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Abstract 

To overcome the dualism between mind and matter and to implement consciousness in 

science, a physical entity has to be embedded with a measurement process. Although 

quantum mechanics has been regarded as a candidate for implementing consciousness, 

nature at its macroscopic level is inconsistent with quantum mechanics. We propose a 

measurement-oriented inference system comprising Bayesian and inverse Bayesian 

inferences. While Bayesian inference contracts probability space, the newly defined inverse 

one relaxes the space. These two inferences allow an agent to make a decision 

corresponding to an immediate change in their environment. They generate a particular 

pattern of joint probability for data and hypotheses, comprising multiple diagonal and noisy 

matrices. This is expressed as a nondistributive orthomodular lattice equivalent to quantum 

logic. We also show that an orthomodular lattice can reveal information generated by inverse 

syllogism as well as the solutions to the frame and symbol-grounding problems. Our model 

is the first to connect macroscopic cognitive processes with the mathematical structure of 

quantum mechanics with no additional assumptions. 

 

 



1. Introduction 

 

     Since Chalmers established that the issue of understanding consciousness and qualia 

is an extraordinarily difficult problem (Chalmers,1996), various researchers have approached 

it in different ways. Recent approaches based on phenomenal consciousness in 

neuroscience, robotics and philosophy have brought us closer to a possible solution, where 

the phenomenal consciousness could lack the nature of subjectivity relevant for 

measurement. While these approaches can be viewed as converging toward the dynamic 

nature of matter and quality, they need the measurement-oriented notion. This is consistent 

with endophysics (Rössler,1996; 1998, Atmanspacher et al., 2002, Atmanspacher, 2003) or 

internal measurement in science (Matsuno, 1989, Gunji, 1994, Gunji & Kusunoki, 1997) 

(which we refer to collectively as endo perspective) as well as neutral monism in philosophy 

(Silberstein & Chemero, 2015, Strawson, 2006). We propose a model of the measurement 

process based on the contraction and relaxation of its probability space to implement such a 

dynamical nature. The connection between consciousness, phenomenal consciousness, 

neuroscience theories, neutral monism, and endo perspective is not clear. As a result, we 

first clarify and establish these relations. 

     When Chalmers conferred hard-problem status on consciousness and qualia, an 

essential difference between matter and mind in nature became accepted, at which point his 

idea was classified as naturalistic dualism (Chalmers, 2007). A subjective quality cannot be 

reduced to a physical property, and vice versa. Consequently, many scientists evaded this 

issue since it seemed incapable of being solved in principle. They simply accepted 

naturalistic dualism in the same way as they had done based on previous studies (Popper & 

Eccles, 1977). 

     The failure of classical artificial intelligence (AI) could lead to a sense of which 

fragments of proto-intelligence or knowledge are not in a center of consciousness (i.e., a 

particular local area) but instead are embedded in environments (Pfeifer & Scheier, 2001). 

This leads to the idea of subsumption architecture (Brooks, 1986; 1991) and/or morphological 

computing (Pfeifer et al., 2007). In trying to compute how to bend metallic robotic fingers to 

pick up a raw egg without breaking it, classical AI fails because of the amount of computation 

required. If the robotic fingers are covered with a rubber skin that can adequately absorb 

physical shocks, the task can be achieved without an excessive amount of computation. The 

rubber-skin interface allows negotiation of the physical world in which the egg exists and the 

virtual world in which symbolic manipulation can be programmed. In that sense, the interface 

is a type of body. Hence, constructing the interface as a physical body is referred to as an 



embodiment of intelligence (Varela et al., 1991). Although fragments of proto-intelligence are 

embedded in the body, the question arises as to whether intelligence exists in a 

programmable manipulation. If it does not, intelligence as a whole could be embedded not 

only in the body, but also in the environments surrounding it (Varela, 1997, Pfeifer & Gomez, 

2009). 

     In subsumption architecture, a system of multi-agents plays a role in the interface. Each 

agent is merely a simple system following an equally simple rule, with no intrinsic intelligence. 

Contingent temporal configurations of agents are an embodiment of intelligence in a multi-

agent system. Intelligence is not carried by a central system, but rather it arises collectively 

from the multi-agent system (Reynolds,1987, Couzin et al., 2002, Olfati-Saber, 2006). 

These ideas are consistent with the notion of phenomenal consciousness (Tye,1997, 

Clark, 1998; 2003) developed in philosophy and cognitive science based on Husserl and 

Hedeggar’s the phenomenology (Husserl, 1913=2001, Heideggar, 1927=1996). In 

phenomenology, anything is comprehensible by its surroundings. The relation between an 

object and its surroundings is embedded at each local site. When a particular function in the 

world appears as a concrete thing, such an object with a particular function is used as a 

particular tool (“presence-at-hand”); it is then bodily connected to the agent who uses it as a 

part of their body (“readiness-to-hand”) (Heideggar, 1927=1996, Clark, 1998; 2003). A 

dynamic network of functional connections can give rise to a dynamic change of the owned 

body and/or consciousness as a whole; that is what is meant by phenomenal consciousness. 

The notion of a “thing” in the world can be extended to a human body, and the notion of 

usability can be extended to bodily sensations (Gallagher & Zahavi, 2008, Jaegher et al., 

2010). A sense of bodily agency and/or ownership (Tsakiris et al., 2006, Synofzik et al., 2008) 

can also be comprehended in the framework of phenomenal consciousness (Gallagher, 

2000). 

     How are matters in neuroscience? Koch, who focused on neural correlates of 

consciousness (NCC) (Rees et al., 2002), also recently abandoned mind/matter dualism and 

confessed his sympathy for panpsychism in which mind can be contained in anything (Koch, 

2012). Tononi, who proposed information integration theory (IIT) (Tononi, 2008, Oizumi et la., 

2014), also proposed an idea based on panpsychism (Balduzzi & Tononi, 2009, Tononi & 

Koch, 2016). However, their ideas are consistent with phenomenal consciousness rather 

than panpsychism. After the finding of readiness potential (Libet et al., 1983, Haggard et al., 

2002, Frith et al., 2000), intentional consciousness is regarded as an area employed in 

postdiction (Koch, 2012, Maeno, 2005). Neural networks used in the readiness potential are 

referred to as unconscious zombies. After the activities of these unconscious zombies, a 

neural area correlated with the intentional consciousness can interpret a voluntary action 



triggered not by the zombies but by the intentional consciousness itself (Koch, 2012, Maeno, 

2005). Most neuroscientists, including Koch and Tononi, accept these views. A population of 

unconscious zombies can be compared to the system of multi-agents in subsumption 

architecture, to the layer of rubber skin in robotics, and to the dynamic network with respect 

to a functional connection. Although IIT is used to detect the intrinsic difference between an 

intent-wholeness (unity as a whole) and an extent-wholeness (sum of parts) (Tononi, 2008), 

it can also be considered as a way to estimate the relationship of intentional consciousness 

part and the population of zombies. Therefore, these theories are consistent with 

phenomenal consciousness. 

     Intentional consciousness covered by a population of zombies and body can 

sometimes include objects outside the body and exclude those inside it (Clark, 1998, 2003). 

That is an optimization process adapted to a given environment. Since both neuroscience 

and cognitive science focus on such an optimization, they tend to use only Bayesian 

inference in describing cognitive processes (Gigerenzer & Hoffrage, 1995, Knill & Pouget, 

2004, Manktelow, 2012). Bayesian inference can reduce or contract the probability space 

dependent on empirical data, allowing the optimal solution to be found more readily. In 

contrast, the hypothesis of a global workspace (GWS) in neuroscience refers not only to a 

similar contraction of the probability space, but also to its expansion (Dehaene et al., 1998, 

Dehaene & Naccache, 2001, Dehanene & Changeux, 2011). A particular internally selected 

neural activity can be globally connected and propagated to various areas of the brain 

( Singer & Gray, 1995), which implies expansion of the space. The process of GWS might 

be directly related to generating a local singular structure, i.e., a “bundle” of qualities including 

qualia. We shall return to this issue later. 

     The question arises as to whether the singularity and/or locality carried in 

consciousness and qualia can be comprehended in phenomenal consciousness. In the case 

of rubber skin or the configuration of agents, many logical and programmable computational 

processes are not implemented directly in the system but could be indirectly embedded in 

non-logical material in a local area. In other words, the relation between logical states is 

embedded at a local site. If this embedding converges to a singular state under infinite 

recursive iteration, then this singular self-similar state (Scott, 1972, Gunji & Toyoda, 1997) is 

a candidate for local and singular states such as qualia and quality. However, the notion of 

phenomenal consciousness does not restrict the locality and singularity of consciousness 

and quality. A singular and local quality does not exist intrinsically, but appears instead as a 

phenomenon in the perspective of phenomenal consciousness. Although qualia and the 

subjective quality might be addressed by phenomenal consciousness, they could appear as 

illusions. 



The proponents of singularity and locality of qualia and consciousness have moved to 

panqualityism or neutral monism (Strawson, 2006) because panpsychism has failed and 

suffers from a combinational problem (Chalmers, 2015). Panqualityism addresses the view 

that any physical thing can be endowed with quality, i.e., fragments of proto-qualia (Coleman, 

2012). In mind/body dualism, there is the notion that if someone with a body temperature of 

35°C touches a physical object whose temperature is 50°C, the sensation of hotness appears 

in the person’s mind. In panqualityism, even this sensation is embedded in the physical object. 

While temperature is a quantity, hotness is a quality. Although there is an intrinsic difference 

between quantity and quality in nature, a 15°C temperature difference can cause the 

sensation of hotness. If this differential structure is recursively embedded in a local site in a 

self-similar manner, a singular state could arise whose quality is so simple that it reveals not 

a dynamic nature but a static one (Scott, 1972). We have previously attempted a similar but 

dynamic self-similar construction for dynamics (Gunji, 1994, Gunji et al., 1997, Gunji & 

Toyoda, 1997). 

However, one final question arises. How is it possible to have a physical object 

embedded with a subjective quality? Put differently, how is neutral monism implemented in 

science? This may seem to be more akin to spirituality. Although there have been some 

previous attempts—the quantum consciousness hypothesis, in which quantum coherence 

occurs in cytoskeletal structures (Hameroff & Penrose, 1996a, b), and the idea that the water 

mass in the brain could generate consciousness (Jibu et al., 1994) - the criticism has been 

made that quantum effects do not contribute to macroscopic phenomena at normal 

temperatures (Grush & Churchland, 1995). While the internal quantum state in a molecule is 

shielded from thermal fluctuations and is considered in millikevin range (Matsuno & Paton, 

2000, Igamberdiev & Shklovskiy-Kordi, 2016), the possibility of quantum brain theory is 

controversial. 

There is only one way to ground such a perspective in science. A real thing that was 

considered as being independent of observation is now considered as a physical thing that 

has already been filtered by observation or measurement. Thus, the physical thing contains 

a measurement process in its base. Although it has been around 30 years since 

endoperspective was first proposed (Matsuno, 1989, Rössler, 1998), its significance has not 

yet been clarified. Such clarity will not be possible until science addresses the issue of 

consciousness (Strawson, 2006, Skrbina, 2009, Silberstein & Chemero, 2015, Seager, 2012). 

The endoperspective is not sufficiently mature to comprehend the notion of 

consciousness. To address the neutral monism and to express a form of quality, non-local 

things have to be embedded at a local site, and local things have to be extended to non-local 

ones. This can lead to a local singular structure: a bundle of qualities containing temperature, 



perception, feeling, and emotion (Strawson, 2006, Skrbina, 2009, Silberstein & Chemero, 

2015, Seager, 2012). Dynamical interpolation between the local and non-local can influence 

the resulting perspective in cognition, local reductionism, and non-local non-reductionism. 

These complex cognitive natures are not addressed by the endoperspective. The question 

also arises as to whether or not the object that is accompanied by the measurement process 

is related to quantum mechanics. Independent of the quantum consciousness hypothesis, 

can the endoperspective lead to quantum mechanics (Svozil,1993)? Does the weak quantum 

mechanics proposed in the endoperspective contribute to the understanding of 

consciousness (Atmanspacher, 2003, Atmanspacher & Graben, 2015)? 

In order to answer these questions, we propose a measurement model featuring an 

inference process. We focus on Bayesian inference for the contraction process of the 

probability space, and a newly proposed inverse Bayesian inference for its relaxation process. 

