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Abstract

Signal transduction in biological cells is effected by signaling pathways that

typically include multiple feedback loops. Here we analyze information transfer

through a prototypical signaling module with biochemical feedback. The mod-

ule switches stochastically between an inactive and active state; the input to the

module governs the activation rate while the output (i.e., the product concen-

tration) perturbs the inactivation rate. Using a novel perturbative approach,

we compute the rate with which information about the input is gained from

observation of the output. We obtain an explicit analytical result valid to first

order in feedback strength and to second order in the strength of input. The

total information gained during an extended time interval is found to depend on

the feedback strength only through the total number of activation/inactivation

events.

Keywords: Signal transduction, Communication channel, Poisson process,

Information theory, Feedback loop, Non-Markovian process

1. Introduction

Accurate sensing of the environment is crucial for the survival of biological

organisms. Bacteria, as well as animal chemoreceptor cells, can sense certain

chemicals in their chemical environment with high precision, in some cases near

the single-molecule detection limit [1, 2]. The effect of the extracellular stim-

ulus on the cell is mediated by the signal transduction pathway - a complex



biochemical reaction network. The pathway is based on a sequence of transduc-

tion steps, with each subsequent step being effected by the chemical product of

the previous step. The first step typically consists in the activation of a receptor

protein in the cell membrane by the external stimulus, which results in an ion

influx or in the production of a second messenger chemical. This leads to the ac-

tivation of subsequent steps within the cell. Through molecular feedback loops,

the product of a given transduction step may regulate its own production, or

influence earlier (upstream) steps of the pathway. As signal transduction path-

ways are inherently noisy [3], faithful transmission of information through the

pathways requires amplification and/or adaptation. This is often accomplished

through positive (amplification) and negative (adaptation) feedback built into

the reaction network.

Recent years have brought the use of information-based measures to char-

acterize the reliability of biological signal transduction [4, 5, 6, 7]. Such mea-

sures explicitly evaluate the amount of information about the stimulus that it

is trasmitted through the signaling pathway. Mutual information between the

stimulus and the pathway output (i.e., the product of the final transduction

step) was evaluated in, e.g.[5, 6] , to assess the precision with which stationary

stimuli of different strengths can be distinguished. In many signaling scenar-

ios, however, it is important to faithfully transduce the temporal variations of

the input stimulus, which encode biologically important information. Some re-

cent studies have evaluated the transduction reliability for time-varying signals

by computing the information transmission rate. In [7], prototypical signaling

pathways with feedback were represented by coupled Langevin equations with

additive Gaussian noise, and thefrequency-dependent gain-to-noise ratio was

computed. In the Gaussian noise approximation, this gain (together with the

input power spectrum) determines the the mutual information between the time

courses of the stimulus and of the output. Some of the stochasticity within a sig-

naling pathway, however, arises directly from the inherent stochastic dynamics

of the transduction components, and cannot always betreated as additive noise;

in such a case, the information calculation cannot be reduced to the evaluation
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of the gain-to-noise ratio.

In this work, we carry out a perurbative computation of information trans-

fer through a simple prototypical signaling module with biochemical feedback.

The module switches stochastically between two states, with switching rates

governed by the stimulus (i.e., input) and by the product (i.e., output). No

additive external noise is assumed. Such autoregulated stochastic modules arise

within various signal transduction and gene regulation pathways (see Sec. 2).

In a previous investigation [8] negative feedback, in this module, was shown to

decrease the signal-to-noise ratio (SNR) at the output, but at the same time to

increase the spectral range of the response - thus yielding no obvious expectation

on how feedback overall affectsinformation transmission through the module.

Here, we address this question by directly quantifying the information that is

gained about the external stimulus from following the module output. In order

to achieve this we introduce a novel perturbative approach on a conveniently

defined relative entropy for stochastic point processes [9]. This information gain

is well-defined for a single stimulus trajectory (i.e., it requires no averaging over

stimuli as in mutual-information-based measures) [9]. We obtain an explicit

analytical result valid to first order in feedback strength and to second order in

the strength of input. Surprisingly, the total information gained during a long

time interval is found to be proportional to the total number of state-switching

events, with no further dependence on the feedback strength or on the spectral

distribution of the input. We compare this result to previous investigations of

information transfer through some related information channels.

