015 

Boyd County KY 112 0.004 0.011 −0.005 0.013 

Northampton County PA 153 0.003 −0.010 −0.009 0.005 

Riley County KS 59 0.004 0.011 −0.006 −0.042 

Montgomery County PA 140 0.014 −0.054 −0.046 −0.025 

Pottawatomie County KS 48 0.004 −0.023 −0.002 −0.034 

Lebanon County PA 101 −0.007 −0.010 0.000 0.010 

Monroe County PA 173 −0.008 0.002 −0.002 −0.007 

Wyoming County PA 45 −0.013 0.002 0.003 −0.005 

Boyle County KY 89 0.002 0.017 −0.005 0.014 

County Name State AIDSCR ΔIa (U,G) ΔIa (U,LIP) ΔIa (U,FIT) ΔIa (U,LHS) 

Perry County PA 71 −0.066 −0.015 0.007 0.009 

Sedgwick County KS 177 0.008 0.009 −0.010 0.001 

Mercer County PA 66 0.003 0.011 0.002 0.003 

Montgomery County KS 50 0.003 0.015 0.006 0.007 

Westmoreland County PA 47 0.013 0.002 0.005 −0.015 

Boyd County KY 112 0.004 0.010 −0.007 0.012 

Northampton County PA 153 0.002 −0.011 −0.011 0.004 

Riley County KS 59 0.003 0.011 −0.008 −0.044 

Montgomery County PA 140 0.014 −0.054 −0.046 −0.025 

Pottawatomie County KS 48 0.004 −0.022 0.001 −0.033 

Lebanon County PA 101 −0.007 −0.009 0.002 0.011 

Monroe County PA 173 −0.008 0.000 −0.003 −0.009 

Wyoming County PA 45 −0.014 0.001 0.001 −0.005 

       

 

  



2.2. Biomolecular factors 

2.2.1. Shannon-entropy transformation of chemical structure into information indices 

 

Quantitative descriptors of the drug molecular graph can be used to quantify the chemical structure of 

anti-HIV compounds. The molecular information indices Id(k) implemented in the software DRAGON, 

version 5.3 ( Todeschini and Consonni, 2000) were employed; in this work, the Id(k) information indices 

were the only ones used. The mathematical background of these descriptors has been explained in a 

previous work ( Herrera-Ibatá et al., 2014). The names, symbols, and formula for the calculation of 

different Id(k) descriptors are summarized in Table 5. The information indices calculated by DRAGON 

are molecular descriptors defined as total and information content of molecules. Different criteria are used 

for defining equivalence classes, i.e., equivalency of atoms in a molecule such as chemical identity, ways 

of bonding through space, molecular topology and symmetry ( Todeschini and Consonni, 2000). More 

details in the following references: ( Bertz, 1981, Bonchev and Trinajstic, 1978, Dancoff and Quastler, 

1953, Klopman et al., 1988, Raychaudhury et al., 1984, Shannon and Weaver, 1949 and Todeschini and 

Consonni, 2000). 

Table 5. Names, symbols, and formulae for the calculation of different Id (k) descriptors. 

Symbol D-symbol Name Formula Ref. 

     

Id(siz) ISIZ Information index on 

molecular size 

ISIZ=nATlog2nATI Bertz (1981) 

Id (ac) IAC Total information index on 

atomic composition I = 𝑛log
2
𝑛 −∑

𝐺

𝑔=1

𝑛𝑔log
2
𝑛𝑔 

Dancoff and Quastler (1953) 

Id (aac) AAC Mean information index on 

atomic composition 𝐼 ̅ = −∑

𝐺

𝑔=1

𝑛𝑔

𝑛
log

2

𝑛𝑔

𝑛
 

Dancoff and Quastler (1953) 

Id(det) 
Id (de) 

IDET, IDE Total and mean information 
content on the distance 

equality, respectively 

Equality of topological distances in an H-
depleted molecular graph. 