As mentioned before, this construction is entirely consistent with the hypothesis of GWS, so 

much so that making decisions based on Bayesian and Inverse Bayesian (BIB) inference 

can be regarded as a simple cognitive model. We first show that inverse Bayesian inference 

can cope with drastic changes in environments, while Bayesian inference can only optimize 

under a stable environment. Secondly, we show that BIB inference can generate the 

perspective of a pasted universe consisting of diagonal matrices of joint probabilities of data 

and hypotheses. Thirdly, we show that such a pasted universe consisting of diagonal 

matrices can be expressed as an orthomodular lattice that can correspond to quantum logic. 

That is the first model to connect the mathematical structure of quantum mechanics with a 

macroscopic cognitive process without the principle of complementarity. 

 

2. Materials and Methods 

 

2-1. BIB inference implementation 

 

Basic Definition 

     No object exists without an observer; it is destined to be filtered by observation or 

measurement. An object described like this is referred to here as a measurement-

oriented object (Gunji, 2004, Gunji & Kamiura, 2004). How can one express a 

measurement-oriented object? If the measurement process is expressed as a map f, and 

an object to be measured is represented by x, a measurement-oriented object might be 

expressed as f(x). However, the measurement or observation process is not a well-

defined map, but rather a one-to-many mapping, i.e., a map opened to impossible 



alternatives (Matsuno, 1989, Gunji, 1994, Gunji et al., 1997, Gunji, 2004). This implies 

that a mapped image embedded with probability (i.e., possible alternatives) is inferred 

by a particular inference system, while the inference system is also perpetually revised 

and modified (i.e., impossible alternatives can be included).  We define such a 

measurement-oriented object using BIB inference. 

Although Bayesian inference has been used in cognitive and neuroscience (Gigerenzer 

& Hoffrage, 1995, Knill & Pouget, 2004, Manktelow, 2012), inverse Bayesian inference 

mentioned by Arecchi (Arecchi, 2003; 2011) has not been used (Gunji et al., 2016). Bayesian 

inference is a strategy for arriving immediately at the optimal solution. Depending on the data 

(i.e., an empirical condition), the probability of a particular hypothesis is changed. The 

probability of a hypothesis is temporally replaced by a conditional probability under the 

condition of taking data. Thus, the probability of a particular hypothesis fitting the given data 

grows increasingly. 

In consequence, Bayesian inference contracts the distribution of probability because 

only hypotheses that fit the given data are taken into consideration in making a decision; any 

other hypothesis is ignored. The probability of an event is temporally replaced by the 

probability of only part of it. If only contraction were to occur, then a universe consisting of 

events would shrink to a point. A subject using only Bayesian inference is destined to reach 

a dead end. A different process is required that relaxes the probability to implement a 

measurement-oriented object. A contraction/relaxation pair would be more appropriate for an 

open, indefinite world. 

A contraction/relaxation probability pair is a generalization of a cause–effect loop 

memory. A cause–effect relation can be expressed as an inclusion one. The statement “men 

implies invertebrates” expresses the notion that the set “men” is included in the set 

“invertebrates”. Thus, a relation in which a cause implies an effect is expressed as a pair of 

lines (one shorter than the other) in a cause–effect triangle, as shown in Fig. 1. The 

implication from a cause to its effect is expressed as a downward arrow. If a particular cause–

effect relation is repeatedly perceived, then an upward arrow from an effect to a cause is also 

kept, i.e., a particular cause entailing a particular effect is expected. Thus, a cause–effect 

loop is kept whenever a cause–effect relation is empirically obtained and is expected or 

anticipated. 

Fig. 1 also shows how a cone, not a triangle, is obtained in a cognitive process. This is 

illustrated in the experiment of choice blindness (Johansson et al., 2005). In that experiment, 

a male subject is shown photographs (right and left) of two different women, and is asked to 

state his preference. After the subject has made his choice, the experimenter passes him the 

apparently chosen photograph, but in fact has switched it with the other one without the 



subject noticing. The subject is then asked to explain his choice, usually doing so while being 

unaware that he is actually discussing the rejected photograph. This is why the phenomenon 

is referred to as choice blindness. 

A pair of cause–effect loops corresponds to the previous and invented cause–effect 

processes. If we suppose that he actually chose the left photograph, then the left cause–

effect loop was being kept initially. However, he invented the right cause–effect loop after the 

photograph was replaced. The upper black circle represents a current event. Because the 

subject observed the right photograph while explaining his reason, a current event is facing 

it. By contrast, no event is now connected to the left cause–effect loop. The upper white circle 

represents the absence of a current event. In fact, “current” is a time interval. Thus, multiple 

cause–effect loops are bundled to construct a cause–effect cone in which the current event 

is integrated with multiple possible events. A gray current event represents the integration of 

black and white current events (Fig. 1). 

Multiple cause–effect loops are integrated. The inclusion relation of a cause–effect one 

is ill-defined and is expressed as a form of interpolating system. A particular cause is located 

in a particular effect as a context. At that time, the context could be revised and modified to 

embed the cause. Imagine a relationship between a local site of a city and the entire city. If 

you are lost in a particular place, you are aware of where you are if you can identify the 

particular place in the city. This implies you made a context (whole city) to embed a particular 

place. By contrast, when you choose a particular representative place in the city, the meaning 

of the city is revised depending on your choice of representative. The significance or meaning 

of a place and the city is temporally changed and revised because of the interpolation. This 

results in an alternation between contraction and relaxation of the meaning of the city. From 

the local to the global (e.g., awareness of lost place), the context of the global is expanded 

and revised; from the global to the local (e.g., choice of the representative), the context is 

chosen and contracted. That is also the case for a cause–effect loop. 

If the cause–effect loop cone is implemented in the framework of probability, then both 

the probability and conditional probability of an event can correspond to a cause and an effect 

in a loop. Thus, we can generalize the contraction and relaxation processes in the framework 

of probability, i.e., a pair of Bayes and Inverse Bayes (BIB) inferences (Fig. 1, left). As 

mentioned before, Arecchi first proposed inverse Bayesian inference (Arecchi, 2003; 2011), 

and we subsequently modified his ideas (Gunji et al., 2016). In the present paper, we naturally 

expand our modification to define inverse Bayesian inference anew in a symmetric manner 

to Bayesian inference. Arecchi used Bayes’ formula and termed a particular usage of it as 

inverse Bayesian inference. Given Bayes’ formula, P(d|h)P(h) = P(h|d)P(d), if one obtains 

the posterior probability of P(h) as P(h|d) = P(d|h)P(h)/P(d), this usage of Bayes’ formula is 



called Bayesian inference. If one obtains the prior probability as P(h) = P(h|d)P(d)/P(d|h), 

Arecchi calls this usage of Bayes’ formula the inverse Bayesian inference (Arecchi, 2003; 

2011). However, the essence of Bayesian inference is the replacement of P(h) with P(h|d). 

Thus, we naturally expand this idea inversely, and define inverse Bayesian inference by 

replacing P(d|h) with P(d), different from Arechi. That is why BIB inference can correspond 

to both the contraction and relaxation of the probability. 

In neuroscience, a part of the global workspace theory (Dehanene et al., 1998, 

Dehaene & Naccache, 2001, Dehanene & Changeux, 2011) can be implemented by 

Bayesian inference (Arecchi, 2003; 2011). Given a set of external stimuli, neural activities 

are locally synchronized. A local domain consisting of synchronized neurons can correspond 

to a hypothesis by which external stimuli (data) can be interpreted. There are multiple 

domains corresponding to multiple hypotheses, and the domain that has the largest 

synchronized domain is chosen. This could correspond to a Bayesian inference in which a 

hypothesis with the most probability is chosen (Arecchi, 2003; 2011). The global workspace 

theory, however, is not completed by Bayesian inference alone. The chosen hypothesis (i.e., 

a particular neural activity) is globally connected to all other areas of the brain, and the 

interpretation of a given set of data that is obtained by the chosen hypothesis can be 

accessed and used by any other area of the brain (Dehanene et al., 1998, Dehaene & 

Naccache, 2001, Dehanene & Changeux, 2011). That is the essential nature of global 

workspace theory. This property, openness to other areas, can be expressed as a relaxation 

process, and by replacing the probability of a part of the set by the probability of a set as a 

whole. In other words, the probability of a particular conditional event is replaced by the 

probability of general events. This process is the same as a relaxation one. 

The anterior half of global workspace theory until an optimal neural activity is chosen 

can be expressed as the contraction of information, since external stimuli are collected to 

give rise to a particular local neural activity. The posterior half of the theory can be expressed 

as a relation of information, since a local neural activity is globally propagated to multiple 

areas of the brain. A contraction/relaxation informational pair is found in global workspace 

theory (Dehanene et al., 1998, Dehaene & Naccache, 2001, Dehanene & Changeux, 2011). 

We now formalize BIB inference. A data set and a hypothesis set are expressed by D 

= {d1, d2, …, dn} and H = {h0, h1, …, hm}, respectively. Because of the relation between 

conditional and joint probability, Bayes’ formula is expressed as 

 

           Pt(h|d) = Pt(d|h)Pt(h)/(kPt(d|hk) Pt(hk)),                                 (1) 

 

where d and h represents an element in the set of data and hypotheses, respectively. Since 



Pt(hk) represents the probability of a hypothesis at t-th step, hk and initially P0(hk) is 

homogeneously given (i.e., P0(h0) = P0(h1) = … = P0(hm) = 1/(m+1)), Pt(d|hk) which is the 

probability of particular data, d, under a hypothesis, hk (i.e., the likelihood of hk) is also defined, 

Pt(h|d) in the form of (1) can be obtained without empirical data. Here, Bayesian inference is 

expressed as 

 

           Pt+1(h) = Pt(h|d).                                                     (2) 

 

If only Bayesian inference is introduced, the likelihood of hypotheses is not changed, such 

as 

 

           Pt+1(d|h) = Pt(d|h).                                                   (3) 

 

For example, let H be {ho, h1}, and D be {0, 1}, where 0 and 1 represents the head and tail of 

the coin. Imagine that you have to determine the probability of coin toss for a special coin 

whose probability of the coin toss is not uniformly random. You have two hypotheses for the 

probability such that P0(0|h0) = 1/3 and P0(0|h1) = 3/4. Thus, P0(1|h0) = 2/3 and P0(1|h1) = 1/4. 

Initially P0(h0) = P0(h1) = 1/2. Under this setting, you have the first result of coin toss as 0. By 

using eq-(1), P0(h0|0) = P0(0|h0)P0(h0)/(P0(0|h0)P0(h0) + P0(0|h1)P0(h1)) = (1/3)(1/2) / 

((1/3)(1/2) + (3/4)(1/2)) = 4/13, and P0(h1|0) = P0(0|h1)P0(h1)/(P0(0|h0)P0(h0) + P0(0|h1)P0(h1)) 

= 9/13. Due to eq-(2), P1(h0) = P0(h0|0) =4/13 and P1(h1) = P0(h1|0) =9/13. Since you obtain 

data of 0, the probability of hypothesis h1 increases from 1/2 to 9/13, in which the probability 

of 0 is bigger than h0. If the second result of coin toss is also obtained as 0, P2(h1) > P1(h1) 

because P2(h1) = P1(h1|0) =81/97. 

Inverse Bayesian inference is implemented symmetrically to (2), and is expressed as 

 

           Pt+1(d|hs) = Pt(d).                                                    (4) 

 

In eq-(4), the conditional probability, Pt+1(d|hs), under a particular hypothesis condition is 

replaced by empirical data (i.e., a given time series of data), Pt(d). Because Pt+1(d|hs) 

represents the probability of a particular data occurrence in the hypothesis hs, replacing this 

probability implies replacing the hypothesis itself. Here, Pt(d) is defined by a normalized 

frequency of data in a particular time interval, M. Given a series of data such that 

 

           et-M, et-M+1, …, et,                                                    (5) 

 



where ew is an element of {d1, d2, …, dn}, if the number of occurrences of d in a series of (4) 

is represented by f(d), then 

 

           Pt(d) = f(d)/M.                                                       (6) 

 

The interval M can be determined by saturation of the mutual information for a time series 

with a particular interval M. The problem arises as to how a particular hypothesis, hs, in (3) is 

chosen. We introduce the least optimal hypothesis. Thus, hs in (3) satisfies the condition that 

 

           ∀ h’  {h0, h1, …, hm}, Pt(hs)  Pt(h’),                                (7) 

 

where the least optimal choice is affected by choice error. It implies that the time scale of 

inverse Bayes inference is much longer than that of Bayes inference. In practice, we calculate 

 

                  k 

           Q(k) = (1- Pt(hj)),                                                   (8) 

                 j=0 

 

and a real number, r, is chosen randomly with uniform distribution in the interval [0, Q(m)]. 

