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Multiple experiments show that various submicron particles such as magnetosomes, RNA mes-
sengers, viruses, and even much smaller nanoparticles such as globular proteins diffuse anomalously
slow in viscoelastic cytosol of living cells. Hence, their sufficiently fast directional transport by
molecular motors such as kinesins is crucial for the cell operation. It has been shown recently that
the traditional flashing Brownian ratchet models of molecular motors are capable to describe both
normal and anomalous transport of such subdiffusing cargos by molecular motors with a very high
efficiency. This work elucidates further an important role of mechanochemical coupling in such an
anomalous transport. It shows a natural emergence of a perfect subdiffusive ratchet regime due to
allosteric effects, where the random rotations of a “catalytic wheel” at the heart of the motor oper-
ation become perfectly synchronized with the random stepping of a heavily loaded motor, so that
only one ATP molecule is consumed on average at each motor step along microtubule. However, the
number of rotations made by the catalytic engine and the traveling distance both scale sublinearly
in time. Nevertheless, this anomalous transport can be very fast in absolute terms.

I. INTRODUCTION

Intracellular transport by molecular motors is crucial
for a eukaryotic cell operation (Nelson (2003), Phillips
et al. (2013), Pollard et al. (2008)). This is especially true
in view of the recent discoveries (Luby-Phelps (2013))
that various nanoparticle probes (Guigas et al. (2007),
Saxton and Jacobson (1997)), as well as naturally oc-
curring biological nanoparticles such as proteins (Banks
and Fradin (2005), Weigel et al. (2011), Weiss et al.
(2004)), viruses (Seisenberger et al. (2001)), RNA mes-
sengers (Golding and Cox (2006)), various endosomes
and granulates (Bruno et al. (2011), Caspi et al. (2002),
Jeon et al. (2011), Tabei et al. (2013), Tolic-Norrelykke
et al. (2004)), including artificial magnetosomes (Robert
et al. (2010)), and also lipids (Jeon et al. (2012), Kneller
et al. (2011)) subdiffuse either in membrane or in cy-
tosol of living cells. This means that the mean-square
distance covered by such particles scales sublinearly in
time, 〈δr2(t)〉 ∼ 2Dαt

α/Γ(1 +α), where α is a power law
exponent of subdiffusion, 0 < α < 1, Dα is subdiffusion
coefficient (within an effective 1d description), and Γ(z)
is familiar gamma-function. For example, magnetosomes
of radius about R = 300 nm subdiffuse in intact cytosol
of PC3 tumor cells with α ≈ 0.4, and Dα ≈ 170 nm2/s0.4,
see in Goychuk (2015), Goychuk et al. (2014b), Robert
et al. (2010). To subdiffuse over the distance of 2R, such
an endosome would require about 2.705× 107 seconds or
about 313 days. Clearly a passive transport of such par-
ticles by subdiffusion on any significant distance within
the cell is just impossible on any physiologically relevant
time scale. However, some cells must solve the tasks such
as e.g. delivery of ion channels in a transfer bag provided
by an endosome on the distances which can be even meter

∗ igoychuk@uni-potsdam.de

long, as e.g. in axons of some neuronal cells (Hirokawa
and Takemura (2005)). So, how can cells solve such tasks
even using an active transport by such molecular motors
as kinesins, if cytosol is a gel-like viscoelastic medium
causing subdiffusion? In particular, can such a transport
be normal, rather than anomalously slow, in the sense
that the traveling distance along the cell’s microtubuli
highways scales not sublinearly in time, 〈δr(t)〉 ∼ tαeff ,
with some α ≤ αeff < 1, what is expected, but simply
linearly with αeff = 1. Can such a transport be effec-
tive and sufficiently fast? And how? These are some
challenging questions to be answered.

The simplest modeling of a molecular motor is to rep-
resent it by a constant pulling force F acting on a cargo,
which, otherwise, thermally subdiffuses (Caspi et al.
(2002)), when it is not coupled to the motor. When
the motor walks on microtubuli constituting a random
transport network (kinesins), or it changes its walking
direction at random along the same track (myosins), the
motor action on its cargo can be modeled by a fluctuat-
ing, non-thermal random force F (t) (Bruno et al. (2009),
Caspi et al. (2002)). In the absence of motors, thermal
subdiffusion in viscoelastic media is described by a gener-
alized Langevin equation or GLE (Amblard et al. (1996),
Mason and Weitz (1995), Waigh (2005)), with a mem-
ory friction and thermal random force obeying the ther-
mal fluctuation dissipation theorem (FDT), Kubo (1966),
Zwanzig (2001). An algebraically slow memory decay
∝ t−α yields subdiffusion 〈δr2(t)〉 ∼ tαeff , with αeff = α,
in the absence of non-thermal F (t). The motor-driven
diffusion has another exponent β, 〈δr2(t)〉 ∝ tβ , with the
maximal value βmax = 2α (Bruno et al. (2009)) within
this model. It can be superdiffusive only for α > 0.5.
However, an experiment by Robert et al. (2010) in a
medium with e.g. α = 0.4 yielded β = 1.3 ± 0.1 of ac-
tive motor-assisted transport. It is essentially larger than
2α = 0.8. Also another experiment by Harrison et al.
(2013) yielded β ≈ 1.74 for the active transport with
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FIG. 1. Kinesin walking on microtubule and pulling cargo on
an elastic tether.
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FIG. 2. More realistic biochemical cycle for one motor head
(left) and the minimal two-state model of cycling (right) that
includes a binding potential change due to a change of the
charge state of the motor. Spatial dependence of the tran-
sition rates on the coordinate along a periodic polar back-
ground of microtubule provides an allosteric mechanism of
the mechano-chemical coupling.

α ≈ 0.58 of the passive transport. Hence, such a model-
ing is far too simple and it cannot explain these exper-
imental findings. A different modeling route of flashing
Brownian ratchets (Astumian and Bier (1996), Jülicher
et al. (1997), Parmeggiani et al. (1999)) was taken by
Goychuk (2015, 2016), Goychuk et al. (2014a,b). It is
based on an extension of the previous research work on
normal diffusion Brownian ratchets, see e.g. review by
Reimann (2002), onto the case of viscoelastic subdiffu-
sion featured by long-range memory correlations in the
medium (Goychuk (2009, 2012b)). Such kind of subd-
iffusion naturally emerges in dense polymeric solutions,

colloidal liquids and glasses, as well as cytosol of living
cells (Amblard et al. (1996), Gittes et al. (1997), Larson
(1999), Mason and Weitz (1995), Pan et al. (2009), San-
tamaŕıa-Holek et al. (2007), Waigh (2005), Weiss (2013)).
A recent work by Goychuk (2018) explains how this kind
of subdiffusion can win over the medium’s disorder also
featuring such complex heterogeneous media as cytosol.

Rocking ratchets of normal diffusion (Bartussek et al.
(1994), Doering et al. (1994), Magnasco (1993)) have
been generalized to viscoelastic subdiffusion by Goy-
chuk (2010), Goychuk and Kharchenko (2012, 2013),
Kharchenko and Goychuk (2013), and flashing ratch-
ets (Ajdari and Prost (1992), Astumian and Bier
(1994), Prost et al. (1994), Rousselet et al. (1994)) by
Kharchenko and Goychuk (2012). The first application of
flashing subdiffusive ratchets to molecular motors pulling
nanocargos was done by Goychuk et al. (2014a). In
that work, motor and cargo make one subdiffusing quasi-
particle in assumptions that a tether between them is in-
finitely rigid, and a spatially-asymmetric periodic ratchet
potential acting on the motor stochastically switches be-
tween two realizations differing by a half of the spatial
period shift, like in Makhnovskii et al. (2004). More-
over, Markovian switching rates are identical and con-
stant. Two such subsequent switches make one random
cycle. The mechano-chemical coupling is neglected in
that earlier model. Depending on the size of cargo de-
termining the subdiffusion coefficient of combined quasi-
particle, frequency of the binding potential flashing, load-
ing force applied, and other parameters, both anomalous
and normal transport regimes can be realized, Goychuk
et al. (2014a). Very important is that the ratchet trans-
port of a subdiffusive cargo can be perfectly normal, in
the sense that each switching cycle results on average in
the transport step on a distance of the spatial period,
and the averaged number of such switches grows linearly
in time (a perfect normal ratchet). However, anoma-
lous transport regimes can also be readily enforced. This
model provides a principal framework to explain the ori-
gin of β = 1.3±0.1 for α = 0.4 in Robert et al. (2010), and
also the origin of β ≈ 1.74 in Harrison et al. (2013), where
the passive subdiffusion of lipid droplets with α ≈ 0.58 is
changed to superdiffusion induced and assisted by molec-
ular motors.