Bonchev and Trinajstic, 
(1978) 

Id 
(dmt),Id 

(dm) 

IDMT, IDM Total and mean information 
content on the distance 

magnitude, respectively 

Distribution of topological distances 
according to their magnitude in an H-

depleted molecular graph 

 

Id (dde) IDDE Mean information content 
on the distance degree 

equality 

Partition of vertex distance degrees 
according to their equality 

 

Id (ddm) IDDM Mean information content 
on the distance degree 

magnitude 

Partition of vertex distance degrees 
according to their magnitude 

 

Id (vde) IVDE Mean information content 
on the vertex degree 

equality 

Partition of vertices according to vertex 
degree equality 

 

Id (vdm) IVDM Mean information content 
on the vertex degree 

magnitude 

Partition of vertices according to the vertex 
degree magnitude 

Raychaudhury et al. (1984) 

Id 

(hvcpx) 

HVcpx Graph vertex complexity 

index HVcpx =
1

𝑛SK
×∑

𝑛SK

𝑖=1

(−∑

𝑛𝑖

𝑔=0

𝑓𝑗
𝑔

𝑛SK

× log
2

𝑓𝑗
𝑔

𝑛SK
) 

Raychaudhury et al. (1984) 

Id 

(hdcpx) 

HDcpx Graph distance complexity 

index HDcpx =∑

𝑛SK

𝑖=1

𝜎𝑖
2𝑊

(−∑ ×
𝑗=1

𝑛SK

log
2

𝑑𝑖𝑗

𝜎𝑖
) 

Klopman et al. (1988); 

Raychaudhury et al. (1984) 
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The total information content of a system having n elements is defined by the following: 

 

𝐼 = 𝑛log2𝑛 −∑

𝐺

𝑔=1

𝑛𝑔log2𝑛𝑔 

 

where G is the number of different equivalence classes and ng is the number of elements in the gth class. 

Each equivalence class is built by the definition of some relationships among the elements of the system. 

The logarithm is taken at base 2 for measuring the information content in bits. The total information 

content represents the residual information contained in the system after G relationships are defined 

among the n elements ( Todeschini and Consonni, 2000). 

The mean information content, also called Shannon’s entropy is defined as (Shannon and Weaver, 

1949): 

 

𝐼 ̅ = −∑

𝐺

𝑔=1

𝑛𝑔

𝑛
log2

𝑛𝑔

𝑛
 

 

 

2.2.2. Box–Jenkins MA operators of molecular information indices for a single molecule 

 

The molecular descriptors used were the Id(k) (13 information indices) of each anti-HIV drug forming 

the cocktail (131,252 anti-HIV cocktails). The Id(k) descriptors were used as input to calculate MA 

operators of the biomolecular factors for the drugs. Consequently, to calculate the MA biomolecular 

operators the value of the drugs information indices Id(k) was needed, as well as the average of these 

indices for all drugs assayed with the same boundary conditions (cj) of a given biomolecular factor. In 

general, c1, c2, and c3 refer to different sets of these boundary conditions for the same biomolecular factor 

(type of assay, molecular targets, cellular lines, organisms, experimental measures, etc.) for a single 

molecule. A diagram with some examples that describes the methodology used to calculate the inputs 

corresponding to the drugs is shown in Fig. 1. 

 

Δ𝐼𝑑(𝑘, 𝑐𝑗
𝑑 ) = 𝐼𝑑(𝑘) −〈𝐼𝑑(𝑘)〉𝑐𝑗

 

 

〈𝐼𝑑(𝑘)〉𝑐𝑗
=

1

𝑛𝑗
∑

𝑑=𝑛𝑗

𝑑=1

𝐼𝑑(𝑘) 
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Fig. 1. Calculation details of the inputs of the anti-HIV drugs (left branch of Fig. 2). 

2.2.3. Box–Jenkins MA operators of molecular information indices for HAART drug cocktails 

 

In the case of an MA operator for cocktail drugs (up to three molecules in the HAART cocktails 

studied herein), the MA operators of single drugs were used as input. These MA operators for cocktails 

take into consideration the sets of conditions 
d
cj = [

d
c1, 

d
c2, 

d
c3, 

d
c4] for each drug. In general, 

1
c, 

2
c, and 

3
c 

refer to different sets of these boundary conditions for the same biomolecular factor (type of assay, 

molecular targets, cellular lines, organisms, experimental measures, etc.). Therefore, 
1
c1, 

2
c1,

3
c1 = are the 

experimental measures of activity for the first, second, and third drugs of the cocktail, respectively. In 

analogy, 
1
c2, 

2
c2, and 

3
c2 are the protein targets for the same drugs. In addition, 

1
c3, 

2
c3, and 

3
c3 are the 

organisms that express the targets of these compounds. Last, 
1
c4, 

2
c4, and 

3
c4 are the different assay 

protocols used to test the activity of these compounds per se. The MA operator for a drug cocktail was 

calculated as the arithmetic mean of the corresponding MA operator for each drug in the cocktail. 

