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Abstract 
Recent advances in synthetic biology have enabled the design of genetic 

feedback control circuits that could be implemented to build resilient plants against 

pathogen attacks. To facilitate the proper design of these genetic feedback control 

circuits, an accurate model that is able to capture the vital dynamical behaviour of the 

pathogen-infected plant is required. In this study, using a data-driven modelling 

approach, we develop and compare four dynamical models (i.e. linear, Michaelis-

Menten with Hill coefficient (Hill Function), standard S-System and extended S-System) 

of a pathogen-infected plant gene regulatory network (GRN). These models are then 

assessed across several criteria, i.e. ease of identifying the type of gene regulation, 

the predictive capability, Akaike Information Criterion (AIC) and the robustness to 

parameter uncertainty to determine its viability of balancing between biological 

complexity and accuracy when modelling the pathogen-infected plant GRN. Using our 

defined ranking score, we obtain the following insights to the modelling of GRN. Our 

analyses show that despite commonly used and provide biological relevance, the Hill 

Function model ranks the lowest while the extended S-System model ranks highest in 

the overall comparison. Interestingly, the performance of the linear model is more 

consistent throughout the comparison, making it the preferred model for this pathogen-

infected plant GRN when considering data-driven modelling approach. 
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1. Introduction 
One of the common fungal pathogens that infects plant is the Botrytis cinerea. 

When infection occurs, the interactions between the pathogen and the host plant often 

lead to the host plant succumb to diseases. This is because pathogen often disrupts 

the host defense mechanism through secretion of a range of proteins, small RNAs and 

metabolites to aid their colonisation Williamson et al., 2007; Jamir et al., 2007; Weiberg 

et al., 2013; Jones and Dangl, 2006). Advances in the area of molecular biology have 

provided plant synthetic biologists means of improving plant resilience through the use 

of synthetic feedback control circuits (see e.g., (Aoki et al., 2019)) to restore the 

regulation that is affected by the pathogen attack (Foo et al., 2018a). Pathogen 

affected genes involved in defence tend to have their expression levels compromised, 

leading to their reduced functional ability (Ng et al., 2018; Sood et al., 2021). The 

synthetic feedback control circuits would sense the changes in the expression level of 

pathogen affected genes, where the genes cis-regulatory elements are modified 

resulting in changes in their regulations and expression levels (see (Gherman, 2018) 

and references therein) and regulate appropriate transcription factor to allow the 

compromised expression levels to be controlled thereby enabling plant to recover their 

defence functionality. 

To facilitate the design of these synthetic feedback control circuits, an accurate 

dynamical model depicting the gene regulatory network (GRN) involved in the plant 

defense mechanism is required. In our previous study (Foo et al., 2018a), equipped 

with the temporal data of gene expressions (Windram et al., 2012) and the knowledge 

of the interacting genes involved in plant defence (Gherman, 2018), a linear dynamical 

model is developed using a data-driven modelling approach to model the pathogen-

infected plant GRN with good accuracy and subsequently used to design and develop 

a framework of engineering resilience plant using synthetic genetic feedback control 

circuits. The reason the linear model is considered in (Foo et al., 2018a) is due to the 

design of the proposed synthetic genetic controller carried out in the frequency domain 

using tools from linear control theory. 



In this study, as a follow up to (Foo et al., 2018a), we aim to answer the following 

question: “When using the data-driven modelling approach, given the temporal data 

and knowledge about the pathogen-infected plant GRN interaction, is the linear model 

the most viable model to facilitate the design of synthetic feedback control and if not 

what is the alternate candidate model?” 

Since the advancement in the area of Systems Biology, GRN modelling has 

been extensively studied (see the review paper by (Schlitt and Brazma, 2009) and 

references therein). According to (Schlitt and Brazma, 2009), most of the models 

described in those studies can be categorised into four main classes in the order of 

increased complexity --- part list model (e.g., description of the GRN component), 

topology model (e.g., directed graph model), control logic model (e.g., Boolean 

function model) and dynamical model (e.g., differential equation model). The models 

developed here are often based on first principles, i.e., using the biological 

understanding of the interacting components. 

With the access to high throughput data at molecular level becoming available, 

attention turns to another branch of modelling approach called reverse engineering 

(Tegner et al., 2003; Hache et al., 2009), where models are developed in the attempt 

to fit those data using various methods such as correlation-based method, Bayesian 

networks, regression analysis, information theoretical approaches, Gaussian 

graphical models, dynamic differential equations, etc (Penfold and Wild, 2011; Chai et 

al., 2014; Villaverde et al., 2013; Vinciotti et al., 2016). In a reverse engineering 

approach, usually there is no assumption about the model structure and the interacting 

components.  

The development in this area often parallels the development of GRN network 

inference algorithms, where the types and directions of regulation between 

components are inferred directly from data (see the review paper (Emmert-Streib et 

al., 2012) and references therein). As a note, in the area of systems and control 

engineering (He et al., 2016), the reverse engineering approach is also known as 

system identification or data-driven modelling. 

Here, we would like to make several remarks to provide readers the main scope 

of this study. First, this study is not about comparing network inference algorithms, 

hence the discussion on this topic is beyond the scope of this study. Interested readers 

can see the following review papers (Long et al., 2008; Den Broeck et al., 2020) for 

more details. Second, unlike typical reverse engineering (data-driven modelling) 



approaches that assume almost no prior knowledge about the GRNs and the model 

structures, here we have some knowledge about the interacting genes and we have a 

set of candidate model structures of interest to be compared. Thus, our `network 

inference' approach will be simpler with the focus on identifying the regulation type. 

Third, our study is system specific, i.e., a pathogen-infected plant GRN, and the main 

goal is to answer the key question posted above, i.e., the suitability of the linear 

dynamical model (Foo et al., 2018a) in modelling a pathogen-infected plant GRN. 

To the best of our knowledge, the only comparative study of different dynamical 

models for plant-specific GRN has been carried out in (Wang et al., 2014), where the 

authors compared several dynamical models for the GRN involved in plant flowering 

time. Different from that study, our study focuses on the data-driven modelling 

approach and uses different quantitative metrics for model comparison. In our 

comparative analysis, in addition to the linear model given in (Foo et al., 2018a), we 

consider the Michaelis-Menten model with Hill coefficient and two S-System based 

models. The choice of these three models are motivated by their capabilities in 

modelling GRN (see e.g., Karlebach and Shamir, 2008; Chowdhury and Chetty, 2016; 

Foo et al., 2020)). From here onward, we will use the notation Hill Function model for 

Michaelis-Menten with Hill coefficient model (see e.g., Santillan, 2008)). 