The tether or linker between the motor and its cargo
is, however, never infinitely rigid and the motor walk-
ing on microtubule is not fully exposed to viscoelastic
constituents of cytosol. For this reason, Goychuk et al.
(2014b) considered a more involved model with the mo-
tor being normally diffusing in a ratchet potential of a
similar kind (although, a different, saw-tooth form of the
binding ratchet potential has been chosen), whereas the
cargo is subdiffusing in viscoelastic cytosol, and both
particles are connected by some elastic linker, like in
Fig. 1. Major earlier results were confirmed within
this more realistic model, which still lacked, however, a
mechano-chemical coupling between the mechanical mo-
tion of the motor and cargo and the biochemical cycling
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of the motor in its intrinsic conformational space. This
drawback has been overcome by Goychuk (2015) who
considered a very similar, in general features, model for
the motor as one by Astumian and Bier (1996), Jülicher
et al. (1997), Parmeggiani et al. (1999). It takes the
mechano-chemical coupling into account, and also the
fact that any tether must have a finite maximal exten-
sion length. The related nonlinear effects were shown
to be important, Goychuk (2015), for weak tethers like
one in Bruno et al. (2011). This model is general and
rich enough. It permits different specific models for the
mechano-chemical coupling, Parmeggiani et al. (1999).
One chosen by Goychuk (2015) (model A in this paper)
allowed to closely reproduce the earlier results in Goy-
chuk et al. (2014b) for the same amplitude of the ratchet
potential, U0 = 0.5 eV = 20 kBTr. In this particu-
lar case, the mechano-chemical coupling is effectively ab-
sent, and the motors perform cyclic turnovers with one
almost fixed, position-independent rate for a very sim-
ilar set of parameters as in the earlier work, Goychuk
et al. (2014b). However, already for U0 = 25 kBTr and
U0 = 30 kBTr larger than the free energy of ATP hydrol-
ysis, ∆GATP = 20 kBTr, used to drive one biochemical
cycle of the motor, the effects of mechano-chemical cou-
pling become also very essential in the model A. The most
striking effect is that the number of motor turnovers and
the number of ATP molecules hydrolyzed during its op-
eration start to scale sublinearly in time, 〈Nturn(t)〉 ∝ tγ ,
with αeff ≤ γ ≤ 1. For the ratchet model with constant
rates, γ = 1 always. Since the work against an external
loading force scales as tαeff and the energy consumed as
tγ , the thermodynamic efficiency generally decays in time
as 1/tλ with λ = γ − αeff , Goychuk (2015). However, it
can be appreciably large, over 50% for a rather long time
period (at the end of simulations corresponding to about
3 sec of physical time and traveling distances of the order
of micrometer) at the maximum sub-power of operation
(Goychuk (2015, 2016)). This regime requires, however,
a large U0 > ∆GATP, with the stalling force about 10
pN (for U0 = 30 kBTr, Goychuk (2015)). It is essentially
larger than 5 pN or 5.5 − 6.5 pN observed for kinesins
by Svoboda et al. (1993), and Schnitzer et al. (2000),
respectively.

The major question we address in this work is whether
a similar regime is possible also for U0 = ∆GATP =
20 kBTr, and the stalling force in the range from 5 to
6 pN, as observed experimentally. It will be shown that
such a regime indeed emerges, however, for a different
model of mechano-chemical coupling (the model B be-
low and in Parmeggiani et al. (1999)) such that it can-
not be reduced to a ratchet model with constant switch-
ing rates in some range of parameters (like it happens
within the model A). Moreover, the emergence of a per-
fect subdiffusive ratchet regime will be manifested with
γ = αeff < 1, where thermodynamic efficiency does not
decay in time. Such a perfect anomalous synchroniza-
tion between anomalous biochemical turnovers of molec-
ular motor and its mechanical motion due to a mechano-

chemical coupling leads to a transport efficiency of nearly
100%, where consumption of one ATP molecule results
into one step of the motor loaded with cargo along mi-
crotubule.

II. METHODS, THEORY AND SIMULATIONS

We consider a model based on one studied earlier
(Astumian and Bier (1996), Goychuk et al. (2014a,b),
Jülicher et al. (1997), Parmeggiani et al. (1999)). In
essence, this is the same model as in Goychuk (2015).
Molecular motor moves in a flashing periodic saw-tooth
ratchet potential, U(x + L, ζ(t)) = U(x, ζ(t)), like one
in the graphical abstract, with some potential height U0.
Here, L = 8 nm is the spatial period of microtubule,
Phillips et al. (2013), Pollard et al. (2008), Svoboda et al.
(1993), and ζ(t) is a conformational state of the motor.
Microtubuli are well-known to be polar, overally nega-
tively charged periodic structures, Baker et al. (2001),
which provide transport highways for such motors as
kinesins, Pollard et al. (2008). Hence, emergence of a
periodic and asymmetric potential for charged nanopar-
ticles, like molecular motor-proteins attached to micro-
tubule, is quite natural. Furthermore, ATP molecules
which serve as the source of free energy for the motors
like kinesins or myosins, are also (negatively) charged,
like are the products of the ATP hydrolysis: ADP and
the phosphate group Pi. Thus, it is very natural that
the binding potential flashes upon the conformational
change of the motor related to its charge state fluctu-
ations. The biochemistry of kinesin operation is very
complex as it has two heads, with a simplest biochemical
cycle depicted in the left part of Fig. 2. The simplest
theoretical model for its cycling is given in the right part
of Fig. 2 (Astumian and Bier (1996), Hill (1989), Jülicher
et al. (1997)). This is a biochemical two-cycle or bi-
cycle, with some four lump rates. Of course, it presents
a gross over-simplification, and hence, a truly minimal
theoretical model. These rates are spatially-dependent,
which expresses a mechano-chemical coupling, see be-
low. In the spirit of this two-state model, one consid-
ers only two conformations, ζ1 and ζ2, with ζ(t) un-
dergoing two-state fluctuations with spatially-dependent
rates. Since two subsequent flashes make one cycle
with the potential shifted by one spatial period, and the
both motor heads are identical, it is natural to impose
U(x + L/2, ζ1) = U(x, ζ2) as an additional symmetry
condition within this minimal model. Likewise, not only
α1,2(x + L) = α1,2(x), β1,2(x + L) = β1,2(x), but also
α1,2(x + L/2) = β2,1(x), etc. in this model. Further-
more, the energy ∆GATP is used to rotate the “catalytic
wheel” (Qian (2005), Rozenbaum et al. (2004), Wyman
(1975)) in one preferred (counter-clockwise in Fig. 2)
direction. Thermodynamically this implies (Hill (1989),
Qian (2005))

α1(x)β2(x)

α2(x)β1(x)
= exp[∆GATP/(kBT )], (1)
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for any x, what can be satisfied, e.g., by choosing

α1(x)

α2(x)
= exp[(U1(x)− U2(x) + ∆GATP/2)/(kBT )],

β1(x)

β2(x)
= exp[(U1(x)− U2(x)−∆GATP/2)/(kBT )].(2)

Furthermore, the total rates

ν1(x) = α1(x) + β1(x),

ν2(x) = α2(x) + β2(x) (3)

of the transitions between two energy profiles must satisfy

ν1(x)

ν2(x)
= exp[(U1(x)− U2(x))/(kBT )] (4)

at thermal equilibrium. This is condition of the thermal
detailed balance, where the dissipative fluxes vanish both
in the transport direction and within the conformational
space of motor, at the same time (Astumian and Bier
(1996), Jülicher et al. (1997)). It is obviously satisfied for
∆GATP → 0. There is still a lot of freedom in choosing
rates, within the imposed requirements. One possibility
is to fix some α1(x) = β2(x+ L/2). Then,

ν1(x) = α1(x+ L/2) exp

[
−U2(x)− U1(x) + ∆GATP/2

kBT

]
+ α1(x), (5)

ν2(x) = α1(x) exp

[
−U1(x)− U2(x) + ∆GATP/2

kBT

]
+ α1(x+ L/2) .

This is our model A. Another choice is to fix α2(x) =
β1(x+ L/2). Then,

ν1(x) = α2(x) exp

[
U1(x)− U2(x) + ∆GATP/2)

kBT

]
+ α2(x+ L/2), (6)

ν2(x) = α2(x+ L/2) exp

[
U2(x)− U1(x) + ∆GATP/2)

kBT

]
+ α2(x) .

provides our model B, which is similar to the model B
by Parmeggiani et al. (1999). In both models, we shall
assume that either α1(x) = const, or α2(x) = const, cor-
respondingly, in a ±δ/2 neighborhood of the minimum
of potential U1(x), and is zero otherwise. Using δ ap-
propriately, δ = L/2 in this paper, one can ensure that
the enzyme turnovers can occur everywhere on micro-
tubule, and not in some specially chosen domains only.
The difference between the models A and B seems subtle.
However, the results are rather different, see below. In
particular, the mechano-chemical coupling is markedly
stronger in the model B.