2. A two-state signaling module with feedback

We consider a simple signaling module based on a single protein that switches

between two conformational states. These may correspond to the open and

closed state of an ion channel, or to the active/inactive states of an enzyme

within a larger signaling network. We introduce the module by referring to the

example of a calcium ion channel that is autoregulated by calcium-mediated
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feedback. When the channel is open, calcium ions flow from the extracellular

space into the cell. This leads to a fast increase of the free calcium concen-

tration in the immediate vicinity of the channel (the increase is localized as

calcium buffering in the cytoplasm leads to the formation of a calcium mi-

crodomain [11]). For certain types of calcium channels (such as the voltage-

activated L-type channels [12] or the cyclic-nucleotide-gated (CNG) channels

[13, 14]), the cytoplasmic calcium can inactivate the channel when it binds to

the channel/calmodulin complex. This implements an autoregulatory feedback

loop that shortens the response to the external gating signal, and thus helps

to faithfully transduce fast signal variations. Similar autoregulatory loops, in

which the product of a particular step in the pathway downregulates its own

production, arise in numerous signal transduction and gene regulation networks

[15].

The stochastic switching of the channel state is governed by the opening rate

(assumed to depend on the extracellular stimulus gating the channel) and the

closing rate. The negative autoregulation may be effected through a calcium-

dependent increase of the closing rate or decrease of the opening rate. For the

CNG channels that motivated us in this study, electrophysiological data indi-

cates that the binding of calcium to the channel/calmodulin complex increases

the closing rate. We consequently make only the closing rate depend on the

calcium concentration.

The signaling module is shown schematically in Fig. 1. When the channel is

in the open state, ions flow into the microdomain at a fixed rate J. Once inside

the microdomain, the ions are cleared out through ion pumps or exchangers

in the membrane, as well as by diffusion within the cytoplasm; we assume a

first-order clearance kinetics with rate constant λ (see Fig. 1). The dynamics

of the concentration c of ions in the cell compartment is given by the following

equation:
dc(t)

dt
=
J

∆
S(t)− λc(t), (1)

where J is the flow of ions entering the cell through the open channel, ∆ the
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volume of the cell micro-domain and the two-valued function S(t) = 1 or 0

indicates the open or closed state of the channel. Adopting the dimensionless

 V(t) γ+
γ−

Input

λ   J

S=0

   c(t)Output

S=1
Ion current    +

Figure 1: The ion-channel (gray) opens with rate γ+ governed by the input V (t) and closes

with rate γ− that depends on the ion concentration c(t) (which is considered to be the output).

Ions inside the micro-domain (dashed box) are cleared out at rate λ.

variable σ(t) = c(t)λ∆/J , Eq. (1) becomes

dσ

dt
= λ(S(t)− σ(t)) (2)

and σ(t) is restricted to the range [0, 1]. Examples of trajectories of σ(t) are

shown in Fig. 2. The switching events of the channel between time 0 and t:

0 < t1 < t2 < · · · < tn < t (3)

are the realization of a stochastic point process driving the dynamics of σ(t). In

fact, fixed a sequence ~tn = (0, t1, · · · , tn) of such events and the initial condition

S(0) = i and σ(0) = σ0, an exact solution for σ(t) follows directly from Eq. (2):

σ(t|~t2n) = i+

σ0 − i+ (−1)i
n−1∑
j=0

(
eλt2j − eλt2j+1

) e−λt
σ(t|~t2n+1) = 1− i+

[
σ(t = t2n+1|~t2n)− 1 + i

]
e−λ(t−t2n+1). (4)

Eqs. (4) determine σ(t) after either an even or an odd sequence of switching

events and show how this variable keeps a full record (memory) of these events.

We assume that the external input V (t) gates the channel by perturbing

only the opening rate, i.e.

γ̃+ = γ+(1 + εV V (t)), (5)
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while the internal ion concentration affects the closing rate

γ̃− = γ−(1 + εσσ(t)). (6)

When εσ > 0, an increase in calcium concentration leads to faster closing of the

channel and hence a reduced calcium influx. Therefore εσ > 0 corresponds to

negative autoregulation and εσ < 0 to positive feedback on the calcium dynamics

(to guarantee that γ̃− remains positive in Eq. (6), εσ > −1 is required). Note

that the opening rate in Eq. (6) depends, through Eq. (4), on the whole history

of previous openings and closings of the channel. The feedback introduced

through εσ therefore renders the channel state dynamics non-Markovian.

3. Signal-induced information gain

As quantification of the information transfer we adopt the information gained

during the interval [0, t] due to the stimulus V [9]. To introduce this measure

of information transfer we start from the definition of entropy for a stochastic

point process that generates switching events. Denoting by Σn(t, tn, . . . , t1, t0)

the probability density that a sequence of n events occurs at time t1, . . . , tn

between time t0 and t the entropy of the stochastic process during this time

interval can be written as

S∆τ (t, t0) = −Σ(t, t0) ln Σ(t, t0)−
∞∑
n=1

∫ t

t0

dt1

∫ t

t1

dt2

. . .