The manuscript is organised in the following manner. In Section 2, we present 

the pathogen-infected plant GRN used as our case study. The main results on the 

comparative analysis of the four GRN models are presented and discussed in detail 

in Section 3. In Section 4, we analysed the applicability of our approach to other GRN. 

Finally, the discussion and conclusions are provided in Section 5. 

 

2. System description 
The plant GRN involved in the defence against pathogen attack and used in 

this study is adapted from (Windram et al., 2012), where a subnetwork of nine genes 

– hereinafter termed 9GRN (Foo et al., 2018a) – has been identified to be involved in 

the defence against Botrytis cinerea, as shown in Fig. 1. In Fig. 1, while the direction 

of regulation between genes in 9GRN is known, the type of regulation (i.e., activation 

or inhibition) is not entirely known. Among these nine genes, seven of them are directly 

affected by the pathogen, as indicated by the yellow hexagon. CHE and ATML1 are 

part of the circadian clock genes as their oscillatory profiles are influenced by external 



light, as indicated by the red lightning. Moreover, the gene CHE has been identified to 

be an important gene in the plant defence mechanism and when it is affected by the 

pathogen, its expression level would decrease thereby reducing its defence capability 

(Windram et al., 2012; Gherman, 2018). Therefore, it is imperative that the expression 

level of CHE being kept high and thus the role of the synthetic feedback control 

circuitry is to ensure its expression level stay high when under pathogen attack. 

 
Fig. 1. Plant (Arabidopsis) gene regulatory network (termed 9GRN) involved in the defence response 

to Botrytis cinerea adapted from (Foo et al., 2018a). The yellow hexagon symbol represents genes that 

have been identified to be directly affected by Botrytis cinerea. Red lightning symbol represents genes 
that are light regulated. The directional arrows indicate the influence of one gene to another despite its 

regulation type unknown. 
 

3. Comparative analysis of the 9GRN models 
3.1. Comparison criteria 

 In this comparative study, the four dynamical models of 9GRN will be evaluated 

across the following criteria. 

• Criterion I: Ease of identifying regulation type. 

• Criterion II: Predictive capability. 

• Criterion III: Quality of data fit using Akaike weights based on Akaike 

Information Criterion (AIC). 

• Criterion IV: Robustness to parameter uncertainties. 

 

These four criteria are chosen following typical model evaluation techniques 

(see e.g., (Turchin, 2003) and references therein) that considers metric such as model 



prediction error, model quality amidst complexity and model robustness to 

uncertainties. For more details see (Turchin, 2003). 

 

3.2. Model structures for 9GRN 

 The general structure for all these four models are given as follows: 

Linear model: This linear model is the one used in (Foo et al., 2018a). 

𝑑𝑋!
𝑑𝑡 =%𝛼!,#𝑋# − 𝛽!𝑋! + 𝐵$,! + 𝑐!𝑊 + 𝛾!𝐿% 	
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(1) 

where 𝑋! is the expression level of 𝑖th gene, 𝑛!) is the number of genes involved in 

regulating 𝑋!, 𝛼 is the production rate, 𝛽 is the degradation rate, 𝐵$ is the gene basal 

level while 𝑐 and 𝛾 parameterised the external input from pathogen 𝑊 and light 𝐿% , 

respectively. For more details on how each of the terms in (1) are derived, see (Foo 

et al., 2018a). 

 

Standard S-System model: The standard S-System model developed from the field of 

biochemical system theory was initially proposed in (Savageau, 1969) to model 

metabolic pathways. Over the course of its development (see e.g., (Savageau, 2001; 

Voit et al., 2015) and references therein), this model has been used to model GRN 

with good accuracy (Maki et al., 2000) and it has the following form. 

𝑑𝑋!
𝑑𝑡 = 𝛼! 2𝑋#
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(2) 

where 𝛼 is the production rate, 𝛽 is the degradation rate, 𝑛 and 𝑚 are respectively the 

total number of dependent and independent variables and 𝑔!,# and ℎ!,# are exponents 

associated with the production and degradation processes, respectively. Note that the 

standard S-System model structure does not have provision to account for gene basal 

level and the external input, and these variables are incorporated directly as part of 

the independent variables. 

 

Extended S-System model: This model was proposed in (Foo et al., 2020) to 

individually account for the effect of gene basal expression and external input, instead 



of being part of the independent variables, and was shown to accurately describe the 

plant circadian system compared to the standard S-System model. The extended S-

System model has the following form. 

𝑑𝑋!
𝑑𝑡 = 𝛼!2𝑋.
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(3) 

where 𝛼 , 𝛽	 and 𝛾  are the reaction rate constants associated with production, 

degradation, and external input regulation (e.g., light, perturbation, basal level, etc), 

respectively. Like the standard S-System, 𝑔!,#  represents the exponent related to 

production while ℎ!,#  represents the exponent related to degradation. 𝑛!), 𝑛!/ and 𝑛!0 

are the number of genetic components involved in the respective production, 

degradation, and external input regulation of 𝑋!. 𝑈!,# encapsulates the effect of those 

aforementioned external regulations on 𝑋! . As a note, the Hill Function model is 

commonly used to model GRN instead of the S-System model. Nevertheless, the 

analysis in (Foo et al., 2020) has shown the efficacy of the S-System model structure 

in modelling GRN, thus warranting modellers with two alternate model candidates that 

can be considered when attempting to model GRN. 

 

Hill Function model: Conventionally, this model has been widely used to model GRN 

(see e.g., (Bolouri and Davidson, 2002; Rue and Garcia-Ojalvo, 2013) and references 

therein) and it has the following form. 

𝑑𝑋!
𝑑𝑡 =%𝛼!,#9𝑓1;𝑋# ,𝑊, 𝐿%= + 𝑓2;𝑋# ,𝑊, 𝐿%=> − 𝛽!𝑋! + 𝐵$,!
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(4) 

where like before, 𝛼 and 𝛽 are the production and degradation rate, respectively, 𝐵$ 

is the basal level, 𝑓1  and 𝑓2  are respectively, the activator and inhibitor type of 

regulation. Both have different forms, and they are usually modelled as 𝑓1 = 𝑋3/(𝐾3 +

𝑋3) and 𝑓2 = 1/(𝐾3 + 𝑋3), where 𝐾 is the Michaelis-Menten kinetic constant and 𝑞 is 

the Hill coefficient. Note that here, the regulations are modelled as a summation of 



successive regulations, and they could also be modelled as a product of successive 

regulations. 