The mechanical motion of the motor is mimicked by
a Brownian particle subjected to the force f(x, ζ(t)) =
−∂U(x, ζ(t))/∂x coming from the binding potential, vis-
cous friction force −ηmẋ, and a thermal white Gaussian

noise ξm(t). The latter two are related by the second
FDT, 〈ξm(t)ξm(t′)〉 = 2kBTηmδ(t − t′) at the environ-
mental temperature T . Inertial effects are neglected,
like in the previous studies of molecular motors. In-
deed, dynamics of nanoparticles in polymeric water so-
lutions is typically overdamped. The inertial effects are
present typically on the initial scales from picoseconds to
nanoseconds, and we are interested in much longer times,
up to seconds and minutes. Furthermore, the motor is
assumed to be elastically coupled to a cargo (within a

FENE model, Goychuk (2015), Herrchen and Öttinger
(1997)), with a spring constant κL and a maximal exten-
sion length rmax. The limit rmax →∞ corresponds to a
harmonic linker. Moreover, the motor is generally sub-
jected also to a constant loading force f0, which attempts
to stop its directional motion being counter-directed. All
in all, the motor is described by Eq. (7) in

ηmẋ = f(x, ζ(t))− f0 + ξm(t) +
κL(y − x)

1− (y − x)2/r2
max

,(7)

ηcẏ = −
∫ t

0

ηmem(t− t′)ẏ(t′)dt′ (8)

− κL(y − x)

1− (y − x)2/r2
max

+ ξc(t) + ξmem(t) .

f(x, ζ(t)) is piece-wise constant within the model con-
sidered. With the maximum of U(x) dividing the po-
tential period in the ratio 1 : p, p > 1, it takes nega-
tive value f− = −(p+ 1)U0/L within the spatial interval
[0, L/(p + 1)) and positive value f+ = (p + 1)U0/(pL)
within the larger interval [L/(p + 1), L). Here, U(0) =
U(L) = 0. If flashing is sufficiently slow, so that the
particle has time to relax to the potential minimum af-
ter each potential flash, it will be pushed forward by f+

to a new potential minimum after each flash. In this
way, a perfect ratchet transport mechanism can be re-
alized, if flashing is also not far too slow, so that the
particle does not have enough time to escape to another
potential minimum being thermally agitated. For a high
potential barrier U0 � kBT , such escapes occur, how-
ever, very infrequently. With an increasing loading force
f0, the potential barrier diminishes and it vanishes at
fst = f+, which is the stalling force in the absence of
thermal fluctuations at T = 0. It must be mentioned,
however, in this respect that at physiological tempera-
tures the stalling force depends strongly on temperature.
To obtain it, U0 should be replaced with a free energy
barrier U0 → F0 = U0 − TS, with S ≈ 11.2 kB for
α1 = 170 s−1 within the model A, Goychuk (2015), Goy-
chuk et al. (2014b). The entropic component is as large as
TrS ≈ 11.2 kBTr at Tr = 290 K. Hence, to get a realistic
stalling force for kinesin from 5 to 6 pN, Svoboda et al.
(1993), or about 7 pN (Kojima et al. (1996)) at room
temperatures, U0 should be about 20 kBTr, or somewhat
larger. For U0 < 15 kBTr, the above simple estimate
does not work, cf. Fig. 6 in Goychuk et al. (2014b), and
the stalling force is far too small, as compared to the
experimental values.
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Also elastic coupling to the cargo will generally
strongly affect the motor operation. The cargo motion
is described by Eq. (A2). It is subjected both to the
viscous friction with the friction coefficient ηc reflect-
ing about 80% of water content in cytosol, and to a
viscoelastic memory friction characterized by the mem-
ory kernel ηmem(t). These frictional terms are related
to the corresponding components of the thermal noise
of the environment by the Kubo’s second FDT, named
also the fluctuation-dissipation relation or FDR, Kubo
(1966), Weiss (1999), Zwanzig (2001), 〈ξc(t)ξc(t′)〉 =
2kBTηcδ(t − t′), 〈ξmem(t)ξmem(t′)〉 = kBTηmem(|t − t′|).
Viscoelasticity with a complex shear modulus G∗(ω) ∝
(iω)α (Larson (1999), Mason and Weitz (1995), Waigh
(2005)) corresponds to a strictly sub-Ohmic memory ker-
nel, ηmem(t) = ηαt

−α/Γ(1−α), 0 < α < 1, Weiss (1999),
with fractional friction coefficient ηα, Goychuk (2009,
2012b). The corresponding memory term can be abbrevi-
ated as ηαd

αy/dtα using the notion of fractional Caputo
derivative (Gorenflo and Mainardi (1997), Mathai and
Haubold (2017)). Furthermore, the corresponding ther-
mal noise ξmem(t) is fractional Gaussian noise (fGn). It
is a time derivative of the fractional Brownian motion
(fBm) by Kolmogorov (1940, 1991), Mandelbrot and van
Ness (1968). When the cargo is uncoupled to the motor
(κL = 0), spread of its position variance is described by

〈δy2(t)〉 = 2DctE1−α,2
(
−[t/τin]1−α

)
, (9)

see in Kharchenko and Goychuk (2013), where Ea,b(z) =∑∞
n=0 z

n/Γ(an+b) is the generalized Mittag-Leffler func-
tion (Mathai and Haubold (2017)), and Dc = kBT/ηc
is normal diffusion coefficient. Initially, at t � τin =
(ηc/ηα)1/(1−α) diffusion is normal, 〈δy2(t)〉 ≈ 2Dct
whereas at large times, t � τin, it is anomalously slow,
〈δy2(t)〉 ≈ 2Dαt

α/Γ(1 + α). Here, Dα = kBT/ηα is the
fractional diffusion coefficient whose value plays a key
role in anomalous transport processes.

A. Markovian embedding

Seen realistically, any power-law memory kernel has a
long-time memory cutoff. Assuming it being exponen-
tial, ηα → ηα exp(−νht), an effective friction coefficient
ηeff =

∫∞
0
ηmem(t)dt = ηατ

1−α
max can be introduced with

τmax = 1/νh. For t � τmax, diffusion will be again nor-
mal with the diffusion coefficient Dc,eff = kBT/(ηc+ηeff).
However, τmax can be very large, in the range from tens
of seconds to hours, see e.g. Table I in Goychuk (2012a)
(for a different model of memory cutoff). Furthermore, a
short-time memory cutoff τmin = 1/ν0 must also always
exist on physical grounds, in any realistic description of
a condensed medium beyond the continuous medium ap-
proximation. Here, ν0 is related to a maximal frequency
of the mediums oscillators coupled to the Brownian parti-
cle within a dynamical theory of Brownian motion, Weiss
(1999). Hence, it is natural to approximate a power-law-
scaling memory kernel between two memory cutoffs by a

sum of exponentials,

ηmem(t) =

N∑
i=1

ki exp(−νit), (10)

obeying fractal scaling νi = ν0/b
i−1, ki =

Cα(b)ηαν
α
i /Γ(1 − α) ∝ ναi , where Cα(b) is some con-

stant, which depends on α and b, Goychuk (2009, 2012b),
Hughes (1995), Palmer et al. (1984) Obviously, τmax =
bN−1/ν0. Depending on b and α, the accuracy of ap-
proximation can be between 4% (b = 10, α = 0.5) and
0.01% (b = 2, α = 0.5), see in Goychuk and Kharchenko
(2013). In fact, it provides an almost optimal approxima-
tion to the power law dependence, which can be slightly
improved further, as suggested by Bochud and Challet
(2007). Upon the use of the Prony series expansion (10),
the non-Markovian dynamics of cargo allows for a multi-
dimensional Markovian embedding, Goychuk (2012b), by
introducing auxiliary Brownian quasi-particles mimick-
ing viscoelastic modes of environment with coordinates
yi and frictional coefficients ηi = ki/νi. It reads

ηcẏ = − κL(y − x)

1− (y − x)2/r2
max

−
N∑
i=1

ki(y − yi) (11)