The least optimal hypothesis with choice error, hs, is given by 

 

           Q(s-1)<rQ(s).                                                     (9) 

 

By this scheme one hypothesis hs is chosen and (4) is applied, on one hand. For any other 

hypotheses such that g  {h0, h1, …, hm} and g hs, the likelihoods of the hypotheses are not 

changed such that 

 

           Pt+1(d|g) = Pt(d|g).                                                  (10)                                             

 

     In this scheme, the probability of a hypothesis is continually replaced by its conditional 

probability under a particular condition of data because of Bayesian inference. The 

conditional probability of data under a particular hypothesis representing the hypothesis itself 

is replaced by the empirical probability of the data because of inverse Bayesian inference. At 

any time step, both types of inference are applied to a set of probability. 

    Recall H = {ho, h1}, D = {0, 1} P0(0|h0) = 1/3 and P0(0|h1) = 3/4 for the coin toss case. 

Initially P0(h0) = P0(h1) = 1/2. As mentioned before, P0(h0|0) = 4/13, and P0(h1|0) = 9/13 for 

the 0 coin case. Due to eq-(2), P1(h0) = P0(h0|0) =4/13 and P1(h1) = P0(h1|0) =9/13. Imagine 



that you have a time series of coin toss, 1, 1, 0, 1, 1, 1. Thus the empirical data, P0(0) = 1/6. 

Due to eq-(4) (i.e., inverse Bayesian inference), and P0(h0) = P0(h1), the least optimal 

hypothesis is randomly chosen, for example, h1, and the likelihood of h1 is replaced by the 

empirical data. Thus you obtain P1(0|h1) = 1/6 and P1(0|h0) = P0(0|h0) = 1/3. If the second 

result of the coin toss is also 0, P2(h1|0) = P1(0|h1)P1(h1)/(P1(0|h0)P1(h0) + P1(0|h1)P1(h1)) = 

(1/6)(9/13)/((1/6)(9/13)+(1/3)(4/13)) = 9/17. P2(h1) = P1(h1|0) =9/17 is much smaller than 

81/97 for the only Bayesian inference. The difference results from the change of the likelihood 

of h1, and i.e., inverse Bayesian inference. 

     We now consider the role of BIB inference with respect to the prediction (anticipation) 

and postdiction. Since the conditional probability P(h|d) is expressed as P(d, h)/P(d), we 

obtain 

 

           Pt(d, h) = Pt(h|d)Pt(d).                                               (11) 

 

Substituting Bayesian inference, Pt+1(h) = Pt(h|d), for (11), we obtain 

 

           Pt(d, h) = Pt+1(h)Pt(d).                                               (12) 

 

It is easy to see that the joint probability Pt(d, h) is approximated by the product of the 

probability of hypothesis in future and that of data at present, which implies that present data 

could be independent of anticipated hypothesis. Similarly, P(d|h) is expressed as P(d, h)/P(h), 

and then 

 

           Pt(d, h) = Pt(d|h)Pt(h).                                               (13) 

 

Substituting inverse Bayesian, Pt+1(d|h) = Pt(d) (i.e., Pt(d|h) = Pt-1(d)), for (13), we obtain 

 

           Pt(d, h) = Pt(h)Pt-1(d).                                               (14) 

 

This also implies that two events, data in the past and hypothesis at present, could be 

independent of each other, where the form of the time delay in (14) is different from that in 

(12). Note that (12) and (14) are not actual transition rules. If only Bayesian inference is used, 

Pt(h|d) is calculated, Pt+1(h) is updated by Pt(h|d), and then Pt+1(d|h) becomes the same as 

Pt(d|h). If BIB (Bayesian and inverse Bayesian) inference is used, Pt(h|d) is calculated, Pt+1(h) 

is updated by Pt(h|d), and then Pt+1(d|hs) for the least optimal hypothesis, hs, is also updated 

by Pt(d) where Pt+1(d|h) for any other hypotheses but hs becomes the same as Pt(d|h). 



Equations (12) and (14) shows the significance of Bayesian and of inverse Bayesian 

inference, respectively. Since BIB inference uses both Bayesian and inverse Bayesian 

inference, both (12) and (14) are implemented in the inference. It implies that joint probability 

Pt(d, h) is initially influenced by anticipated hypothesis and then influenced by postdiction of 

data. 

The existence of pre- and postdiction in the independence assumption is the key 

difference between the two forms of inference. In Bayesian inference, independence 

between data and hypothesis is achieved by the predicted probability of the hypothesis, 

Pt+1(h) in (12). This implies that the probability of the hypothesis is modified a priori to achieve 

the optimal solution immediately. This could correspond to contraction toward the observer’s 

own optimal goal. By contrast, in inverse Bayesian inference, the independence is achieved 

by the postdiction probability of data, Pt-1(d) in (14). This implies that the probability of data 

(an empirical “thing”) is negotiated a posteriori to relax the over-contracted world. 

 

Idealized Implementation of BIB inference 

     We now implement BIB inference under a particular idealization, where a contraction 

of the probability (i.e., Bayesian inference) results from a relaxation of the probability (i.e., 

inverse Bayesian inference), and the data and hypothesis spaces are symmetrical to each 

other due to Bayes’ formula. We assume here that data and hypothesis sets are expressed 

as {d1, d2, …, dn} and {h1, h2, …, hn}, respectively. Since the conditional probability is defined 

by Pt(d|h)=Pt(d, h)/Pt(h), we obtain (11), Pt(d, h) = Pt(h|d)Pt(d), and Pt(d) is expressed as a 

summation of any Pt(d, hj). Thus, 

 

                                   m 

                   Pt(d, h) = Pt(h|d)  Pt(d, hj).                                 (15) 
                                   j=0 

 

We now introduce the operation of relaxation. First, some hypotheses, h, are collected that 

satisfy the statement such that 

 

                    ‘P(h)< with [0.0, 1.0].                                 (16) 

 

Hypotheses with the condition (16) (w hypotheses) are collected such as 

 

                   hs(1), hs(1), …, hs(w).                                          (17) 

 



It is assumed that these hypotheses could constitute a whole hypothesis space for particular 

data d, and then the joint probability of data and hypotheses with respect to all hypotheses 

satisfying the condition is expressed as 

 

 

w 

                    Pt(d, hs(j)) = Pt(d).                                         (18) 
                   j=1 

 

It is also assumed that a summation of joint probability with respect to all hypotheses could 

constitute a summation of probability of all data, which is a universal set, and then 

 

m 

                    Pt(d, hj) = 1.0.                                            (19) 
                   j=0 

 

Equations (18) and (19) imply relaxation because a part of the probability is expanded and 

is regarded as the probability of a universal set. In this sense, (17) is replaced by  

 

                    Pt+1(d, hs(j)) = Pt(h s(j)|d).                                     (20) 

 

Since Pt(h s(j)|d) = Pt(d, hs(j))/Pt(d), (18) and (19), for any i in {1, 2, .., w}, we obtain 

 

                      w 

Pt+1(d, hs(i)) = Pt(d, hs(i))) /  Pt(d, hs(j)).                         (21) 
                        j=1 

 

In the form of (21), both contraction and relaxation are embedded. The assumption of (18) 

reveals that a collection of particular hypotheses, {hs(1), hs(2), …, hs(w)}, is replaced by a whole 

set of hypotheses, and is expanded by the probability of a universal set (i.e., 1.0). Thus, it 

implies relaxation (inverse Bayesian inference), which could entail contraction (Bayesian 

inference) in the form of (20), in which a joint probability is replaced by a conditional one. 

      Since Bayes’ formula could result in a symmetrical form such that 

 

                                   n 

                    Pt(d, h) = Pt(d|h)  Pt(h, dj),                                  (22) 
                                   j=0 

 

one has to collect a particular subset of dr(1), dr(2), …, dr(w) symmetrically, and assume that 

 

 



w 

                    Pt(dr(j), h) = Pt(h).                                          (23) 
                   j=1 

 

As well as (19), it is assumed that summation of Pt(dj, h) for all j in {0,1, …, n} equals 1.0, 

which results in 

 

                                 w 

Pt+1(dr(j), h) = Pt(dr(j)|h) = Pt(dr(j), h) /  Pt(d r(j), h).                 (24) 
                                j=1 

 

Since Pt+1(d, h) = Pt+1(h, d), symmetrical Bayesian inference, which is expressed as (21) and 

(24), is naturally introduced by assuming inverse Bayesian inference, i.e., (18) and (23). 

These procedures are illustrated schematically in Fig. 2. 

     After the application of (21) to the distribution of the joint probability, (24) is similarly 

applied. Thus, we redefine Bayesian inference reduced from inverse Bayesian inference by 

 

                            q 

Pt+t(1)(d, hs(i)) = Pt+t(0)(d, hs(i)) /  Pt+t(0)(d, hs(j)),                 (25) 
                            j=p 

 

                            q 

Pt+t(2)(dr(j), h) = Pt+t(1)(dr(j), h) /  Pt+t(1)(d r(j), h),                  (26) 
                            j=p 

 

where t(0)<t(1)<t(2) and for j=0, 1, …, w (i.e., p=0, q=w), t(0)=0, and t(2)=1/2, and for 

j=w+1, w+2, …, n (i.e., p=w+1, q=n), t(0)=1/2, and t(2)=1. After that, the following is applied 

to the distribution of the joint probability to evoke the effect of Bayesian inference, such as 

 

                    Pt+1(d, h) = (Pt+1(d, h))2.                                     (27) 

 

This process implies enhancement of the effect of Bayes and inverse Bayes inference. By 

this recipe, the coupling of BIB inference is simply implanted by the choice of hypotheses 

and replacement of joint probability with conditional probability. As mentioned in later sections, 

this recipe can be extended to a partition of a set of hypotheses such as {hs(1), hs(2), …, hs(w)}, 

{hs(w+1), hs(w+2), …, hs(v)}, …, {hs(u+1), hs(u+2), …, hs(m)}. 

     Given a distribution of joint probability P0(d1, h1), P0(d1, h2), …, P0(d1, h6), P0(d2, h1), 

P0(d2, h2), …, P0(d2, h6), P0(d6, h1), P0(d6, h2), …, P0(d6, h6), where H is divided into {h1, h2, 

h3} and {h4, h5, h6} and symmetrically D is divided into {d1, d2, d3} and {d4, d5, d6}. In this 

situation, for any k = 1, 2, …, 6 and for s = 1, 2, 3, Pt(1)(dk, hs) = P0(dk, hs) / (P0(dk, h1)+P0(dk, 



h2)+P0(dk, h3)) and P1/2(ds, hk) = Pt(1)(ds, hk) / (Pt(1)(d1, hk)+Pt(1)(d2, hk)+Pt(1)(d3, hk)). 

Similarly, for any k = 1, 2, …, 6 and for s = 4, 5, 6, P1/2+t(1)(dk, hs) = P1/2(dk, hs) / (P1/2(dk, 

h4)+P1/2(dk, h5)+P1/2(dk, h6)) and P1(ds, hk) = P1/2+t(1)(ds, hk) / (P1/2+t(1)(d4, hk)+P1/2+t(1)(d5, 

hk)+P1/2+t(1)(d6, hk)). Asynchronously joint probabilities are replaced by conditional 

probabilities by these manners. These operations are iterated through time. 

 

Results 

 

The significance of inverse Bayesian inference 

 

     First, a simple case study is calculated for the basic definition of BIB inference, (1)–

(14). Sets of data and of hypotheses are defined by {0, 1} and {h0, h1, …, hm}, respectively, 

where 

 

           Pt(1|hk) = k/L,                                                     (28) 

 

           L = m+1.                                                          (29) 

 

One can think of a hypothesis, hk, as a virtual bag containing k red balls represented by 1 

and (L-k) white balls represented by 0. Given a time series of data, either 0 or 1, one can 

infer the probability of a hypothesis (i.e., a distribution of P(h)) by both forms of inference. 

      If the probability of data is invariant and stable, which means 

 

           lim f(d)/M = const.,                                                 (30) 

           M 

 

then the probability of a hypothesis obtained only by Bayesian inference is that same as that 

obtained by BIB inference, as shown in Fig. 3 where the results of the latter are slightly 

unstable due to the temporal replacement of the conditional probability, Pt+1(d|hs), by the 

empirical data (i.e., (4)–(6). In the simulation, L=10, M=30, and a time series of data is 

generated for P(1)=0.45. The smaller M is, the more sensitive the replacement of Pt+1(d|hs) 

with Pt(d)=f(d)/M is. If M>20, the BIB can show similar behavior. 

