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Abstract

A commonly accepted feature of an excitable medium is that a local excitation leads to a propaga-
tion of circular or spiral excitation wave-fronts. This is indeed the case in fully excitable medium.
However, with a decrease of an excitability localised wave-fragments emerge and propagate ballisti-
cally. Using FitzhHugh-Nagumo model we numerically study how excitation wave-fronts behave in
a geometrically constrained medium and how the wave-fronts explore a random planar graph. We
uncover how excitability controls propagation of excitation in angled branches, influences arrest of
excitation entering a sudden expansion, and determines patterns of traversing of a random planar
graph by an excitation waves.
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1 Introduction

Excitation is essential property of all living creatures, from bacteria [31], protists [15, 24, 11], fungi [32]
and plants [39, 19, 45] to vertebrates [25, 7, 34, 14]. Waves of excitation could be also found in various
physical [26, 40, 38, 22], chemical [9, 43, 44] and social systems [17, 16]. A study of a propagation
of excitation wave-fronts in geometrically constrained media also brings a high value in future and
emergent computing technologies because there is a substantial number of theoretical and experimental
laboratory prototypes of unconventional computing devices based on the interaction of the wave-
fronts [2, 3].

Interactions of wave-fronts with inhomogeneities of a medium and geometrical constrains of the
medium has been studied for the case of a fully excitable medium, especially in the context of myocardi-
uam and formation of spiral waves due to inhomogeneities [21, 28, 10, 13, 37, 30, 29, 27, 42, 46, 41, 20].
Particularly interesting results include cancellation of excitation wave-fronts in the narrowing ar-
eas [27], annihilation or delay of wave-fronts propagating along narrow channel when entering a sudden
expansion [28, 13]. We reconsider these topics and introduce several new ones in present paper.

A key feature of present study is that we consider behaviour of the medium at a wide range
of excitability: from classical fully excitable medium with target waves to sub-excitable medium
with localised wave-fragments to non-excitable medium. In numerical experiments we demonstrate
dependence of an angle of a branching channel which a wave can enter on the excitability of the
medium. We show how the excitability affects arresting of the wave on entering an expansion. We
also analyse an extend of a random planar graph exploration by wave-fronts for various values of
excitability.

2 The model

FitzHugh-Nagumo (FHN) equations [18, 33, 35] give us a qualitative approximation of Hodgkin-Huxley
model [8] of electrical activity of living cells:

∂v

∂t
= c1u(u− a)(1− u)− c2uv + I +Du∇2 (1)

∂v

∂t
= b(u− v) (2)
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where u is a value of a trans-membrane potential, v is a variable accountable for a total slow ionic
current, or a recovery variable responsible for a slow negative feedback, I is a value of external
stimulation current. Current through intra-cellular spaces is approximated by Du∇2, where Du is a
conductance. Detailed explanations of the ‘mechanics’ of the model are provided in [36], here we repeat
some insights. The term Du∇2u governs a passive spread of the current. The terms c2u(u− a)(1− u)
and b(u−v) describe the ionic currents. The term u(u−a)(1−u) has two stable fixed points u = 0 and
u = 1 and one unstable point u = a, where a is a threshold of an excitation. We integrated the system
using Euler method with five-node Laplace operator, time step ∆t = 0.015 and grid point spacing
∆x = 2, other parameters were Du = 1, a = 0.13, b = 0.013, c1 = 0.26, we controlled excitability of the
medium by varying c2 from 0.09 (fully excitable) to 0.013 (non excitable). Boundaries are considered to
be impermeable: ∂u/∂n = 0, where n is a vector normal to the boundary. The numerical integration
code, written in Processing was inspired by [23, 35, 36]. Time-lapse snapshots provided in the paper
were recorded at every 150th time step, and we display sites with u > 0.04; videos supplementing figures
were produced by saving a frame of the simulation every 100th step of the numerical integration and
assembling them in the video with play rate 30 fps. Videos are available at [1].

3 Results

Propagation of a wave-front in a ‘free’ space. Let us have a brief look at the wave propagation
in a ‘free’ space for selected values of excitability c2 (Fig. 1). In a fully excitable medium, c2 = 0.1 we
observe a circular wave propagating from a single source of stimulation (Fig. 1(a)). Since excitability
reaches c2 = 0.11 a stimulation evokes not a circular wave but a wave-fragment. The fragment rapidly
expands in Fig. 1(b). The time necessary for a wave-fragment to lose its stability and start expanding
increases with decrease of excitability (Fig. 1(c)–1(f)). The excitation shows soliton-like behaviour
with a wave-fragment staying compact for hundreds of thousands of iterations for c2 = 0.115092
(Fig. 1(g)) and c2 = 0.115092 (Fig. 1(h)). For c2 > 0.115094 wave-fragments collapse rapidly.