+
√

2ηckBTξ0(t),

ηiẏi = ki(y − yi) +
√

2ηikBTξi(t), (12)

where ξi(t) are uncorrelated white Gaussian noises of unit
intensity, 〈ξi(t′)ξj(t)〉 = δijδ(t − t′), which are also un-
correlated with the white Gaussian noise sources ξ0(t)
and ξm(t). To have a complete equivalence with the
stated GLE model in Eqs. (7), (A2) with memory ker-
nel (10), the initial positions yi(0) are sampled from in-
dependent Gaussian distributions centered around y(0),
〈yi(0)〉 = y(0) with variances 〈[yi(0)− y(0)]2〉 = kBT/ki,
Goychuk (2012b). To see this equivalence, one has to (i)
rewrite (A2) in terms of viscoelastic force ui = ki(yi −
y), (ii) formally solve the resulting equation for ui(t)
with ẏ(t) and ξi(t) considered formally as some time-
dependent functions and (iii) substitute the result, which
consists of a regular part corresponding to friction with
an exponentially decaying memory and a noise, into Eq.
(11). Each noise component depends on ui(0), and all
noise components are mutually independent. Consider-
ing ui(0) as random Gaussian variables with 〈ui(0)〉 = 0
and 〈u2

i (0)〉 = kikBT , one can show that the resulting
noise ξmem(t) is indeed a wide sense stationary Gaus-
sian stochastic process which satisfies FDR with the
memory function (10), see in Goychuk (2009, 2012b)
for detail. The resulting ξmem(t) presents a sum of in-
dependent Ornstein-Uhlenbeck processes which approxi-
mates fGn between two memory cutoffs. Langevin equa-
tions (7), (11), (A2) considered together with a time-
inhomogeneous Markovian process ζ(t), which is fully
defined by two rates ν1,2(x(t)), provide a stochastic-
dynamical description of the studied model. It is used in
numerics, as described in the Supplementary Material.
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TABLE I. Parameter sets

Set,
Model

D0.4,
nm2/s0.4

α2,
s−1

α1,
s−1

U0,
kBTr

rrmax,
nm

S1, A 171 170 20 ∞
S2, A 1710 170 20 ∞
S5, A 171 34 20 ∞
S7, A 171 170 25 80
S8, A 171 170 30 80
S9, A 1710 170 25 80
S10, A 1710 170 30 80
S1, B 171 170 20 ∞
S2, B 1710 170 20 ∞
S5, B 1710 34 20 ∞
S6, B 171 17 20 ∞
S7, B 1710 17 20 ∞

B. Choice of parameters and the details of
numerics

Like in Goychuk (2015), Goychuk et al. (2014b), we
use am = 100 nm for the effective radius of kinesin,
about 10 times larger than its linear geometrical size
(without tether) in order to account for the enhanced
effective viscosity experienced by the motor partially ex-
posed to cytosol compared to its value in water. The
viscous friction coefficient is estimated from the Stokes
formula as ηm = 6πamζw, where ζw = 1 mPa · s is water
viscosity used in calculations. Furthermore, the time is
scaled in the units τm = L2ηm/U

∗
0 with U∗0 = 10 kBTr.

For the above parameters, τm ≈ 2.94 µs. Distance
is scaled in units of L, elastic coupling constants in
units of U∗0 /L

2 ≈ 0.64 pN/nm, and forces in units of
U∗0 /L ≈ 5.12 pN. ν0 = 100 (3.4 · 107 1/s) was chosen
which corresponds to τmin = 29.4 ns, and α was α = 0.4,
as found experimentally in Bruno et al. (2011), Robert
et al. (2010). Two cargo sizes were considered, large
ac = 300 nm, which corresponds to the magnetosome
size in Robert et al. (2010), and a ten times smaller one,
like in Fig. 1. For larger cargo, we assume that its ef-
fective Stokes friction ηc = 6πacζw is enhanced by the
factor of ηeff/ηc = 3 · 104 in cytosol. A particular em-
bedding with b = 10 and N = 10 was chosen in accor-
dance with our previous studies. With these parameters,
τmax = 109τmin = 29.4 s and fractional friction coeffi-
cient ηα = ηeffτ

α−1
max /r with r ≈ 0.93, Goychuk et al.

(2014b). The corresponding subdiffusion coefficient is
D0.4 = kBT/η0.4 ∼ 1.71 · 10−16 m2/s0.4 = 171 nm2/s0.4,
in a semi-quantitative agreement with the experimental
results in Robert et al. (2010). Smaller cargo is character-
ized by ηeff/ηc = 3 · 103 yielding D0.4 = 1710 nm2/s0.4,
ten times larger. Furthermore, within the model A we
used two values of the rate constant α1: 170 s−1 (fast)
and 34 s−1 (slow), in order to match approximately the
enzyme turnover rates ν ∼ α1/2 in Ref. Goychuk et al.
(2014b). Accordingly, we used mostly U0 = 20 kBTr in

simulations, however, also two larger values of U0 were
used, see Table I, in order to arrive at the thermodynamic
efficiencies larger than 50%. Within the model B we used
three values of α2, see in Table I. The elastic spring con-
stant is fixed to κL = 0.32 pN/nm in this paper. A simi-
lar value was found in experiment, Kojima et al. (1996).
For the maximal extension of linker we used rrmax = 80
nm, Pollard et al. (2008), and also rrmax =∞, which cor-
responds to harmonic linker in Goychuk et al. (2014b).
As it has been shown earlier in Goychuk (2015), for a
strong linker considered, the harmonic approximation is,
in principle, sufficient. Hence, within the model B in this
paper we used only it. However, for weak linkers an-
harmonic effects can be very essential (Goychuk (2015)).
Such weak linkers are not considered in this paper. The
studied set of parameters is shown in Table I.

To numerically integrate stochastic Langevin dynamics
for a fixed potential realization U1,2(x), we used stochas-
tic Heun method, see in the Supplementary Material,
implemented in parallel on NVIDIA Kepler graphical
processors. Stochastic switching between two potential
realizations is simulated using a well-known algorithm.
Namely, if the motor is moving on U1(x) or U2(x) sur-
face, at each integration time step ∆t it can switch with
the probability ν1(x)∆t or ν2(x)∆t, correspondingly, to
another state, or to evolve further on the same poten-
tial surface. Here, ν1,2(x) are the rates corresponding
to either model A, or model B, see above. We used
∆t = 5 · 10−3 for the integration time step and n = 103

for the ensemble averaging. The maximal time range of
integration was 106, which corresponds to 2.94 sec of mo-
tor operation. Notice that a further increase of N does
not influence results, whereas it exponentially increases
ηeff of cargos. This means that ηα and Dα are the truly
relevant parameters of fractional transport, and not ηeff ,.
Furthermore, ∆GATP = 20 kBTr was taken in all numer-
ical simulations, and T = Tr = 290 K, so that kBTr ≈ 25
meV.

C. Stochastic energetics

Stochastic energetics can be considered following Goy-
chuk (2015), Jülicher et al. (1997). The useful work
done by motor against a loading force f0 is Wuse(t) =
f0〈δx(t)〉 ∝ tαeff , whereas the input energy that it
consumes scales as Ein(t) = ∆GATP〈Nturn(t)〉, where
〈Nturn(t) ∝ tγ is the number of turnovers 1 → 2 → 1.
This yields for thermodynamic efficiency

Rth(t) =
Wuse(t)

∆GATP〈Nturn(t)〉
∝ 1/tγ−αeff . (13)

This definition is, however, not quite precise because it
assumes that all the turnovers of the “catalytic wheel” oc-
cur with ATP hydrolysis. However, some turnovers occur
backwards, with ATP synthesis, within this model. Since
such backward turnovers occur seldomly for ∆GATP =
0.5 eV, Eq. (13) only slightly underestimates the proper
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TABLE II. Parameters of the fit with Eq. (A6) within 1% er-
ror tolerance done with the Levenberg-Marquardt algorithm
using XMGRACE software, Turner (2005), and the corre-

sponding values of R
(max)
th , and fmax.

Set,
Model

k fst,
pN

ε q R
(max)
th fmax,

pN
S1, A 0.389 6.00 1.270 0.923 0.103 3.06
S2, A 0.447 5.89 2.032 -1.251 0.237 4.15
S5, A 0.458 4.81 3.447 0.653 0.194 2.88
S7, A 0.823 9.05 1.152 0.307 0.284 5.18
S8, A 0.968 9.98 0.761 -40.44 0.707 8.50
S9, A 0.872 9.04 7.140 -0.111 0.580 6.92
S10, A 0.973 10.0 4.780 -23.24 0.828 9.16
S1, B 0.387 6.30 4.966 0.993 0.103 3.12
S2, B 0.606 6.29 6.981 0.707 0.331 4.16
S5, B 0.525 5.41 6.877 0.587 0.300 3.71
S6, B 0.484 5.05 4.209 0.790 0.200 2.93
S7, B 0.489 5.05 6.889 0.596 0.280 3.46

efficiency, see in Goychuk (2015). To correctly calcu-
late consumption of ATP molecules one should count
p1∆GATP/2, with p1 = (α1−β1)/(α1+β1) for the transi-
tion U1 → U2, and p2∆GATP/2 with p2 = (β2−α2)/(α2+
β2) for the transition U2 → U1. A corresponding modifi-
cation of (13) will be named the proper efficiency.