∫ t

tn−1

dtnΣn(t, tn, . . . , t0) ln[Σn(t, tn, . . . , t0)(∆τ)n] (7)

Eq. (7) is the natural extension of the Shannon entropy to a continuous-time

process assuming a finite resolution ∆τ with which the continuous-time variable

can be measured. This τ -entropy, as well as the difference of such entropies [9],

depends on ∆τ and is consequently ill-defined (not fully defined by the stochastic

process). To reach a uniquely defined measure of information transfer, Goychuk

and Hanggi [9], introduced the relative entropy (or information gain) K, the de-

viation of the process entropy in presence of the stimulus from the entropy value
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in the absence of stimulus. This information gain is defined using the Kullback-

Leibler divergence [16] of the probability density Σn for events occurring in the

presence of stimulus from the probability density Σn for events occuring in the

stationary condition without stimulus. This information measure is independent

of the resolution ∆τ and is given by

K(t, t0) = Σ(t, t0) ln

(
Σ(t, t0)

Σ(t, t0)

)
+ (8)

∞∑
n=1

∫ t

t0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtnΣn(t, tn, . . . , t0) ln

(
Σn(t, tn, . . . , t0)

Σn(t, tn, . . . , t0)

)
.

Our goal is to evaluate, for the signaling module introduced in Sec. 2, the infor-

mation gained about the input stimulus V (t) from the knowledge of the output

σ(t). In the module of Fig 1, given an initial concentration σ0, to each realisa-

0 5 10
Time t

0

0.5

1

σ 
(t

)

Channel state S(t)

Figure 2: Examples of time courses for the dimensionless calcium concentration σ(t) following

from Eq. (2) for a given sequence ~tn of channel state switches. Thick, dashed and dotted

lines correspond to λ = 10.0, 1.0 and 0.1 respectively.

tion, or trajectory, of S(t) corresponds univocally one trajectory of σ(t) (see Fig.

2). The trajectories of σ(t) can be therefore grouped in four sets determined by

the initial and final channel state. Let Σij(~tn, t) be the probability of having a

given realisation of σ(t) in correspondence of n opening and closing events of the

channel occurring between 0 and t (indicated with ~tn for brevity), with i, j = ±
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indicating the initial and final channel state respectively (+ meaning open and

− closed). We introduce then the analogous probability for the unperturbed

channel dynamics Σ0
ij(~tn, t), i.e. corresponding to have neither stimulus nor

feedback applied and we use Σij(~tn, t) for the dynamics including feedback but

not the stimulus. For the unperturbed process the waiting times distributions

(WTDs) in each of the two states are Poissonian, i.e. ψ0
±(τ) = γ±e

−γ±τ and

the corresponding survival probabilities Ψ0
± =

∫∞
t
ψ0
±(τ)dτ = e−γ±τ . It follows

that the probability Σ0
ij(~tn, t) of a time realisation of σ(t) with a sequence ~tn of

channel switches beginning in state i of the channel and ending in state j is (in

absence of stimulus and feedback):

Σ0
ij(~tn, t) = Pi(σ0)ψ0

−i(τ1)ψ0
i (τ2) · · ·ψ0

−j(τn)Ψ0
j (t− tn)

where τk = tk − tk−1 and Pi(σ0) is the probability that at time t = 0 the gate

is in state i and the initial concentration is σ0.

Eq. (8) applied to our module of Fig. 1 with the notation introduced above,

becomes

K[σ|V ] =
∑
i,j=±

[
δijΣii(t) ln

(
Σii(t)

Σii(t)

)
+ (9)

∞∑
n=1

∫ t

t0

dt1

∫ t

t1

dt2 · · ·
∫ t

tn−1

dtnΣij(~tn, t) ln

(
Σij(~tn, t)

Σij(~tn, t)

)]
,

which, since there is a one-to-one relation between the output trajectories σ(t)

and the sequences of channel switches, expresses the difference in uncertainty

about the calcium fluctuations in the absence and presence of the input. Note

that Eq. (9) does not include any averaging over inputs; rather, it is the infor-

mation gain for a specific input realization V (t).

4. Evaluation of the information gain

In this section, we carry out a perturbative calculation of the signal-induced

information gain in the presence of feedback. For a switching process without

feedback, the information gain was derived previously in [9]. To evaluate Eq. (9)
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in our case, the probabilities Σij(~tn, t) and Σij(~tn, t) must include the feedback

contributions to the desired order in εσ.

