
LatinPSO: An Algorithm for Simultaneously Inferring Structure and
Parameters of Ordinary Differential Equations Models

Xinliang Tiana,b, Wei Pangc, Yizhang Wanga,b, Kaimin Guoa,b, You Zhoua,b,∗

aCollege of Computer Science and Technology, Jilin University, Changchun, 130012, China
bKey Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, China

c School of Natural and Computing Sciences, University of Aberdeen, UK, AB24 3UE

Abstract

Simultaneously inferring both the structure and parameters of Ordinary Differential Equations (ODEs)
for a complex dynamic system is more practical in many systems identification problems, but it remains
challenging due to the complexity of the underlying search space. In this research, we propose a novel
algorithm based on Particle Swarm Optimization (PSO) and Latin Hypercube Sampling (LHS) to address
the above problem. The proposed algorithm is termed LatinPSO, and it can be effectively used for inferring
the structure and parameters of ODE models through time course data. To start with, the real Human
Immunodeficiency Virus (HIV) model and several synthetic models are used for evaluating the performance
of LatinPSO. Experimental results demonstrated that LatinPSO could find satisfactory candidate ODE
models with appropriate structure and parameters.

Keywords: Ordinary Differential Equations, Particle Swarm Optimization, Latin Hypercube Sampling,
Structure and parameters optimization

1. Introduction

Ordinary Differential Equations (ODE) are extremely useful in modeling many real-world dynamic sys-
tems, including the ecosystems, cell regulation system, and HIV dynamics [1, 2, 3]. For example, a typical
ODE model of a biological network takes the form of a system of rate equations, where each equation
models the change rate of a single network variable [4]. The (re)construction of biological networks, includ-5

ing metabolic, regulatory gene, and signaling networks, is of fundamental and ultimate importance to the
emerging field of computational systems biology [5, 6, 7]. Indeed, a formalism commonly used for capturing
and describing the dynamics of biological networks is the form of ODE models. The general form of ODEs
is defined in Eq. (1), where Xi is the state variable, n is the number of observable components, and fi is
the relationship among variables [8].10

dXi

dt
= fi (X1, X2, ..., Xn) (i = 1, 2, ..., n) (1)

In this research, the variables of interest and the interrelations between variables constitute the structure
of an ODE model. Furthermore, the constants in an ODE model are called parameters. For instance, an
ODE model for the dynamics of Human Immunodeficiency Virus (HIV) in human blood cells [9] is described
by Eqs. (2)-(4). In this HIV model, the variables of interest are T , I, and V , where T is the number of
uninfected cells, I is the number of infected CD4+T lymphocytes, and V is the number of free viruses.15

These equations express the rate of changes of the components (d.
dt) as the sum of the sources minus the

sinks. Uninfected cells are created from sources within the body at rate λ, and they die off at a constant

∗Corresponding author
Email address: zyou@jlu.edu.cn (You Zhou)

Preprint submitted to Journal of LATEX Templates May 15, 2019

rate ρ, and become infected. The later process is proportional to the product of the number of uninfected
cells and the number of viruses, by a parameter β. δ is the death rate of infected cells, and n is the number
of viruses that are released during lysis of one infected cell; c is the rate at which viruses disappear.20

dT

dt
= λ− ρ ∗ T − β ∗ T ∗ V (2)

dI

dt
= β ∗ T ∗ V − δ ∗ I (3)

dV

dt
= n ∗ δ ∗ I − c ∗ V − β ∗ T ∗ V (4)

The structure of an ODE model describes the interrelations between variables. For instance, the structure
of the above HIV model can be described as ((-, -, *, T , V), (-, *, T , V), (-, -, *, T , V))(The reason for
this description is described in Section 2.1). The parameters of an ODE model describe the influence rate
between variables. For instance, the parameters are described as ((λ, ρ, β), (β, δ), (η, δ, c, β)). The time
course data is a matrix containing the time and the variable values. They are the variable values at different25

time points. For example, the time course data for T is show in Figure 1.

0 10 20 30 40 50 60
time

100

150

200

250

300

T
va

ria
bl

e

Figure 1: The time course data of variable T in the HIV model

The real HIV ODE model is described in Eqs. (5 ∼ 7), where λ is 80, ρ is 0.15, β is 0.00002, δ is 0.55, n
is 900, c is 5.5. The initial conditions (variable values at time t = 0) is as follows: T0 = 100, I0 = 150, and
V0 = 50, 000.

dT

dt
= 80− 0.15 ∗ T − 0.00002 ∗ T ∗ V (5)

dI

dt
= 0.00002 ∗ T ∗ V − 0.55 ∗ I (6)

dV

dt
= 900 ∗ 0.55 ∗ I − 0.55 ∗ V − 0.00002 ∗ T ∗ V (7)

Our specific task is to identifying the structure and parameters of ODEs from time course data. For30

this dynamic model of HIV in human blood cells, the known information is the corresponding variables and
time course data of these variables. The corresponding variables are T, I, and V . The time course data are
observational values of each variable, for instance, those shown in Figure 1. An inference algorithm should

2

find correct structure and parameters simultaneously for the ODE model, which means the inferred solution
can closely match the time course data.35