 One immediate observation from these four model structures is that the Hill 

Function model structure requires the knowledge of the regulation type when deriving 

the ordinary differential equations (ODE) for each gene, thus making this model not 

suitable for reverse engineering (Youseph et al., 2015). If the regulation type is 

unknown, extra steps (discussed in Section 3.3) are required to construct the best 

fitting Hill Function model structure. Since the Hill Function model requires extra steps 

in identifying the regulation types, it can often incur additional computational load. 

 On the other hand, for the linear and the two S-System based models, the sign 

of the production rate 𝛼!,#  (for linear model) and the exponent associated with the 

production rate 𝑔!,#  (for S-System based model) estimated from data can directly 

inform us the type of regulation for each gene, where a positive value denotes 

activation while a negative value denotes inhibition. For the S-System models, there 

are also approaches being developed that can be used to estimate those parameters 

in an efficient and fast manner (Wang et al., 2010). Moreover, for the linear and 

extended S-System models, the positive or negative regulation of the external inputs 

can also be inferred through the sign of the estimated parameters (i.e., 𝑐's and 𝛾's, 

respectively). 

 

3.3. Detailed ordinary differential equations (ODEs) model of 9GRN 

We use subscripts 𝐿, 𝑆𝑆, 𝐸𝑆 and 𝐻𝐹 in the model parameters to represent the 

linear, standard S-System, extended S-System and Hill Function models, respectively. 

In order to avoid overloading of variables, the following numbers are used to denote 

the genes in 9GRN. 1: ORA59, 2: MYB51, 3: LOL1, 4: AT1G79150, 5: ANAC055, 6: 

a-ERF-1, 7: ATML1, 8: CHE and 9: RAP2.6L. 

 

Linear model: The corresponding ODEs following (1) are given as follow, which is the 

same linear model used in (Foo et al., 2018a), 
𝑑𝐺(
𝑑𝑡 = 𝛼4,(,(𝐺5 + 𝛼4,(,5𝐺6 + 𝛼4,(,7𝐺8 − 𝛽4,(𝐺( + 𝐵4,(	

𝑑𝐺5
𝑑𝑡 = −𝛽4,5𝐺5 + 𝐵4,5 + 𝑐4,5𝑊	



𝑑𝐺7
𝑑𝑡 = −𝛽4,7𝐺7 + 𝐵4,7 + 𝑐4,7𝑊	

𝑑𝐺9
𝑑𝑡 = 𝛼4,9,(𝐺: + 𝛼4,9,5𝐺; − 𝛽4,9𝐺9 + 𝐵4,9 + 𝑐4,9𝑊	

𝑑𝐺6
𝑑𝑡 = 𝛼4,6,(𝐺; − 𝛽4,6𝐺6 + 𝐵4,6 + 𝑐4,6𝑊	

𝑑𝐺8
𝑑𝑡 = −𝛽4,8𝐺8 + 𝐵4,8 + 𝑐4,8𝑊	

𝑑𝐺<
𝑑𝑡 = 𝛼4,<,(𝐺; − 𝛽4,<𝐺< + 𝐵4,< + 𝑐4,<𝑊 + 𝛾4,<𝐿% 	

𝑑𝐺:
𝑑𝑡 = 𝛼4,:,(𝐺7 + 𝛼4,:,5𝐺9 + 𝛼4,:,7𝐺< − 𝛽4,:𝐺: + 𝐵4,: + 𝛾4,:𝐿% 	

𝑑𝐺;
𝑑𝑡 = 𝛼4,;,(𝐺6 − 𝛽4,;𝐺; + 𝐵4,; + 𝑐4,;𝑊 

(5) 

 

Standard S-System model: Following (2), the corresponding ODEs for 9GRN are given 

as follow. 
𝑑𝐺(
𝑑𝑡 = 𝛼$$,(𝐺5

*((,),)𝐺6
*((,),*𝐺8

*((,),+ − 𝛽$$,(𝐺(	

𝑑𝐺5
𝑑𝑡 = 𝛼$$,5𝑊*((,*,) − 𝛽$$,5𝐺5		

𝑑𝐺7
𝑑𝑡 = 𝛼$$,7𝑊*((,+,) − 𝛽$$,7𝐺7	

𝑑𝐺9
𝑑𝑡 = 𝛼$$,9𝐺:

*((,,,)𝐺;
*((,,,*𝑊*((,,,+ − 𝛽$$,9𝐺9	

𝑑𝐺6
𝑑𝑡 = 𝛼$$,6𝐺;

*((,-,)𝑊*((,-,* − 𝛽$$,6𝐺6	

𝑑𝐺8
𝑑𝑡 = 𝛼$$,8𝑊*((,.,) − 𝛽$$,8𝐺8	

𝑑𝐺<
𝑑𝑡 = 𝛼$$,<𝐺;

*((,/,)𝑊*((,/,*𝐿%
*((,/,+ − 𝛽$$,<𝐺<	

𝑑𝐺:
𝑑𝑡 = 𝛼$$,:𝐺7

*((,0,)𝐺9
*((,0,*𝐺<

*((,0,+𝐿%
*((,0,, − 𝛽$$,:𝐺:	

𝑑𝐺;
𝑑𝑡 = 𝛼$$,;𝐺6

*((,1,)𝑊*((,1,* − 𝛽$$,;𝐺; 

(6) 



Note again that the two external variables 𝑊, which represents the effect of Botrytis 

cinerea inoculation and 𝐿%, which represents the effect of light are considered as the 

independent variables. 