Speed of a wave-front propagation in a channel. As seen in Fig. 1(i), excitation wave-front
collapses after nearly 18.5 · 103 iterations for c2 = 0.115095, yet when geometrically restricted to a
channel of a conducive material, width 20 nodes, the excitation steadily propagates for c2 up to 0.1265
(Fig. 1(k)). Geometrical constraining of an excitation enhances lifetime of wave-fragments at lower
values of excitability however does not prevent wave-fragments from slowing down (Fig. 1(l)). A crude
linear dependence of a speed v on excitability c2 is v(c2) = 0.027041+(−0.11297)·c2 and more accurate
cubic one is v(c2) = 0.21425 + (−5.4905) · c2 + 51.057 · c22 + (−160.27) · c32.

Wave profile. What happens with a wave profile with decrease of excitability? As illustrated in
Fig. 1(m), the increase of c2 from 0.1 to 0.12 to 0.126 causes decrease in amplitude. A width of the
wave-front does not seem to be affected by the excitability, as seen in Fig. 1(m). However, due to a
lower amplitude and a narrower shape the wave-fronts are visualised as narrow for higher values of c2.

Excitation propagation into angled branches. Assume a wave-front propagates along a central
channel, 20 nodes wide, from which other channels are branching our at various angles. A width
of each lateral channel is 20 nodes. How would excitability of the medium affect an ability of the
wave-front to enter a later channel branching at a specified angle? To find the answer we designed a
template with 15 lateral channels branching out the central channel at angles (Fig. 2(a)) from 20o to
170o with increment 10o. A distance between two adjacent lateral channels is 60 nodes.

Exemplar time lapses of excitation propagating in the template for various values of c2 is shown
in Fig. 2(b)–2(i). Excitation enters all lateral channels till c2 = 0.1 (Fig. 2(b)) but fails to enter the
channel branching out at 170o when excitability is c2 = 0.104 (Fig. 2(c)). With further increase of
c2 less channels branching out at obtuse angles remain unexcited (Fig. 2(d)). At excitability level
c2 = 0.111 the excitation fails to enter 90o channel (Fig. 2(e)). After further decrease of excitability
through c2 = 118 (Fig. 2(f) and c2 = 0.120 (Fig. 2(g)) to c2 = 0.122 (Fig. 2(g)) excitation fails to
propagate along the central channel at c2 = 0.126.
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(a) c2 = 0.1 (b) c2 = 0.11 (c) c2 = 0.115 (d) c2 = 0.11505 (e) c2 = 0.11508

(f) c2 = 0.11509 (g) c2 = 0.115092 (h) c2 = 0.115093 (i) c2 = 0.115095 (j) c2 = 0.11510

(k) c2 = 0.126
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Figure 1: Propagation of excitation in a free space (a–j) and a channel of 1700×20 nodes (k). Each
picture shows not several waves but a configuration of a single wave displayed on the same image
every 100th iterations. (l) Time lapse of a single wave-front propagating in a channel for c2 = 0.126.
(m) Cross cut of the wave-front profile. Concentration of u is shown by red, and v by blue. Solid
lines represent the profile of the wave-front for c2 = 0.1, dotted line for c2 = 0.12 and dashed line for
c2 = 0.126. Time lapses (a–j) are at 0.3 scale of the real size, and (k) at 0.27 scale.
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(c) c2 = 0.104

(d) c2 = 0.106

(e) c2 = 0.111

(f) c2 = 0.118

(g) c2 = 0.120

(h) c2 = 0.122

(i) c2 = 0.126
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Figure 2: Excitability affects a wave-front propagation into angled branches. (a) A representation
of the angle α. Solid arrow shows direction of propagation of the wave-front in the central channel,
dashed arrow shows direction of propagation of the wave-front entering the angled branch. (b–i)
Exemplary time lapses of experiments. All channels have width 20 nodes. (j) Angle α of a lateral
channel being entered by excitation wave versus c2. Data points are shown by solid discs, polynomial
approximations by line. (k) Coverage ζ versus non-excitability c2. Time lapses (b–i) are at 0.27 scale
of their real size. See videos in [1].
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The largest angle α of a lateral channel entered by an excitation decreases polynomially with
increase of c2: α(c2) = 352532+(−1.2716 ·107) ·c2+1.7136 ·108 ·c22+(−1.0227 ·109) ·xc2+2.2823 ·109 ·c42
(Fig. 2(j)). In Fig. 2(k) we give a fine-grained characterisation of the dynamic using the coverage ζ.
The coverage ζ is a ratio of nodes excited at least once during the simulation to a total number of
nodes in the template. Three critical values of c2 are evident in Fig. 2(k): c2 = 0.104 (wave fails to
enter 170o lateral channel), c2 = 0.116 (wave fails to enter 80o channel) and c2 = 0.126 (wave fails to
propagate in the central channel).