Various methods are proposed to infer ODEs during the last few years [4, 7, 10]. Most of these methods
can be classified into two groups: the first group is to identify the parameters of the ODEs and the second
group is to identify the structure. The former is illustrated by genetic algorithms (GA), and the latter by
the genetic programming(GP) approach [13]. In the work presented in [1], M-estimators were proposed for
robust estimation of ODE parameters, but the structure of ODE models was given as prior knowledge, thus40

it becomes a parameter optimization task. The research in [4] focuses on constructing biological networks,
but it needs to employ specific domain knowledge to narrow down the search space of candidate model
structures. The research in [12] uses a multi-objective Genetic Algorithm (GA) to find robust adaptation
gene regulatory networks described as ODEs, and the aim is to find robust adaptation gene regulatory
networks, but the learnt ODE model is not closely matching the time course data. The research in [8]45

evolves differential equation models by genetic programming, but this method had limitations in selecting
the basis function and scalability. The research in [13] presents a hybrid evolutionary method for identifying
a system of ordinary differential equations (ODEs) to predict the small-time scale traffic measurements data,
and it is not to search alternative structures with the same (or similar) system functionalities and behavior.

In this research, we propose a novel swarm-based algorithm to infer the ODE model from biological time50

course data. More importantly, our algorithm will infer the structure and parameters of the ODE model
simultaneously by an improved Particle Swarm Optimization (PSO) algorithm.

Our work on exploring such a kind of hybrid search space containing both discrete space (model structure)
and continuous space (model parameters) is motivated by the uncertain nature of biological systems and
the incomplete knowledge available: it is often the case that for many biological systems only incomplete or55

even little knowledge is known, and the underlying interactions among system components may not be fully
understood. This necessitates taking into consideration both the structural and parameter uncertainty of the
system and broaden the search space when performing system identification [14] so that alternative structures
with the same (or similar) system functionalities and behavior may be identified. These alternative structures
may be of interest to biologists for further investigation, and new insights into the biological problems may60

be gained through such interactive processes.
However, because we will explore both the discrete model structural space and the continuous parameter

space, the underlying search space for our problem is much more complicated compared with parameter
estimation problems. Because of such complexity, PSO is easy to get trapped into local optima. Therefore,
we improve the PSO algorithm with the introduction of the Latin Hypercube Sampling (LHS) technique65

[15, 11], and we name this new algorithm Latin Particle Swarm Optimization (LatinPSO) algorithm.
The rest of this paper is organized as follows. In Section 2, we describe the proposed LatinPSO algorithm.

In Section 3, we present the experimental results and perform comparisons. And finally, we conclude the
paper and explore future work in Section 4.

2. Algorithm Detail70

2.1. Representation of solution space

Each position in the solution space corresponds to one solution of the problem to be solved. We will
try to find the best reasonable solution during the iterative search process. The solution space may be high
dimensional, and each position is a high-dimensional vector. All the particles will update their position and
velocity by global best and personal best. The cost of each particle is calculated by the function introduced75

in Section 2.3.
An ODE model consists of structure and parameters. To infer the structure and parameters, we first

define the structure as the operation relations between variables. In this research, we only deal with the
ODE model whose structure contains the Addition, Subtraction,Multiplication and Division operations.
We argue that more operators could be included if needed in the future considering problem complexity and
available knowledge about the problem. The parameters are the coefficients of the polynomials. Here, we

3

give a more detailed definition of ODEs in Eq. (8) instead of Eq. (1), where x1 ∼ x4 are the state variables,
and k1 ∼ k4 are the parameters.

dx1
dt

= +k1 ∗ x1 + k2 ∗ x2 − k3 ∗ x3 ∗ x4 + k4 (8)

Eq. (9) is a solution of inferring ODE model, if all the parameter values and structure are calculated. Now,
the problem is converted to how to express the structure and parameters of ODEs by a particle’s position in
the search space for PSO. The parameters are easy to be represented in PSO, and we use a particle dimension
to represent each parameter. For the structure of ODE, we enumerate all structures of this four-variable
ODEs model to create a list and use the indices of the list to express all structures. Finally, we add one
additional dimension after all the parameters to represent the structure of ODE, as in Eq. (10) and Table
1, and we use Si to express structure (+,+,−,+, ∗, x3, x4).

(k1, k2, k3, k4, (+,+,−,+, ∗, x3, x4)) (9)

(k1, k2, k3, k4, Si) (10)

Table 1: ODE structures list about Eq. (8)

Si ODE structures
1 (+,+,+,+, ∗, x1, x2)
2 (−,+,+,+, ∗, x1, x2)
3 (−,−,+,+, ∗, x1, x2)
...
n (−,−,−,−, /, x4, x4)

In our algorithm, one ODE is made up of four items: two single-variable items, like k1 ∗ x1, k2 ∗ x2 in
Eq. (8). a two-variable item, like k3 ∗ x3 ∗ x4, and a constant item, like k4. we use plus or minus to express
the relationship between this four items, and multiplication or division to express the relationship between
two variables in the two-variable items. So, we can use (+,+,−,+, ∗, x3, x4) to express the structure of Eq.80

(8), and add parameter parts (k1, k2, k3, k4) to express one ODE like Eq. (8). It is noted that we apply
the following assumption on the structure of the ODE model: there is only one item representing variable
interaction (e.g., protein binding) and no more than three variables can be bound together (i.e., there is
only one two-variable item). This assumption will narrow down the underlying search space. We argue that
this assumption is reasonable in biology as more variable interactions means less robust of the system and85

more expensive to maintain for a biological system of up to 4 variables. We can certainly remove or change
this assumption and assume more variable interactions for more complex systems, and this can be easily
done by changing the structure encoding strategy. However, this is beyond the scope of this research and
will be part of our future work.