 

Extended S-System model: Following (3), we arrive at the following ODEs for the 

9GRN, 
𝑑𝐺(
𝑑𝑡 = 𝛼0$,(𝐺5

*&(,),)𝐺6
*&(,),*𝐺8

*&(,),+ − 𝛽0$,(𝐺( + 𝛾0$,(,(	

𝑑𝐺5
𝑑𝑡 = −𝛽0$,5𝐺5 + 𝛾0$,5,( + 𝛾0$,5,5𝑊	

𝑑𝐺7
𝑑𝑡 = −𝛽0$,7𝐺7 + 𝛾0$,7,( + 𝛾0$,7,5𝑊	

𝑑𝐺9
𝑑𝑡 = 𝛼0$,9𝐺:

*&(,,,)𝐺;
*&(,,,* − 𝛽0$,9𝐺9 + 𝛾0$,9,( + 𝛾0$,9,5𝑊	

𝑑𝐺6
𝑑𝑡 = 𝛼0$,6𝐺;

*&(,-,) − 𝛽0$,6𝐺6 + 𝛾0$,6,( + 𝛾0$,6,5𝑊	

𝑑𝐺8
𝑑𝑡 = −𝛽0$,8𝐺8 + 𝛾0$,8,( + 𝛾0$,8,5𝑊	

𝑑𝐺<
𝑑𝑡 = 𝛼0$,<𝐺;

*&(,/,) − 𝛽0$,<𝐺< + 𝛾0$,<,( + 𝛾0$,<,5𝑊 + 𝛾0$,<,7𝐿% 	

𝑑𝐺:
𝑑𝑡 = 𝛼0$,:𝐺7

*&(,0,)𝐺9
*&(,0,*𝐺<

*&(,0,+ − 𝛽0$,:𝐺: + 𝛾0$,:,( + 𝛾0$,:,5𝐿% 	

𝑑𝐺;
𝑑𝑡 = 𝛼0$,;𝐺6

*&(,1,) − 𝛽0$,;𝐺; + 𝛾0$,;,( + 𝛾0$,;,5𝑊 

(7) 

 

As a remark, despite the regulation type is unknown, the ODEs for these three models 

can still be written down as depicted in (5), (6) and (7), as the regulation type can be 

inferred through the sign of the estimated parameters. Also, for the S-System based 

models, we set ℎ!,# = 1 to reduce the amount of parameters that need to be estimated. 

 

Hill Function model: Unlike the previous three models, the ODEs of the Hill Function 

model can only be written down when the type of regulation is known. To facilitate the 



derivation of these ODEs, we need to employ additional steps to infer those regulation 

types. 

GRN network inference and parameter estimation using Hill Function ODEs 

can be a challenging problem, as repeatedly solving the ODEs via numerical 

integration can be computationally expensive. In this study, we employ our recently 

proposed parametric gradient-matching method (see Supplementary Text Section 

S1.3, Algorithm I and (Dony et al., 2019)) as the GRN inference approach, which 

incorporates dynamics information and computational efficient. It is an inference 

approach based on parametric Hill-Function nonlinear ODEs representation of a GRN 

(Babtie et al., 2014). The approach significantly reduced the computational cost of 

repeatedly solving the candidate ODEs via a two-step gradient matching. It first 

employs a Gaussian process to interpolate each time-course gene expression data. 

Then, the parameters of the ODEs are optimised by minimising the difference between 

interpolated derivatives and the right-hand-side of the ODEs. In such a way, the ODEs 

do not need to be solved explicitly, thereby reducing the computational cost. For more 

details of the method, see (Dony et al., 2019; Babtie et al., 2014). We note that there 

are copious of other similar methods to identify regulation type of the Hill Function 

model in a GRN (see e.g., (Aijo and Bonneau, 2016; Saint-Antoine and Singh, 2020)). 

As the main goal of this work is to perform comparative analysis of the GRN models 

and not on the network inference algorithm, we will treat the identified regulation type 

from our network inference algorithm as the correct regulation for our comparative 

analyses. The summary of the identified regulation types is given in Table 1. 

 
Table 1 
Identified regulation types for interaction within 9GRN following the parametric gradient-matching 

approach. The (+) and (–) signs indicate the activation and inhibition regulation types respectively. The 

signs for 𝑊 and 𝐿2 indicate that this gene is positively or negatively regulated by those external inputs 

(see Fig. 1). 
Number Gene Regulation Types 
1 ORA59 MYB51 (+), ANAC055 (-), a-ERF-1 (-) 
2 MYB51 𝑊 (+) 
3 LOL1 𝑊 (+) 
4 AT1G79150 CHE (+), RAP2.6L (-), 𝑊 (-) 
5 ANAC055 RAP2.6L (+), 𝑊 (+) 
6 a-ERF-1 𝑊 (+) 
7 ATML1 RAP2.6L (-),𝑊 (-), 𝐿2 (+) 
8 CHE LOL1 (+), AT1G79150 (+), ATML1 (+), 𝐿2 (+) 
9 RAP2.6L ANAC055 (+), 𝑊 (+) 



 

With that, the corresponding ODEs are given as follow. 

𝑑𝐺(
𝑑𝑡 =

𝛼=>,(,(𝐺55

𝐾=>,(,( + 𝐺55
+

𝛼=>,(,5
𝐾=>,(,5 + 𝐺65	

+
𝛼=>,(,7

𝐾=>,(,7 + 𝐺85	
− 𝛽=>,(𝐺( + 𝐵=>,(	

𝑑𝐺5
𝑑𝑡 =

𝛼=>,5,(𝑊5

𝐾=>,5,( +𝑊5	 − 𝛽=>,5𝐺5 + 𝐵=>,5	

𝑑𝐺7
𝑑𝑡 =

𝛼=>,7,(𝑊5

𝐾=>,7,( +𝑊5	 − 𝛽=>,7𝐺7 + 𝐵=>,7	

𝑑𝐺9
𝑑𝑡 =

𝛼=>,9,(𝐺:5

𝐾=>,9,( + 𝐺:5	
+

𝛼=>,9,5
𝐾=>,9,5 + 𝐺;5	

+
𝛼=>,9,7

𝐾=>,9,7 +𝑊5	 − 𝛽=>,9𝐺9 + 𝐵=>,9	

𝑑𝐺6
𝑑𝑡 =

𝛼=>,6,(𝐺;5

𝐾=>,6,( + 𝐺;5	
+

𝛼=>,6,5𝑊5

𝐾=>,6,5 +𝑊5	 − 𝛽=>,6𝐺6 + 𝐵=>,6	

𝑑𝐺8
𝑑𝑡 =

𝛼=>,8,(𝑊5

𝐾=>,8,( +𝑊5	 − 𝛽=>,8𝐺8 + 𝐵=>,8	

𝑑𝐺<
𝑑𝑡 =

𝛼=>,<,(
𝐾=>,<,( + 𝐺;5	

+
𝛼=>,<,5

𝐾=>,<,5 +𝑊5	 +
𝛼=>,<,7

𝐾=>,<,7 + 𝐿%5	
− 𝛽=>,<𝐺< + 𝐵=>,<	

𝑑𝐺:
𝑑𝑡 =

𝛼=>,:,(𝐺75

𝐾=>,:,( + 𝐺75	
+

𝛼=>,:,5𝐺95

𝐾=>,:,5 + 𝐺95	
+

𝛼=>,:,7𝐺<5

𝐾=>,:,7 + 𝐺:5	
+

𝛼=>,:,9𝐿%5

𝐾=>,:,9 + 𝐿%5
− 𝛽=>,:𝐺: + 𝐵=>,:	

𝑑𝐺;
𝑑𝑡 =

𝛼=>,;,(𝐺65

𝐾=>,;,( + 𝐺65	
+

𝛼=>,;,5𝑊5

𝐾=>,;,5 +𝑊5	 − 𝛽=>,;𝐺; + 𝐵=>,; 

(8) 

In all the four models, the infection of Botrytis cinerea is modelled as a step function 

with gradual increase from time 48 to 72 hours, i.e., the time inoculation occurs. 