      Now we compare the probability of a hypothesis obtained only by Bayesian inference 

with that obtained by BIB inference for a series of data that is suddenly changed at a 

particular time step. Fig. 4 shows an example of such a case. The vertical axis represents 

the conditional probability, Pt(1|hopt), where hopt is the optimal hypothesis with respect to the 



probability, such that 

 

           For any h{h0, h1, …, hm}, Pt(h) Pt(hopt).                               (31) 

 

Given a time series of data in which the probability of obtaining the datum “1” is 0.8 for the 

first 500 steps and 0.2 after that, Bayesian inference (green curve) cannot follow the sudden 

change in the probability of the given data (red curve), and instead traces the accumulated 

probability of the given data (blue curve). Since the hypotheses themselves, P(1|h0), P(1|h1), 

…, P(1|hm), are invariant with time, it is only Bayesian inference that can trace a time series 

of data by switching the optimal hypothesis. Thus, the trajectory of Pt(1|hopt) is that of a step 

function (Fig. 4A). 

     Fig. 4B shows a trajectory of Pt(1|hopt) obtained by BIB inference, where the time series 

of data is the same as that in Fig. 4A. It is clear to see that this type of inference (green curve) 

can trace the sudden change in the probability of the given data (red curve), not the 

accumulated probability, where there is a delay to trace it in a term of time interval of collecting 

data. The second feature of BIB inference is its stable trajectory. As shown in Figs. 4A and 

4B, as long as the probability of the given data does not change, the trajectory of the 

inference also does not change and remains relatively stable. To investigate the reason for 

this, another implementation of inverse Bayesian inference is introduced and is compared to 

the original implementation. 

     Instead of the choice of the least optimal hypothesis, a random choice and one 

involving the most optimal hypothesis are introduced. For the random choice, instead of (6) 

(or (7, 8)), hs in (3) (or hs in (8)) is randomly chosen from {h0, h1, …, hm}. For the choice of the 

most optimal hypothesis, hs satisfies the condition that 

 

           ∀ h  {h0, h1, …, hm}, Pt(h) Pt(hs).                               (32) 

 

Both types of inference with hs randomly chosen are shown in Fig. 5A. That with the optimal 

hs is shown in Fig. 5B, where a given time series of empirical data is the same as those for 

the case of Fig. 4, i.e., 0.8 before step 500 and 0.2 after it. As well as the BIB inference with 

the least optimal hs, both inferences can trace the sudden change in the time series of 

empirical data although they are unstable, as compared with the inference in the least optimal 

case. There is no qualitative difference between the random choice and the most optimal 

choice with respect the joint probability. 

     To spell out the significance of choosing the least optimal hypothesis in inverse 

Bayesian inference, we compared the inverse inferences based on the least optimal 



hypothesis choice and the random choice with respect to the changeability of the hypothesis. 

Figure 6 shows the probability of a hypothesis and the conditional probability of obtaining 

datum “1” under each hypothesis obtained by BIB inference, where the inverse Bayesian 

inference is based on the least optimal hypothesis choice, and where the given probability of 

obtaining datum “1” is 0.6 before step 500 and 0.4 after. 

     Fig. 6A shows a time series of the probability of all hypotheses. At step 300, the 

hypothesis h6 is the optimal one, and after step ~550 the optimal one is replaced by h7, which 

is stable up to step 1000. This implies that the conditional probability of datum “1” under the 

optimal hypothesis is that under h6 between steps 300 and 550, and that under h7 between 

steps 550 and 1000. Figure 6B shows a time series of conditional probability of obtaining “1” 

under hypotheses h6 and h7. In taking a time series of the probability, it is easy to see that 

the conditional probability of the optimal hypothesis is relatively flat between steps 300 and 

550, and that it is ~0.4 between steps 550 and 1000 (Fig. 6D). Figure 6C shows a time series 

of conditional probability of obtaining “1” under all hypotheses. Given that the least optimal 

hypothesis is perpetually replaced by the empirical data, and that most hypotheses except 

for h6 and h7 could be the least optimal after step 300, most hypotheses are perpetually 

replaced by the empirical data. Therefore, while most hypotheses are being replaced by 

others continually, an optimal hypothesis such as h7 is not replaced but is maintained (Fig. 

6C). That is why the inference resulting from the optimal hypothesis is stable in replacing the 

least optimal hypothesis by the empirical data. 

      Compared to the least optimal choice, the random choice in inverse Bayesian 

inference could give rise to unstable inference, since even the optimal hypothesis is 

continually being replaced by empirical data. Fig. 7A shows a time series of the probability of 

all hypotheses. Between steps 50 and 300, the hypothesis h6 is the optimal one, and between 

steps 300 and 900 the optimal one is replaced by h7. Fig. 7B shows a time series of 

conditional probability of obtaining “1” under hypotheses h6 and h7. Notwithstanding that 

hypotheses h6 and h7 are the optimal ones, they are replaced so often that the conditional 

probability of datum “1” under h6 or h7 is not invariant and is continually being changed. 

Therefore, the conditional probability of datum “1” under the optimal hypothesis mainly 

consists of h6 and h7, and is unstable as shown in Fig. 7D. Figure 7C shows a time series of 

the conditional probability of datum “1” under all hypotheses. There is no stable and invariant 

conditional probability under any hypothesis. Thus, the least optimal choice of a hypothesis 

in inverse Bayesian inference could contribute to the stable inference, although it is sensitive 

to the temporally sudden change in the empirical data. 

Next, we describe the simulation results of BIB inference in the idealized 

implementation. Figure 8 shows the distribution of the joint probability of 20 data items and 



20 hypotheses, which is developed by (25)–(27) given an initial condition of a random 

distribution of the joint probability. Here, the hypotheses are divided into {hs(1), hs(2), …, hs(10)} 

and {hs(11), hs(12), …, hs(20)}, and the data into {dr(1), dr(2), …, dr(10)} and {dr(11), dr(12), …, dr(20)}, 

respectively. Each set is assumed to be the larger set, which implies (18), (19), and (23). In 

Fig. 8, hypotheses and data are arranged in the order of s(1), s(2), …, s(20) and r(1), r(2), 

…, r(20). In the steady state at t=10, the distribution of the joint probability is articulated into 

a diagonal matrix area and homogeneous noisy area. The areas of [s(1), s(10)][r(1), r(10)] 

and [s(11), s(20)][r(11), r(20)] are diagonal matrix areas, and [s(11), s(20)][r(1), r(10)] and 

[s(1), s(10)][r(11), r(20)] are homogeneous noisy areas. In a diagonal matrix area, there is 

a one-to-one correspondence between data and hypotheses. This means that there is a 

unique hypothesis, h, for each datum, d, with a high joint probability of P(d, h), and that any 

other joint probabilities are very low, i.e., effectively zero. Thus, one can arrange hypotheses 

and data to locate all high joint probabilities at the diagonal line. That is why it is called a 

diagonal matrix area. A noisy area consists of the low but >0 joint probabilities. 

The partition of hypotheses or data that is assumed to be the larger set in the form of 

(18), (19), and (23) (i.e., inverse Bayesian inference) can be generalized for multiple 

partitions, such as (S(1, 1), …, S(1, w1)), (S(2, 1), …, S(2, w2)), …, (S(q, 1), …, S(q, wq)), 

and (R(1, 1), …, R(1, w1)), (R(2, 1), …, R(2, w2)),…, (R(q, 1), …, R(q, wq)), where for each 

S(k, j), there exists a hypothesis h in {h1, h2, …, hn} with one-to-one correspondence (for R(k, 

j), d in {d1, d2, …, dn} with one-to-one correspondence, respectively). For this partition, 

Bayesian inference reduced from inverse Bayesian inference is expressed as 

 

                                  u 

Pt+T(k, 1)(d, hS(k, j)) = Pt+T(k, 0)(d, hS(k, j)) /  Pt+T(k, 0)(d, hS(k, j)),          (33) 
                               j=p 

 

                                 u 

Pt+T(k, 2)(dR(k, j), h) = Pt+T(k, 1)(dR(k, j), h) /  Pt+T(k, 1)(dR(k, j), h),           (34) 

                                j=p 

 

where k=1, 2, …, q, T(k, 0)=(k-1)/q, T(q, 1)=(k-1)/q+z with 0<z<k/q-(k-1)/q, and T(q, 

2)=k/q. 

     Fig. 9 shows that multiple partitions appeared in the development of the joint probability 

resulting from (33) and (34). In the steady state, diagonal matrices are distributed along the 

diagonal line, where partitions are expressed as the intervals [1, 7], [8, 15], [16, 21], and [22, 

30]. In the diagonal matrix area, a high joint probability showing a conspicuous peak is ~1.0 

and other joint probabilities are ≈0.0. In the noisy area, all joint probabilities are in the range 

0.1–0.3. This pattern of joint probabilities implies a cognitive universe constructed by pasting 



diagonal matrix areas in the background of homogeneous noisy areas. This is a “pasted 

universe.” 

Since the symmetric structure between data and hypothesis in the form of (21) and (24) 

results from Bayes’ formula, someone recognizing a universe through the pasted one could 

assimilate data with hypotheses (Fig. 10). Fig. 10B shows a matrix expression for the steady-

state distribution of the joint probability. If one stays in the diagonal matrix area, one can see 

a one-to-one correspondence between data and hypotheses. Thus, one can uniquely 

recognize the corresponding image (h, hypothesis) to the given external stimulus (d, data) 

because of the high joint probability with P(d, h). In other words, diagonal matrix area 

represents a type of attractor. Because such P(d, h) is not strictly equal to 1.0, one cannot 

remain at the co-ordinate (d, h) indefinitely; one then moves to the second highest peak of 

the joint probability with P(d, h’) (blue arrow in Fig. 10B) or P(d’, h) (black arrow in Fig. 10B). 

The second highest peak exists not in the diagonal matrix area but in the noisy one. That is 

why the recognition moves from (d, h) to (d, h’) or (d’, h). Also, due to the assimilation of data 

and hypotheses, the subsequent transition from (d, h’) to (d’, h’) (blue arrow in Fig. 10B) or 

from (d’, h) to (d’, h”) (black arrow in Fig. 10B) can occur. This implies a chaotic transition 

from one attractor to another, which is argued for in chaotic brain theory (Freeman, 1999, 

Freeman & Vitiello, 2006, Tsuda, 2002) In that theory, a neuron is regarded as chaotically 

ryudynamic, in which case a neural network, as a many-degree system, could constitute 

higher dimensional chaotic dynamics consisting of many attractors. In our model, such a 

manifold could be generated through cognition. 

 

Neural Net Implementation of BIB inference 

     In order to manifest the significance of inverse Bayesian inference in neuroscience, we 

implement Bayesian inference reduced from inverse Bayesian inference in a model of neural 

networks, i.e., a restricted Boltzmann machine (Smolensky, 1986). An artificial neural network 

consists of neurons connected with each other by links. The quantitative degree of a 

connection is expressed as its weight. The time development of an artificial neural network 

such as the Hopfield model (Hopfield, 1982) is expressed as a transition of the weights and 

the states of neurons by using the global energy. In contrast to the Hopfield model, a network 

of Boltzmann machines consists of a visible and a hidden layer as shown in Fig. 11A. In the 

restricted Boltzmann machine in particular, there is no connection between any two visible 

units or between any two hidden ones. 

     The state of the ith visible unit at the tth step is expressed as vi
t, and that of the ith 

hidden unit at the tth step is expressed as hi
t. These states are either 1 or -1. The bias of the 

ith visible unit at the tth step is expressed as bi
t, and that of the corresponding hidden unit is 



expressed as ci
t. These biases are real values in the interval [0.0, 1.0]. The weight of the 

connection between the ith hidden unit and jth visible unit at the tth step is expressed as wi,j
t.  

The conditional probability of a hidden unit firing under the condition of a visible unit is 

expressed as 

 

                              N 

                  P(hi
t=1|vt)=(wi,j

tvj
t + ci

t).                                    (35) 
                              j=1 

 

The conditional probability of a visible unit firing under the condition of a hidden unit is 

similarly expressed as  

 

                              N 

                   P(vj
t=1|ht)=(wi,j

thi
t + bi

t) ,                                   (36) 
                              i=1 

 

where  is defined as a sigmoid function such that 

 

                   (x) = 1/(exp(-x)).                                           (37) 

 

From the derived conditional probability, visible and hidden units firing are collected. Then, 

the biases and all weights of the connections are updated by the following: 

 

                ci
t+1 = ci

t +(P(hi
t=1|vt)-P(hi

t=1|vt-1)),                              (38) 

                bj
t+1 = bj

t +(vj
t-vjt-1),                                            (39) 

                wi,j
t+1 = wi,j

t +(P(hi
t=1|vt)vj

t-P(hi
t=1|vt-1)vj

t-1).                       (40) 

 

The variable  represents learning rate and is fixed as 0.005 in all simulating studies here. 