2.2. The LatinPSO algorithm90

The solution space is huge even if the number of variables of ODEs is small. For a four-variable ODE,
when the range of a parameter is [0, 1.0], the number of solutions is more than 1.0E60. When constructing
ODE models by PSO, it is easy to get trapped in local optima during the search process. We improve
the original PSO by introducing the Latin Hypercube Sampling technique [15, 11], which resulted in the
proposed LatinPSO.95

2.2.1. Particle Swarm Opitimisation (PSO) algorithm

PSO is a swarm inspired computational technique proposed by Kennedy and Eberhart in 1995 [16, 17,
18, 19, 20], where the swarm consists of a number of particles. Each particle represents a potential solution.

4

Each particle keeps track of its coordinate in hyperspace, which is associated with the best solution (cost)
it has achieved so far. This is called pbest. Another best value is called gbest, which is the entire swarm’s100

best-known position.
Suppose that the search space is D-dimensional, the i− th particle of the swarm can be represented by

a D-dimensional vector Xi = (Xi1, Xi2, ..., XiD). The velocity of the particle can be represented by another
D-dimensional vector Vi = (vi1, vi2, ..., viD). The PSO updates its velocity and position according to its
previous pbest and the gbest, and the position and velocity update methods are given in Eq. (11) and
Eq. (12)., where c1 and c2 are positive constants called acceleration, rand1 and rand2 are random numbers
uniformly distributed in [0, 1], and w is the inertia weight [21, 22, 23, 24].

Vi(t) = w ∗ Vi(t− 1) + c1 ∗ rand1 ∗ (pbesti − x[t]i) + c2 ∗ rand2 ∗ (gbest− x[t]i) (11)

x
[t]
i = x

[t−1]
i + V

[t]
i (12)

2.2.2. Latin Hypercube Sampling (LHS) Technique

LHS [15, 11] is a random-based sampling method, which ensures that the samples are distributed across
the entire range even if the number of particles is small. The basic idea of LHS is described as follows.
Suppose Z is an n-dimensional hypercube, and the innovative thejth variable zj , where j = 1, ..., n. We need105

to get H samples (solutions) within this hypercube given as follows: 1) Divide the Zj range, [ZL
j , Z

U
j], into

H sub-ranges, and every sub-range has the same size; 2) generate a matrix DH∗n, and every column of
this matrix is the random full permutation of sequence {1, 2, ...,H}; 3) every row of this DH∗n matrix has n
elements, and these n elements are used as an index to select one sub-hypercube, and then we get a sample
solution randomly within this sub-hypercube. For example, when H = 10 and n = 3, the corresponding110

matrix D10 ∗ 3 is shown in Table 2.

Table 2: The corresponding matrix D10*3

Sampling Particle Value

Sampling Particles Numbers

1 7 2
2 9 9
3 2 10
4 1 7
5 5 3
6 6 1
7 8 2
8 4 5
9 10 6
10 3 8

This configuration of D10*3 indicates that there is a problem in three-dimensional search space, and
every dimension is divided into 10 sub-spaces indexed by [1, 2, ...,10] and, therefore, this search space is
divided into 1,000 sub-squares. So, the following solutions (1,7,2), (2,9,9), (3,2,10), (4,1,7), (5,5,3), (6,6,1),
(7,8,2), (8,4,5), (9,10,6), (10,3,8) are 10 samples produced by the LHS method. Therefore, the samples115

generated by the LHS algorithm are evenly distributed in the entire hypercube spaces. Therefore it is a
space-filling sampling method [25].

2.2.3. The LatinPSO algorithm

We propose the LatinPSO algorithm, which is characterized by updating the position of poorly performed
particles and initializing population with LHS algorithm. LatinPSO improves the original PSO algorithm120

from two aspects: the initialization phase and the iterative process phase. In the initialization phase, we
use the LHS technique to assign the initial position to each particle rather than the random initialization

5

method. In the iterative process, we select some particles which have poor cost values and clear the current
position value and give them new position value generated by the LHS algorithm. Then we place these new
particles into the population to continue the iterative process until the termination conditions are met. The125

procedure of LatinPSO algorithm is shown in Algorithm 1.

Algorithm 1 LatinPSO algorithm

1: 1) Initialize population.
2: 1.1) The population is initialized randomly.
3: 1.2) The population is initialized with LHS.
4: 2) Calculate the cost value of each particle.
5: 3) Population evolution.
6: 3.1) Update the velocity and position of each particle.
7: 3.2) Choose particles with poor cost values and update their positions according to LHS.
8: 4) Evaluate termination condition
9: 4.1) Yes, stop iteration

10: 4.2) No, go to Step (2).