Mathematically, this is modelled as 

𝑊 = J
0 0 ≤ 𝑡 < 48
)
*,?@5 48 ≤ 𝑡 ≤ 72
1 𝑡 > 72

 

(9) 

 

For the light regulated genes, these genes are affected by the duration of photoperiod 

of light. In (Windram et al., 2012), the experiment was carried out under 16 hours of 

light and 8 hours of dark. The resulting genes in response to this photoperiod duration 

behave in a sinusoidal manner with its peak between 8 to 10 hours at the first instance 



of light. In view of this, the effect of light is modelled as a sinusoidal signal that peaks 

at around 9 hours at the first stance of light and its expression is given by 

𝐿% = sin V
2𝜋𝑡
𝑇)

+ 𝜙Z + 𝐵4 

(10) 

where 𝐵4 = 1.0001 is the expression base level, 𝜙 = 𝜋/6 radian is the phase shift and 

𝑇) = 24 hours is the period of the sinusoid. The reason for setting 𝐵4 = 1.0001 is to 

avoid 𝐿% becoming zero, which can be problematic when it is used in modelling 9GRN 

using standard S-System. 

 

3.4. Parameter estimation 

The data used in this study is taken from (Foo et al., 2018a). For the linear and 

two S-System based models, the parameters of the corresponding models were fitted 

to the experimental data set by minimising the weighted mean squared error (WMSE) 

between the simulated and experimental data, i.e., by finding 

Θ̂ = argmin
A

𝒲(𝐺(𝑡), 𝐺d(𝑡, Θ) 

(11) 

where  

𝒲e𝐺(𝑡), 𝐺d(𝑡, Θ)f =
1
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𝑛C
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(12) 

with 

𝒜! = max
(D#D&3

𝐺!(𝑡#) 

(13) 

where 𝐺  represents the gene component, 𝑡  denotes the time index, 𝑛B = 9  is the 

number of gene components and 𝑛C = 48 is the number of data point used. Given that 

the amplitude of different gene components is different, to allay any bias during the 

optimisation procedure for model parameter fitting, we introduce the weights 𝒜 in (12) 

where we normalise each time series to its maximum value. The MATLAB function 

fminsearch that employs Nelder-Mead simplex algorithm was used to minimise (11). 

The estimated parameters for these three models are given in Tables S1 to S3. Note 

that the estimated model parameters of the linear model is somewhat different than 

the one provided in (Foo et al., 2018a). This is because in this study, instead of directly 



using the estimated parameters from (Foo et al., 2018a), they are used as the initial 

value for the optimisation to determine whether any further improvement in terms of 

the WMSE can be achieved. The estimated parameters given in Table S1 are very 

close to the one estimated in (Foo et al., 2018a) suggesting a high confidence level in 

the estimated parameters for the linear model. 

The parameters associated with the Hill Function model are given in Table S4. 

These parameters have been estimated together with the inference algorithm (see 

Supplementary Text, Section S1.3) via the gradient-matching method (see (Dony et 

al., 2019) and its Supplementary Material for more details). 

 
  



Table 2 
Identified regulation types based on estimated parameters of 9GRN using linear (𝐿), standard S-System 

(𝑆𝑆) and extended S-System models (𝐸𝑆). The (+) and (–) signs indicate the activation and inhibition 

regulation types, respectively. The signs for 𝑊  and 𝐿2  indicates that this gene is positive/negative 

regulated by those external inputs (see Fig. 1). The regulation type for Hill Function model (𝐻𝐹) shown 

in Table 1 is also listed for ease of comparison. Identified regulation types that are different are 

highlighted in grey. 

 

Number Gene Regulation Types 
1 ORA59 𝐿: MYB51 (+), ANAC055 (-), a-ERF-1 (+) 

𝑆𝑆: MYB51 (+), ANAC055 (-), a-ERF-1 (+) 
𝐸𝑆: MYB51 (+), ANAC055 (-), a-ERF-1 (+) 
𝐻𝐹: MYB51 (+), ANAC055 (-), a-ERF-1 (-) 

2 MYB51 𝐿: 𝑊 (+) 
𝑆𝑆: 𝑊 (+) 
𝐸𝑆: 𝑊 (+) 
𝐻𝐹: 𝑊 (+) 

3 LOL1 𝐿: 𝑊 (-) 
𝑆𝑆: 𝑊 (-) 
𝐸𝑆: 𝑊 (+) 
𝐻𝐹: 𝑊 (+) 

4 AT1G79150 𝐿: CHE (+), RAP2.6L (-), 𝑊 (+) 
𝑆𝑆: CHE (+), RAP2.6L (-), 𝑊 (-) 
𝐸𝑆: CHE (+), RAP2.6L (+), 𝑊 (+) 
𝐻𝐹: CHE (+), RAP2.6L (-), 𝑊 (-) 

5 ANAC055 𝐿: RAP2.6L (+), 𝑊 (+) 
𝑆𝑆: RAP2.6L (+), 𝑊 (+) 
𝐸𝑆: RAP2.6L (+), 𝑊 (+) 
𝐻𝐹: RAP2.6L (+), 𝑊 (+) 

6 a-ERF-1 𝐿: 𝑊 (+) 
𝑆𝑆: 𝑊 (+) 
𝐸𝑆: 𝑊 (+) 
𝐻𝐹: 𝑊 (+) 

7 ATML1 𝐿: RAP2.6L (-), 𝑊 (+), 𝐿2 (+) 
𝑆𝑆: RAP2.6L (-), 𝑊 (+), 𝐿2 (+) 
𝐸𝑆: RAP2.6L (-), 𝑊 (+), 𝐿2 (+) 
𝐻𝐹: RAP2.6L (-), 𝑊 (+), 𝐿2 (+) 

