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a  b  s  t  r  a  c  t

Drosophila  melanogaster  are  a good  system  in  which  to understand  the  minimal  requirements  for
widespread  visually  guided  behaviours  such  as  navigation,  due  to  their  small  brains  (adults  possess
only  100,000  neurons)  and  the  availability  of neurogenetic  techniques  which  allow  the  identification  of
task-specific  cell  types.  Recently  published  data  describe  the receptive  fields  for  two  classes  of visually
responsive  neurons  (R2 and  R3/R4d  ring  neurons  in  the  central  complex)  that  are  essential  for  visual  tasks
such as  orientation  memory  for salient  objects  and  simple  pattern  discriminations.  What  is  interesting  is
that these  cells  have  very  large  receptive  fields  and  are  very  small  in  number,  suggesting  that  each  sub-
population  of  cells might  be a bottleneck  in the  processing  of  visual  information  for  a specific  behaviour,
as  each  subset  of  cells  effectively  condenses  information  from  approximately  3000  visual  receptors  in  the
eye, to fewer  than 50 neurons  in  total.  It has  recently  been  shown  how  R1  ring neurons,  which  receive
input  from  the  same  areas  as  the  R2  and  R3/R4d cells,  are  necessary  for  place  learning  in  Drosophila.
ision However,  how  R1  neurons  enable  place  learning  is  unknown.  By  examining  the information  provided
by  different  populations  of  hypothetical  visual  neurons  in simulations  of experimental  arenas,  we  show
that  neurons  with  ring  neuron-like  receptive  fields  are  sufficient  for  defining  a location  visually.  In this
way  we  provide  a link  between  the type  of information  conveyed  by ring  neurons  and  the behaviour  they
support.

©  2015  Elsevier  Ireland  Ltd.  All  rights  reserved.
. Introduction

One of the goals of neuroscience is to understand how sensory
nformation is put at the service of behaviour, with differ-
nt behaviours requiring different information. For instance, the
equirements of a visual system, if the behaviour is to approach a
ree, are different to the requirements if it is to identify a particular
ree type. In this spirit, we can use modelling to investigate how
seful different sensory systems might be for particular tasks. Here
e will examine how populations of visual cells might underpin

isual navigation in the fruit fly, Drosophila melanogaster. This is
ade possible by newly available descriptions of visually respon-

ive neurons which are essential in the production of complex
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

isual behaviours (Seelig and Jayaraman, 2013). We  also know that
elated cells are needed for visual place learning in flies (Ofstad
t al., 2011).

As with many animals, vision plays a key role in a number of
ehaviours performed by Drosophila,  including mate-recognition

∗ Corresponding author.
E-mail addresses: a.dewar@sussex.ac.uk, alex.dewar@gmx.co.uk

A.D.M. Dewar), andrewop@sussex.ac.uk (A. Philippides).

ttp://dx.doi.org/10.1016/j.biosystems.2015.07.008
303-2647/© 2015 Elsevier Ireland Ltd. All rights reserved.
(Agrawal et al., 2014), visual course control (Borst, 2014), collision-
avoidance (Tammero and Dickinson, 2002), landing (Tammero
and Dickinson, 2002) and escaping a looming object (Card and
Dickinson, 2008). Similarly, Ofstad et al. (2011) have shown that
these flies are capable of visually guided place navigation in an
analogue of the Morris water maze. In these experiments walk-
ing flies are enclosed in an arena, surrounded by an LED screen.
The arena floor is heated, save for a single cool spot whose posi-
tion is defined by the visual patterns on the screen. When flies find
the cool spot they remain within it. However, periodically the cool
spot is moved and the LED display rotated to indicate the new loca-
tion. Thus, flies learn to associate the cool place with the visual
scene. This behaviour is analogous to the well-studied place learn-
ing in social insects (Cartwright and Collett, 1983; Wehner and
Räber, 1979) and similar methods have been used to demonstrate
visual place learning in other, non-central place foragers such as
crickets (Wessnitzer et al., 2008). One key area of the brain that is
involved in spatial processing is the central complex (CX), a well-
cific neural coding in the visual system of Drosophila. BioSystems

conserved brain area across insects. A sub-structure of the CX is the
ellipsoid body containing a class of neurons called ‘ring neurons’,
which are known to be involved in visual behaviours (R1: place
homing, Ofstad et al., 2011; Sitaraman and Zars, 2010; Sitaraman

dx.doi.org/10.1016/j.biosystems.2015.07.008
dx.doi.org/10.1016/j.biosystems.2015.07.008
http://www.sciencedirect.com/science/journal/03032647
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t al., 2008; R2/R4m: pattern recognition, Pan et al., 2009; Liu et al.,
006; Ernst and Heisenberg, 1999; R3/R4: spatial working memory,
euser et al., 2008).