Perturbation due to either the stimulus or feedback leads to time-dependent

rates and consequently modified survival probabilities Ψ±(t, tk) = exp[−
∫ t
tk
γ̃±dt

′]

in each of the two channel states. The ensuing processes are non-Poissonian,

since the perturbed rates γ̃± depend on time, with WTDs ψ±(t, tk) = −dΨ±(t, tk)/dt

which for small perturbation can be expanded as:

ψ+(τ, tk) = ψ0
+(τ)

[
1 + εV ψ

V (τ, tk) + ε2
V ψ

V 2

(τ, tk) · · ·
]

(10a)

ψ−(τ,~tk) = ψ0
−(τ)

[
1 + εσψ

σ(τ,~tk) + ε2
σψ

σ2

(τ,~tk) · · ·
]
, (10b)

where τ = t− tk. The first order corrections are:

ψV (τ, tk) = V (tk + τ)− γ+

∫ tk+τ

tk

dxV (x) (11a)

ψσ(τ,~tk) = σ(tk + τ |~tk)− γ−
∫ tk+τ

tk

dxσ(x|~tk) (11b)

and the corresponding expressions for higher order corrections can be analo-

gously derived. The appearance of ~tk in (11b) remarks the dependence of this

correction on all the sequence of events up to time tk. Due to the form of Eqs.

(11) and of the analogous higher order corrections, the WTDs in Eqs. (10)

remain normalized at each order (the perturbative corrections integrate to zero

as can be checked by applying integration by parts on the first order corrections

while using Eqs. (11)). As the integral of σ(t) in Eq. (11b) can diverge with

τ , the validity of the small perturbation expansion for ψ− has to be examined.

The terms of the expansion of the information gain ensuing from the adoption

of Eqs. (11) can be proved to be well behaved when averaged over sequences

~tn (see Appendix, last paragraph). Carrying out the expansion to second order

according to the Eqs. (10) and (11) leads to:

Σij(~tn, t) ' Σ0
ij + εV ΣVij + εσΣσij + ε2

V

(
ΣV Vij + ΣV

2

ij

)
+

+ εσεV ΣσVij + ε2
σ

(
Σσσij + Σσ

2

ij

)
(12)

where to lighten notation we have dropped the dependence on (~tn, t) in the

terms on the right-hand side. In Eq. (12) the first order contributions to the
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expansion for small εV , εσ(indicated by superscripts V and σ) are obtained by

adding to Σ0
ij(~tn, t) the corrections obtained drawing only one interval in the

sequence ~tn with a WTD perturbed up to the first order correction in Eqs. (10)

while the remaining intervals are generated with unperturbed WTDs ψ0
±(τ).

The second order corrections to Σij(~tn, t) are obtained either by drawing two

intervals in the sequence ~tn with WTDs corrected to first order (superscripts

V V, σV, σσ) or by drawing only one interval in ~tn, but with WTDs corrected up

to second order (superscripts V 2, σ2), with the remaining intervals drawn with

unperturbed WTDs ψ0
±(τ).

Considering the probability Σij(~tn, t) ≡ Qij(εσ, εV ) as function of the small

parameters εσ, εV , due to the structure of Eq. (7) the information gain is a sum

of terms with the following functional form:

Gij(εσ, εV ) = Qij(εσ, εV ) ln
Qij(εσ, εV )

Qij(εσ, 0)
. (13)

A Taylor expansion of Gij(εσ, εV ) to second order around εσ = εV = 0 leads to:

Gij(εσ, εV ) = εV
∂Qij(εσ, εV )

∂εV
|εσ=εV =0 + εσεV

[
∂2Qij(εσ, εV )

∂εσ∂εV
+ (14)

∂Qij(εσ,εV )
∂εσ

∂Qij(εσ,εV )
∂εV

Qij(εσ, εV )

]
εσ=εV =0

+
ε2
V

2

∂2Qij(εσ, εV )

∂ε2
V

+

(
∂Qij(εσ,εV )

∂εV

)2

Qij(εσ, εV )


εσ=εV =0

with all missing second-order terms having coefficient equal to zero when eval-

uated at εσ = εV = 0 (for the full formal expansion see Appendix). Replacing

the expression of Qij in terms of Σij using Eq. (12), one obtains for the second

order expansion of Gij the following terms:

Gij(εσ, εV ) ' εV ΣVij(~tn, t) + εσεV ΣσVij (~tn, t)+

+ ε2
V

[
ΣV

2

ij (~tn, t) + ΣV Vij (~tn, t) +
ΣVij(~tn, t)