There are three versions of LatinPSO which are different in choosing Step (1) and Step (3). By comparing
the three versions of the algorithm with the PSO algorithm, we find that all of them have improved the
performance of the algorithm. LatinPSO-1: choose Step (1.2) and Step (3.1). LatinPSO-2: choose Step (1.1)
and Step (3.2). LatinPSO-3: choose Step (1.2) and Step (3.2). In Step (3.2), we choose 10% of all particles130

with the poorer cost values in every ten iterations, and change the positions of these chosen particles with
LHS.

2.3. Genetic Algorithm

In Section 3, we will compare the performance of the proposed LatinPSO with Genetic Algorithm(GA)
because GA is also generally used for optimization problems. Here is a brief description of the GA for
inferring ODE. GA uses the genetic evolution process and does not wrok in the same way as PSO, but the
comparison can be presented. For instance, in Equation.13, we assumed that an individual parameter a1x
represents a gene, the genes are joined to form on a chromosome and all chromosomes are joined together
to form the whole genome. Algorithm 2 summarizes the procedure of GA.

Genome =



dx

dt
= a1x+ b1y + c1z

dy

dt
= a2x+ b2y + c2z

dz

dt
= a3x+ b3y + c3z

Chromosome =

{
a1x+ b1y + c1z

Gene =
{
a1x

(13)

6

Algorithm 2 Genetic Algorithm

1: 1) Assume a problem domain as a chromosome.
2: 1.1) Set the size of population N.
3: 1.2) Set the crossover probability Pc
4: 1.3) Set the mutation probability Pm
5: 2) Define fitness function.
6: 3) Generate the Initial population size N.
7: 4) Calculate the fitness of individual chromosome.
8: 5) Select high the fit chromosomes from current population for mating.
9: 6) Create offspring chromosomes by genetic operators.

10: 7) Set the new offspring in the new population.
11: 7.1) Repeat step 5 until the new population size reaches to initial population
12: 8) Evaluate termination condition
13: 8.1) Yes, stop iteration
14: 8.2) No, go to Step 4

2.4. The Definition of Cost Function

The cost value of each individual is defined as the sum of the squared error and shown in Eq. (14).

cost =

n∑
i=1

T−1∑
k=0

(
x

′

i(t0 + k∆t)− xi(t0 + k∆t)
)2

(14)

In Eq. (14), t0 is the starting time, ∆t is the step size, n is the number of state variables, and T is the135

number of data points. xi(t0 +k∆t) is the given target time course data (k = 0, 1, ..., T − 1). x
′

i(t0 +k∆t) is
the time course data acquired by calculating the system of ODE represented by a particle from LatinPSO.

In this research, we obtain the time course data for each ODE through an ODE simulator (i.e. the odeint
function in Python scipy package (https://docs.scipy.org/doc/scipy/reference/generated/scipy.integrate.odeint.html),
and it integrates a system of ODE and solves the initial value problem for both stiff or non-stiff systems of140

first order ODEs. In the future we will use real-word data to verify our algorithm if more data are available.

3. Experimental results

We prepared three different tasks to test the effectiveness of the proposed LatinPSO algorithm. These
experiments are the HIV model, the 3-variable model, and the 4-variable model. In each experiment, we
compare the experimental results of the three versions LatinPSO and the original PSO. The experimental145

parameters for these algorithms are the same in three experiments: the population size is 1,000, the iteration
time is 1,000, w is 0.7, c1 is 1.5, and c2 is 1.5. In the LHS algorithm, the parameters are set as described
in the previous LHS algorithm, and we choose 10% of all particles on the basis of cost value in every ten
iterations, and we change the positions of those chosen particles with LHS. The parameters of time course
data are set as follows: in the HIV model and 3-variable model experiments, t0 is 0, T is 60, ∆t is 1.0. In150

the 4-variable model experiment, t0 is 0, T is 200, ∆t is 0.1.

3.1. The HIV Model

This example models the dynamics of the HIV virus in human blood cells. The model describes three
components, comprising the number of uninfected (T) and infected (I) CD4 + T lymphocytes, and the
number of free virions (V). It consists of three differential equations, as shown in Eq. (5) to Eq. (7). By155

applying LatinPSO, we acquired the best cost value of 988.1 and the corresponding ODE model is described
as Eqs. (15)∼(17).

dT

dt
= −0.28 ∗ T − 0.43 ∗ I + 113 (15)

7

dI

dt
= 0.13 ∗ T − 1.63 ∗ 10e− 8 ∗ V ∗ V + 38.7 (16)

dV

dt
= −0.48 ∗ V + 417.8 ∗ I + 199.6 (17)

The time course data generated by this system are shown in Figure 2, Figure 3 and Figure 4 along with
those of the target model. We can see that the time course data created by ODE model that we constructed
closely match the target time course data.160

0 10 20 30 40 50 60
time

40

60

80

100

120

140

I v
ar

ia
bl

e

target
result

Figure 2: A comparison of time course data between the target and learnt models on variable I

0 10 20 30 40 50 60
time

10000

20000

30000

40000

50000

V
va

ria
bl

e

target
result

Figure 3: A comparison of time course data between the target and learnt models on variable V.

8

0 10 20 30 40 50 60
time

100

150

200

250

300

T
va

ria
bl

e

target
result

Figure 4: A comparison of time course data between the target and learnt model on variable T.