Using neurogenetic techniques, Seelig and Jayaraman (2013)
ave been able to describe in detail two classes of ring neuron in the
rosophila ellipsoid body. The two subtypes of ring neuron inves-

igated were the R2 and R4d ring neurons, of which only 28 and
4, respectively, were responsive to visual stimuli. The cells were
ound to possess receptive fields (RFs) that were large, centred in
he ipsilateral portion of the visual field and with forms similar
o those of mammalian simple cells (Hubel and Wiesel, 1962). Like
imple cells, many of these neurons showed orientation tuning and
ome were directionally selective to moving stimuli. The ring neu-
on RFs, however, are much coarser in form than simple cells, are
ar larger, are less evenly distributed across the visual field and
espond mainly to orientations near the vertical. This raises ques-
ions over their function as they effectively condense sensory input
rom across the retina and their limited number suggests that they

ight be a bottleneck to the processing of visual information.
By examining the information encoded in the outputs of these

ells when stimulated with the input perceived during behavioural
asks known to involve ring neurons, we have recently shown that
he visual information conveyed is sufficient for performance in
lassic lab assays of visually guided behaviour, such as pattern
ecognition and bar fixation (Wystrach et al., 2014). However, these
ells are not optimal for these tasks, suggesting that the lab-based
aradigms do not map  perfectly onto the natural sensorimotor
ehaviours that these cells are tuned for (Dewar et al., 2014). Here
e look at whether visual navigation can be achieved with the

isual code provided by a small population of such cells. Visual
avigation in Drosophila involves R1 ring neurons whose RFs have
ot yet been described. As all ring neurons receive input from the

ateral triangle glomeruli, one can assume that the R1 cells, which
re essential for visual navigation, receive information of a simi-
ar nature to R2/R4d cells. Although we do not know what form
he R1 RFs take, we have also examined the responses of what we
ave called ‘Rx’ filters, which we created by spreading out the RFs
f R2 cells across the visual field (see Section 3). We  ask here two
uestions: Does a small sub-population of ring neurons provide suf-
cient information for the complex behaviour of visual navigation?
nd, do these cells perform differently if the visual world is more
omplex than in the experimental setup of Ofstad et al. (2011)?

. Methods

We  first describe how we extracted ring-neuron RFs from Seelig
nd Jayaraman (2013), before describing how the visual input from
hree different visual worlds is transformed into a visual code. We
hen describe the methods used to assess how much navigational
nformation is encoded by different visual systems.

.1. Pre-processing the receptive fields

The RFs used in these simulations were based on the data pre-
ented in Seelig and Jayaraman (2013). We  first extracted the image
epresentations of the RFs from the original figure (Extended Data
igure 8 in Ofstad et al. (2011)). As the R2 and R4d RFs are of
ifferent sizes in the figure, the extracted images are also of differ-
nt sizes: 112 × 252 pixels for R2 neurons and 88 × 198 pixels for
4d. Given the visual field is taken as 120◦×270◦, this corresponds
o a resolution of 1.07◦ and 1.36◦ per pixel, respectively. As data
re given for multiple flies, we averaged the RFs for the different
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

lomeruli across flies (2 ≤ N(R2) ≤ 6, 4 ≤ N(R4d) ≤ 7). This process
s summarised in Fig. 1. Each point on the image was assigned a
alue ranging from –1 for maximum inhibition to 1 for maximum
xcitation. This was based on the values given by the colour scale
 PRESS
ms xxx (2015) xxx–xxx

bars in Seelig and Jayaraman (2013). Values were normalised so as
to cover the full range from −1 to 1.