2

2Σ0
ij(~tn, t)

]
(15)

with the contribution of order ε2
σ being exactly zero. As already mentioned,

Eqs. (10) imply that the corrections to the unperturbed WTDs integrate to

exactly zero over time, so that the WTDs remain normalized. As a consequence

Σ0
ij(~tn, t), when averaged over all possible sequences ~tn and initial and final
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channel state, adds up to one, while all the perturbative corrections of each

order give a zero overall contribution. It follows therefore that integrating and

summing Eq. (15) over all possible paths ~tn and initial and final state i, j

the linear term ΣVij , and the second-order terms ΣσVij , ΣV
2

ij and ΣV Vij give zero

contribution.

Let us then analyse the remaining 2nd-order term: A
(2)
ij ≡

(ΣVij)
2

2Σ0
ij
.

Considering for example the case of initial and final closed state i = j = −,

we obtain

A
(2)
−−(~tn|k, t) = A

(2)
−−(t, tn, · · · tk · · · t1, t0) =

ΣV−−(~tn|k, t)
2

2Σ0
−−(~tn,k, t)

=

=
P−(σ0)

2
ψ0

+(τ1)ψ0
−(τ2) · · ·ψV (τk+1, tk)2 · · ·ψ0

−(τn)Ψ0
+(t− tn), (16)

where Ψ0
± are unperturbed survival probabilities for the channel opening/closing

events. Further subscript k in ~tn|k indicates the perturbed time interval within

the set of n time intervals, with k and n in (16) being even integers for i = j = −.

For the distribution of initial conditions P±(σ0), it is natural to assume a

stationary solution for channel dynamics with feedback but no stimulus. In this

case the initial probabilities are P±(σ0) = γ±/(γ+ + γ−) ± Σσ, where a linear

correction Σσ ∝ εσ is added to the stationary solution for the unperturbed

dynamics without feedback. It follows that the correction due to feedback in

P±(σ0) produces in Eq. (13) a contribution of order ε2
V εσ, and can therefore

be neglected to second order. Moreover, a direct calculation shows that this

correction is ∝ ε2
V εσγ+e

−t(γ++γ−)V 2(t) and therefore vanishes on the channel

state switching time-scale. It can consequently be neglected also to third order

when evaluating information gain over long time intervals. Averaging over all

possible paths, the second order contribution Aij to the information gain is:

K(2)(t) =
∑
ij,nk

∫
d~tn|kA

(2)
ij (~tn|k, t) = (17)

= ε2
V

∫
dωdω′V̂ (ω)V̂ (ω′)

ıγ+γ−[1− eı(ω+ω′)t]

2(ω + ω′)(γ− + γ+)

where the sum over n runs from 1 to +∞ (k < n) and for convenience of
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calculation we introduced the Fourier transform V̂ (ω)

V̂ (ω) =

∫ ∞
−∞

dte−ıωtV (t) (18)

of the stimulus V (t), adopting the character ı for the imaginary unit. Taking

the time derivative and integrating over frequencies gives the rate of information

gain:
dK
dt

=
ε2
V

2
V 2(t)

γ+γ−
γ+ + γ−

(19)

which coincides with the result obtained in [9] for a similar signaling module

without feedback.

In order to see the contribution of the feedback one then has to expand Eq.

(15) to third order. This leads to the additional terms shown in Eq. (A2). After

summation, integration (for details see Appendix) we obtain

K(3)(t) =
1

2

∑
ij,nkl

∫
d~tn|klA

(3)
ij (~tn|kl, t) = − ıε

2
V εσ
2

γ2
+γ−

(γ+ + γ−)2
(20)

∫
dωdω′

V̂ (ω)V̂ (ω′)

ω + ω′
γ+ + λ

γ− + γ+ + λ
eı(ω+ω′)t.

We differentiate (20) with respect to time, integrate over frequencies and add

up to (19) so as to obtain the information gain rate including the feedback

contribution:

dK
dt

=
ε2
V

2
V 2(t)

γ+γ−
γ+ + γ−

[
1 + εσ

γ+

γ+ + γ−

γ+ + λ

γ+ + γ− + λ

]
, (21)

where terms vanishing on time scale t � max(λ−1, γ−1
± ), which include those

carrying the dependence on the initial concentration σ0, have been neglected.