We performed 20 trial experiments to compare the performance of PSO and LatinPSO. The results are
shown in Table 3 and Figure 5.(excessive outliers in the PSO data cause the y-axis to be too long, so these
ouliters are ignored in Figure 5) The results show that the three modified algorithms have better ability to
search for the system of ODEs given the known time course data, and LatinPSO-3 outperforms LatinPSO-1
and LatinPSO-2 in this problem. Table 4 shows that the t-test of 20 experimental results of LatinPSO-3165

and PSO, P (T < t) = 0.17 > 0.05, so the difference between the two is not statistically significant.
A close investigation of both the learnt model shown in Eqs. (15)∼(17) and the real model shown in

Eqs. (5)∼(7) reveals that our algorithm identified an alternative structure for the HIV model: the identified
model suggests that there is interaction between variables T and V (T*V). This is because we relaxed the
search constraints by allowing interactions between variables, but in the real HIV model there is no such170

interactions. Such a model may be of interest to domain experts as they can either reject such interactions
or further investigate it. From the complex system point of view, the identified model has very similar
behavior to the real one, and this may also reveal more insights if we are further to examine the system
dynamics and how to achieve them.

Table 3: The cost values of Different algorithms in the HIV model

Average Cost Min Cost Max Cost Standard Deviation
PSO 45181.37 12927.7 250209.98 71040.54

LatinPSO-1 25583.19 8945.10 75408.13 16149.64
LatinPSO-2 20807.84 1308.76 52225.34 12975.22
LatinPSO-3 19913.61 988.10 58903.02 13239.53

Table 4: T-test results of two algorithms

df t Stat P(T <= t) two-tailed two-tailed critical value
PSO and LatinPSO-3 19 1.43 0.17 2.09

9

PSO LatinPSO-1 LatinPSO-2 LatinPSO-3

0

10000

20000

30000

40000

50000

60000

70000

co
st

 v
al

ue

Figure 5: The box plot of cost values in HIV model.

3.2. The Artificial Three-Variable ODE Model175

We artificially synthesize an ODE model containing three variables, as shown in Eqs. (18)∼(20). The
initial value of (X1, X2, X3) is (0.1, 0.5, 1.0).

dX1

dt
= 0.1 ∗X1 − 1.0 ∗X1 ∗X2 + 0.3 (18)

dX2

dt
= 0.3 ∗X3 − 0.1 ∗X2 ∗X3 + 1.0 (19)

dX3

dt
= 0.2 ∗X1 + 0.2 ∗X1 ∗X3 (20)

By applying LatinPSO, we acquired the best cost value 0.152, and the corresponding ODE model is given
in Eqs. (21)∼(23). The time course data generated by this system is shown in Figure 6. Along with that of
targets, we can see that they are also closely matched.

dX1

dt
= −0.478 ∗X1 + 0.188 ∗X3 − 0.3 ∗X2 ∗X2 + 0.222 (21)

dX2

dt
= −0.139 ∗X2 + 0.229 ∗X1 + 1.0 ∗X1 ∗X2 + 1.0 (22)

dX3

dt
= −0.001 ∗X2 + 0.114 ∗X1 ∗X3 + 0.026 (23)

10

0 10 20 30 40 50 60
time

0

2

4

6

8

X1
,X

2,
X3

 v
ar

ia
bl

e

target
result

Figure 6: A comparison of time course data between initial and result about x1, x2, x3.

Similarly, for each experiment we perform 20 trials to compare the performance of PSO and LatinPSO.
The results are shown in Table 5 and Figure 7. The results show that the three modified algorithms
outperform the original PSO when searching the system of ODEs given the time course data, and LatinPSO-180

3 is still better than LatinPSO-1 and LatinPSO-2. Table 6 shows that the t-test of 20 experimental results of
LatinPSO-3 and PSO, P (T < t) = 0.01 < 0.05, so the difference between the two is statistically significant.

Table 5: The cost value of the three-variable model
Average Cost Min Cost Max Cost Standard Deviation

PSO 17.59 0.58 26.00 7.50
LatinPSO-1 14.60 0.21 23.53 7.53
LatinPSO-2 14.07 0.33 24.33 8.78
LatinPSO-3 8.78 0.15 22.53 8.45

Table 6: T-test results of two algorithms

df t Stat P(T <= t) two-tailed two-tailed critical value
PSO and LatinPSO-3 26 2.75 0.01 2.06

11

PSO LatinPSO-1 LatinPSO-2 LatinPSO-3

0

5

10

15

20

25

co
st

 v
al

ue

Figure 7: The box plot of cost values in the three-variables model

3.3. The Artificial Four-Variable ODE Model

We prepared an ordinary differential equation model which contains four variables as shown in Eqs.
(24)∼(27). The initial value of (X1, X2, X3, X4)is (0.01, 0.01, 0.01, 0.01).

dX1

dt
= −0.1 ∗X1 + 0.2 ∗X3 − 0.1 ∗X3 ∗X4 + 0.2 (24)

dX2

dt
= −0.2 ∗X2 + 0.1 ∗X1 (25)

dX3

dt
= −0.2 ∗X3 + 0.2 ∗X1 ∗X4 (26)

dX4

dt
= −0.1 ∗X2 ∗X4 − 0.1 (27)