We  took the centroid of the largest excitatory region as the
‘centre’ of each of the filters. The excitatory regions were first
thresholded then extracted using Matlab’s bwlabeln function
(with eight-connectivity) and the centroid, (x, y), with the region-
props function. Note that the threshold is only used to obtain the
the centroid of the excitatory region. The mean centroid, (x̄, y),
across flies is then calculated and the filters are recentred on this
point:

ĝ(i, j) =
{

g(i + y − y, j + x − x) for 1 ≤ i + y − y ≤ m and 1 ≤ j + x − x ≤ n;

0 otherwise.

where g(i, j) is the (i, j)th pixel of the initial filter and ĝ(i, j) of the
recentred filter (Fig. 1B).

We  next calculate the average filter across flies, g(i, j):

g(i, j) = 1
|G|

∑
ĝ∈G

ĝ(i, j)

where g( · , · ) is the averaged filter and G is the set of filters
being averaged. The averaged filter is then thresholded, with values
within half a standard deviation of the pixel values in g( · , · ) from
zero excluded, in order to remove noise. This gives the basic sets of
R2 and R4d filters. The Rx filters are then obtained by repositioning
the R2 filters so that the centres (i.e. the centroids of the excitatory
regions) are evenly spread across the visual field (�∈ {−20◦, 20◦},
� ∈ { −117◦, −99◦, . . .,  117◦}). This process is shown in Fig. 1.

In order to calculate the activation of a given RF on presentation
of an image the RF must first be resized to have the same number of
pixels as the image. This is accomplished by resizing the average RF,
g(i, j), using Matlab’s imresize function with bilinear interpolation
and then scaled to [−1, 1]. Finally, the filter is thresholded and the
excitatory and inhibitory regions are assigned different normalised
values:

Ki,j =

⎧⎪⎨
⎪⎩

g(i, j) ÷ Sexc, for g(i, j) > 0;

−g(i, j) ÷ Sinh, for g(i, j) < 0;

0, otherwise.

where Sexc and Sinh indicate the sums of excitatory and inhibitory
pixels, respectively. This method of normalising values has the
result that the activation (see below) for an all-white or -black
image will be zero. Other normalisation schemes are possible, but
the choice is somewhat arbitrary, as we are only interested in the
differences in output values. Furthermore, RFs are sensitive to con-
trast differences, so a zero-sum filter, as seen in edge detectors, is
appropriate. Additionally, assigning biologically relevant values is
not possible because of a lack of data.

The activation of an average filter, K, to the presentation of a
greyscale image, I, at rotation �, is then:

A(I, K, �) =
m∑

i=1

n∑
j=1

Ii,j(�)Ki,j, where 0 ≤ Ii,j(�) ≤ 1

where Ii,j(�) and Ki,j are the (i, j)th pixels of the image and filter,
respectively (see Fig. 2A).

2.2. Visual input

2.2.1. VR environments
To simulate the Ofstad et al. (2011) experiment, we  created a
cific neural coding in the visual system of Drosophila.  BioSystems

3D VR representation of their arena, which was  a drum of diameter
12.3 cm with an LED display around the inside showing a series of
vertical, horizontal and diagonal stripes (see Fig. 2B). We  refer to
this condition as the ‘Ofstad et al. arena’.

dx.doi.org/10.1016/j.biosystems.2015.07.008
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Fig. 1. The procedure for obtaining average R2, R4d and Rx RFs. (A) The raw image (left; R4d glomerulus 1 drawn from Seelig and Jayaraman (2013)) is thresholded so as
to  give excitatory and inhibitory regions of uniform intensity (right). The centroid of the largest excitatory region (+) is taken as the ‘centre’ of the RF for the purposes of
realignment for averaging. (B) An example of recentring with two RFs. For each R2 and R4d glomerulus, we  calculated the mean of the RF centres across flies (variable number:
2  ≤ N(R2) ≤ 6, 4 ≤ N(R4d) ≤ 7) and recentred the unthresholded versions of the RFs on this point, prior to averaging the raw values. C: The sets of averaged R2 and R4d filters.
These  are calculated by taking the mean across RFs for each recentred glomerulus. Finally, values are normalised and noise removed (see Section 2). Note that we show only
l age. 
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eft-hemispheric versions of the filters; right-hemispheric versions are the mirror im
nd  of the R4d filters are (−39.2◦ ≤ � ≤ −4.60◦ , −106◦ ≤ � ≤ −6.60◦). (D) Creating th
ertically and horizontally. Each R2 filter was recentred on the nearest available fre

We  also carried out the same simulations in a 3D recreation
f a real-world environment composed of trees and large bushes
Fig. 2C), which we called the ‘natural 3D world’. The reason for
sing a real, rather than an artificial environment was so as to
ave authentic natural image statistics and was not an attempt to
eplicate Drosophila’s visual ecology, which is not well understood.