 

Δ𝐼𝑐(𝑘, 𝑐𝑗
𝑑 ) =

1

3
∑

𝑑=3

𝑑=1

Δ𝐼𝑑(𝑘, 𝑐𝑗) =
1

3
∑

𝑑=3

𝑑=1

[𝐼𝑑(𝑘) −〈𝐼𝑑(𝑘)〉𝑐𝑗
] 

 

 

The information indices Id(k) of the molecules, the average values <Id(k)>cj of these indices for 

different boundary conditions (cj), and relevant information for biomolecular factors of all drugs are 

shown in Tables SM2 and SM3 of Supplementary material, respectively. A diagram summarizing the 

above steps is depicted in Fig. 2. 
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Fig. 2. Flowchart used to construct the ANNs for the AIDS Pharmacoepidemiology model 
in the U.S. 

2.3. ALMA models of complex networks 

2.3.1. Linear ALMA models 

 

ALMA (assessing links with moving averages) is a technique developed by our group that has been 

previously used to construct complex multi-scale networks of AIDS and anti-HIV drugs (González-Díaz 

et al., 2014 and Herrera-Ibatá et al., 2014). In the previous study, MA operators of biomolecular and 

socioeconomic factors were used. In this work, the ALMA technique was employed to fit a new class of 

dual models combining chemoinformatics and epidemiological data for HAART cocktails made up of 

combinations of 1–3 anti-HIV drugs. These new models are able to link AIDS epidemiology data with 

socioeconomic and population structure data of the U.S. counties and preclinical structure–activity 

information of all compounds combined in each HAART cocktail. The MA of operators of nodes of 

networks (drugs, proteins, organisms, populations, etc.) was used to predict the variable Lac(
d
cj)obs. The 

value is Lac(cj) = 1 when the cocktail-disease ratio = CDRac(
d
cj) > cutoff and Laq(

d
cj)obs = 0 otherwise. The 

term CDRac(cj) = [zc/Da]; where zc = (z1 + z2 + z3)/3 = the average of the z-scores z1, z2, z3 of the biological 

activity for each drug (dth) present in the cocktail. The term Da is the AIDS prevalence rate for the ath 

county. Each zeta was calculated as zd(cj) = δj·zd(cj) = δj· [vd(cj) − AVG(v(cj))]/SD(v(cj)). In this operator, 

vd(cj) is the value of biological activity (EC50, IC50, Ki, … etc.) reported in the ChEMBL database for the 

dth drug assayed in the set of conditions. The parameter δj is similar to a Kronecker delta function. The 

parameter δj = 1 when the biological activity parameter vd(cj) is directly proportional to the biological 

effect (e.g., Ki values, activity (%) values, etc.). Conversely, δj = −1 when the biological activity 

parameter vd(cj) is inversely proportional to the biological effect (e.g., EC50 values, IC50 values, etc.). The 

parameter zd(cj) is the z-score of the biological activity that depends on the AVG and SD functions. These 

functions are the average and standard deviation of vd(cj) for all drugs assayed in the same conditions. The 

reader should note that the predicted, output, or dependent variable of an ALMA model is not a discrete 

variable but a real-valued numerical score (Sac). However, the variable is directly proportional to the 

observed variable. The general formula for a linear ALMA model developed using average values of 

ΔIa(L, v) and ΔIc indices of the counties and compounds used in a given drug cocktail was: 
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𝑆ac = ∑

𝑘=13

𝑘=1

∑

𝑗=4

𝑗=1

𝑒𝑘𝑗 × Δ𝐼𝑐(𝑘, 𝑐𝑗
𝑑 ) +∑

𝐿=3

𝐿=1

∑

𝑣=17

𝑣=1

𝑒𝐿𝑣 × Δ𝐼𝑎(𝐿, 𝑣) + 𝑒0 

 

 

3. Results and discussion 

3.1. Two-way joining cluster analysis and principal components analysis 

The two-way joining cluster analysis (TWJCA) and principal components analysis (PCA) are useful 

methods to reduce the magnitude of datasets with many input variables. Two-way joining is useful in 

circumstances in which it is expected that both cases and variables will simultaneously contribute to find 

meaningful patterns of clusters (Hill and Lewicki, 2006). A dichotomist approach for both TWJCA and 