By applying our algorithm, we have acquired the best cost value 0.09. And the corresponding ODE model
is described as Eqs. (28)∼(31). The time course data generated by this inferred model are shown in Figure
8 along with those of the target model, and we can see that they are also closely matched.

dX1

dt
= −0.478 ∗X1 + 0.188 ∗X4 − 0.3 ∗X2 ∗X2 + 0.222 (28)

dX2

dt
= −0.20 ∗X2 + 0.113 ∗X1 + 3.12le− 7 ∗X3 ∗X3 − 0.009 (29)

dX3

dt
= −0.096 ∗X3 − 0.081 ∗X1 − 0.188 ∗X1 ∗X2 + 0.019 (30)

dX4

dt
= 0.043 ∗X4 − 0.109 (31)

12

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
time

−1.5

−1.0

−0.5

0.0

0.5

1.0

X1
,X

2,
X3

,X
4

va
ria

bl
e

target
result

Figure 8: Time course data compare between initial and result about x1, x2, x3, x4.

We performed 20 trials for each experiment to compare the performance of PSO and LatinPSO. The185

results are shown in Table 7 and Figure 9. The results show that the three modified algorithms have
better ability to search the system of ODEs given the time course data, and LatinPSO-3 outperforms
LatinPSO-1 and LatinPSO-2. Table 8 shows that the t-test of 20 experimental results of LHSPSO-3 and
PSO, P (T < t) = 0.21 > 0.05, so the difference between the two is not statistically significant.

Table 7: The cost value of the four-variable model
Average Cost Min Cost Max Cost Standard Deviation

PSO 5.22 0.35 19.58 5.86
LatinPSO-1 4.66 0.11 18.35 5.73
LatinPSO-2 4.02 0.09 17.95 5.25
LatinPSO-3 3.07 0.17 12.95 3.45

Table 8: T-test results of two algorithms

df t Stat P(T <= t) two-tailed two-tailed critical value
PSO and LatinPSO-3 26 1.27 0.21 2.05

It can be seen from both Sections 3.2 and 3.3 that the identified models do not have the same structure190

as the original model. This is similar to the HIV model identification in Section 3.1, and again we point out
that due to the complexity of the problem, we found alternative model structures. We also point out that
given more domain knowledge about the system, it will be more likely for us to identify the correct model.
Furthermore, from the system design and synthetic biology point of view, alternative model structures will
be of interest as they offer alternative design choices for achieving the same biological functionalities.195

We also discover that the models we found for the 3-variable and 4-variable systems are more complicated
than the actual models. This means we can further use the model parsimony principle to guide the search,
that is, we assign higher cost values to simpler models and penalize complicated ones. This will become
part of our future work.

13

PSO LatinPSO-1 LatinPSO-2 LatinPSO-3

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

co
st

 v
al

ue

Figure 9: The box plot of cost values in the four-variables model

3.4. A Comparison of Genetic Algorithm and LatinPSO200

Genetic Algorithm is shown in Section 2.3. In this section, we tried to analyse the matching degree
between original data and the ODE model that the two algorithm find in the same time. The experimental
target model is the artificial three-variable ODE model, as shown in Section 3.2. These simulations were
conducted on intel Core i5 2.5GHz, 8GB memory in Python IDLE environment. Both algorithms were
started at the same time, given a time frame of 600 seconds. Ten trials were performed for each experiment.205

In GA, the size of population is 1000, the size of crossover probability Pc is 0.6, the size of mutation
probability Pm is 0.1, the experimental parameters of the LatinPSO algorithm are the same as the previous
experiments.

By applying LatinPSO, we acquired the best cost value 9.84, and the corresponding ODE model is given
in Eqs. (32)∼(34). And by applying GA, we acquired the best cost value 18.34, and the corresondding ODE210

model is given in Eqs. (35)∼(37). The comparison between the data generated by the best models obtained
by the two algorithms and the target data is shown in Figure 10. As one can be seen from Figure 10, in
terms of the degree of data matching, the model that LatinPSO algorithm finds is superior to the model
that the GA finds.

(1).The Resultant ODE Model of LatinPSO

dX1

dt
= −0.506 ∗X1 + 0.341 ∗X3 − 0.874 ∗X1 ∗X2 (32)

dX2

dt
= −0.241 ∗X2 + 0.442 ∗X3 ∗X3 + 0.701 (33)

dX3

dt
= −0.086 ∗X3 + 0.254 ∗X1 +X1 ∗X3 (34)

(2).The Resultant ODE Model of GA

dX1

dt
= −0.985 ∗X1 − 0.012 (35)

dX2

dt
= −0.251 ∗X2 + 0.806 ∗X3 ∗X3 − 0.002 (36)

dX3

dt
= −0.999 ∗X1 + 0.950 ∗X1 ∗X2 + 0.113 (37)

14

0 10 20 30 40 50 60
time

0

2

4

6

8

X1
,X

2,
X3

 v
ar

ia
bl

e
target
result_GA
result_LatinPSO

Figure 10: Comparison of result data generated by GA algorithm and LatinPSO algorithm with target data

For each algorithm we performed 10 trials to compare GA and LatinPSO algorithm. Under the premise215

of giving the same time, the cost values obtained by the two algorithms are shwon in Table 9 ,Table 10 and
Figure 11. The results show that the LatinPSO algorithm outperform the GA for a given runtime. Table
10 shows that the t-test of 10 experimental results of LatinPSO and PSO, P (T < t) = 0.01 < 0.05, so the
difference between the two is statistically significant.