III. RESULTS

We first made a comparative study of the dependence
of the transport exponent αeff and thermodynamic effi-
ciency on the loading force f0 for two sets of parameters,
S1 and S2, within the models A and B, see in Fig. 3. For
the larger cargo, the set S1, see in Table I, the results
do not differ much: αeff is around 0.6, which can explain
β = 1.3 ± 0.1 in Robert et al. (2010). The maximal ef-
ficiency is about 10% and the stalling force is slightly
larger in the model B, fst = 6.30 pN, vs. fst = 6 pN in
the model A, see in Table II. The numerical data on the
efficiency are parametrized in this paper by the depen-
dence,

Rth(f0) = k
f0

fst

[
1 (14)

− f0/fst

(1− q) exp[ε(1− f0/fst)] + q

]
,

where k, ε, fst, and q are considered as fitting parameters
with their values given in Table II. It is derived from the
assumptions that subvelocity vα, defined by 〈δx(t)〉 =
vαt

α/Γ(1 + α) with α = αeff decays with f0 as (see in

TABLE III. Power law exponents depending on the loading
force f0, the case S2, model B. Fitting values of αeff and γ
in this and other tables are obtained from the 〈δx(t)〉 and
L〈Nturn(t)〉 dependencies, like ones presented in Fig. 5, us-
ing a power law fit for the last 1 sec part of the trajectory.
It is done using the Levenberg-Marquardt algorithm in XM-
GRACE software, Turner (2005), with 1% error tolerance,
λ = γ − αeff .

f0, pN αeff γ λ
0 0.854231 0.856338 0.002107
0.512 0.863078 0.865964 0.002886
1.024 0.872694 0.877308 0.004614
1.536 0.882037 0.888624 0.006587
2.048 0.890468 0.900774 0.010306
2.560 0.898387 0.914309 0.015922
3.072 0.900635 0.926184 0.025549
3.584 0.900195 0.940803 0.040608
4.096 0.900237 0.964067 0.063830
4.608 0.892551 0.988937 0.096386
5.120 0.890468 1 0.109532
5.632 0.839736 1 0.160264
6.148 0.807682 1 0.192318

Supplementary Material)

vα(f0) = vα(0)

[
1 (15)

− f0/fst

(1− q) exp[ε(1− f0/fst)] + q

]
,

and Ein(t) does not depend on f0. Here, ε is an energy
barrier in the units of kBT and q ≤ 1 is a parameter.
For q = 1, vα(f0) = vα(0)(1 − f0/fst). Fit works ac-
tually pretty well with q fixed to q = 0. However, an
almost perfect fit is obtained with an adjustable value of
q. Notice that q can take negative values, which can be
justified from diffusional models, Goychuk and Hänggi
(2002). This fit is not unique, see in the Supplementary
Material for an alternative. However, it is biophysically
better motivated. If these assumptions are justified, the
maximum of Rth in Eq. (A6) corresponds to thermody-
namic efficiency at the maximum of sub-power. Whereas
the latter assumption is well fulfilled within the model
A at U0 = 20 kBTr, Goychuk (2015), generally it is not
correct, especially within the model B, see below, where
the ATP consumption generally strongly depends on f0.
Hence, the maximum of the fit (A6) not always corre-
spond to the maximum at maximal sub-power, see below.
Nevertheless, it works nicely anyway. Its relation to the
Jacobi efficiency in the linear operation regime of normal
motors should also be mentioned. Indeed, it reduces to
the Jacobi efficiency, see e. g. in Goychuk (2016), at
ε = 0 or q = 1, k = 1, and αeff = γ = 1.

For a smaller cargo, sets S2, the distinction between
the models A and B becomes quite evident in Fig. 3.
First, in the model A, αeff starts from αeff ≈ 1 at small
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TABLE IV. Power law exponents depending on the loading
force f0, the case S6, model B.

f0, pN αeff γ λ
0 0.778586 0.799655 0.021069
0.512 0.792495 0.823397 0.030902
1.536 0.798144 0.868486 0.070342
2.048 0.799791 0.899897 0.100106
2.560 0.793568 0.937876 0.144308
3.072 0.78149 0.973073 0.191583
3.584 0.760739 1 0.239261
4.096 0.72811 1 0.27189
4.608 0.699885 1 0.300115
5.120 0.687050 1 0.312950

TABLE V. Power law exponents depending on the loading
force f0, the case S5, model A.

f0, pN αeff γ λ
0 0.995152 1.00 0.004848
0.512 0.991188 1.00 0.008812
1.024 0.982147 1.00 0.017853
1.536 0.969404 1.00 0.030596
2.048 0.925052 1.00 0.074948
2.560 0.909704 1.00 0.090296
3.072 0.813889 1.00 0.186111
3.584 0.756685 1.00 0.243315
4.096 0.697763 1.00 0.302237
4.608 0.618159 1.00 0.381841

TABLE VI. Power law exponents depending on the loading
force f0, the case S5, model B.

f0, pN αeff γ λ
0 0.928004 0.928294 0.000290
0.512 0.937161 0.937699 0.000538
1.024 0.945399 0.946257 0.000858
1.536 0.950206 0.952371 0.002165
2.048 0.952820 0.956787 0.003967
2.560 0.956454 0.963371 0.006917
3.072 0.957644 0.970018 0.012374
3.584 0.956840 0.978205 0.021365
4.096 0.954589 0.989856 0.035267
4.608 0.938140 0.999875 0.061735
5.120 0.917003 1.00 0.082997

f0, and then it monotonously declines to about 0.8 at the
stalling force. In the model B, αeff ≈ 0.854 at f0 = 0,
see in the Table III. It increases with f0 to about 0.90
at f0 corresponding to the maximum of thermodynamic
efficiency. After this, it declines to about 0.808 at the
stalling force, which is slightly larger than one within the
model A.
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FIG. 3. (Color online). (a) Transport power exponent αeff

and (b) thermodynamic efficiency for the sets S1,2 in the mod-
els A and B vs. loading force f0. Notice that in the case S2

the motor has an essentially larger efficiency within the model
B than the model A, although the transport is more anoma-
lous within the model B, especially for a small load. In part
(b), full lines present fits with Eq. (A6) with parameters
shown in Table II. Thermodynamic efficiency is calculated in
accordance with Eq. (13) at the end point of simulations.

1. Perfect subdiffusive ratchet

Within the model A, at small f0 our motor realizes a
perfect normal ratchet transport, where stochastic step-
ping along microtubule is perfectly synchronized with the
normal turnovers of the catalytic wheel characterized by
a turnover frequency equal to the half of the flashing fre-
quency, Goychuk (2015), Goychuk et al. (2014b). A strik-
ingly new result within the model B is that our ratchet
realizes a perfect subtransport with anomalous turnovers
of catalytic wheel which cannot be characterized anymore
by a normal turnover frequency. Rather, one must intro-
duce a new notion, the enzyme catalytic sub-velocity ωγ
by 〈Nturn(t)〉 = ωγt

γ/Γ(1 + γ), see in the Supplementary
Material. Notice that an attempt to define the standard
turnover rate by limt→∞〈Nturn(t)〉/t would yield zero in
this case. As Fig. 5, a and Table III reveal, for small f0,
αeff ≈ γ < 1, and λ ≈ 0. We are dealing with a perfect
subdiffusive ratchet, where due to a mechano-chemical
coupling, the consumption of ATP molecules by the mo-
tor scales sublinearly with time. Nevertheless, the trans-
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FIG. 4. (Color online). (a) Transport power exponent αeff

and (b) thermodynamic efficiency vs. loading force f0 for
several other sets shown in the plots and discussed in the
text. In part (b), full lines present fits with Eq. (A6) and
parameters shown in Table II. Thermodynamic efficiency is
calculated in accordance with Eq. (13).

port is perfect in the sense that consumption of one ATP
molecule leads to one step. Indeed, in Fig. 5, a, 〈δx(t)〉
almost coincides with L〈Nturn(t)〉 for f0 = 0, f0 = 0.512
pN, f0 = 1.024 pN. Even for f0 = 4.096 pN near to the
Rth maximum, 〈δx(t)〉 ≈ 0.85L〈Nturn(t)〉, which means
that only about 15% of biochemical turnovers do not lead
to a successful step over L. Rth ≈ 0.331 at this maximum
is much larger than in the model A, for small cargo, see
in Fig. 3, a. Moreover, this perfect subdiffusive trans-
port is very fast in absolute terms, cf. Fig. 5, a. Notice,
that very differently from the model A, see in Fig. 5, c,
the consumption of ATP molecules strongly depends on
f0 within the model B: it is smaller for larger f0 (until
about fmax). This is a very important feature of the per-
fect subdiffusive ratchet mechanism. It is adaptive and
economical.