PCA was used herein. It means that TWJCA and PCA of socioeconomic and biomolecular factors were 

carried out separately. These techniques were used in order to perform a preliminary exploratory study of 

the data and to determine their variability. In addition, the discriminatory effect of the information indices 

was studied under the different conditions of assay. First, TWJCA was employed to analyze the 

biomolecular data. The TWJCA algorithm reorganized the average values of the information indices with 

respect to those compounds with the same experimental measure, drug targets, and organism of assay into 

a total number of blocks (see Table 6 and Fig. 3). For example, the experimental measure present an 

initial input of blocks, 130, resulting in 49 output blocks after performing the TWJCA. As it can be seen 

in the hot maps (HM) depicted in Fig. 3, the experimental measure and biomolecular targets show that 

there is no information index that distinguishes well each condition for the experimental measure and 

targets. However, some indices (IDET, IDMT, and ISIZ) represent clearly the CXCR-4 receptor. 

Moreover, in the figure corresponding to the organism, the ISIZ index discriminates well each organism 

of assay (HIV-1, HIV-2, hsa, etc.). Next, TWJCA of the socioeconomic data was performed. In the 

specific case of TWJCA for socioeconomic data, the analysis of different levels of population distribution 

(UIC, RUCC and State) was also carried out separately. The HM obtained by cluster analysis does not 

show significant differences between the metro and nonmetro codes and the population structures (see 

Fig. 4). 
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Table 6. TWJCA and PCA of average values of information indices for drugs <Id(k)>cj and counties <Ia(v)>L. 

TWJCAa Inputs Factor name IDB ODB Mean SD 

 

Biomolecular factors 

HM1 <Id(k)>exp Experimental measure 130 49 −0.1 × 10−7 0.95 

HM2 <Id(k)>target Drug targets 130 32 0.1 × 10−9 0.94 

HM3 <Id(k)>org Organism of assay 65 23 −0.1 × 10−7 0.89 

Socioeconomic factors 

HM1 <Ia(v)r> RUCC 153 48 0.1 × 10−9 0.94 

HM2 <Ia(v)u> UIC 204 58 0.1 × 10−7 0.96 

HM3 <Ia(v)s> STATES 799 307 −0.1 × 10−7 0.99 

PCAb Inputs Factor name EV (%) VAR (%) CEV (%) CVAR (%) 

Biomolecular factors 

PC1 <Id(k)cj> Exp. measure vs. Organism 28.4 43.6 28.4 43.6 

PC2 
 

Drug structure 8.3 12.8 36.7 56.4 

PC3 
 

Pharmacological assay 6.8 10.4 43.4 66.8 

PC4 
 

Drug target 5.1 7.8 48.5 74.6 

Socioeconomic factors 

PC1 <Ia(v)L> Population vs. Employment 24.9 36.6 24.9 36.6 

PC2 
 

Education vs. Poverty 7.8 11.5 32.7 48.1 

PC3 
 

Domestic vs. Net Migration 7.4 10.9 40.1 59.0 

PC4 
 

Education Level 5.3 7.8 45.4 66.8 

PC5 
 

Other factors 3.9 5.8 49.3 72.5 

       

 
a TWJCA = two-way joining cluster analysis; HM = hot maps (Fig. 4 and Fig. 5), IDB = input data blocks, ODB = output data 

blocks, SD = standard deviation (threshold value = SD/2). 
b PCA = principal component analysis (Fig. 6), EV = eigenvalue, CEV = cumulative eigenvalues, VAR = variance, 

CVAR = cumulative variance. 
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Fig. 3. Hot maps (HM) picture of TWJCA results with average values <Id(k)>cj 

of the information indices Id(k) for different biomolecular factors (cj). 

  



 
 

 
Fig. 4. Hot maps (HM) of TWJCA results with average values <Ia(k)>cj of the 

information indices Ia(k) for different socioeconomic factors structure 

population (cj = R = RUCC level, U = UIC level, S = State level). 