Our calculation was carried out for the case of the input and the feedback acting

on the opening and closing rate, respectively. Our approach can obviously be

extended to the case of interchanged action of feedback and input on the rates,

which would lead to the same result as in Eq. (21) with the simple interchange

γ+ ↔ γ−. In the case of both feedback and input affecting the same rate, the

leading feedback correction would again be of order εσε
2
V , but the coefficient

would be different. The terms of order e.g. εσεV in the derivation can in this
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case emerge from perturbing to second order the same switching event, while

in the case we analyzed they can only emerge from perturbing two switching

events to first order. Derivation of the correction for this case, as well as of

higher-order corrections, is beyond the scope of this paper.

5. Discussion

The information gain rate Eq. (21), when integrated over a time interval

[0, T ] with T �max(λ−1, γ−1
+ ), gives the total information obtained about the

stimulus by observing the output. It is seen that (to first order in feedback

strength and second order in stimulus strength) the information gain depends

only on the total power
∫ T

0
dtV 2(t) of the stimulus, rather than on the spectral

distribution of this power. This implies that the information gain rate cannot

be optimized by matching the temporal structure of the stimulus with the time

scale of the feedback dynamics.

The factor γ+γ−
γ++γ−

in Eq. (21) expresses the rate of ’double flip events’ (i.e.,

openings and successive closings of the channel) in the absence of stimulus and

feedback. In the case εσ = 0, the information gain rate is therefore simply

proportional to the unperturbed rate of double flip events. 1To examine if an

analogous relation holds generally, we evaluate the mean rate of double flip

events in absence of stimulus but in presence of feedback. The mean closing

rate is given by γ−(1 + εσσ+), where σ+ is the average concentration when the

channel is in the open state. To obtain a result valid to first order in εσ, it is

sufficient to express σ+ to 0th order; this conditional average was computed in

Ref. [8] and equals

σ+ =
γ− + λ

γ− + γ+ + λ
. (22)

1The true double flip rate in the presence of stimulus differs from
γ+γ−
γ++γ−

by a correction

that is first order in εV . In Eq. (21), such a correction would result in a higher-order term

o(ε3σ), which is beyond the order in which we carried out the expansion.
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The mean rate of double flip events in the presence of feedback is then given by

R = γ+γ−(1 + εσσ+)/(γ+ + γ−(1 + εσσ+)) (23)

=
γ−γ+

γ− + γ+

[
1 + εσ

γ+

γ− + γ+

γ+ + λ

γ− + γ+ + λ
+ o(ε2

σ)

]
and Eq. (21) becomes

dK

dt
=
ε2
V

2
V 2(t)R. (24)

The information gained per double flip event is therefore given only by the power

of the input and does not depend on the feedback strength εσ or on the kinetic

parameters γ+,γ−,λ.

Before relating this result to findings from the previous literature, we first

point out that the definition of feedback in communication / information theory

is more restrictive than the definition used in the literature on biochemical sig-

naling. In the biological literature, feedback arises when a product of a signal

transduction step influences the upstream components in the pathway. This

fits with the general definition of feedback in the early cybernetics literature:

”When (this) circularity of action exists between the parts of a dynamic system,

feedback may be said to be present” [17]. In communication theory, however,

feedback is typically required to act in such a way that it effectively modifies

the input of the system. The signaling module analyzed in this work contains

in fact a feedback loop in the former sense; functionally, such type of feedback

permits to e.g. achieve sensory adaptation to repeated stimuli [14] and can im-

prove the temporal resolution of signaling [8]. In the latter sense (viewed as a

communication channel), however, our module cannot be said to have feedback,

as the input V (t) is not combined with the output. Rather, the back-coupling

implements an autoregulatory loop with the communication channel. The ef-

fect of the autoregulatory loop is to give memory to the channel state-switching

dynamics: the closing rate depends (through the instantaneous calcium con-

centration) on the full history of previous channel opening and closings. Our

signaling module can therefore be viewed as a non-Markovian point process

channel without feedback.
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Following this clarification of terminology, to put the results of Eqs.(21) and

(24) into perspective, we recall a known result from information theory It was

proved in [18, 19] (see also [20]), that for any Markov point process the channel

capacity per event cannot exceed the capacity of the Poisson process. I.e., the

capacity per event is not improved by memory. While we have calculated the

information gain rate for one realization of the stimulus (rather than the channel

capacity), our finding may be viewed as somewhat analogous. In our case, the

channel is non-Markovian, but as the memory decays exponentially in time (akin

to a Hawkes process), the system is ’near-Markov’. It is possible, however, that

a different result (i.e., information gain affected by memory) would be obtained

if we carried out the perturbation expansion to higher orders in εσ. For discrete-

time (rather than point-process) channels, the influence of memory on channel

capacity was recently analyzed in [21, 22].