8 CHE 𝐿: LOL1 (+), AT1G79150 (+), ATML1 (+), 𝐿2 (+) 
𝑆𝑆: LOL1 (+), AT1G79150 (+), ATML1 (+), 𝐿2 (+) 
𝐸𝑆: LOL1 (+), AT1G79150 (+), ATML1 (+), 𝐿2 (+) 
𝐻𝐹: LOL1 (+), AT1G79150 (+), ATML1 (+), 𝐿2 (+) 

9 RAP2.6L 𝐿: ANAC055 (+), 𝑊 (+) 
𝑆𝑆: ANAC055 (+), 𝑊 (+) 
𝐸𝑆: ANAC055 (+), 𝑊 (+) 
𝐻𝐹: ANAC055 (+), 𝑊 (+) 

 

The identified regulation types for these three models are given in Table 2. We 

have also included the regulation types inferred from Hill Function model in this table 

for ease of comparison. In general, there is a general consensus on the identified 

regulation types shown in Table 2 apart from genes ORA59, LOL1 and AT1G79150. 

Specifically, for gene ORA59, only the inferred regulation type for a-ERF-1 when using 



the Hill Function model is different from the other three models. For ORA59, the time 

series shows an increasing trend, which is consistent with the increasing trend of a-

ERF-1, suggesting a higher possibility of a positive regulation, which agrees with the 

three models rather than the Hill Function model. For gene LOL1, there is difference 

in the inferred pathogen regulation type with the linear and standard S-System models 

identified negative regulation, while extended S-System and Hill Function models 

identified positive regulation. Lastly, for gene AT1G79150, the inferred regulation 

types for RAP2.6L and pathogen are different across all four models. A detail look at 

the time series data for these genes LOL1 and AT1G79150 (Fig. S1) suggests that 

the difficulty in identifying these regulation types is attributed to the almost plateau 

nature of these two gene expression levels. 

Using the identified parameters given in Tables S1 to S4, we compared the 

predictive capability of the models with the experimental data on a set of data that is 

not used in parameter estimation exercise and the result are shown in Fig. 2. As a 

quantitative measure, we calculated the WMSE, using (12), and they are shown in 

Table 3. 



 

 
Fig. 2. Comparison of the models against experimental data set that is not used in the parameter 

estimation exercise. Solid grey with ‘square’: Experimental data. Solid blue: Linear model. Solid red: 

Hill Function model. Solid green: Standard S-System model. Solid purple: Extended S-System model. 

 
 
 
 
 
 
 
 
 
 
 
 



Table 3 
Average total WMSE for both ‘training’ and ‘validation’ data sets for 9GRN, which is calculated by taking 

the average sum of the individual WMSE given in Tables S5 and S6. The ‘training’ data set refers to 

the data that is used in parameter estimation exercise, while the ‘validation’ data set refers to the data 
that is not used in the parameter exercise. 

Model Average Total WMSE 

(training) 

Average Total WMSE 

(validation) 

Linear 0.00267 0.00543 

Hill Function 0.00614 0.00784 

Standard S-System 0.00359 0.00606 

Extended S-System 0.00256 0.00516 

 

The results shown in Fig. 2 and Table 3 show that all four models are able to 

pick up the general trend of the data well. Specifically, the linear and two S-System 

models perform really well with relatively smaller total WMSE compared to the Hill 

Function model. For the Hill Function model, there are several instances where the 

model falls short in terms of realising the correct amplitude levels (e.g., ORA59 and 

MYB51), which is also reflected in the individual WMSE shown in Tables S5 and S6. 

To further test the performance of these models, we compare qualitatively the 

dynamics of these four models against mutant data set, where two different genes, 

i.e., Δ𝑛𝑎𝑐 and Δ𝑟𝑎𝑝2.6𝑙 have been mutated. Fig. 3 shows the predictive capability of 

the four models against the mutant data. In general, all models pick up the correct 

trend of the mutant behaviours albeit the two S-System models have difference in the 

amplitude. For instance, gene ORA59 from the extended S-System model has higher 

expression level under both knockdown mutants. Similarly, gene RAP2.6L from 

standard S-System model has lower expression level under Δ𝑎𝑛𝑎𝑐055. Nevertheless, 

all the models are able to predict the mutant behaviours qualitatively well. Readers 

who are interested in the quantitative mutant analysis can refer to Supplementary Text. 



 
Fig. 3. Comparison of the models against mutant experimental data set. For the simulation of the mutant, 
we reduce the production rate associated with the knockdown gene by 20%. Solid grey with error bar: 

Experimental data. Solid blue: Linear model. Solid red: Hill Function model. Solid green: Standard S-

System model. Solid purple: Extended S-System model. 
 

3.5. Assessing model quality using Akaike weight based on Akaike Information 

Criterion (AIC) 

While the WMSE and the mutant analysis provide respectively the quantitative 

and qualitative approaches of the performance of the model, these approaches 

however do not reflect fully the quality of fit given the different model structures 

employed and the number of parameters used. In order to quantify the relative quality 

of the model fits to the experimental training data obtained with the four models 

considered, we employed the widely-used Akaike Information Criterion (AIC), which 



calculates the best approximating model to a given dataset with respect to Kullback-

Leibler information loss (Burnham and Anderson, 2002, 2004). 

For a given model, the AIC is defined as 

AIC = −2 ln;ℒw= + 2𝐾A 

(14) 

where ℒw is the maximised log-likelihood and 𝐾A is the number of model parameters. 

Consider that the optimal parameter estimates for all four 9GRN models were acquired 

through the minimisation of weighted least squares cost function, it can be shown that 

(Banks and Joyner, 2017) 

ln;ℒw= = −
𝑛B𝑛C
2 ln(2𝜋 + 1) − 𝑛C%ln(𝒜!) −

𝑛B𝑛C
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(15) 

with 𝑛B is the number of genes, 𝑛C is the number of data points in the time series, 𝒜!s 

as defined in (13) are the cost function weights and 𝒲(𝐺(𝑡), 𝐺d(𝑡, Θ)) as defined in (12). 

By denoting AICE as the AIC value of the 𝑖th model, these four 9GRN models 

are ranked by their AIC differences calculation, i.e., 

Δ!(AIC) = AIC! − min
(D!D9

AIC! 