  



On the one hand, a PCA of data was carried out. PCA was applied in this work with two different 

aims. The first was to represent the complex data of anti-HIV drug cocktails vs. U.S. counties in a 

compact form and analyze the results. The PCA for the socioeconomic factors was performed with 68 

input variables, resulting in four factors that represent the 72% of the information (see Table 6). The plot 

of socioeconomic eigenvalues can be seen in Fig. 5. The first factor represents the population and 

employment, the second factor shows the information about education and poverty, the third one is the 

domestic and net migration and the fourth factor refers to education level. On the other hand, the PCA for 

the biomolecular factors was conducted with 65 input variables. In this case, the analysis showed four 

eigenvalues for the biomolecular factors that account for the 74% of the information, the first factor being 

the experimental measure and organism, the second factor the drug structure, the third factor the assay 

and the fourth factor the target (Fig. 5). Table 6 depicts the eigenvalues obtained for the different 

principal components. The eigenvalues generated during PCA give an indication of the amount of 

information carried by each component. 

 
 

 
Fig. 5. Plot of biomolecular and socioeconomic eigenvalues for PCA of 

average values. 
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3.2. ANN calculation of parameters in a linear and non-linear ALMA model 

In our previous work (González-Díaz et al., 2014), a LNN model was developed using Balaban 

information indices for anti-HIV compounds present in the ChEMBL database (unique drugs = 21,582 

and total data points = 43,249). The model also included the Shannon entropy information indices based 

on values of Gini income inequality of the U.S. counties (Pabayo et al., 2014). The model presented 

values of accuracy (Ac), specificity (Sp), and sensitivity (Sn) ≈ 0.75 in training and external validation 

series. In this work, different ANNs were trained using the MA operators for the information indices of 

several socioeconomic and biomolecular inputs. In total, 40 MA operators were used for the different 

biomolecular conditions of drugs cocktails (experimental measures, targets and organism) and 50 MA 

operators of the socioeconomic factors in the U.S. counties. The MA of socioeconomic factors for each 

county was calculated in the form of deviations from all counties with the same populations, with the 

same structure (i.e., RUCC or UIC code) or with the same geographic location (same State). Finally, 

different prediction models were obtained. The dataset used to perform the model includes N = 131,252 

statistical cases. The data used to train the model included N = 78,752 statistical cases, selection involved 

26,250 statistical cases and validation included 26,250 statistical cases. There were 22,100 cases with 

Lac(cj)obs = 1 and 109,152 cases with Lac(cj)obs = 0. 

The ANN module implemented in the STATISTICA 6.0 software package (Hill and Lewicki, 2006) 

was employed. The statistical parameters used to support the model were: number of cases in training (N), 

and overall values of specificity (Sp), sensitivity (Sn), accuracy (Ac), and AUROC (area under receiver 

operating curve). Different topologies of ANNs were trained, including multilayer perceptrons (MLPs) 

and linear neural networks (LNN). Last, ALMA models using a PCA–ANN approach was also trained. In 

fact, the output of the PCA can be copied to the dataset, and used to train the ANN with a notably lower 

number of input variables. An analysis of >130,000 pairs (network links) was carried out, corresponding 

to AIDS prevalence in 2310 counties in the U.S. vs. drug cocktails made up of combinations of ChEMBL 

results for 21,582 unique drugs, 9 viral or human protein targets, 4856 protocols, and 10 possible 

experimental measures. The parameters of the generated ANNs are depicted in Table 7. The best model 

found with original data was a linear neural network (LNN) with AUROC > 0.80 and Ac, Sp, and 

Sn ≈ 79% in training and external validation series, and the predictive model presented 87 variables. 

However, the UIC-LNN model was chosen because its performance is Ac, Sp, and Sn ≈ 77% in training 

and external validation series using 54 variables (see Table SM4 of Supplementary material, with 

variables for each model). In addition, the urban influence codes presented a more specific classification 

scheme for structure population. 

Table 7. Parameters of generated ANNs. 

Population Net. name Training algorithm Error function Hidden activation Output activation 

      

All MLP 90-14-2 BFGS 193 Entropy Logistic Softmax 

State MLP 56-23-2 BFGS 68 SOS Logistic Logistic 

RUCC MLP 56-15-2 BFGS163 Entropy Identity Softmax 

UIC MLP 56-15-2 BFGS140 SOS Tanh Identity 

Population Net. name Training algorithm Error function Activation Hidden layers 

All LNN 87:87-1:1 Pseudoinverse Entropy Identity 0 

State LNN 52:52-1:1 
    

RUCC LNN 53:53-1:1 
    

UIC LNN 54:54-1:1 
    

      