Table 9: Cost value of two algorithms

Average Cost Min Cost Max Cost Standard Deviation
GA 28.15 18.34 51.22 9.34

LatinPSO 17.72 9.84 34.17 7.63

Table 10: T-test results of two algorithms

df t Stat P(T <= t) two-tailed two-tailed critical value
GA and LatinPSO 18 2.74 0.01 2.10

GA LatinPSO

10

20

30

40

50

co
st

 v
al

ue

Figure 11: The box plot of cost value of two algorithm

15

3.5. The Influence of Parameter Values on Experimental Results220

In order to select a more appropriate number of iterations, we performed four experiments using HIV
model with different numbers of iterations to investigate the effect of the number of iterations on the final
results. Other parameter settings remain the same and the number of iterations is set to four values: 250,
500, 750, and 1,000. The results are shown in Table 11. In the same way as above, we also performed four
sets of experiments with different numbers of particles, and the number of particles in each group was 250,225

500, 750, and 1,000, respectively. The results are presented in Table 12. The results show that as the number
of iterations and population size increase, the cost value decreases gradually. When the number of iteration
is 1000 and the population size is 1000, the quality of the cost value between the result data and the known
data is better, so the value of population size and iteration times is set to 1000 in the experiments.

Table 11: Results with different numbers of iterations
Population Size Iteration Times w C1 C2 Average

1000 250 0.7 1.5 1.5 55452.3
1000 500 0.7 1.5 1.5 30134.5
1000 750 0.7 1.5 1.5 20091.1
1000 1000 0.7 1.5 1.5 19913.6

Table 12: Results with different swarm size
Population Size Iteration Times w C1 C2 Average

250 1000 0.7 1.5 1.5 67793.0
500 1000 0.7 1.5 1.5 40134.2
750 1000 0.7 1.5 1.5 34199.5
1000 1000 0.7 1.5 1.5 19913.6

In order to investigate the effect of two parameters (c1 and c2) on the experimental results, we performed230

a set of experiments with the artificial three-variable ODE model when two parameters took different values.
The results are shown in Table 13. From the results, we can see that when both parameters (c1 and c2) are
set to 1.5, better results can be obtained.

Table 13: Results with different c1 and c2
Population Size Iteration Times w C1 C2 Average Cost

1000 1000 0.7 1.5 1.5 8.07
1000 1000 0.7 1.5 2.0 16.88
1000 1000 0.7 2.0 2.0 21.08

In addition, when the number of particles is set to be small, better experimental results can be obtained
by increasing the number of iterations. We designed a set of experiments: the number of particles is fixed235

at 100, and the number of iterations increases from 1,000 to 10,000. The results show that the cost value
gradually improves with the number of iterations. The optimal solution is obtained when the number of
iterations is 100000, but there is still a gap compared with the results when the number of particles and the
number of iterations is 1,000.

16

Table 14: Results with few population and larger iterations

Population Size Iteration Times w C1 C2 Average Cost
1000 1000 0.7 1.5 1.5 8.07
100 1000 0.7 1.5 1.5 29.809
100 2000 0.7 1.5 1.5 22.157
100 5000 0.7 1.5 1.5 17.413
100 10000 0.7 1.5 1.5 14.868
200 1000 0.7 1.5 1.5 30.743
200 2000 0.7 1.5 1.5 18.949
200 5000 0.7 1.5 1.5 14.282
200 10000 0.7 1.5 1.5 12.389

4. Conclusions and Future work240

The task of system identification in terms of inferring the structure and parameters of ODEs plays an
important role in many scientific fields [26, 27, 10]. In this research, we proposed a system identification
approach for inferring the system of ODEs from given time course data by using LatinPSO algorithm. The
experimental results demonstrate that we can succeed in acquiring the system of ODEs which is close to the
observed time course data, and the accuracy is better than the original PSO algorithm. More intriguingly,245

our system identification approach can explore alternative structures of a system with similar behaviour,
and this can provide valuable information for not only further investigation into the system but also for
system design and implementation.

As one direction of future research, we will apply more constraints and heuristics to further narrow down
the search space, for instance, the use of model parsimony principle and more specific constraints on the250

number of interacting variables. We will also further investigate the fundamental reasons why and how LHS
contributes to the overall search process of PSO when performing ODE model inference.

From the practical perspective, we aim to build a platform that offers services to some real-world prob-
lems. For example, to help biologists identify possible structure and the associated parameter values of
dynamics networks from time course data. And we are aware of the fact that the more the variables of255

a ODE has, the more complexity of the corresponding solution space. Therefore, another direction of our
future work will be extending and improving our algorithms for inferring more complex large-scale ODE
models of biological systems.

5. Acknowledgment

This research is supported by the National Natural Science Foundation of China (Grants Nos.61772227,260

61572227), the Science & Technology Development Foundation of Jilin Province (GrantsNo. 20180201045GX),
the Science Foundation of Education Department of Guangdong Province(Grants Nos.2017KQNCX251,
2018XJCQSQ026) and the Social Science Foundation of Education Department of Jilin Province (Grants
No.JJKH20181315SK). WP was supported by the 2015 Scottish Crucible award funded by Royal Society of
Edinburgh.265

References

[1] Yanping, LIANG, Baosheng, Hengjian, Robust estimation of parameters in nonlinear ordinary differential equation models,
Journal of Systems Science and Complexity 29 (1) (2016) 41–60.