Additionally, the panorama as it would appear from the cen-
re of the world was wrapped onto a cylinder of the same size
s the drum used by Ofstad et al. (2011). This gave us a further
ondition (hereafter, ‘natural panorama’) where changes due to
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

ranslation are similar to the Ofstad et al. (2011) drum and there
re no occlusion effects with distant objects obscured by nearer
nes. Also note that while the 3D world will appear realistic from
ny point, in the natural panorama condition the world becomes
Positions of the centres of the R2 filters are (−30.4◦ ≤ � ≤ 35.7◦ , −106◦ ≤ � ≤ −24.5◦)
lters. The Rx filters are the R2 filters but spaced out evenly across the visual field,
tion.

increasingly unrealistic as the agent approaches the inside edge of
the cylinder.

2.2.2. Generating different view types
Here we  use the term ‘view’ to refer to two kinds of visual rep-

resentation of an environment at a given location: a matrix of pixel
values for a raw image and a vector corresponding to the activations
of a set of RFs used to filter a raw image.

To produce any of these types of view, first a black and white
cific neural coding in the visual system of Drosophila. BioSystems

panoramic image is rendered for a particular location in the envi-
ronment (240 × 720 pixels, 120◦×360◦ of visual field). We  assumed
the fly’s eyes were at an angle of 30◦ from the floor (hence the views
cover a vertical range of [−30◦, 90◦]).

dx.doi.org/10.1016/j.biosystems.2015.07.008
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Fig. 2. The VR environments used in the simulations. (A) A panoramic view from a
simulation of a real-world environment with the averaged R2 filters (N = 28) over-
laid. The centres are indicated with black crosses. The dashed lines indicate the limits
of  the fly’s visual field (i.e. ±135◦). Note that these RFs are concentrated azimuthally
at ±90◦ and also that they cover a very large portion of the visual field. (B) An exam-
ple of the experimental set-up used in studies of visual place learning in insects
(Ofstad et al., 2011; Wessnitzer et al., 2008). The fly attempts to locate the cool spot,
guided by previous visual experience of the arena. (C) A bird’s-eye view of the ‘nat-
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ral  3D world’. The arena, with the cool spot, is indicated in the centre. The black
ines indicate the positions of ‘trees’, which are scaled down for the purposes of the
imulations.

The ‘raw image’ views can then be created by resizing this
mage, using Matlab’s imresize function with bilinear interpola-
ion, to the desired resolution; we use high-resolution (for a fly,
20 × 360) and low-resolution (2 × 14) images. The resolution of
he low-resolution views was chosen so that the number of pix-
ls matched the number of R2 (and Rx) filters. The ‘RF’ views are
alculated as the activations of a set of RFs in response to the high-
esolution image and so rely on the resized versions of the RFs. The
ets of neurons used are R2, R4d and Rx. The R2 and R4d neuron sets
re the averaged RFs as described above. The Rx neuron set is the
ame as the R2 set, except that the RFs have been rearranged so their
entres are evenly spaced across the visual field covered by the R2
eurons (vertically at −20◦ and 20◦ and horizontally at 18◦ intervals

rom −117◦ to 117◦). The logic of testing navigational success with
hese Rx filters is that they will provide a visual code that, although
ess detailed for the region where R2 RFs are clustered, will be more
esponsive to low-frequency spatial information. Once convolved
ith an image, the outputs of the filter sets are normalised so that

he values cover the range between 0 and 1.

.3. Quantifying the scale of visual homing

.3.1. Calculating image difference functions (IDFs)
The difference between two views with w × h pixels can be cal-

ulated via the pixel-wise root mean square (r.m.s.) difference:

(W, x, �, y, �) =

√∑w
m=1

∑h
n=1(V(W, x, �)m,n − V(W, y, �)m,n)2

wh
(1)

here V(W, x, �)m,n is the (m,  n)th pixel as perceived by an agent
ith a pose (i.e. position and orientation) of ( x, �) in world Zeil et al.
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

2003) have shown that if one calculates the difference between a
oal view at pose ( g, �) and surrounding views with the same head-
ng, navigation back to the goal can be accomplished within the area
ver which these difference values rise smoothly, commonly called
 PRESS
ms xxx (2015) xxx–xxx

a catchment area. To assess this, we  compute the ‘image difference
function’, or IDF = d(W, g, �, xi, �), for a grid of positions, xi, around
the goal and then examine the gradient.