 
BFGS = Broyden–Fletcher–Goldfarb–Shanno, or Quasi-Newton; SOS = sum of squares. 
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Furthermore, the population structure scale (State, UIC, or RUCC codes) does not affect the quality of 

the model (see Table 8). This may indicate that the efficiency of a cocktail from an epidemiological point 

of view does not depend on the demographic structure of the population. However, the inclusion of 

different socioeconomic factors seems to affect the accuracy of the model. The SES depends on a 

combination of variables including occupation, education, income and place of residence, therefore the 

relationship between the social determinants and AIDS has a significant role to play in the adherence to 

HAART therapy (Falagas et al., 2008). Nevertheless, evidence of the association between adherence to 

HIV therapy and socioeconomic status is still rudimentary, varied and there is no a conclusive support for 

the existence of a clear association. Some studies found lower socioeconomic status (SES) to be 

associated with higher mortality from AIDS (McFarland et al., 2003). Recent evidence indicates that 

AIDS is a disease of inequality, often associated with economic transition, rather than a disease of 

poverty in itself (Piot et al., 2007). Additionally, many researchers now point not to poverty itself but to 

economic and gender inequalities and weakened “social cohesion” (Barnett and Whiteside, 2006) as 

factors influencing sexual behavior and hence the potential for HIV transmission. Undeniably, more 

people live with HIV in poor countries than in rich ones. More than 60% of people living with HIV 

inhabit the world's poorest region: sub-Saharan Africa. However, studies during the early stage of the 

epidemic suggested that HIV incidence initially occurred not amongst the poorest, but among better-off 

members of society in this region. A decade later, infections still appear more concentrated among the 

urban employed and more mobile members of society, and consequently the more wealthy groups (Piot et 

al., 2007). 

Table 8. ALMA models based on ANN classifiers found with STATISTICA using original data. 

Level ANN models 
 

Training 
 

Selection 
 

Validation 

State 
 

Observed 
 

Lac = 1 Lac = 0 
 

Lac = 1 Lac = 0 
 

Lac = 1 Lac = 0 

            

 MLP 56-23-2 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  16.58 98.20  10.98 98.42  12.84 97.48 

  Lac = 1  2189 1177  503 342  556 551 

  Lac = 0  11006 64380  4074 21331  3772 21371 

 LNN 52:52-
1:1 

Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  77.16 75.32  73.89 75.77  73.23 76.32 

  Lac = 1  10182 16174  3198 5310  3352 5131 

  Lac = 0  3013 49383  1130 16612  1225 16542 

    

RUCC  Observed  Lac = 1 Lac =  0  Lac =  1 Lac = 0  Lac =  1 Lac = 0 

 MLP 56-15-2 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  31 96  28 96  30 96 

  Lac = 1  4213 2281  1320 681  1329 770 

  Lac = 0  8982 63276  3257 20992  2999 21152 

 LNN 53:53-

1:1 

Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  79.37 77.07  76.38 77.38  73.30 79.22 

  Lac = 1  10473 15031  3306 4957  3355 4502 

  Lac = 0  2722 50526  1022 16965  1222 17171 

    

UIC  Observed  Lac =  1 Lac =  0  Lac = 1 Lac = 0  Lac = 1 Lac = 0 

 MLP 56-15-2 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  34.99 97.15  26.69 96.89  28.14 97.13 

  Lac = 1  4618 1865  1222 674  1218 627 

  Lac = 0  8577 63692  3355 20999  3110 21295 

 LNN 54:54-

1:1 

Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  79.67 77.07  76.73 77.52  72.97 79.03 

  Lac = 1  10513 15027  3321 4926  3340 4544 
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Table 8. ALMA models based on ANN classifiers found with STATISTICA using original data. 

Level ANN models 
 

Training 
 

Selection 
 

Validation 

State 
 

Observed 
 

Lac = 1 Lac = 0 
 

Lac = 1 Lac = 0 
 

Lac = 1 Lac = 0 

            

  Lac = 0  2682 50530  1007 16996  1237 17129 

    

ALL  Observed  Lac =  1 Lac =  0  Lac = 1 Lac = 0  Lac = 1 Lac =  0 

 MLP 90-14-2 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  58.55 96.18  49.09 94.80  48.93 94.32 

  Lac = 1  7726 2498  2247 1125  2118 1243 

  Lac = 0  5469 63059  2330 20548  2210 20679 

 LNN 87:87-

1:1 

Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  80.93 79.83  80.26 80.31  77.14 80.99 