The transport of the large cargo is far from being per-
fect in the case S1, model B. However, maybe its quality
can be drastically improved at smaller operational fre-
quencies of the motor? Indeed, this is the case, as Fig.
4, and Fig. 5, b, reveal for the set S6, model B. For a
smaller α2 = 17 s−1, αeff increases at f0 = 0 from about
0.6 (for α2 = 170 s−1) to about 0.8, see in the Table IV,

and the maximum of Rth increases to about 0.2, see in
Fig. 4, b, i.e. it almost doubles, cf. Table II. Even if the
quality of anomalous synchronization is somewhat worser
in this case than in the case S2, B of smaller cargo, it is,
nevertheless, quite impressive: a heavily loaded motor
can walk over the distance of 650 nm at f0 = 0 (which
is normal operational regime of linear molecular motors
in living cells) within the less than 3 sec, see in Fig. 5,
b. Within the model A, transport of large cargo shares
similar features for the parameter set S5, with respect to
thermodynamic efficiency, see in Fig. 4, b. However, the
dependence of the transport exponent αeff on f0 is en-
tirely different. First, it features an almost normal trans-
port at small f0, cf. Fig.4, a, which is a nearly perfect,
see in Fig. 5, c. Second, the turnover frequency of the
enzyme practically does not depend on f0, see in Fig. 5,
c. It equals α1/2. Hence, with the increase of the static
load f0 strength, at the maximum of Rth, αeff drops to
about 0.81, see in Table V and Fig. 4, while γ remains
one. This leads to a substantial decay of Rth ∝ 1/tλ in
time, with λ ≈ 0.186. Although, within the model B,
set S6, the decay of the maximum of Rth has about the
same λ ≈ 0.196, see in Table IV at f0 = 3.072 pN. This
is so because in this case γ arrives at the value of one for
f0 = 3.072 pN and larger. Hence, also in this respect,
the models A and B are similar. However, once again,
the stalling force is slightly larger in the model B.

2. The role of the rate α2

Next, it is interesting to clarify the influence of the
rate α2, which is determined, in particular, by the ATP
concentration (Astumian and Bier (1996), Jülicher et al.
(1997), Parmeggiani et al. (1999)), on the transport prop-
erties within the model B. In fact, the sets S2, S5, and
S7 differ only by the value of α2. Fig. 4, b shows that
the smaller is α2, the smaller is the maximum of thermo-
dynamic efficiency, and the smaller is the stalling force.
However, at the same time, smaller α2 corresponds to
larger αeff , see in Fig. 4, a, i.e. transport becomes closer
to normal. Within the model B, the behavior of αeff

versus f0 displays one and the same universal feature.
First, it slightly increases arriving at a maximum, and
then it slightly drops. αeff is generally much less sensitive
to f0 within the model B, as compared to the model A.
This is because within the model B the mechano-chemical
coupling adjusts the tempo of biochemical cycling in re-
sponse to f0. It becomes slower. Fig.5, d and Table VI
demonstrate this effect for the set S5, B. Once again,
an almost perfect subdiffusive ratchet is realized for a
sufficiently small cargo. At f0 = 3.584 pN, which corre-
sponds to the maximum of Rth of about 30%, only about
13% of the motor turnovers are futile, not resulting in a
successful step along microtubule. A power-stroke like,
mechano-chemically adaptive mechanism can lead to a
perfect, energetically efficient subtransport.
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FIG. 5. (color online). Mean motor displacement 〈δx(t)〉 and L〈Nturn(t)〉 vs. time for several values of f0 shown in the plots for
the sets: (a) S2, model B; (b) S6, model B; (c) S5, model A; (d) S5, model B. Good agreement between 〈δx(t)〉 and L〈Nturn(t)〉
reflects a perfect anomalous synchronization between stochastic turnovers of catalytic wheel and the motor stepping along
microtubule. For small f0 in the parts (a) and (d), increase of f0 results in a synchronous slowing down of both the biochemical
turnovers and the processive mechanical motion. It corresponds to a perfect anomalous ratchet regime. Even at the load
corresponding to maximal thermodynamic efficiency in the cases (a) and (d), only about 15% and 13%, correspondingly, of
ATP molecules consumed do not result into a perfect transport event – promotion on the length L along microtubule. In part
(c), 〈Nturn(t)〉 practically does not depend on f0 and is well described by α1t/2.

3. Thermodynamic efficiency over 50%

Within the model A, the mechano-chemical coupling
becomes also very essential, however, for a larger U0.
Then, thermodynamic efficiency can overcome 50%, even
at the maximum of sub-power. Figs. 6, 7 demonstrate
this striking effect. For the set S10, thermodynamic effi-
ciency exceeds 80% at its maximum, cf. Fig. 6. The max-
imum of Rth vs. f0 in this case does not corresponds to
thermodynamic efficiency at the maximum of sub-power
Pα(f0) = vα(f0)f0 because of a strong mechano-chemical
coupling. Nevertheless, the maximum of the latter one
takes place at f0 = 7.168 pN in Fig. 7, which corresponds
approximately to impressive 70% in Fig. 6. Hence, we
provided an instance of anomalous motor whose efficiency
at maximal sub-power essentially exceeds 50%. This is
a very important result. Very interesting is also depen-
dence of the motor (sub)velocity on f0 in this case. It
drops to zero with increasing f0 is a very non-linear fash-
ion, which is very different from the low efficient quasi-
linear regime, where it is nearly linear, Goychuk et al.

(2014a,b). Similar nonlinearities were also observed ex-
perimentally for kinesin motors by Schnitzer et al. (2000)
being, however, fitted in another way following a different
model.

IV. DISCUSSION

The model B exhibits a much stronger mechano-
chemical coupling than the model A. Within this model,
mechano-chemical coupling is very essential already for
U0 = 20 kBTr, which is a reasonable choice for kinesins
II, given a typical stalling force of these motors. While
the transport of a large cargo, like magnetosomes in
Robert et al. (2010), looks very similar in both mod-
els, for a fast operating motor, the transport of smaller
cargos is always profoundly different. The differences are
also seen for slowly operating motors. Transport of the
large cargo in this paper is characterized for α2 = 170 s−1

by a transport exponent around αeff = 0.6 for α = 0.4,
which can easily explain the observed superdiffusion ex-
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FIG. 6. (Color online) Thermodynamic efficiency vs. loading
force within model A for U0 = 25 kBTr and U0 = 30 kBTr, as
compared with the cases S1,2, corresponding to U0 = 20 kBTr.
Full lines present fits with Eq. (A6) with parameters shown in
Table II. Notice a substantial increase of efficiency for larger
U0. It can exceed 80% in the case S10. Here, numerical data
present the results on the proper thermodynamic efficiency
as described in the text. It is slightly larger than one in Eq.
(13), see Fig. 6 in Goychuk (2015) and the corresponding
discussion therein for detail.
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FIG. 7. (Color online). Subpower vα(f0)f0 (in the units of
pN · nm/sαeff ) and subvelocity (inset, in the units of nm/sαeff )
versus loading force, in the units of pN, for the set S10, model
A. αeff ≈ 1 for f0 < 5 pN. Several other values are shown
in the plot. At the maximum of subpower, at f0 = 7.168,
αeff ≈ 0.9712, and γ ≈ 0.9708. Hence, the motor operates as
a perfect subdiffusive ratchet whose thermodynamic efficiency
at the subpower maximum is about 70%, in accordance with
Fig. 6. The numerical data are fitted using Eq. (15) with
vα(0) = 597.12 nm/sαeff , fst = 9.91 pN, ε = 0.779, and q =
−7.224.

ponents around β = 1.3± 0.1 in the experiment, Robert
et al. (2010). Energetically, such a transport is, however,
inefficient. Nevertheless, while operating slower the mo-
tors can realize also energetically very efficient transport.
Indeed, with a tenfold reduction of α2 from 170 s−1 to
17 s−1, such a near-to-perfect anomalous ratchet regime
is realized for f0 = 0 within the model B (set S6) with
αeff increased to about 0.8. It should be noticed in this
respect that normal modus operandi of linear motors like
kinesin in living cells is one at near-to-zero thermody-

namic efficiency. This should not confuse the readers
because the useful work is done on overcoming the dis-
sipative resistance of the environment while translocat-
ing cargo from one place to another one. Indeed, the
chemical potential of neither motor, not cargo is typi-
cally increased. Hence, all the spent energy is eventually
dissipated as heat. This is very different from the work
of e.g. ionic pumps which must energize ions by transfer-
ring them against a corresponding electrochemical gra-
dient. For pumps, namely the thermodynamic efficiency
is of paramount importance and it must be optimized.
Nevertheless, the ability to sustain substantial constant
forces f0 is important for a strong and good motor. It can
be checked e.g. in the experiments with optical tweezers.
Within the model B, the motor adapts its biochemical
cycling to the increased f0. It cycles slower and anoma-
lously, while within the model A it cycles normally and
at the same nearly constant tempo for U0 = 20 kBTr.
This advantage of the model B is clearly seen for smaller
cargos, where this study revealed a perfect and fast (in
absolute terms) anomalous ratchet regime. The motor
adapts it cyclic sub-velocity, and even at the maximum
of thermodynamic efficiency, while working also against
a strong f0, the portion of the futile (in the transport
sense) turnovers can be really small, just from 13% to
15%. This is definitely provides some benefits with re-
spect to energetic costs of transport.