For each of the simulation environments (‘Ofstad et al. arena’,
‘natural panorama’ and ‘natural 3D world’) a series of IDFs were
thus calculated to show where homing is theoretically possible
from. The views used were of the five types mentioned previously:
high resolution, low resolution, R2, R4d and Rx. The high- and low-
resolution views are greyscale images, whereas a ‘view’ for one of
the sets of filters is rather a vector corresponding to the activations
of the filters. For the latter, it is these activations which are used
to calculate the image difference function (although they are not
strictly images), rather than pixel values. Five different goal pos-
itions were used: one in the centre of the arena and one in each
quadrant, halfway between the centre and the edge of the drum.
For each IDF, the view from the goal position is compared with a
set of views from positions across the environment (0.351 cm apart,
N = 952), yielding a matrix of values. The heading is the direction
of the gradient of the IDF over space, as computed with Matlab’s
gradient function.

Here we  define the catchment area as the largest contiguous
region over which the absolute error on the heading is less than
45◦. This is calculated using Matlab’s bwlabeln function with eight-
connectivity. The ‘size’ of the catchment area is then the size of this
region. Fig. 3 shows example IDFs and catchment areas for each con-
dition, with the average size of the catchment area over the five goal
positions also indicated. For ring neurons, as the IDF and catchment
area will change depending on view direction, the average was also
taken over a range of view directions, from 0◦ to 360◦.

2.3.2. Algorithm for visual navigation
Zeil et al. (2003) showed that if views are not aligned, a goal view

can be used as a form of ‘visual compass’ to recall the heading of
the goal view by calculating the rotational image difference func-
tion (rIDF) (Zeil et al., 2003; Philippides et al., 2011). This involves
computing the r.m.s. difference between the goal view and current
view rotated through 360◦, with the rotation that yields the small-
est difference – the best match – being close to the orientation of
the goal image in regions near the goal. That is, given a goal posi-
tion si and orientation �si

, the rIDF for a nearby position x yields

a minimum difference ri and best matching heading ĥi via:

ri(W, si, �si
, x) = min

�∈{0,2�}
d(W, si, �si

, x, �) (2)

ĥi(W, si, �si
, x) = arg min

�∈{0,2�}
d(W, si, �si

, x, �) (3)

The homing algorithm used here is the perfect memory hom-
ing algorithm, described in Baddeley et al. (2011), Wystrach et al.
(2013), where the agent uses a number of stored images or ‘snap-
shots’ as a visual compass oriented towards the goal to navigate
towards it. Briefly, at each position, the agent rotates through 360◦

and calculates rIDFs for each of the stored images si. The image
which yields the lowest difference rmin = min

i
ri is taken as the best-

best match and the agent takes a step in the associated heading
ĥmin.

In this simulation, the agent starts at 80% of the radius of the
drum, in one of 90 equally spaced positions. Its ‘aim’ is to reach the
centre of the arena – when it comes within 1.25 cm (the radius of
the cool spot in the Ofstad et al. paper, illustrated in Fig. 2B) of the
centre, the simulation ends. Twenty snapshots were used in total.
These were taken at headings of 45◦, 135◦, −135◦ and −45◦ from
cific neural coding in the visual system of Drosophila.  BioSystems

the goal, in lines extending from a third of the radius of the arena
to 0.41 cm from the centre (i.e. five goal views per ‘line’) and all
oriented towards the goal. At the start, the agent calculates an rIDF
by comparing its current view with each of the snapshots at all

dx.doi.org/10.1016/j.biosystems.2015.07.008
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Fig. 3. IDFs for three virtual environments after processing by different visual systems. Each row shows results for different visual encoding, specifically (from top to bottom):
high  resolution, low resolution, R2, R4d and Rx. The columns show results from different visual environments (left: Ofstad et al. arena; middle: natural panorama; right:
natural  3D world). The text indicates the mean catchment area and standard error over five goal positions (four quadrants and the centre) and 360 orientations in a 12.3-cm-
diameter circular arena. The contour plots show the IDFs for a snapshot in the centre, aligned to 0◦ , and show five equally spaced levels from minimum (black) to maximum
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white), with example catchment areas overlaid in red. The number below each ID
s  the standard error.