In [7], an analysis of several prototypical signaling pathways with feedback

was carried out under the additive Gaussian noise approximation. Under this

restriction (see also Sec. 1), the authors were able to compute the mutual in-

formation rate for modules in which nonlinear feedback affected the activation

of an upstream component. They concluded that when the feedback was me-

diated by the final output of the pathway, no improvement of the information

transmission was obtained. This is reminiscent of our main finding. In [7], an

enhancement of information transmission was obtained only when the feedback

was mediated by an intermediate product in the pathway, and not the final

output. The module we analyzed in this paper (Fig. 1) falls outside of this

class.

In conclusion, we presented a novel perturbative approach that permits to

analytically evaluate information transfer through non-Markovian point process

channels. We applied this approach to a prototypical signaling module with

biochemical feedback and showed that to first order in feedback strength the

information gain rate is increased by negative feedback (and decresead by posi-

tive feedback). However, this change in information gain rate is fully accounted

for by the feedback-induced change in the rate of signaling events (channel
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opening/closings). To first order in feedback strength, the information gain per

signaling event is not affected by feedback.
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Appendix: Expansion of the Information gain

The Taylor expansion of Eq. (13) to second order in εσ, εV gives

Gij(εσ, εV ) = εσ

[
∂Qij(εσ, εV )

∂εσ
− Qij(εσ, εV )

Qij(εσ, 0)

∂Qij(εσ, 0)

∂εσ

]
εσ,εV =0

(A1)

+ εV
∂Qij(εσ, εV )

∂εV
|εσ,εV =0 +

ε2
σ

2

[
∂2Qij(εσ, εV )

∂ε2
σ

+

(
∂Qij(εσ, εV )

∂εσ

)2
1

Qij(εσ, εV )

+
Qij(εσ, εV )

Q2
ij(εσ, 0)

(
∂Qij(εσ, 0)

∂εσ

)2

− 2

Qij(εσ, 0)

∂Qij(εσ, εV )

∂εσ

∂Qij(εσ, 0)

∂εσ

−∂
2Qij(εσ, 0)

∂ε2
σ

Qij(εσ, εV )

Qij(εσ, 0)

]
εσ,εV =0

+
ε2
V

2

[
∂2Qij(εσ, εV )

∂ε2
V

+
1

Qij(εσ, εV )

(
∂Qij(εσ, εV )

∂εV

)2
]
εσ=εV =0

+ εσεV

[
∂2Qij(εσ, εV )

∂εσ∂εV
+

1

Qij(εσ, εV )

∂Qij(εσ, εV )

∂εσ

∂Qij(εσ, εV )

∂εV

]
εσ=εV =0

,

from which it is readily seen that the coefficient of the term ∝ εσ and ∝ ε2
σ

vanish when evaluated at εσ = εV = 0.

Expanding Eq. (13) to third order, following the same procedure as in Eq.

(A1) and converting back Qij to Σij leads to three additional terms:

ε2
σεV
3

[
ΣσσVij + Σσ

2V
ij

]
+
ε2
V εσ
6

[
4

ΣVijΣ
σV
ij

Σ0
ij

−
(ΣVij)

2Σσij
(Σ0

ij)
2

]
(A2)

+
ε3
V

6

[
−

(ΣVij)
3

(Σ0
ij)

2
+ 6ΣVij

ΣV Vij + ΣV
2

ij

Σ0
ij

]
.
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where we have used the next order expansion of (12) i.e.

Σij(~tn, t) ' Σ0
ij + εV ΣVij + εσΣσij + ε2

V

(
ΣV Vij + ΣV

2

ij

)
+ εσεV ΣσVij (A3)

+ ε2
σ

(
Σσσij + Σσ

2

ij

)
+ ε3

σ

(
Σσσσij + Σσσ

2

ij + Σσ
3

ij

)
+ ε2

σεV

(
ΣσσVij + Σσ

2V
ij

)
εσε

2
V

(
ΣσV Vij + ΣσV

2

ij

)
+ ε3

V

(
ΣV V Vij + ΣΣV V

2

ij + ΣV
3

ij

)
The third term in Eq. (A2) depends only on the stimulus while the first, pro-

portional to ε2
σεV , is exactly the same coefficient that would appear as the third

order in the expansion in Eq. (12) and therefore gives zero contribution after

integration over ~tn and summation, since perturbative corrections do not affect

the normalization of the unperturbed part. Therefore the contribution with the

feedback is given only by the term proportional to ε2
V εσ in Eq. (A2), whose

first element can be written as:

ΣVijΣ
σV
ij

Σ0
ij

= ΣσV Vij + Σσij

(
ΣVij
)2

Σ0
ij

=
[
ΣσV Vij + ΣσV

2

ij

]
+ Σσij

(
ΣVij
)2

Σ0
ij

− ΣσV
2

ij (A4)

The term between brackets has been so rearranged in order to show that after

summation and integration, it gives zero contribution (since it corresponds to

the term of order ε2
V εσ in the the expansion of Eq. (12), i.e. first term in last

row in Eq. (A3)). The last term in (A4) gives a contribution that vanishes on

the time scale of the channel opening/closing dynamics. The remaining term

combines with the second element in the feedback contribution in (A2) taking

an overall 1/2 coefficient. The expression for this term, evaluated between initial

and final closed states, is:

A
(3)
−−(~tn|kl, t) = Σσ−−

(
ΣV−−
Σ0
−−

)2

= (A5)

= P−(σ0)ψ0
+(τ1)ψ0

−(τ2) · · ·ψV (τk+1, tk)2 · · ·ψσ(τl+1|~tl) · · ·ψ0
−(τn)Ψ0

+(t− tn)

where further subscripts k and l in ~tn|k,l indicate that the closing and the opening

events affected by the stimulus and the feedback are respectively the kth and

the lth of the n event occurring between 0 and t. ψσ(τl+1|~tl) is the first order

term given by Eq. (11) and carries the dependence on the history of the process
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prior to tl (i.e. the all sequence ~tl of events up to tl), but, due to the exponential

form of the WTDs, does not affect the convolution structure in (A5).

Averaging over all possible paths gives:

K(t) =
1

2

∑
ij,nkl

∫
d~tn|klA

(3)
ij (~tn|kl, t) = − ıε

2
V εσ
2

γ2
+γ−

(γ+ + γ−)2
(A6)

∫
dωdω′

V̂ (ω)V̂ (ω′)

ω + ω′
γ+ + λ

γ− + γ+ + λ
eı(ω+ω′)t,

plus terms that either do not depend on t or vanish for time t�max(λ−1, γ−1
+ )

exceeding the channel state switching time scales.

Finally a remark on the validity of the perturbative approach we introduced.

This approach is based on a direct perturbation of the switching rates and

therefore of the WTDs, due to both input and feedback. The only delicate

point in following this procedure is the integral of σ(x|~t) in Eq. (11b), which

can diverge with τ . It can be verified, however that this correction is well-

behaved after summation over all stochastic paths and integration. In fact we

can replace the contribution of this integral to the first order correction in Eq.

(11b) with the term −γ−ψ0
−(τ)τ , which is the upper limit to the correction due

to the integral between 0 and τ according to our perturbative prescription. The

Laplace transform of this correction is

L[−γ2
−te
−γ−t] = −

∫ ∞
0

dtγ2
−te
−γ−te−st =

(
γ−

γ− + s

)2

= ψ̂0
−(s)2 (A6)

where

ψ̂0
−(s) = L[γ−e

−γ−t] =

∫ ∞
0

dtγ−e
−γ−te−st =

γ−
γ− + s

. (A7)

We can now replace Eq. (A6) in the transition amplitude. Due to the con-

volution structure of Σij(τ, t) in terms of WTDs, this replacement adds just a

multiplicative factor in Laplace space. The final result is (for i = j = −)

Σ−−(s) = Σ0
−−(s)(1 + εσψ̂

0
−(s)), (A8)

where we have included only the contribution of the integral and not the first

term in Eq. (11b) since the latter is trivially well-behaved. Due to Tauberian
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theorem, one can deduce the time asymptotic limit by analyising the s → 0

behavior in Eq. (A8). Since ψ̂−(s) → 1 for s → 0, such correction obtained

after averaging over trajectories is always limited, non-divergent and therefore

well-behaved for t→∞.

References

References

[1] H.C. Berg, E. M. Purcell, Biophys. J. 20, 193 (1977).

[2] H. Mao, P. S. Cremer, M. D. Manson, Proc. Natl. Acad. Sci. U.S.A. 100,

5449 (2003).

[3] J. E. Ladbury and S. T. Arold, Trends Biochem. Sci. 37, 172 (2012).

[4] F. Tostevin and P. R. ten Wolde, Phys Rev. Lett. 102 ,21801 (2009).

[5] R. Cheong , A. Rhee, J.W. Chiaochun, I. Nemenman and A. Levchenko,

Science 334, 354-358 (2011).
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