     These transitions satisfy the algorithm with which we can minimize the Kullback–Leibler 

divergence. In other words, the minimized state with respect to KL divergence could be 

achieved in the steady state using this algorithm. Bayesian inference reduced by inverse 

Bayesian inference is now implanted in the restricted Boltzmann machine by collecting the 

ith unit such that  

 

                P(hk
t=1|vt)-P(hk

t=1|vt-1)<, for k=i and i+1.                         (41) 

 

By means of this collection, a set of units is divided into certain partitions. By means of these 

partitions, Bayesian inference is reduced from relaxation of the unit space. Here, the data 



and hypotheses are replaced by hidden and visible units, respectively. Thus, the joint 

probability of data and hypotheses, P(d, h), is replaced by w(h, v). The reduced Bayesian 

inference is expressed as 

 

                    wt+T(k, 1)(h, vS(k, j)) = Pt+T(k, 0) (vS(k, j)|h),                        (42) 

                    wt+T(k, 2)(hR(k, j), v) = Pt+T(k, 1)(hR(k, j)|v),                        (43) 

 

for the visible units of S(k, j) in the kth partition and for the hidden units of R(k, j) in the kth 

partition, where k=1, 2, …, q, T(k, 0)=(k-1)/q, T(q, 1)=(k-1)/q+z with 0<z<k/q-(k-1)/q, 

and T(q, 2)=k/q, and q is the number of partitions. In (42) and (43), Pt+T(k, 0)(h) is obtained 

by summation of wt+T(k, 0)(h, vS(k, j)) for all S(k, 1), S(k, 2), …, S(k, wk), and Pt+T(k, 1) (v) is 

obtained by summation of wt+T(k, 1)(hR(k, j), v) for all R(k, 1), R(k, 2), …, R(k, wk). After the 

update (38)–(40) for T steps, Bayesian inference reduced by inverse Bayesian inference (42), 

(43) is applied to the probability distributions of the variable and hidden units. 

     Figure 11B shows a distribution of the connection weights between visible and hidden 

units, where a network consists of 200 visible and 200 hidden units, T=3, and the number of 

updates of the application of (42) and (43) is also three. The weight of the connection 

between h and v units is represented by a colored dot at the co-ordinate (h, v). The strength 

of the weight is represented by this color: white, yellow, pink, brown, and black (from weaker 

to stronger). Influenced by the small difference in the random initial distribution, different 

partitions develop for each initial condition. Each distribution of connection weight consists 

of diagonal matrix and homogeneous noisy areas. While the number of applications of 

Bayesian inference (42), (43) is very small compared to the number of transitions (38)–(40), 

the perspective of the pasted universe is easily and generally obtained through Bayesian 

inference reduced from inverse Bayesian inference. 

 

Perspective of the pasted universe 

 

Quantum logic in the form of rough-set driven lattice 

     In this section, we clarify the significance of the pasted universe consisting of diagonal 

matrix and noisy areas. We describe the distribution of the joint probability of data and 

hypothesis in a term of logical structure, and then introduce the lattice driven by a rough 

set (Pawlak,1991, Järvinen,2007, Yao, 2004, Gunji & Haruna, 2010). Given a universal set 

U and a map f:UX, an equivalence relation R can be defined by 

 

                  (x, y)R  :    f(x) = f(y).                                   (44) 



 

The universal set is partitioned into the equivalence classes of R, [x]R={yU| (x, y)R }, which 

do not overlap with each other. By using this equivalence class, any subset of U can be 

approximated as a rough set with respect to upper and lower approximations (Pawlak,1991). 

The upper and lower approximations of X, which is a subset of U, with respect to R are 

defined by 

 

                  R*(X) = {xU| [x]RX},                                     (45) 

                  R*(X) = {xU| [x]RX}.                                       (46) 

 

Since the equivalence classes are regarded as atoms by which all combinations of atoms 

can be constructed, collection of subsets of U satisfying R*(X) =X can constitute a logic in 

which conjunction and disjunction can be well defined (i.e., Boolean algebra). 

      If a pair of maps (i.e., two equivalence relations, R and S, for a universal set) is 

adequately chosen, any lattice can be expressed as a collection of fixed points, L, such that 

 

                  L = {XU|R*S*(X) = X},                                      (47) 

 

where the order in L is defined as an inclusion relation (Gunji & Haruna, 2010). A lattice is an 

ordered set closed with respect to two binary operations, join and meet (see Appendix), i.e., 

a type of algebra, and can be compared to logic (Davey & Priestley, 2002). Classical 

propositional logic, intuitionistic propositional logic, and quantum logic can be compared to 

Boolean, Heyting, and Orthomodular lattice, respectively. If a fixed point R*S*(X) = X is 

replaced with S*R*(X) = X, R*S*(X) = X, or S*R*(X) = X, the derived lattice is isomorphic to the 

lattice obtained as (47). 

     Note that two equivalence relations corresponding to two maps can be interpreted as 

a one-to-many-type mapping of measurement. Superposition of two maps implies a one-to-

many-type mapping. When the distribution of joint probability is analyzed by the rough set 

lattice, one can estimate the types of one-to-many-type mapping. In the previous section, a 

distribution of the joint probability of data and hypothesis is expressed as a matrix which 

consists of diagonal-matrix and noisy areas. If a particular threshold value is introduced to 

digitize the joint probability, P(d, h); If P(d, h)>threshold value, then (d, h)  I. Otherwise, (d, 

h)  I, and a distribution of the joint probability is expressed as a binary relation, I, between 

data and hypothesis. Since this binary relation can be interpreted as the relation between 

two equivalent classes of equivalence relations, R and S, one can obtain a lattice from the 

binary relation between data and hypothesis. 



     As shown in Fig. 12, a lattice corresponding to a given binary relation can be obtained. 

Given a binary relation such as Fig. 12A, columns and rows can be regarded as two kinds of 

partitions for a universal set. For a partition {a, b, …, e}, each element is an equivalence class 

derived from a particular map. Similarly, {A, B, C, D} from another map. For a in the first 

partition, B and D in the second partition have a relation, i.e., (a, B)I and (a, D)I. Generally, 

(g, h)I implies that there exists an element p in the universal set such that pg and ph. 

Thus, it implies there are at least two elements in the equivalence class a, of which one 

element belongs to the equivalence class B and the other belongs to D. Analogously, an 

equivalence class e contains at least three elements of a universal set. Thus, a minimal 

model for a universal set that can be partitioned both to {a, b, …, e} and {A, B, C, D} is 

obtained as shown in Fig. 12B. Two partitions can be interpreted as a set of equivalence 

classes that are derived from a pair of maps, f and g, respectively. Finally, two partitions for 

a universal set are shown in Fig. 12C. We call the equivalence relation leading to a partition, 

{a, b, …, e}, the relation, S, and {A, B, C, D} the relation, R, respectively. 

     Next, subsets of U that satisfy the fixed point R*S*(X) = X are collected. It is easily 

verified that only a union of equivalence classes can be a fixed point and that some unions 

cannot be fixed points (Yao, 2004, Gunji & Haruna, 2010). All what one has to do to obtain a 

lattice is to check whether a union of equivalence classes (i.e., a subset of {A, B, C, D, E}) 

can be a fixed point or not. For an empty set, R*S*() = R*() =  since there is no 

equivalence class that has an intersection with and contains an empty set. For a singleton 

set, {A}, R*S*({A}) = R*({b, c, e}) = {A}. Because for A, (b, A), (c, A), (e, A)I, S*({A}) = {b, c, 

e}. Because for all elements in {b, c, e}, (b , A), (c, A), (e, A)I, R*({b, c, e}) = {A}. All singleton 

sets are analogously fixed points. In contrast, R*S*({A, B}) = R*({a, b, c, d, e}) = {A, B, C, D}, 

and then {A, B} is not a fixed point. Figure 12D shows a Hasse diagram for an obtained lattice. 

In a Hasse diagram, each fixed point is represented by a circle. A fixed point X included by 

another fixed point Y is connected to Y by a line, where the circle representing X is located 

below the one representing Y. An obtained lattice is called a rough-set driven lattice (Gunji & 

Haruna, 2010). 

     In the previous sections, we showed that the distribution of joint probability, P(d, h), 

developed through BIB inference is expressed as a pasted universe consisting of diagonal 

matrix areas and homogeneous noisy areas. We show that a pasted universe is expressed 

as an orthomodular lattice. Figure 13A shows a typical binary relation developed by BIB 

inference, which consists of diagonal relations (i.e., (di, hi)A and (di, hj)A with i  j) and 

product relations (i.e., for any i, j, (di, hj)A). If {d1, ..., d5} and {h1, ..., h5} are considered as 

sets of equivalence classes, R and S, respectively, a collection of X such as R*S*(X) = X can 

be a lattice. 



     If a diagonal relation such that (di, hi)A and (di, hj)A with i  j, for i, j = 1, 2, 3, is 

isolated from a whole relation as shown in Fig. 13A, it is easy to see that the isolated relation 

can correspond to a Boolean lattice. For a singleton set, R*S*({h1}) = R*({d1}) = {h1}, and any 

other singleton sets are also fixed points. For a two-element set, R*S*({h1, h2}) = R*({d1, d2}) 

= {h1, h2}, and any other two-elements set are also the sets satisfying the fixed point condition. 

Thus, it is verified that L = {XU|R*S*(X) = X} is nothing but a power set of {h1, h2, h3}, which 

is Boolean algebra. 

     We now consider the fixed points in a whole relation as shown in Fig. 13A. For a 

singleton set in {h1, h2, h3}, R*S*({h1}) = R*({d1, d4, h5}) = {h1}. Although S*({h1}) = {d1, d4, d5} 

because of the sub-relation that is the product relation, there is no element h except for h1 in 

{h1, ..., h5} such that for some d{d1, d4, d5}, (d, h)I and for any d’{d2, d3}, (d’, h)I. 

Analogously, any other singleton sets in {h1, h2, h3} are fixed points. For a singleton set in {h4, 

h5}, R*S*({h4}) = R*({d1, d2, d3, d4}) = {h4}. Although S*({h4}) = {d1, d2, d3, d4}, there is no h 

except for h4 in {h1, ..., h5} such that for some elements d in {d1, d2, d3, d4}, (d, h)I, and (d5, 

h)I. Thus, {d1, d2, d3} never plays a role in taking h. A singleton set {h5} is also a fixed point 

for the same reason. For a two-element set in {h1, h2, h3}, R*S*({h1, h2}) = R*({d1, d2, d4, d5}) = 

{h1, h2}; that is the fixed point. For a three-element set {h1, h2, h3} (the greatest subset) in {h1, 

h2, h3}, R*S*({h1, h2, h3}) = R*({d1, d2, d3, d4, d5}) = {h1, h2, h3, h4, h5}. Thus, {h1, h2, h3} is not a 

fixed point. Analogously, the greatest subset {h4, h5} in {h4, h5} is not a fixed point. A subset 

consisting of elements both from {h1, h2, h3} and from {h4, h5} is not a fixed point. Since S*({h1, 

h4}) = {d1, d2, d3, d4, d5}, R*({d1, d2, d3, d4, d5}) = {h1, h2, h3, h4, h5}  {h1, h4}. Finally, any 

subsets of {h1, h2, h3} and those of {h4, h5} are the fixed points, except for {h1, h2, h3} and {h4, 

h5}, and that any subset originating from {h1, h2, h3} and {h4, h5} is not a fixed point. A collection 

of fixed points contains all subsets of the Boolean lattice corresponding to each diagonal 

relation, but not a set consisting of different Boolean lattices corresponding to diagonal 

relations, as shown in Fig. 13B. Thus, the obtained lattice is expressed as a disjoint union of 

two Boolean lattices except for the least and the greatest element, which is an orthomodular 

lattice (Gunji et al., 2016). 