otations; the heading given by the snapshot with the lowest
inimum is then used as the new heading, plus a small amount

f random noise (von Mises distribution, � = �/64 radians). The
gent advances by 0.25 cm in the new direction and the process
s repeated until it reaches the goal, or the total distance covered is
reater than twice the perimeter of the drum (77.3 cm), in which
ase the trial is aborted. If the agent collides with the perimeter of
he drum, it is moved back half a step-length (0.125 cm)  within the
rum and the simulation continues. This is similar to the Ofstad
t al. (2011) experiment, in which the inside edge of the drum was
eated so as to repel the fly.

. Results and discussion
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

To assess the information that can be coded by different
isual fields, we examined the navigational information content
f scenes after processing with five different visual systems. As
ates the mean size of the catchment area (in cm2) and the number in parentheses

non-biological controls we used both high- and low-resolution
panoramic views covering 120◦ in elevation and 360◦ of azimuth.
Each pixel in the high-resolution image was 1 degree2, making it a
higher resolution than a fly, while the low-resolution views were 2
by 14 pixels, which matches the number of R2 and Rx RFs. In both
cases, the pixels are evenly spaced and tile the whole view. We
contrasted the results from these images with results from visual
scenes that were convolved with filters based on the R2 and R4d
neurons. We  examined what would happen if the R2 neurons were
spaced out evenly, but retained the same receptive fields, which we
have termed Rx. Our intuition was  that navigation would benefit
from evenly spaced inputs from all around the visual field whereas
bar fixation and pattern recognition, the behaviours for which R2
cific neural coding in the visual system of Drosophila. BioSystems

cells are essential, might be best served by filters clustered at certain
azimuths, which is the case for the R2 cells.

As well as assessing the effect of the visual system, we also
wanted to examine how performance changes if the structure of the

dx.doi.org/10.1016/j.biosystems.2015.07.008
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orld changes. While the Ofstad et al. arena is of a type common to
any behavioural experiments, it is visually simplistic, which can

ause aliasing issues (Wystrach et al., 2011; Mangan and Webb,
009). We  therefore compared the performance for a ‘drum’ of
he same dimensions with a natural scene on the inside instead,
ollowing Wessnitzer et al. (2008). Finally, we used a full 3D rep-
esentation of the same environment, so that we could assess how
esults change with the addition of depth structure in the world,
hough the views available to the agent are still 2D. Note that in
hese latter two conditions the world appears exactly the same
rom the centre, but becomes increasingly different as one moves
way from this point.

.1. Does the information for navigation exist in low-dimensional
isual encodings?

In a first analysis, we examined how processing the images
hrough RF-like arrangements affects the information that can be
sed for visual navigation. To do this, we follow the method of Zeil
t al. (2003) and Philippides et al. (2011) who use the size of the area
ithin which a single image can be used for visual homing, known

s the catchment area, as a proxy for how well the information for
avigation is encoded by a visual system.

Laboratory and field studies have shown how visual information
an be used to guide a search for an important location (Cartwright
nd Collett, 1983; Wehner and Räber, 1979; Zeil, 2012). The basic
echanism is for a single view of the world to be stored at the goal

ocation. The difference between the current view of the world and
he stored view from the goal location can subsequently be used
o drive the search for that goal, a process known as view-based
avigation (Cartwright and Collett, 1983). This process relies on the

act that the difference between a goal and other images (known
s the image difference function or IDF, Zeil et al., 2003) grows
moothly with distance from the goal, until it starts to plateau and
hus the gradient of the IDF points approximately to the goal. The
egion within which the IDF consistently increases with distance
ndicates the catchment area of that goal image and can be used to
ompare visual systems in an objective way, agnostic of the details
f the homing process used by the insect.