(16) 

and finally, the corresponding Akaike weights can be calculated as follow: 

𝑤!(AIC) =
exp e−(

5Δ!(AIC)f

∑ exp(−(
5Δ!(AIC))

9
!'(

 

(17) 

We can interpret this Akaike weight, 𝑤!(AIC) as the probability that the 𝑖th model is the 

best from the perspective of minimising K-L information loss, given the set of candidate 

models and the data. In addition, the strength of evidence that favours model 𝑖 over 

model 𝑗  is quantified by the ratio 𝑤!(AIC)/𝑤#(AIC) (Burnham and Anderson, 2002, 

2004; Wagenmakers and Farrell, 2004; Banks and Joyner, 2017). 



Finally, since 𝑛B, 𝑛C and 𝒜! in (15) are fixed across the respective GRN models, 

the expression of the AIC value (i.e., (14)) can be further simplified to 

AIC = 𝑛B𝑛C ln V𝒲 e𝐺(𝑡), 𝐺d(𝑡, Θ)fZ + 2(𝐾A + 1) 

(18) 

where (18) is then used to compute the AIC differences Δ!(AIC) and Akaike weights 

𝑤!(AIC) of a given 9GRN model. 

The AIC criterion in Table 4 indicates that the two most viable candidate models 

(in the sense of K-L divergence) are the extended S-System model and the linear 

model with their Akaike weight of 𝑤0$(AIC) 	= 	0.9836  and 𝑤4(AIC) 	= 	0.0164 , 

respectively. Between these two models, the ratio of 𝑤0$(AIC)/𝑤4(AIC) 	≈ 	60 

suggests that the extended S-System model is 60 times more likely to be the viable 

model candidate compared to the linear model. On the other hand, the Akaike weights 

also exclude the Hill Function and the standard S-System models as the viable models 

given their Akaike weights are close to zero. 

 
Table 4 
Ranking model fits to experimental data based on AIC weights for 9GRN. The notation 𝐿, 𝐻𝐹, 𝑆𝑆, 𝐸𝑆, 

denote the linear, Hill Function, Standard S-System and Extended S-System models, respectively. Here 

𝑛5 = 9, 𝑛6 	= 	48, 𝐾7 is the number of parameters in the model, 𝒲/𝐺(𝑡), 𝐺5(𝑡, Θ)7 is the WMSE best fit 

to the data set used for parameter estimation, Δ8(AIC) is the AIC differences and 𝑤8(AIC) is the Akaike 

weights for each model. 

Model 𝐿 𝐻𝐹 𝑆𝑆 𝐸𝑆 
𝐾7 38 58 38 44 

𝒲/𝐺(𝑡), 𝐺5(𝑡, Θ)7 0.00267 0.00614 0.00359 0.00256 

Δ8(AIC) 8.182 397.506 134.696 0 
𝑤8(AIC) 0.0164 4.14 ´ 10-89 5.55 ´ 10-30 0.9836 

 

 

3.6. Robustness of the models to parameter uncertainties 

In practice, the estimated parameters of the model are subjected to 

uncertainties (e.g., intrinsic noise, modelling error, etc). To test the robustness of these 

four models, we perform a global sensitivity analysis, where all the parameters of the 

model are simultaneously varied in a random manner in each simulation. In this study, 

we assume that the uncertainties account for the parameters to vary ±30% (see e.g., 

(Acker et al., 1982; Transtrum and Qiu, 2012; Paulino et al., 2019)) from its nominal 



value. To ensure an unbiased sampling of the parameter values, we adopted the Latin 

Hypercube Sampling approach (see e.g., (Marino et al., 2008; Sheikholeslami and 

Razavi, 2017)) to randomly generate a parameter set that is within ±30%  of the 

original value of each parameter for each simulation. 

In the Latin Hypercube Sampling approach, each model parameter is first 

discretised into 𝑁F evenly spaced intervals from the defined lower and upper bounds. 

As we are varying the parameter within ±30%, this results in 𝑁F evenly spaced interval 

between 0.7´ to 1.3´ the nominal parameter. Here, we choose 𝑁F 	= 	1000, and this 

results in a total number of (1000	 ×	𝐾A) randomly combined parameter sets, where 

𝐾A is the number of parameters in each of the four models. We run a total number of 

10000 simulations for each of the four models, where in each simulation, we sample 

only once from this total number of randomly combined parameter sets. Due to the 

non-repetitive nature of this sampling approach, not only the biased sampling can be 

averted, an extensive sampling within the model parameter range of interest can also 

be covered (Marino et al., 2008). 

Following (Wang et al., 2014), we compute the Mean Relative Error (MRE) 

given by 

Mean	Relative	Error	(MRE) =
1
𝑛B
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(19) 

as a quantitative metric to evaluate the model response to parameter uncertainties 

using the same notation as (12). To determine the robustness of the models, we collate 

the number of simulations (over 10000), where the MREs are within 4´ the nominal 

MRE value. The choice of 4´ is based on the observation over 10000 simulations that 

the performance of the models is deemed acceptable. To compare the robustness of 

the model, a model is considered more robust than the other if the number of 

simulations within 4´ nominal MRE value is higher in the former than the latter. 

 Table 5 shows the MRE values for all four models. Defining 𝑁$%G as the number 

of simulations for each model where the MRE values are within 4´ nominal MRE value. 

The results show that the Hill Function and the extended S-System models has the 

largest and smallest 𝑁$%G values, respectively suggesting these models respectively 

being relatively the most and least robust to parameter uncertainty. Also, we notice 

that the 𝑁$%G  values for the two S-System based models are comparative smaller, 



which is expected given that the exponent term tends to be sensitive to uncertainties 

(Rinon et al., 2019). 
 
Table 5 
Nominal MRE for each model and the number of simulations across 10000 that has the MRE values 

within 4´ the nominal MRE value. The notation 𝐿, 𝐻𝐹, 𝑆𝑆, 𝐸𝑆, denote the linear, Hill Function, Standard 

S-System and Extended S-System models, respectively. 𝑁92: denotes the number of MRE within 4´ 

nominal MRE value. 
Model 𝐿 𝐻𝐹 𝑆𝑆 𝐸𝑆 

Nominal MRE 0.0523 0.0704 0.0516 0.0611 
𝑁!"# 2285 9271 1082 731 

 

To see how the 𝑁$%G values are distributed, we plot the histogram in Fig. S2, 

and the histogram shows that the majority of the MRE values are distributed close to 

the nominal MRE value indicating these models are more robust than anticipated. To 

further investigate this, we plot the lower and upper bound of each model simulated 

using the parameter sets within 𝑁$%G that produce the largest and smallest MRE value, 

and these plots are shown in Figs. S3 to S6. Interestingly, majority of the genes are 

robust to parameter uncertainty where their uncertainty bounds are narrow apart from 

a handful of genes (e.g., ORA59, ANAC055 and CHE), where we observe a wider 

uncertainty bound. Moreover, despite having the largest 𝑁$%G value, the Hill Function 

model has four genes with wide uncertainty bounds compared to the same four genes 

for the other three models. This suggests that while the larger 𝑁$%G in Hill Function 

model is most probably attributed to the genes with narrow uncertainty bound, it comes 

at the expense of reduced robustness in other genes such as CHE, which has the 

widest uncertainty bound. 