     This idea is verified generally, which implies that a relation between data and 

hypotheses digitized from the joint probability developed through Bayesian inference derived 

from inverse Bayesian inference is destined to be an orthomodular lattice. Since the 

distribution of the joint probability consists of diagonal areas and homogeneous noisy areas, 

the relation obtained by digitization is generally expressed as shown in Fig. 14 (left). A set of 

data D = {d1, d2, …, dn} is divided here into subsets of D1, D2, …, DN, which reveals a partition 

of D where d1, d2, … are renumbered by partition. Thus, D = D1+D2+…+DN, which implies 

that D is a disjoint union of Dk (i.e., the intersection of Di and Dj with ij is empty), where, for 



each subset, Dk = {dk1, dk2, …, dkv}. Similarly, H = H1+H2+…+HN. These partitions show that 

IkDkHk is a diagonal relation in which (dki, hki)Ik and (dks, hkt)Ik with st, and that JijDiHj 

is a product relation in which for any disDi and hjtHj (dis, hjt)Jij. A given relation I between 

D and H is a disjoint union of Ik with k=1, 2, .., N and Jij with ij. 

     Under this situation, one can determine whether a subset of H (i.e., union of hi and hj) 

is a fixed point with respect to R*S*; it can be checked with respect to the relation I. For any 

subset of H represented by Sub(H)H, it is verified that 

 

              S*(Sub(H)) = {dD | For some hSub(H), (d, h)I}.                   (48) 

 

For any Sub(D) D, it is also verified that 

 

              R*(Sub(D)) = {hH | For any (d, h)I, dSub(D)}.                    (49) 

 

Therefore, for a proper subset of Hk that is represented by Pub(Hk) and (d, h)Ik with dDk 

and hHk, 

 

              R*S*(Pub(Hk)) = R*(Pub(Dk) +   Dj    ) ,                     (50) 
                                                               j{1, .., N}, jk 

 

where the symbols “+” and “” represents a disjoint union, and Pub(Dk) represents a proper 

subset of Dk whose set of indices is equal to Hk (e.g., if Pub(Hk) = {hks, hkt} then Pub(Dk) = 

{dks, dkt}). Equation (50) is obtained because, for any d in  Dj with j{1, .., N}, jk, there exists 

hHk such that (d, h)Jjk and then (d, h)I. 

     Next, we calculate R*(Pub(Dk)+ Dj), and have to search for hH such that for any (d, 

h)I, dPub(Dk)+ Dj. It is clear that hPub(Hk) satisfies the condition. Because any pair of 

Ii and Ij are mutually disjoint, for any dkPub(Dk) there exists Jks with s{1, .., N}, sk such 

that (dk, hs)I. However, for those hsHs, there exists d Dj such that (d, hj)I. Thus, there 

is no hH except for hPub(Hk) that satisfies that for any dPub(Dk)+ Dj, (d, h)I. In other 

words,  Dj with j{1, .., N}, jk does not contribute to taking a set by operating R*. Then, 

 

              R*S*(Pub(Hk)) = Pub(Hk) .                                         (51) 

 

In contrast, for Hk itself,  

 

              R*S*(Hk) = R*(D) = H,                                             (52) 



 

since S*(Hk) = Dk+ Dj (j{1, .., N}, jk) =  Dj (j{1, .., N}) = D. Thus, Hk is not a fixed point. 

Analogously, for any disjoint union of Pub(Hi) and Pub(Hj), 

 

              R*S*(Pub(Hi)+Pub(Hj)) = R*((Pub(Di)+  Dk)  (Pub(Dj)+  Ds)) 
                                                                  k{1, .., N}, ki             s{1, .., N}, sj 

                                   = R*(D) = H.                                (53) 

 

Thus, subsets consisting of different Hi and Hj are not fixed points. Since it is clear to see that 

R*S*(H)=H, and R*S*()=, it is verified that an obtained lattice as a collection of fixed points 

is a disjoint union of Boolean lattices where the least and the greatest elements are common, 

and then an orthomodular lattice. 

   An orthomodular lattice corresponds to a quantum logic in which the distributive law 

does not hold. While quantum logic reveals microscopic features ambiguous to the local and 

non-local, the logic obtained here reveals macroscopic features in cognition. 

   Previously, there were some attempts to verify the orthomodular lattice not by 

quantum mechanics but by a macroscopic measurement process (Svozil, 1993, 

Atmanspacher & Graben, 2015, Gunji et al., 2016). We discuss the significance of our model 

in the Discussion section below. 

 

Macroscopic reality in an Orthomodular Lattice 

 

Information Generation 

     Instead of a propositional logic, one can utilize a lattice to understand the logical 

structure. It is well known that a Boolean lattice corresponds to classical propositional logic. 

Since a Boolean lattice B satisfies (i) the distributive law; for any element x, y, z in B, x(yz) 

= (xy)(xz), and (ii) the complement law; for any x in B, there exists a complement of x, 

x, such that xx = 0 and xx = 1, where 0 and 1 are the least and the greatest elements 

in B, respectively, join () and meet () can be interpreted as disjunction () and conjunction 

(), respectively (see Appendix). A logical operation, implication (), can be expressed by 

using the complement and conjunction in B, such that xy = xy. A syllogism such that 

 

                  (xy)(yz)  xz                                      (54) 

 

can be expressed in B, where  is replaced by the order defined in B, as 

 



                  (xy)(yz)  xz.                                        (55) 

 

Because the distributive law holds in B, by applying it to the left-hand terms, (xy)(yz) = 

(xy)(xz)(yz) = (x(yz))(yz). Since ab  a  ac and c  ac, (ab)c  ac. 

Thus, in replacing a, b, and c with x, yz, and yz, respectively, one obtains 

(x(yz))(yz)  x(yz). Similarly in a, b, and c with x, y, and z, one obtains x(yz) 

 xz. Therefore, the inequality (55) holds. 

     We now consider a syllogism in an orthomodular lattice O. Since O satisfies the 

complement law, implication is defined to be the same as that in a Boolean lattice. However, 

because O does not satisfy the distributive law, (55) does not hold for any elements in O. 

Indeed, there is a case in which the reverse transition of the syllogism can appear. In the 

orthomodular lattice shown in Fig. 13C, one can find the reverse direction of the syllogism. 

In (xy)(yz), substituting x, y, z with a, b, a, respectively, leads to 

 

                 (ab)(ba) = 11 =1.                                        (56) 

 

This replacement in the right-hand terms in (55) leads to 

 

                 aa = aa = a.                                             (57) 

 

The reverse direction of the syllogism implies that 

 

xz  (xy)  (yz).                                        (58) 

 

As to whether this actually makes sense, one can consider that information y could appear 

by which the implication xz is articulated into two implications. Assume x and z as 

statements such as 

 

                 x: putting a hand in a pocket 

                 z: taking a lucky coin in the pocket.                              (59) 

 

The left-hand terms of (59) imply that if one puts a hand into the pocket then a lucky coin will 

be pulled out. Now assume y as a statement such as 

 

                 y: there are lucky and unlucky coins in the pocket.                 (60) 

 



Consider what happens when statement y appears. The implication xy implies that if one 

puts a hand into a pocket, one feels that there are coins in it that are either lucky or unlucky. 

The implication yz implies that if one feels that there are these two kinds of coins, one can 

choose a lucky one by tactile means. This means that one has the ability to choose lucky 

coins. The appearance of the statement y could entail “the ability to choose lucky coins.” 

     Another example is illustrated by the statements 

 

                 x: Drought condition 

                 z: First decent rain.                                          (61) 

 

Here xz implies that if drought conditions persist then someday decent rain will fall. Assume 

y as a statement such as 

 

                 y:Mr. X calls for rain.                                          (62) 

 

With the appearance of y, xy implies that Mr. X calls for rain during a drought, and yz 

implies that it rains after Mr. X calls for it to do so. Thus, the appearance of statement y 

implies the appearance of an apparent ability to summon rain. Information is, therefore, 

generated by the inverse direction of the syllogism. 

 

Actual resolution to the frame and symbol grounding problems 

     When artificial intelligence (AI) was first developed, some critical problems were 

pointed out, such as the frame problem (Dreyfus & Dreyfus, 1988) and the symbol grounding 

problem (Harnad,1990). Since AI is implemented in a virtual world, the connection between 

AI and the real world is lost. It is assumed that logical operations can be well defined in a 

virtual world and that AI can use such logical operations and symbols adequately. Since AI 

can use symbols adequately, it can learn the relationship between a symbol in the virtual 

world and its corresponding object in the real word. Thus, AI can find that “STRIPE” implies 

the pattern of stripes and “HORSE” implies a particular animal. Since AI can use logical 

operations adequately, it finds that STRIPE is true (i.e., STRIPE = 1), HORSE is true (i.e., 

HORSE = 1), and then STRIPE AND HORSE is true (i.e., STRIPEHORSE = 1). Although 

AI can manipulate symbols and logical operations, it cannot find the emergent grounding 

between STRIPE AND HORSE and the corresponding “zebra”. That is the symbol grounding 

problem. 

     The frame problem arises in determining the relationship between a symbol in the 

virtual world and its corresponding object in the real world. As mentioned in the symbol 



grounding problem, at first the relationship between a symbol and its corresponding object is 

simply assumed, which results in STRIPE being true. Because a stripe is a visual pattern, it 

is true only if the pattern can be visualized. If it is too dark to be seen, then STRIPE is not 

true. Therefore, in order to be able to state that STRIPE is true under a general condition, 

one has to check whether STRIPE is true under any condition, e.g., a cloudy dark day, a 

rainy day, indoors. The situation is summarized as follows. Replace STRIPE, cloudy day, 

rainy day, … with symbols A, C1, C2, …, respectively. If one at first sees the stripe pattern on 

the cloudy day (C1), the situation is expressed as 

 

             A(C1C2…) .                                                  (63) 

 

We concentrate here on the logical statement as a necessary condition for the real situation, 

which reveals that the real situation implies the logical statement. With respect to (63), one 

who sees A under situation C1 accepts AC1. That is why (63) holds for the necessary 

condition for the real situation. In contrast, in order to state that “STRIPE is true” for any 

conditions, one has to verify 

 

             A(C1C2…) .                                                  (64) 

 

Although empirically (63) is possible but (64) is impossible for any condition, (64) has to be 

possible logically. That is the essential feature of the frame problem. 

     By using logical operations, the symbol grounding problem itself can be expressed as 

the torsion between AND () and OR (). When HORSE is grounded with a real horse or 

STRIPE is grounded with a real pattern of stripes, it can be stated that 

 

             HORSE  STRIPE                                               (65) 

 

is grounded or is true in the real world. Actually, if either HORSE or STRIPE is grounded, 

then (65) holds. When the HORSE and STRIPE is grounded with a real zebra, 

 

             HORSE  STRIPE                                               (66) 

 

is grounded. Thus, the symbol grounding problem is also expressed as a statement for which 

the AND expression (66) has to be verified under a condition in which not (66) but just the 

OR-expression (65) is possible. That is equivalent to the frame problem. 



     For both the symbol grounding and frame problems, the orthomodular lattice could yield 

actual solutions. Recall Fig. 13C as an example of an orthomodular lattice. Since an 

orthomodular lattice never satisfies the distributive law such that x(yz) = (xy)(xz), “” 

cannot be interpreted as AND, and “” cannot be interpreted as OR. However, we here 

assimilate “” and “” with AND and OR, respectively, in an orthomodular lattice. When the 

assimilation is represented by “”, we obtain 

 

A(C1C2)  (AC1)(AC2).                                       (67) 

 

In substituting A, C1, and C2 by elements a, b, and c, respectively, the left-hand term 

becomes a(bc) = a1 = a. By contrast, the right-hand term is expressed as 

(ab)(ac) = 00 = 0. Thus, one can obtain 0 = (ab)(ac) = a(bc). This implies 

that in an orthomodular lattice, one can obtain  

 

A(C1C2)  A(C1C2).                                       (68) 

 

That is an actual solution for the symbol grounding and/or frame problem, due to the 

orthomodular lattice. Illogical assimilation of conjunction and disjunction can give rise to the 

solution of the symbol grounding problem and/or frame problem. 

     The symbol grounding and frame problems could appear in the contact between the 

virtual and real universes. It is assumed that formal logic and the method of manipulating 

symbols are invariant and well defined, while objects and phenomena in the real world are 

dynamic and ambiguous. Thus, the discrepancy between the virtual and real worlds can 

entail the problem. Since the virtual and formal world is well defined and rigid, the solution 

could be expected and constructed as the interface between the rigid virtual world and the 

ambiguous real one. Such solutions can be compared to the solutions in robotics and 

neuroscience, as mentioned previously (Pfeifer & Scheier, 2001, Brooks,1986; 1991, Pfeifer 

et al., 2007, Varela et al., 1991, Varela, 1997, Pfeifer & Gomez, 2009). The influences from 

the real world cannot directly reach the real one, and those from the virtual world cannot 

directly reach the virtual one. An interface such as the rubber skin for the robotic finger can 

mediate between the virtual world and the real one (Fig. 15A).  