In Fig. 3, we compared the regions within which a fly would be
ble to home using a single view from a goal position. Five differ-
nt goal locations were used, one in each quadrant (to match the
esign of the Ofstad et al. experiment), and one in the centre (illus-
rated in Fig. 3). Considering the Ofstad et al. arena simulation, we
rst see that the low-resolution system is much better than the
igh-resolution in this visually simple world. This is because for
igher-resolution images, the visual world changes very rapidly as
he agent moves near prominent objects, which in this case means
he shapes on the arena walls. For instance, nearby pixels in the
mage can change rapidly when moving between consecutive black
nd white stripes. This leads to the IDF plateauing quickly with dis-
ance from the goal, as each view seems as different to the goal
iew as the next. It also introduces the problem of visual aliasing,
here a position further away from the goal looks more similar to

he goal than the current one, leading to local minima in the IDF and
ailure of visual navigation. In contrast, for the low-resolution sys-
em the high-spatial frequency content of the signal is smoothed
nd changes more smoothly with movement. The agent can thus
et closer to the walls before objects start to loom and distort suf-
ciently to cause failure in navigation. These merits of a lower
esolution visual system have been noted before in both real and
imulated natural and unnatural environments (Zeil et al., 2003;
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

türzl and Zeil, 2007; Stürzl and Mallot, 2006) and we add to that
ork.

Visual systems based on ring neurons also outperform the high-
esolution views, again as they avoid some of the aliasing issues
 PRESS
ms xxx (2015) xxx–xxx

by having large receptive fields, though performance is worse than
for the low-resolution visual system. Examining the IDF for the R2
neuron outputs, it is clear from the local minima in the IDF that
the uneven spacing and filtering properties have led to more visual
aliasing than in the low-resolution views. The situation is worse
again for the R4d neurons, with only half the number of cells (14 vs
28 in R2). Finally, performance is slightly improved by spreading the
R2 receptive fields more evenly over the visual field as is done with
the Rx neurons. While performance is consistently better across all
worlds for the Rx, the increase is slight, suggesting that the already
wide-field population of R2 cells is performing well. Overall, it is
clear that visual systems composed of these elements do preserve
information that would enable visual homing, albeit over a small
area.

3.2. How does navigational information depend on the visual
world?

The positions, number and shapes of the receptive fields have
been tuned by evolution to function in the natural world. We  there-
fore investigated how the navigational information changes with
more natural panoramas, which are not composed of high-contrast,
straight-edged objects as used by Ofstad et al. (2011). The use
of a natural panorama inside a cylinder leaves the results largely
unchanged (Fig. 3, middle column). Whilst the worst performer
in the Ofstad et al. arena – ‘high resolution’ – does better with
the natural panorama (with a catchment area of 10.1 vs 36.1 cm2),
the catchment areas for the other conditions do not change sub-
stantially. This is perhaps unsurprising as while this visual world
is arguably more natural, as an agent approaches the wall of the
arena, the objects will again distort, leading to visual aliasing near
the edges of the arena. In addition, low-resolution images will blur
object appearance so the natural/unnatural distinction loses some
meaning. However, the issues of visual aliasing are ameliorated by
replacing the pattern on the arena with a 3D world which gives the
same panoramic view from the centre of the arena. The addition of
depth structure information leads to improvement in all the con-
ditions with broader and smoother IDFs (which are based on the
same goal images in both the panorama and 3D world conditions)
especially towards the edge of the arena, reducing the local min-
ima  indicative of aliasing. This is especially true of the ring neuron
views, with performance of R2 and R4d approaching that of the low-
resolution system and Rx seeing the best performance of all. The
presence of the more distant objects in this 3D world means the dif-
ference in the visual scene from the edge vs the centre of the arena
will be less and there will be accordingly less noise introduced by
the large visual changes which occur when moving close to nearby
objects.

3.3. How does visual encoding relate to navigation performance?

While it is clear that the information for visual navigation exists
in certain regions within the arena, this does not indicate whether
the information can be used by an agent to navigate over the whole
arena. In particular, the IDF analysis relies on images being aligned
to a common heading which, for a walking insect, imposes biolog-
ically implausible constraints on movement and/or computation.
We therefore wanted to assess how well an agent could navigate
from positions near the edge of the arena to a goal position in the
centre using a visual navigation algorithm that does not need to
align images (Baddeley et al., 2011; Wystrach et al., 2013). The algo-
cific neural coding in the visual system of Drosophila.  BioSystems

rithm assumes that an agent has stored a series of views oriented
towards a goal at the centre of the arena. We  then assess the homing
success from a ring of start positions at a radius of 4.92 cm around
the central goal.