  Lac = 1  10680 13221  3474 4316  3531 4118 

  Lac = 0  2515 52336  854 17606  1046 17555 

    

PCA  Observed  Lac =  1 Lac =  0  Lac =  1 Lac =  0  Lac =  1 Lac = 0 

 MLP 6:6-8-1:1 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  61.42 57.07  52.86 60.55  53.68 57.95 

  Lac = 1  8104 28146  2288 8649  2457 9113 

  Lac = 0  5091 37411  2040 13273  2120 12560 

 LNN 7:7-1:1 Parametera  Sn Sp  Sn Sp  Sn Sp 

  Predicted  58.54 56.84  51.15 58.46  55.25 52.34 

  Lac = 1  7725 28295  2214 9107  2529 10330 

  Lac = 0  5470 37262  2114 12815  2048 11343 

            

 
a Parameters, Sp = specificity, Sn = sensitivity; columns: observed classifications; rows: predicted classifications 

Training ALMA models using PCA–ANN fails to generate good predictions classifiers, with Sp and 

Sn results close to 50% in MLP and LNN networks (see Table 8). In this work, the UIC–LNN model was 

chosen, because it is a more specific classification scheme of the population structure than the others and 

LNN is the simplest type of classification model. The UIC–LNN model shows values of AUROC = 0.85 

in training and AUROC = 0.83 for the external validation set (see Fig. 6). 
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Fig. 6. ROC for ALMA–LNN model with MA of socioeconomic factors related to the UIC 

codes. 

However, certain unbalance was noted regarding the classification of positive/negatives cases, as well 

as on the predictive power of linear vs. non-linear classifiers. Using SMOTE data pre-processing and 

machine-learning algorithms implemented in the WEKA software (Hall et al., 2009), more balanced 

models were found. In particular, as it can be seen in Table 9, an MLP with AUROC = 97.4% and 

precision, recall, and F-measure >90% was found. First, a hybrid preprocessing approach called SMOTE 

(Chawla et al., 2002) was used, based on oversampling and undersampling our highly imbalanced dataset 

in order to equilibrate the two output classes. This generates a substantial improvement of results on the 

test set implemented into the non-linear models, the increase in precision or positive predictive value 

given being of particular importance, which is the main goal of our research. The MLP and random forest 

methods are applied, as they are more computationally demanding schemes, able to uncover underlying 

complex and non-linear functions between the variables. In conclusion, our data seem to be better 

modelled through a combination of previous preprocessing and the application of non-linear machine 

learning algorithms, as reflected in Table 9. 
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Table 9. Results for models obtained with WEKA before and after obtaining the SMOTED data. 

WEKA modelsa Parameters 

Original datab Precision Recall F-measure AUROC 

     

VP 19.5 33.6 24.6 52.9 

MLP 59.3 57.3 58.3 86.2 

RNDF 60.3 43.3 50.4 82.1 

SMOTE data filterc Precision Recall F-measure AUROC 

VP 50.1 74.9 60.0 49.9 

MLP 94.2 90.1 92.1 97.4 

RNDF 91.7 89.4 90.5 95.9 

     

 
a VP = voted perceptron, MLP = multi-layer perceptron, RNDF = random forest. 
b Models obtained with WEKA prior to data pre-processing. 
c Models obtained with WEKA using SMOTED data. 

3.3. Back-projection of the computational chemistry model over U.S. county sub-networks 

The output values (Lac(
d
cj)obs = 1 or Lac(

d
cj)obs = 0) of the ALMA classifier were used to generate 

different sub-networks. This variable quantifies the formation of links between nodes in the core complex 

network. This network maps the AIDS prevalence with respect to the preclinical activity of anti-HIV drug 

cocktails in each state of the U.S. at county level. This network has two parts, the core and the periphery. 

There are two different types of nodes making up the core of this specific network. The first type 

represents the U.S. counties (ath) and the second type of nodes represents the HAART cocktails (cth). In 

addition, each cocktail node has 2–3 nodes attached to it, which represents the drugs present in the 

cocktail (network periphery). Fig. 7 shows a sub-network (of the previous type of network) for AIDS 

prevalence in the state of New York (NY) vs. anti-HIV drug preclinical activity for all drugs combined in 

the HAART cocktails designed from compounds reported in ChEMBL. The sub-network contains three 

types of nodes; the nodes of the network core are the US counties (red) and the HAART cocktails (blue). 