[2] R. Mattheij, J. Molenaar, Ordinary differential equations in theory and practice, International Journal of Rock Mechanics
and Mining Sciences and Geomechanics Abstracts 27 (4) (1996) 343.270

[3] H. Xue, H. Miao, H. Wu, Sieve estimation of constant and time-varying coefficients in nonlinear ordinary differential
equation models by considering both numerical error and measurement error., Annals of Statistics 38 (4) (2010) 2351–
2387.

17

[4] S. Dzeroski, L. Todorovski, Modeling the Dynamics of Biological Networks from Time Course Data, Springer New York,
2010.275

[5] H. Cao, L. Kang, Y. Chen, J. Yu, Evolutionary modeling of systems of ordinary differential equations with genetic
programming, Genetic Programming and Evolvable Machines 1 (4) (2000) 309–337.

[6] N. D. Price, I. Shmulevich, Biochemical and statistical network models for systems biology., Current Opinion in Biotech-
nology 18 (4) (2007) 365–370.

[7] S. E. F. Spencer, S. M. Hill, S. Mukherjee, Inferring network structure from interventional time-course experiments, Annals280

of Applied Statistics 9 (1).
[8] H. Iba, Inference of differential equation models by genetic programming, Information Sciences 178 (23) (2008) 4453–4468.
[9] K. Soetaert, T. Petzoldt, J. D. Leeuw, A. Zeileis, Inverse modelling, sensitivity and monte carlo analysis in r using package

fme, Journal of Statistical Software 33 (03) (2010) 1–28.
[10] S. Russell, P. Norvig, Artificial intelligence. a modern approach 2 (1995) 27–34.285

[11] M.D.Mckay, R.J.Beckman, W.J.Conover, A comparison of three methods for selecting values of input variables in the
analysis of output from a computer code, Technometrics 42 (1) (2000) 55–61.

[12] H. P. Ren, X. Huang, J. Hao, Finding robust adaptation gene regulatory networks using multi-objective genetic algorithm,
IEEE/ACM Transactions on Computational Biology and Bioinformatics 13 (3) (2016) 571–577.

[13] Y. Chen, B. Yang, Q. Meng, Y. Zhao, A. Abraham, Time-series forecasting using a system of ordinary differential equations,290

Information Sciences 181 (1) (2011) 106–114.
[14] R. Kashyap, System identification, Academic Press,, 1976.
[15] Z. Shu, P. Jirutitijaroen, Latin hypercube sampling techniques for power systems reliability analysis with renewable energy

sources, IEEE Transactions on Power Systems 26 (4) (2011) 2066–2073.
[16] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: International Symposium on MICRO Machine295

and Human Science, 2002, pp. 39–43.
[17] Y. Shi, R. C. Eberhart, Parameter selection in particle swarm optimization, Springer Berlin Heidelberg, 1998.
[18] J. Kennedy, R. Eberhart, Particle swarm optimization, in: IEEE International Conference on Neural Networks, 1995.

Proceedings, 1995, pp. 1942–1948 vol.4.
[19] R. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: International Symposium on MICRO Machine300

and Human Science, 2002, pp. 39–43.
[20] L. Zhang, H. Yu, S. Hu, A new approach to improve particle swarm optimization, Lecture Notes in Computer Science

2723 (2003) 134–139.
[21] X. Yang, J. Yuan, J. Yuan, H. Mao, A modified particle swarm optimizer with dynamic adaptation, Applied Mathematics

and Computation 189 (2) (2007) 1205–1213.305

[22] R. Poli, J. Kennedy, T. Blackwell, Particle swarm optimization, Swarm Intelligence 1 (1) (2007) 33–57.
[23] K. L. Du, M. N. S. Swamy, Search and Optimization by Metaheuristics, Springer International Publishing, 2016.
[24] I. C. Trelea, The particle swarm optimization algorithm: convergence analysis and parameter selection, Information

Processing Letters 85 (6) (2003) 317–325.
[25] X. N. Huang, H. P. Ren, Identification of robust adaptation gene regulatory network parameters using an improved particle310

swarm optimization algorithm, Genetics and Molecular Research 15 (2).
[26] S. eroski, L. Todorovski, Discovering dynamics: from inductive logic programming to machine discovery, Journal of

Intelligent Information Systems 4 (1) (1995) 89–108.
[27] P. Langley, Elements of machine learning, Morgan Kaufmann Publishers Inc., 1995.

18

	Introduction
	Algorithm Detail
	Representation of solution space
	The LatinPSO algorithm
	Particle Swarm Opitimisation (PSO) algorithm
	Latin Hypercube Sampling (LHS) Technique
	The LatinPSO algorithm

	Genetic Algorithm
	The Definition of Cost Function

	Experimental results
	The HIV Model
	The Artificial Three-Variable ODE Model
	The Artificial Four-Variable ODE Model
	A Comparison of Genetic Algorithm and LatinPSO
	 The Influence of Parameter Values on Experimental Results

	Conclusions and Future work
	Acknowledgment