dx.doi.org/10.1016/j.biosystems.2015.07.008
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Fig. 4. The paths taken by agents in the homing simulation for different worlds and visual systems. Each row corresponds to a visual system (from top to bottom): high
resolution, low resolution, R2, R4d and Rx; while columns are for different worlds (from left to right): Ofstad et al. arena, natural panorama and natural 3D world. The different
colours  correspond to paths from different starting positions. For each of the 90 different starting positions, 25 simulations were run. Snapshot locations are indicated with
b aths c
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lack  dots (all were taken facing the centre). The ‘blurry’ areas indicate where many p
umber below each plot shows the proportion of successful homings; the figure in b
istance) − 1).

Fig. 4 shows the simulated paths of agents attempting to
ome to the centre. Different colours show 25 attempts from each
osition. Where paths overlap, the colours are averaged to an inter-
ediate colour. This generally indicates regions of failure, as paths

rom different positions converge on an erroneous match, though it
an, for instance, indicate a common path to the goal (e.g. see areas
f overlap for R2 RFs in the natural 3D world which show conver-
ence towards the snapshot positions). Overall, we again see that
avigation is possible with visual systems made up of ring neuron-

ike receptive fields as well as with high- and low-resolution visual
ystems. Interestingly, whilst Rx views gave slightly larger catch-
ent areas than R2 views across worlds (Fig. 3), in this case,

lthough both were 100% successful in all conditions, Rx paths were
ore indirect than R2 paths in the Ofstad and natural arenas, but
Please cite this article in press as: Dewar, A.D.M., et al., Navigation-spe
(2015), http://dx.doi.org/10.1016/j.biosystems.2015.07.008

imilar in the natural world. The reasons for this are not entirely
lear, but it may  be partly because a smoother, but shallower, IDF
ill give a larger catchment area but will make it harder to select

he correct goal snapshot, leading the agent astray. This is also likely
rossed; accordingly, poorer performance is often associated with more blurring. The
s indicates the mean tortuosity of routes (tortuosity = (distance travelled ÷ shortest

the reason for the relatively poor performance of the low-resolution
views. The difference between the R2 and Rx filters also represents
a trade-off in performance: Having RFs relatively clustered around
one point on the visual field will increase reliability for identify-
ing a single environmental feature, whereas more spread-out RFs
are better able to identify larger-scale, low-frequency spatial cues.
However, the important thing to note is that both ‘strategies’ are
able to produce reliable navigation in a complex environment.

For most conditions, however, the agent is able to home every
time, as shown by the large proportion of trajectories which
reached the goal (a spot with a diameter of 2.5 cm in the centre
of the arena). This is because, as seen in the previous section, a
single snapshot can be used successfully for navigation within a
distinct region around it. The combination of multiple snapshots
cific neural coding in the visual system of Drosophila. BioSystems

means that, though these areas might be small, as is the case for the
high-resolution visual system in the Ofstad et al. arena, combining
information from multiple snapshots leads to successful homing.
The main difference is in the 3D world in which paths are very

dx.doi.org/10.1016/j.biosystems.2015.07.008
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irect, presumably due to the lack of aliasing, while the natural
anorama is generally the poorest performer.

. Conclusions

In flies, specific visual circuits seem to be at the service of specific
ehaviours, with small sets of cells providing a sparse encoding of
he visual scene well-suited to particular tasks. By looking at the
avigational information preserved by several hypothetical visual
ncodings, we asked: What type of visual encoding allows for visual
avigation? We  find that small circuits with receptive fields simi-

ar to those of ring neurons are sufficient for navigation. This type
f visual encoding is robust because each cell in the visual popula-
ion samples from a large region of the visual field thus minimising
he effect of small changes. This suggests that for a task like visual
lace homing the visual encoding of the world is not the difficult
art. Indeed, rather than being a bottleneck, a small population of
ells with large receptive fields can allow for efficient homing by
ltering high-spatial frequency parts of the image. What remains
o be seen is how and where these visual codes are stored, and
ow discrepancies between memory and perception are converted

nto movement. We  hope that modelling, driven by a better under-
tanding of visual circuitry and behavioural data, will in the future
lucidate these issues.
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