The mechano-chemical adaptation becomes also rele-
vant within the model A, however, for larger U0. We
showed that for U0 = 0.75 eV thermodynamic efficiency
of our model motor can exceed 80% within an almost per-
fect anomalous ratchet regime while transferring smaller
cargo against a large bias of f0 = 9 pN with αeff ≈ γ ≈
0.92. Also efficiency at maximum sub-power can reach
impressive 70% at f0 ≈ 7.2 pN with αeff ≈ γ ≈ 0.97.
In such a thermodynamically highly efficient regime, the
motor (sub)-velocity declines strongly nonlinearly with
f0. Indeed, similar nonlinearities were measured in some
experiments with kinesins, Schnitzer et al. (2000). The
very existence of such thermodynamically highly efficient
regimes is especially inspiring when one thinks about per-
spectives of an optimal motor design, Cheng et al. (2015),
Goychuk (2016). Clearly, a highly efficient operation is
possible also in highly dissipative viscoelastic media like
cytosol, as our study convincingly shows. This removes
mental barriers and opens great perspectives for an op-
timal design of artificial molecular motors, Cheng et al.
(2015), Erbas-Cakmak et al. (2015), especially in allow-
ing to avoid some common fallacy traps, Goychuk (2016).

Notice, that within the both studied models of
mechano-chemical coupling, we assumed either α1, or α2

be spatially-independent in a very large (half of the spa-
tial period) region around the potential minima, so that
neither ν1(x), nor ν2(x) turn zero somewhere on micro-
tubule. Allosteric effects are nevertheless present because
other rates are spatially dependent. They can be made
stronger, when e.g. α1 in the model A is different from
zero only in a small domain around the potential mini-
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mum. Strong allosteric effects are presumably very im-
portant for operating natural molecular motors and for
designing the new ones, Cheng et al. (2015). Such ef-
fects can be used for a further optimization of the motor
performance, which is very high already in the current,
simplified and non-optimized version.

It should be also mentioned that two headed kinesins
are highly processive motors, which means that they are
attached to microtubule and walk on it before detaching
for hundreds of steps and a sufficiently long time of sev-
eral seconds, Hancock and Howard (1998), Alamilla and
Santamaŕıa-Holek (2012). In this respect, the maximal
time in our simulations is about 3 sec. Our model is
aimed to describe the transport during these processive
periods. The influence of viscoelastic environment on
their averaged duration, i.e. on the motor processivity,
among other factors, Alamilla and Santamaŕıa-Holek
(2012), would also be a very interesting subject for
future research, which requires, however, a further
generalization of the model considered.

V. CONCLUSIONS

To conclude, in this paper we extended our previous
studies of anomalous transport of subdiffusing cargos by
molecular motors in viscoelastic cytosol of living cells and

showed the emergence of a perfect subdiffusive ratchet
regime due to a mechano-chemical coupling. This anoma-
lous transport regime is characterized by anomalously
slow biochemical cycling of molecular motors accompa-
nied by a sublinear consumption of ATP molecules in
time, with their optimal use: consumption of one ATP
molecule results in one step over the spatial period of mi-
crotubule, on average. Moreover, such a transport can be
very fast in absolute terms, not bringing some disadvan-
tages in this respect. Such anomalous transport regimes
can be very important in the economics of living cells.
Their assumed presence provides a true challenge for the
experimentalists to reveal. The author hope and expect
that the theoretical prediction of a slow consumption of
ATP molecules by molecular motors, which cannot be
characterized by a standard rate because both the num-
ber of enzyme turnovers and the amount of ATP con-
sumed increase sublinearly in time, while transporting
efficiently various cargos within interior of living cells,
will eventually be confirmed experimentally.
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Appendix A: Supplementary Material

1. Numerical algorithm

In this section, a sketch of the numerical algorithm is
presented. First, we rewrite Eqs. (7), (11), (12) of the
main text as

ẋ = F (x, ζ(t)) + νmG(x, y) +
√

2Dmξ̃m(t), (A1)

ẏ = −νcG(x, y)−K(y, yi) +
√

2Dcξ0(t),

ẏi = νi(y − yi) +
√

2Diξi(t),

where Dm = kBT/ηm, Dc = kBT/ηc, Di = kBT/ηi
are the corresponding diffusion coefficients, F (x, ζ(t)) =
[f(x, ζ(t))−f0]/ηm, G(x, y) = (y−x)/[1−(y−x)2/r2

max],

K(y, yi) =
∑N
i=1 νi(y − yi), νm = κL/ηm, νc = κL/ηc,

and ξ̃m(t) is the scaled ξm(t), 〈ξ̃m(t)ξ̃m(t′)〉 = δ(t − t′).
Notice that F (x, ζ(t)) can take only two values: F− =
[−(p + 1)U0/L − f0]/ηm or F+ = [(p + 1)U0/(pL) −
f0]/ηm depending on the motor position x and confor-
mational state ζ(t) = 1, or ζ(t) = 2. In the state ”1”:
F (x, 1) = F− for x in the interval [mL,mL+L/(p+ 1)),
and F (x, 1) = F+ for x in the interval [mL + L/(p +
1), (m + 1)L), where m is an integer number. The val-
ues F (x, 2) = F (x+ L/2, 1). The values F± alternate in
two ways: (i) deterministically depending on the motor
position x, in the fixed motor state, and (ii) stochas-
tically, when the motor state changes. The latter one
is determined as follows. To integrate the system of
stochastic differential equations (A1) we use the stochas-
tic Heun algorithm, Gard (1988). This implies that we
iterate the time evolution in the discrete times steps ∆t,
tk = k∆t. Then, for example, if the motor was in the
state ”1” at tk, the probability that it makes transition
into the state ”2” during ∆t is p1 = ν1(xk)∆t � 1.
Hence, one generates a random number r from a uni-
form distribution on [0, 1]. If r ≤ p1, the transition
is done, and otherwise not. Typically, many iterations
are required until a transition occurs. Similarly, for the
current state ”2” with p2 = ν2(xk)∆t � 1. Further-
more, on each integration time step ∆t one generates
anew N + 2 independent zero-mean Gaussian variables
Wi, Wm with unit variance, i = 0, 1, 2...N (Mersenne
Twister pseudo-random number generator was used for
this). Each propagation step in the discretized time dy-
namics, xk = x(k∆t), yk = y(k∆t), yi,k = yi(k∆t), from
tk = k∆t to tk+1 = tk + ∆t consists of two substeps. In
the first substep,

x
(1)
k = xk + [F (xk, ζ) + νmG(xk, yk)] ∆t (A2)

+
√

2Dm∆tWm,

y
(1)
k = yk − [νcG(xk, yk) +K(yk, yi,k)]∆t+

√
2Dc∆tW0,

y
(1)
i,k = yi,k + νi(yk − yi,k)∆t+

√
2Di∆tWi .
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In the second (final) step,

xk+1 = xk + [F (x
(1)
k , ζ) + F (xk, ζ)

+ νmG(xk, yk) + νmG(x
(1)
k , y

(1)
k )]∆t/2

+
√

2Dm∆tWm, (A3)

yk+1 = yk − [νcG(xk, yk) + νcG(x
(1)
k , y

(1)
k )

+ K(yk, yi,k) +K(y
(1)
k , y

(1)
i,k )]∆t/2 +

√
2Dc∆tW0,

yi,k+1 = yi,k + νi(yk + y
(1)
k − yi,k − y

(1)
i,k )∆t/2

+
√

2Di∆tWi .