The nodes of the periphery of the network are anti-HIV compounds combined to making up different 

cocktails (nodes hidden in the picture). It is important to understand that here Lac(cj)pred = 1 expresses the 

existence of a sub-graph that connects several nodes of all classes by means of various arcs and no single 

arcs connecting two nodes. It is possible to create a similar type of sub-network with a model reported in 

a previous work (Herrera-Ibatá et al., 2014). In the mentioned study, the type of sub-network may have 

different classes of nodes. There are three main classes: the counties of the state, the drug cocktails, and 

the chemical compounds making up the cocktail. However, this sub-network includes only one 

socioeconomic variable: the Gini coefficient. Furthermore, another type of sub-network was developed in 

a previous work (González-Díaz et al., 2014), which had two classes of nodes (counties vs. drugs). The 

drug nodes contained information about the chemical structure, as well as all the assay conditions (target, 

organism, assay protocol, experimental measure). Additionally, the county nodes contained the 

information about the income inequality. However, because of the type of model used, those complex 

networks are unable to represent drug cocktails. 
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Fig. 7. Predicted sub-network of HAART cocktails vs. AIDS prevalence for the state of New York (NY). 

3.4. Computational chemistry modeling of AIDS epidemiology in the U.S. counties network 

The probabilities with which AIDS could be halted using several drug cocktails in a given county 

(ath) were calculated. It is important to explain that not all counties were modelled against every drug 

cocktail. 

 

𝑝𝑎(halt) =
𝛿in(𝑎)NY
𝑓(𝑎)NY

=
𝑛(𝐿ac = 1)

𝑓(𝑎)NY
 

 

 

In the example with the state of New York, the symbol δin(a)NY = n(Lac = 1) is the number (n) of 

cocktails predicted to be effective to halt the AIDS outbreak in the ath county. The county in-degree is the 

number of links (Lac(cj)pred = 1) between the different cocktails and the county. The county frequency 

refers to the total number of times that the county is in our database. Moreover, Table 10 depicts some 

examples from the complex sub-network of the state of New York, with data of counties in-degree with 

several HAART cocktails. For example, Bronx County shows a good in-degree in the complex 

subnetwork, e.g., the probability that several HAART cocktails are effective in this county is higher than 

in Chemung county, which presents a lower probability. Thus, this type of model could be useful for 

epidemiological surveillance procedures to understand the vulnerability of the populations regarding 

AIDS epidemic. 
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Table 10. Predicted probabilities, p (halt), with which AIDS could be halted in a county with a 

HAART cocktail. 

NY County County frequency County in-degree p (halt) 

    

Bronx 57 48 0.84 

Queens 57 43 0.75 

New York 56 41 0.73 

Kings 56 39 0.70 

Westchester 57 30 0.53 

Jefferson 56 18 0.32 

Orange 56 17 0.29 

Rockland 56 16 0.29 

Dutchess 57 16 0.28 

Chemung 57 14 0.25 

    

 

4. Conclusions 

ALMA models were used to carry out a back-projection of the preclinical activity of drugs combined 

in a HAART cocktail over a complex network of AIDS in the U.S. counties. In this work, the UIC–LNN 

model was chosen, because it is a more specific classification scheme of the population structure than the 

other ones and LNN is the simplest type of classification model. However, an unbalance was noted 

regarding the classification of positive/negatives cases, as well as regarding the predictive power of linear 

vs. non-linear classifiers. In consequence, our dataset was transformed with data pre-processing 

algorithms and three different machine-learning algorithms implemented in the WEKA software ( Hall et 

al., 2009). First, a hybrid preprocessing approach called SMOTE (Chawla et al., 2002) was used. This 

generates a substantial improvement of results on the test set implemented into the non-linear models. 

More balanced models were found, such as an MLP with AUROC = 97.4%, precision, recall, and F-

measure >90%. 

The generated models based on machine-learning algorithms (ANNs mainly) could be useful as an 

initial form of screening for the prediction of effective drugs in preclinical assays for the treatment of HIV 

in different populations of U.S. counties with a given AIDS epidemiological prevalence. Thus, this is cost 

and time effective, compared to the expensive process of drug discovery and development. The artificial 

intelligence techniques and procedures employed do not prove a definite relationship between adherence 

to HIV treatment and socioeconomic status, since this is still rudimentary and there is no strong support 

for the existence of a clear association. 
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