     The assimilation of AND (conjunction) with OR (disjunction) such as (68) shows a 

different solution for the symbol grounding and frame problems. The “well-defined-ness” of 

formal logic is no longer maintained since the real world can microscopically influence the 

virtual world anywhere. The discrepancy between the virtual and real worlds cannot be 

received by the front like an interface as shown in Fig. 15A, which could break the well-



defined conjunction and/or disjunction as shown in Fig, 15B. Thus, conjunction and 

disjunction can no longer be separated from each other, and must be assimilated instead. 

That could solve the symbol grounding and frame problems. In other words, the conflict 

between virtual and real worlds could not only establish the symbol grounding and frame 

problems but also yield solutions to them (Fig. 15B). Such conflicts could seep through 

individual logical operations. Well-defined-ness could no longer remain, even in a virtual 

world. 

 

Discussion 

 

     We here implement an aspect of measurement, observation, and cognition based on 

inference and memory, i.e., BIB inference. This idea is inconsistent with naturalistic dualism 

for consciousness, in which there is a distinct separation between inside and outside of an 

observer, and in which it is assumed that an object outside is mapped into a representation 

inside. Instead, any object or phenomenon outside appears through measurement, and any 

qualia, feeling or emotion inside also appears through measurement. Anything both inside 

and outside could exist, potentially accompanied with measurement. That is nothing but 

objects that appear through internal measurement or endoperspective. 

     Naturalistic dualism is an issue to be overcome, while the intrinsic difference between 

mind and matter has to be implemented. Regarding this problem, many philosophers have 

recently converged to neutral monism, in which a matter-like aspect and a quality-like one 

could interact dynamically with each other and could give rise to particular configurations 

(Russel, 1921, Strawson, 2006, Silberstein & Chemero, 2015). When the matter-like aspect 

is dominant in the configuration, the interaction could be regarded as “matter”, and when the 

quality-like aspect is dominant, that could be regarded as “mind.” The endoperspective is 

consistent with neutral monism, or could be an implementation of neutral monism in science. 

However, the intrinsic difference between mind and matter, or between quantity and quality, 

was not implemented in neutral monism and endoperspective. 

We consider the issue of the qualia, especially that is discussed in the form of 

philosophical zombie (Chalmers, 1996) is an intrinsic property of consciousness. The 

philosophical zombie has no qualia while he or she can do as well as human being not only 

externally (e.g. talking about zombie) but internally (e.g., brain wave). Thus science cannot 

distinguish human being from philosophical zombie. While this definition is ill-defined, 

Chalmers declares that the problem regarding consciousness is immediately related to 

infinite regression of description. Qualia escapes as soon as you feel catching up with what 



the qualia is. We call it this kind of property the externality of consciousness. Any other issues 

of consciousness, for example postdiction and/or intentional consciousness, can be 

considered without the externality of consciousness. That is why qualia is the special issue 

not only in philosophy but in science of consciousness.  

A pair of Bayesian and inverse Bayesian inference implements the forward (from 

premise to conclusion) and backward (from conclusion to premise) reasoning. This pair is 

the main engine to bring the outside implicitly. The axiomatic metric space is based on the 

notion of metric, and it verifies the notion of open sets. In this sense metric is premise, and 

the notion of open sets is conclusion. That is forward reasoning. In history of mathematics, 

backward reasoning is introduced. The notion of open set is regarded as axioms and 

topological space is defined. Then, it is verified that metric space is a part of topological 

space. In this sense open set is premise, and metric space is conclusion. Due to the transition 

from the forward reasoning to the backward reasoning the outside of the metric space is 

implicitly imported in topological space. As well as forward and backward reasoning, 

Bayesian and inverse Bayesian inference can contribute implicit importing the outside. That 

is why these inferences are immediately relevant for the externality of consciousness, qualia. 

Measurement and observation could be expressed as a map from an objective universe 

outside to a subjective one inside. As soon as such a separation between the inside and 

outside is accepted, it is cancelled. That could be an implementation of the endoperspective. 

Such a cancellation is destined to contain a discrepancy between the inside and outside. In 

our proposed inference system, the relationship between the inside and outside is replaced 

with that between parts and a whole and between the smaller and the larger parts of the 

probability space. Since it is assumed that the whole of the probability space is assimilated 

with the real universe, it is regarded as the universe outside. Once a whole space is replaced 

with a subspace dependent on a particular context, or the larger space is replaced with a 

smaller one, the objective universe outside is replaced with the subjective universe 

dependent on a particular condition. However, such a replacement is only possible as far as 

the replacement can be iterated. The iteration of replacing a part with the whole also reveals 

replacing the whole with a part, and then gives rise to interpolation of parts and whole. In this 

sense, the relationship between parts and whole can be embedded with the intrinsic 

discrepancy existing between the inside and outside. 

Bayesian inference is an implementation in which the outside is perpetually replaced 

with the inside. A probability that is independent of any condition is replaced with a conditional 

probability under a particular condition. Special cases are continually generalized. Given a 

probability space, a system focuses only on the subspace related to a given particular 

condition and ignores other subspaces by changing the distribution of the probability. This 



can result in immediately approaching the optimal solution for a given particular condition. It 

implies that the system can immediately reach the optimal solution for an external stimulus. 

That is why such an inference system (e.g., a human) can immediately make a decision fit 

to the condition. 

     There is no reverse directed inference, of which the inside is replaced with the outside, 

only in Bayesian inference system. Our inverse Bayesian inference is such an 

implementation, in which the conditional probability dependent on the condition (hypothesis) 

is continually replaced by the probability of the empirical data derived from the universe 

outside. Actually, the conditional probability dependent on a hypothesis that is ignored by 

Bayesian inference is replaced by the probability of the empirical data. This implies that 

hypotheses stored in the system are replaced continually by new ones. In this sense, the 

inside is constantly replaced with the outside. If the external condition is stable and the 

probability distribution of the data is unchanged, the inverse Bayesian inference cannot 

contribute to the system’s decision making. Since newly introduced hypotheses are replaced 

with hypotheses with low probability, those new hypotheses are also labeled with low 

probability. Thus, they cannot be used in making decisions. In contrast, if the external 

condition is unstable and the probability distribution of data is continually changed, then the 

distribution of the probability of hypotheses is also continually changed. This implies that 

even hypotheses with the least probability can be changed those with the greatest hypothesis 

that is used to make a decision. The inverse Bayesian inference, therefore, plays a role in 

making a decision. 

     The probability space of hypotheses is contracted by Bayesian inference and is relaxed 

(expanded) by inverse Bayesian inference. The measurement process with respect to 

inference has not been implemented until the two-sided inference is implemented. 

Conversion of parts and the whole is a contradiction if wholeness is invariant. In probability 

theory, distribution of the probability is invariant through time. In our inference system, not 

only distribution of the probability but events designating the probability themselves are 

changed and modified. The former is caused by Bayesian inference and the latter by inverse 

Bayesian inference. Thus, the notion of changing probability could constitute a discrepancy 

that is an expression for the intrinsic difference between the inside and outside. 

     The idea of Bayesian inference is extremely prevalent in cognitive science because it 

can facilitate immediate decision-making adapted to the external environment (Gigerenzer & 

Hoffrage, 1995, Knill & Pouget, 2004). In experiments in cognitive science, a particular 

condition is set for subjects, and their behavior is observed and evaluated. In order to detect 

well-defined experimental results, the condition has to be stable and to be uniquely 

determined. That is why cognitive scientists pay attention only to Bayesian and not to inverse 



Bayesian inference. Neuroscience, however, records and collects any neural activity to find 

out the neural loci correlated with consciousness, and then reaches the hypothesis of global 

workspace that contains the idea of BIB inference (Dehaene et al., 1998, Dehaene & 

Naccache,2001, Dehanene & Changeux,2011). 

      As mentioned before, neural internal selection, by which the largest neural population 

of synchronized firing is selected, can correspond to Bayesian inference. That is just a 

strategy that approaches the optimal solution. In the hypothesis of global workspace, 

selected neural activity is globally propagated to other neural areas and can be used. This 

passive attitude of being used as an employer sees fit can be interpreted as intentional 

consciousness. It implies that the probability space is expanded and relaxed, which can 

correspond to inverse Bayesian inference. 

     In particular, we define a special expression for BIB inference in the idealized 

implementation. Bayesian inference, in which joint probability is replaced by conditional 

probability, is derived from inverse Bayesian inference. Since Bayesian inference is 

temporally applied to the joint probability distribution of data and hypotheses, it results in the 

temporal alternation of BIB inference in the inference process. 

     The most important aspect of this type of BIB inference is universal convergence of the 

pasted universe (i.e., an orthomodular lattice corresponding to quantum logic) consisting of 

multiple Boolean algebras. For any randomly distributed joint probability of data and 

hypotheses, a steady state of the distribution appears immediately in the form of diagonal 

matrix areas and homogeneous noisy ones. A diagonal matrix area shows a one-to-one 

relationship between data and hypothesis. This implies that the optimal solution (hypothesis) 

for input (data) is uniquely determined while it is dependent on the condition. The noisy areas 

can contribute to the random wandering from one diagonal matrix area to another because 

the peak in the diagonal matrix area is not labeled with unit probability. Instead, it can move 

to a noisy area with a certain probability. This behavior can reveal chaotic itinerancy in brain 

theory (Freeman, 1999, Freeman & Vitiello, 2006, Tsuda, 2002). There are certain attractors 

in the manifolds of neural dynamical systems, and the behavior of neurons is affected by a 

particular attractor. It remains there for a while, and then suddenly and randomly escapes 

from that attractor to move to another one. Attractors and trajectories between attractors in 

chaotic itinerancy can be compared to the noisy and diagonal matrix areas. 

     Without the assumption of complementarity, our inference model can give rise to a non-

distributive or orthomodular lattice. Measurement models in endophysics were previously 

proposed by introducing incomplete knowledge for objects (Atmanspacher, 2003, 

Svozil,1993, Atmanspacher & Graben, 2015). Automata are defined by sets of input and 

output symbols, a set of internal states, the output function, and the transition rule for the 



internal state. If an observer gets no information about the internal state of a particular 

automaton but he can observe and collect output of automata for given inputs for each 

internal state, then he obtains multiple output functions for each internal state (Svozil,1993). 

Since the equivalence classes, which are atoms to explain the behavior of the automaton, 

can be derived from a map, a set of input symbols can be partitioned by each map. When 

the multiple partitions are pasted in identifying an equivalence class with elements of input 

symbols, a structure of a partially ordered set is obtained to reveal logic employed to an 

observer with incomplete information. However, only a specially defined automaton can show 

a lattice (algebraic structure or logic), and only a more specialized automaton in which 

complementarity is implemented in partitions can show an orthomodular lattice (Svozil,1993). 

Thus, an orthomodular lattice has no universality. 

     If anything appears via measurement, it has to be described in measurement-oriented 

logic such as an orthomodular lattice, even in a macroscopic perspective, cognition, and/or 

perception. That is a goal of endophysics. However, a non-distributive orthomodular lattice 

can appear only if the principle of complementarity is implemented for two measurement 

systems. Recently, a toy model for measurement proposed in the form of a firefly-box thought 

experiment (Foulis,1999) was described in terms of lattice theory (Atmanspacher & Graben, 

2015). Since complementarity in measurement is assumed, an obtained lattice is constructed 

by pasting together two Boolean lattices to form an orthomodular one. Complementarity is 

not the result of phenomena but an intrinsic principle in those models. 

     By contrast, in our inference system consisting of BIB inference, orthomodularity is 

universally generated without the principle of complementarity. Only an alternation of 

contraction and relaxation of the probability space could lead to the orthomodular lattice.  As 

a result, a logical space in which multiple Boolean lattices are pasted in a whole lattice can 

be generated. There is no mechanism similar to complementarity to make multiple Boolean 

algebras without a degree of overlapping. The complementarity here is not the a priori 

intrinsic principle but the a posteriori results due to the measurement process based on 

inference. That is the essential property of macroscopic phenomena viewed from the 

endoperspective. Quantum logic results not from quantum mechanics but from macroscopic 

properties in measurement. 

     If there is no inverse Bayesian inference, only a single Boolean algebra is obtained. 