Notice that Wi and Wm must be the same numbers on
the both substeps within each cycle of iterations, Gard
(1988). The initial values x0 = y0 = 0, at the mini-
mum of potential U1(x) fixed initially, whereas y0,i are
sampled from the corresponding Gaussian distributions,
see the main text. They are different for each motor
particle. The algorithm was implemented in CUDA and
propagated in parallel (many different particles with dif-
ferent initially random preparations at the same time) on
GPU processors.

2. Fitting dependencies

A biophysically inspired fitting form reads

vα(f) = vα(0)

[
1− f

A+B exp(−δf/(kBT ))

]
, (A4)

where A,B are some constant with physical dimension of
force and δ is some length. Such dependencies are com-
mon in biophysics, Phillips et al. (2013). Using the con-
dition vα(fst), this expression can be readily expressed
as Eq. (15) of the main text, with q = A/fst and
ε = δfst/(kBT ).

Another reasonable form is, Goychuk (2016),

vα(f0) = vα(0)[1− (f0/fst)
a] (A5)

with some fitting power exponent a. It has one parameter
less. However, a possible interpretation of a is not clear.
Then, Eq. (14) is replaced by

Rth(f0) = k
f0

fst

[
1−

(
f0

fst

)a]
. (A6)

A certain advantage is that the maximal value of

R
(max)
th = ka/(1+a)1+1/a at fmax = fst/(1+a)1/a can be

readily found in analytical form. The corresponding fits
with the parameters in the Table II are shown in Figs. 9,
10, 11, which correspond to Figs. 3b, 4b, 6, of the main
text, respectively. One can see that this alternative fit is
really not bad. However, in Fig. 6 of the main text the
fitting of two upper curves with Eq. (14) is much better,
on the cost of having one parameter more. Actually with
q = 0 in Eq. (14), having the same number of fitting
parameters, the both fits are equally good (not shown).
However, interpretation of the power exponent a, which
can take values as large as 52.26, see in Table VII, is
rather dim. Notice that the inset of Fig. 12, which cor-
responds to Fig. 7 of the main text, contains yet another
fit related to (A5).

3. Simplest model for anomalous enzyme dynamics

One of the major results of this paper is that bio-
chemical cycling of a motor enzyme can become anoma-
lously slow and synchronize with its mechanical motion
along microtubule, γ ≈ αeff < 1, due to influence of
viscoelastic environment via a mechano-chemical cou-
pling. This finding can be rationalized within the follow-
ing (over)simplified model. Cycling of a motor enzyme
in its intrinsic conformational space can be parametrized
by an angle variable φ. It occurs on a periodic free-
energy landscape biased due to energy released in ATP
hydrolysis G(φ) = G0(φ) − ∆GATPφ/(2π) (Alamilla
and Santamaŕıa-Holek (2012), Goychuk (2016), Nelson
(2003), Schnitzer et al. (2000)), G0(φ+ 2π) = G0(φ). In
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TABLE VII. Parameters of the fit Rth(f0) =
k(f0/fst) [1− (f0/fst)

a], and the corresponding values

of R
(max)
th , and fmax

Set,
Model

k fst, pN a R
(max)
th fmax,pN

S1, A 0.385 6.00 1.112 0.103 3.06
S2, A 0.418 5.91 4.925 0.242 4.12
S5, A 0.454 4.79 2.405 0.192 2.88
S7, A 0.758 9.00 1.94 0.287 5.16
S8, A 0.909 10.00 20.08 0.744 8.59
S9, A 0.847 9.00 8.93 0.589 6.96
S10, A 0.952 10.00 52.26 0.866 9.27
S1, B 0.4193 6.282 0.982 0.104 3.13
S2, B 0.615 6.24 3.865 0.324 4.14
S5, B 0.522 5.36 4.746 0.298 3.71
S6, B 0.493 5.01 2.148 0.197 2.94
S7, B 0.489 5.01 4.619 0.277 3.45
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FIG. 9. Thermodynamic efficiency for the sets S1,2 in the
models A and B vs. loading force f0. Full lines present fits
with Eq. (A6) with parameters shown in Table II.

other words, ∆GATP produces a driving torque Mst =
∆GATP/2π. The mechanical load f0 will produce a
counter-acting torque M0 = f0L/2π. Here, we assume
a perfect synchronization between the mechanical mo-
tion and the enzymatic turnover, Nelson (2003). Fur-
thermore, let us assume that the conformational mo-
tion is subjected to normal and anomalous frictions and
the corresponding noise terms, which are related by the
fluctuation-dissipation relation (FDR), 〈ζ0(t)ζ0(t′)〉 =
2kBTr0δ(t − t′), 〈ζγ(t)ζγ(t′)〉 = kBTrγ/|t − t′|γ . Then,
it can be described by a generalized Langevin equation
(GLE)

r0φ̇ = −∂G0(φ)

∂φ
+Mst −M0 + ζ0(t) (A7)

− rγ
dγφ

dtγ
+ ζγ(t) ,

where dγφ
dtγ is the Caputo fractional derivative, (Goren-

flo and Mainardi (1997), Mathai and Haubold (2017)).
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FIG. 10. Thermodynamic efficiency vs. loading force f0 for
several other sets shown in the plots and discussed in the main
text. Full lines present fits with Eq. (A6) and parameters
shown in Table II.
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FIG. 11. Thermodynamic efficiency vs. loading force within
model A for U0 = 25 kBTr and U0 = 30 kBTr, as compared
with the cases S1,2, corresponding to U0 = 20 kBTr. Full lines
present fits with Eq. (A6) with parameters shown in Table
II.

The just formulated model presents a fractional confor-
mational dynamics generalization of the simplest model
of molecular motors, see e.g. in Goychuk (2016). The
mechanical stalling force is fst = 2πMst/L = ∆GATP/L,
within this model. With ∆GATP = 20 kBTr =
82 pN · nm, and L = 8 nm this yields fst = 10.25 pN,
which indeed is slightly larger than the maximal stalling
force of 10 pN in the main text for U0 = 30 kBTr. Fur-
thermore, as shown in Goychuk (2009, 2012b), in the case
of viscoelastic subdiffusion a static spatially periodic po-
tential does not influence asymptotically diffusion and
transport. Hence, with t→∞, the number of enzymatic
turnovers grows sublinearly as

〈Nturn(t)〉 ∼ ωγtγ/Γ(1 + γ), (A8)

where ωγ = (Mst −M0)/rγ can be termed the catalytic
sub-velocity of enzyme. Because the useful work done
against the load is Wuse(t) ∼ f0〈δx(t)〉 = f0L〈φ(t)〉/2π ∝
tγ within this model, the thermodynamic efficiency Rth

is time-independent, and vα=γ(0) = ωγL in Eq. (A5). In
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FIG. 12. (Color online). Subpower vα(f0)f0 (in the units of
pN · nm/sαeff ) and subvelocity (inset, in the units of nm/sαeff )
versus loading force, in the units of pN, for the set S10,
model A. The numerical data in inset are fitted by the
dependence vα(f0) = v1(0)

[
1− (f0/f1)2 − (f0/f2)a2

]
, with

v1(0) = 597.12 nm/s, f1 = 15.60 pN, f2 = 10.52 pN, and
a2 = 9.258. Fit with Eq. (A5) (not shown) is essentially
worser.

the t→∞ limit, Rth is given by Eq. (A6) with k = 1 and

a = 1. It arrives at the maximum of 50% at fmax = fst/2.
Of course, the just outlined simplest model of anoma-

lous enzyme turnovers does not correspond precisely to
the model in the main text, in some very important de-
tail. First, it restricts the efficiency at maximal sub-
power by 50% – the Jacobi bound, and corresponds to a
symmetric parabolic Rth in Eq. (A6) with k = 1, a = 1.
Second, the motor dynamics in the main text was as-
sumed to be normal, memoryless in the absence of a cou-
pled cargo. So, where the memory terms in Eq. (A7),
the second line, can come from, in principle? The point
is that we have to consider some coupling energy G(φ, x)
instead of G(φ) and to exclude the dynamics of the x(t)
variable. Such a procedure generally leads to a memory
friction and the related noise in the φ dynamics consid-
ered alone. This is what is assumed in our ultimately sim-
plified model, which does not contain, however, a theory
for γ ≈ αeff . In this respect, it must be noted that non-
linear effects in the case of a spatially periodic but fluc-
tuating G0(φ, t) are generally very important, Goychuk
(2012b). This is the reason why such an oversimplified
model cannot describe, e.g., thermodynamic efficiencies
over 50% at the maximum of sub-power, as found and
described in the main text.
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