Arrest of an excitation wave-front on its entry into an expansion. To analyse how excitabil-
ity affects an arrest of a wave-front on entering expansion we prepared 15 templates as follows. Each
template is comprised of two rectangles 25×21 nodes connected by a channel 460 nodes long. Width of
the channel was varied from 6 nodes to 20 nodes. We initiated an excitation in the bottom expansion,
and allowed the excitation wave to propagate along the narrow channel and into the top expansion.
Exemplar time lapses of experiments are shown in Fig. 3(a), 3(b), 3(c). Let w is the smallest width of
a channel from which the excitation propagates into the extension reservoir. The dependence of w on
c2 is shown in Fig. 3(d). The following piece-wise linear approximation is valid: w(c2) = 2 ·102 ·c2−10,
if c2 ∈ [0.08, 0.125[ and w(c2) = 2 · 103 · c2 − 234, if c2 ∈ [0.125, 0.127].

Exploration of a random plant graph by excitation wave-fronts. A random planar graph G
is generated using Grapherator R package [12] as a random set of 50 planar nodes (samples points from
a bi-variate uniform distribution) connected by 137 edges of a Delaunay triangulation. For each of the
tested values of c2 we started with a graph in a resting state and stimulated the north-most node of the
graph. Exemplar time lapses of excitation on G are shown in Fig. 4. From the plot of ratio ζ of edges
traversed by excitation wave-fronts versus c2 we see that ζ decreases with increase of c2. At c2 = 0.111
we witness a sharp decrease in graph coverage (Fig. 4(d)). Note that at the same value of c2 excitation
wave-fronts are no longer entering branches with angle over 90o (Fig. 2(e)) and chances of arrest on
entering an expansion start to increase exponentially with growth of c2 (Fig. 3(d)). The coverage ζ(c2)
can be approximated by two cubic functions: 4125.3− 115892 · c2 + 1.0855 · 106 · c22 − 3.3891 · 106 · c32
for c2 ∈ [0.105, 0.111] and 2442.2− 62991) · c2 + 541558 · c22 − 1.5519 · 106 · c32 for c2 ∈]0.111, 0.118]. As
evidenced by videos of experiments [1] and exemplar plots of activity in Fig. 4(e) the traversing of the
G by excitation wave-fronts is non-linear. For c2 below 0.09 we see multiplications of wave-fronts, with
some fronts travelling along cyclic routes on the graph. Few outburst of activity, due to multiplication
of the fronts for c2 = 0.095 is shown in Fig. 4(e). For c2 = 0.11 we witness prolonged periods of low
activity with few outbursts of higher aperiodic activity. This is due to a small number of wave-fronts
traversing the graph. Some collisions between the wave-fronts lead to annihilation of the fronts, others
to formation of additional wave-fronts.

4 Discussion

We found how excitability affects a speed of excitation wave-fronts, an ability of the fronts to expand
into angled branches, and chances of the fronts to be arrested on entering an expansion. While
studying exploration of a random planar graph with excitations we found that the coverage as a
function of excitability is a sigmoid function, and that for certain range of excitability values we
can observe repeated outburst of excitations due to the wave-fronts travelling along cyclic paths and
producing multiple wave-fragments while interacting with each other. The function is comparable
with coverage functions obtained in our numerical experiments with two-variable Oregonator model of
Belousov-Zhabotinsky (BZ) reaction, where excitability is controlled by parameter φ, and city streets
networks are explored by oxidation wave fronts: Barcelona [5], London [6] and Tehran [4] (Fig. 5).
Despite different equations used (Oregonator for street networks and FHN for a random planar graph)
similarities are striking. In both cases we have a sigmoid function. The function is rather perfect in
case of a random graph (Fig. 4(d)) and the function is less pronounced, or even distorted, in the
case of street networks (Fig. 5). In the case of a random graph the sharp transition starts roughly
at the middle, c2 = 0.1115 of the interval c2 = 0.105, full coverage, and c2 = 0.118, no coverage.
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(a) c2 = 0.09 (b) c2 = 0.11

(c) c2 = 0.12
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Figure 3: Arrest on entering expansion. (abc) Exemplar time lapse snapshots, scale 0.4 of the real
size. Size of expansion in nodes is shown above each template. (d) w versus c2, where w is the smallest
width of a channel from which the excitation propagates into the extension reservoir.
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(a) c2 = 0.105 (b) c2 = 0.111 (c) c2 = 0.118
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Figure 4: Exploration of a random planar graph G by excitation wave-fronts. (a)–(c) Time lapse
snapshots of the excitations on G. See videos in [1]. (d) A ratio ζ of a number of edges traversed by
excitation wave-fronts to a total number of edges in G versus c2.
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Figure 5: Coverage ζ of selected fragments of street networks in Tehran (circle), Barcelona (star),
London (square) versus excitability φ of the two-variable Oregonator model of Belousov-Zhabotinsky
reaction. See detials in [5].
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Also, noticeably, the coverage function for Tehran shows two sharp drops in coverage, first just near
φ = 0.06 and second near φ = 0.075. Further studies are required to establish deep relationships
between Oregonator BZ and FHN models’ behaviour on graphs and their potential for analysing the
geometric networks.
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