That is a one-to-one relation between input and output, and a set of atoms by which 

phenomena can be reduced (Shinohara et al., 2007). In terms of joint probability, there is one 

hypothesis for a datum that satisfies its joint probability, and it is ~1.0. A whole distribution of 

the joint probability is expressed as a diagonal matrix. In an orthomodular lattice, however, a 

Boolean lattice holds under a restricted condition. If multiple elements are taken from one 



Boolean sub-lattice, one can verify the distributive law for expressions of lattice polynomial 

containing the elements and lattice operations. This implies reductionism. However, if some 

elements are taken from different Boolean sub-lattices, the distributive law no longer holds. 

Phenomena described in the lattice cannot be reduced to atoms. This non-distributivity 

entails the reverse direction of syllogism and information generation, and can yield non-

logical solutions to the symbol grounding and frame problems. 

    When we showed previously that BIB inference could give rise to an orthomodular lattice 

(Gunji et al., 2016), Bayesian inference (contraction) and inverse Bayesian inference 

(relaxation) were compared to the lower and upper approximations in rough set theory. 

Compared to a given set, the lower approximation is smaller and the upper one is larger. 

Superposition of two kinds of approximation can reveal an orthomodular lattice. In this article, 

we directly implement BIB inference by using probability. The inverse Bayesian inference can 

play a role in making an orthomodular lattice. 

    Since Chalmers declared understanding consciousness and/or qualia to be a hard 

problem, various researchers have adopted phenomenal consciousness in fields such as 

neuroscience, cognitive science, and robotics. Although the idea of phenomenal 

consciousness has the potential to embed subjective quality in matter, such a quality was 

interpreted as a property that cannot be separated from the body, its surroundings, and the 

whole universe. The singularity and locality of the subjective quality was then lost in the notion 

of embodiment. Philosophers who focused on the singularity of qualia and consciousness 

moved toward panpsychism. When this failed, many philosophers, including analytic ones 

from the philosophy of science, moved toward panqualityism and/or neutral monism. Viewed 

from the perspective of science, however, this appeared to be a form of spiritualism. 

     The only way to connect science to neutral monism in separating spiritualism is the 

endoperspective. Nothing that is independent of measurement is a real entity. Anything is 

destined to be accompanied with a hidden measurement process. If so, tokens of observation 

and/or an observer with subjective quality could be embedded in matter. One problem 

remains: non-distributivity could not be explained without a particular restriction that can be 

expected in a macroscopic universe in which partial reductionism and analytical methods are 

useful and non-reductionism-complexity is observed as a whole. Our measurement system, 

consisting of BIB inference, solved this problem by leading to the universality of 

orthomodularity. 

     Finally, we refer to the qualia lattice mentioned in (Balduzzi & Tononi, 2009). Tononi 

mentioned a stable subnetwork as qualia and called a set consisting of all combinations of 

qualia (atoms) a qualia lattice. Due to this definition, his qualia lattice is destined to be 

Boolean. In our model for a given time series of an external stimulus, BIB inference 



contributes to generate an orthomodular lattice, where subjective feeling could wander over 

the atomic components (i.e., diagonal matrix areas). This kind of dynamic wandering can be 

attributed to subjective qualia. An orthomodular lattice can be regarded as a qualia lattice. 
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Appendix 

 

An ordered set and a lattice are defined by the following. 

 

Definition 1 (Order relation) 

 

Given a set S, let x, y, and z be elements of S. A binary relation R⊆S×S satisfying the 

following condition is called an order relation. 

  

(i) xRx                                           (reflective law) 

(ii) xRy, yRx  ⇒  x ＝ y              (anti-symmetric law) 

(iii) xRy, yRz  ⇒ xRz                  (transitive law) 

 

Order relation xRy can be expressed as (x, y)R and also x≦y. x≦y can be expressed as y

≧x. A set equipped with order relation is called an ordered set. 

 

Definition 2 (Meet and Join) 

 

Given an ordered set S, take M that is a subset of S. If m≦a for every element m in M, a 

is called an upper bound for M. A set of upper bounds for M is represented by Mu. Similarly, 

b≦m for every element m in M, b is called a lower bound for M. A set of lower bounds for 

M is represented by Ml. 

The least upper bound for M is called a join for M and is represented by∨M, if it 

exists, and the greatest lower bound is called a meet for M and is represented by∧M, if 

it exsits. 

 

From the definition of join and meet, it is clear that 

 

      ∀m∈M, m≦a ⇒ ∨M≦a 



         ∀m∈M, b≦m ⇒ b≦∧M. 

 

When M is a two-element set such that M = {x, y}, A join∨M is expressed as x∨y, and a 

meet ∧M is expressed as x∧y 

 

Definition 3 (Lattice) 

 

  An ordered set L is a lattice if and only if for every pair of elements x, y∈L, a join x

∨y, and a meet x∧y are also elements of L. 

 

Definition 4 (Distributive Lattice) 

 

  A lattice L is a distributive lattice if and only if for all elements x, y, z∈L,  

 

x(yz) = (xy)(xz). 

 

Symmetrical equation x(yz) = (xy)(xz) can be verified straightforwardly from x(yz) = 

(xy)(xz). 

 

Definition 5 (Complemented Lattice) 

 

  A lattice L is a complemented lattice if and only if for any elements x∈L, there exists 

the complement of x, x, such that 

 

xx = 0 and xx = 1,  

 

where 0 and 1 are the least and the greatest element in L. 

 

Definition 6 (Boolean Lattice/ Boolean algebra) 

 

  A lattice that is both distributive and complemented is called a Boolean lattice or a 

Boolean algebra. 

 

Definition 7 (Orthomodular Lattice) 

 

  A lattice L is an orthomodular lattice if and only if for all elements x, y, z∈L,  



 

x≧y ⇒ y = x∧(y∨x) 

 

where x is a complement for x. 
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Figure Captions 

 

Figure 1. Schematic diagram of an image (object) accompanied with memory. It implies also 

an object in which memory is embedded. Memory is defined as an interpolating system 

equipped with contraction and relaxation. Each cause–effect loop expressed as a triangle 

corresponds to an individual past. Plural pasts are superimposed, which is expressed as 

memory in the form of a cone. In the framework of Bayesian probability, contraction and 

relaxation can be replaced by Bayesian inference and inverse Bayesian inference, 

respectively. 

 

Figure 2. Schematic diagram for Bayesian inference based on inverse Bayesian inference.  

In this scheme, some hypotheses (data, respectively) are collected and are regarded as all 

hypotheses, which implies that a part of hypotheses space (data space) is expanded and is 

relaxed to a whole space. It results in the Bayesian inference of which a joint probability P(d, 

hs(j)) is replaced with conditional probability, P(d, hs(j))/Pd (left diagram), and probability P(dr(j), 

h) is replaced with P(dr(j), h)/Ph (right diagram). 

 

Figure 3. (A) Conditional probability of datum “1” under the optimal hypothesis against time, 

obtained only by Bayesian inference (green), and a given probability of datum “1” (red). (B) 

Conditional probability of datum “1” under the optimal hypothesis against time, obtained by 

both BIB inference (green), and a given probability of datum “1” (red).  

 

Figure 4. (A) Conditional probability of datum “1” under the optimal hypothesis against time, 

obtained only by Bayesian inference (green), a given probability of datum “1” (red), and 

accumulated probability of datum “1” (blue). (B) Conditional probability of datum “1” under 

the optimal hypothesis against time, obtained by both BIB inference (green), a given 

probability of datum “1” (red), and accumulated probability of datum “1” (blue).  

 

Figure 5. (A) Conditional probability of datum “1” under the optimal hypothesis against time, 

obtained only by both Bayesian and inverse Bayesian inference, where the hypothesis 

replaced by empirical data in inverse Bayesian is chosen randomly instead of least optimal 

hypothesis (red). (B) Conditional probability of datum “1” under the optimal hypothesis 

against time, obtained by both BIB inference, where the hypothesis replaced by empirical 

data in inverse Bayesian is the most optimal hypothesis (red).  

 

Figure 6. (A) Probability of hypothesis h0, h1, …, h5 (brown), h6(blue green), h7(black), …, h9 

against time, obtained by both Bayesian and inverse Bayesian inference, where the least 



optimal hypothesis is replaced by empirical data in the inverse Bayesian inference. (B) 

Conditional probability of datum “1” under the hypothesis h6 (blue) and h7 (red) against time. 

Other conditions are the same as in A. (C) Conditional probability of datum “1” under each 

hypothesis (h0, h1, …, h9). Other conditions are the same as in A. (D) Conditional probability 

of datum “1” under the optimal (red). Other conditions are the same as in A. A given probability 

of datum “1” (black). 

 

Figure 7. (A) Probability of hypothesis h0, h1, …, h4 (purple), …, h6 (blue green), h7 (black), h8 

(gray), h9 against time, obtained by both BIB inference, where the hypothesis replaced by 

empirical data is randomly chosen in the inverse Bayesian inference. (B) Conditional 

probability of datum “1” under the hypothesis h6 (blue) and h7 (red) against time. Other 

conditions are the same as in A. (C) Conditional probability of datum “1” under each 

hypothesis (h0, h1, …, h9). Other conditions are the same as in A. (D) Conditional probability 

of datum “1” under the optimal (red). Other conditions are the same as in A. A given probability 

of datum “1” (black). 

 

Figure 8. Distribution of the joint probability P(d, h) plotted against data, d and hypotheses, 

h for initial condition (t=0) and for a steady state (t=10). 

 

Figure 9. Distribution of the joint probability P(d, h) plotted against 30 data, d and 30 

hypotheses, h for initial condition (t=0) and for a steady state (t=100). 

 

Figure 10. (A) Distribution of the joint probability P(d, h) plotted against data, d and 

hypotheses, h  for a steady state (t=100). (B) Matrix expression for the joint probability 

where a matrix consisting of red and white cells is a diagonal matrix area and a matrix 

consisting of orange cells is a noisy area. Arrows represent probabilistic transition from an 

attractor to another attractor. (C) Diagonal matrix is obtained by the exchange of rows or 

columns. 

 

Figure 11. (A) Neural networks of restricted Boltzmann machine. The symbol vi represents a 

neuron at the visible layer, and hi represents a neuron at the hidden layer. The symbol wi,j 

represents the weight of the connection between the ith and the jth neurons. (B) Four 

examples of a distribution of the joint probability P(d, h) plotted against data, d and 

hypotheses, h, at t=3. The order from the low to the high probability is represented by the 

order of the white, yellow, pink, brown, and black dots. 

 



Figure 12. (A) Example for a binary relation between data and hypothesis. A relation is not 

necessarily symmetric with respect to data and hypothesis. (B) Row and column constituting 

a binary relation (A) can be regarded as a pair of partitions of a universal set. Thus, a pair of 

maps, f and g can be obtained to lead to a pair of partitions. (C) When elements of a universal 

set is represented by dots, two partitions connecting by a binary relation (A) are expressed 

as a set of loops (left and right). (D) Lattice obtained from a binary relation (A) in the form of 

a collection of fixed points of (45). 

 

Figure 13. (A) Typical example for a binary relation between data and hypothesis, obtained 

from Bayesian inference reduced from inverse Bayesian inference. A relation consists of two 

diagonal matrix areas and homogeneous noisy areas. (B) Lattice obtained from a binary 

relation (A) in the form of a collection of fixed points of (45). Because of noisy areas, Boolean 

sub-algebras are contained in an obtained lattice. (C) An element of the lattice is replaced by 

a particular element by which orthomodular lattice is evoked. 

 

Figure 14.  Binary relation between data and hypothesis derived from joint probability of 

data and hypothesis developed through BIB inference (left), and its corresponding 

orthomodular lattice shown as a Hasse diagram (right below). The binary relation consists of 

sub-relations, diagonal relation, Ik (only diagonal pairs are contained in the relation; left in the 

right above) and product relation Ji,j (all pairs are contained in the relation; right in the  right 

above). The symbol “+” represents the operation of the disjoint union. Each Boolean sub-

lattice in a lattice corresponds to the diagonal relation (e.g., Bk corresponds to Ik).  Black 

circles in a Hasse diagram represent elements of a lattice. White circles connecting the 

greatest element reveal that the greatest element of each Boolean sub-lattice has the 

common unique element. White circles connecting the least element also show the similar 

situation with respect to the least element of the lattice. 

 

Figure 15. (A) Schematic diagram of previously expected solution to the symbol grounding 

and the frame problem. In sustaining well-defined-ness of formal language and symbol 

manipulation in virtual world, the interface between virtual and real world is constructed by 

which the grounding can be mediated. (B) Schematic diagram of our solution in dynamic non-

distributive logic to the symbol grounding and frame problem. The influence from the real 

world is locally and perpetually appeared in the virtual world which could give rise to non-

logical mixture of conjunction (AND) and disjunction (OR). 
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