 

4. Extension to other gene regulatory networks 
 

Our analysis using 9GRN has suggested the linear and extended S-System 

models being the viable model candidate for pathogen-infected plant GRN. To 

investigate whether the above analysis has wider applicability, we repeat the above 

analysis on three other GRNs, i.e., the DREAM3 and DREAM4 gene regulatory 



networks (Stolovitzky et al., 2007, 2009), and the plant circadian gene regulatory 

network (De Caluwe et al., 2016). 

 

4.1. DREAM3 and DREAM4 gene regulatory networks 

The DREAM3 and DREAM4 networks are in silico gene regulatory networks 

established for public challenges related to the development of network inference 

algorithms from experimental data, which typically consists of realistic temporal data 

(Marbach et al., 2009) of each gene in the network. Despite being in silico networks, 

they are a subset of an actual network from organisms, such as E. coli and S. 

cerevisiae, hence a good representation of the biological system. The two networks 

used in this study are shown in Fig. 4. 

Just like the 9GRN, both the DREAM GRNs consist of 10 genes in which their 

interactions are known but their regulation types are unknown. This property makes 

them suitable for us to repeat the above analysis with one small change to the Hill 

Function model. Instead of employing the parametric gradient-matching method (see 

Algorithm I (Dony et al., 2019) in Supplementary Text Section S1.3) to determine the 

regulation types, we use the alternate approach, i.e., using the inferred regulation 

types from the linear model, given its better performance (see Tables S8 and S9). 

  



 
 

Fig. 4. (A) DREAM3 and (B) DREAM4 gene regulatory networks. Like the 9GRN, the information about 

the known directional arrows indicates the influence of one gene to another while the regulation types 

are unknown. The red circle denotes the gene that is directly affected by external perturbation. The 
comparison between the four model structures and the data for Gene 5 for both networks are shown 

for illustration. Solid grey with ‘square’: Experimental data. Solid blue: Linear model. Solid red: Hill 

Function model. Solid green: Standard S-System model. Solid purple: Extended S-System model. For 

the comparison for all the genes, see Figures S7 and S8 for DREAM3 and Figures S14 and S15 for 

DREAM4. 

 

 

  



The results of the analysis for the DREAM3 and DREAM4 GRNs are shown in 

Figures S7 to S13 and Figures S14 to S20, respectively. As an illustration, the 

comparison of the four model structures on gene G5 for both DREAM3 and DREAM4 

GRNs is shown in Fig. 4. In addition, the summary of the comparison against the same 

four criteria is given in Tables S18 and S26 for DREAM3 and DREAM4, respectively. 

These DREAM3 and DREAM4 results in the same conclusion, i.e., the linear and 

extended S-System models are the most viable model structures describing these two 

DREAM GRNs. 

 

4.2. Plant circadian gene regulatory network 

Here, we consider the plant circadian GRN (De Caluwe et al., 2016) to analyse 

the effect of mis-identification of the regulation types on the four model structures. The 

plant circadian GRN is the ideal candidate GRN for this illustration given the recent 

discovery of the change in regulation types. The plant circadian GRN is shown in Fig. 

5. Previously, it was thought that gene P97 is activated by gene CL (red arrow head 

in Fig. 5) and most of the plant circadian GRN models that have been constructed are 

based on the knowledge of this regulation. However, this regulation is in fact an 

inhibition (green bar head in Fig. 5) following the discovery made in (Adams et al., 

2015). With this change of regulation, all the previous plant circadian GRN models 

have to be revised. Here, we illustrate the impact of this change in regulation on the 

four model structures. As shown in Fig. 5, all four model structures are able to 

reproduce the experimental data of P97, suggesting the robustness of these model 

structures against mis-identification of the regulation types (Supplementary Text 

Section S1.4). 

The robustness of the model structures against mis-identification of the 

regulation type has partially been demonstrated with the Hill Function model. In Table 

2, we highlighted the different regulation types identified between the Hill Function 

model and the other three models. An alternate Hill Function model was then proposed, 

and the alternate Hill Function model was also able to reproduce experimental data 

as shown in Tables S8 and S9. 

  



 
Fig. 5. Plant circadian network of JD2016 (De Caluwe et al., 2016). The arrow and bar heads represent 

activation and inhibition regulations, respectively. The yellow circle represents genes that are light-

regulated. It is initially thought that genes LC activates P97 as indicated by the red arrow head. Recent 

findings in plant circadian literature show that LC in fact is inhibiting P97 as indicated by the green bar 

head. Simulated P97 expression given by the four model structures are shown. The solid blue with 
‘square’: Experimental data. Solid red: CL activates P97. Solid green: CL inhibits P97. 

  



5. Discussion and Conclusion 
 

In this study, we have compared four dynamical models of 9GRN obtained 

using a data-driven modelling approach in terms of four criteria, namely their ease of 

identifying regulation type, predictive capability, quality of data fit based on AIC and 

robustness to parameter uncertainties. 

The linear and the two S-System based models have a general model structure 

that can facilitate the identification of the regulation types directly from data through 

the sign of the estimated parameters. In contrast, due to the requirement of different 

functions for different regulation types for the Hill Function model (Section 3.2), 

additional steps are required to ensure the most viable regulation types when 

identifying them from data, making this model the least favoured in terms of Criterion 

I. Furthermore, despite the identified regulation types given in Table 2 showing a 

consensus, when comparing the difference in the identified regulation types, the linear 

and two S-System based models have more common agreement compared to the Hill 

Function model for e.g., in gene ORA59. 

In terms of the model predictive capability, the linear and extended S-System 

models rank higher in terms of their smaller WMSE value both in the training and 

validation data set compared to the standard System and Hill Function models (Table 

3) suggesting Criterion II is in favour of these two models. In terms of mutant analysis, 

between the linear and extended S-System models, the former qualitatively better 

predicts the mutant behaviours (Fig. 3) than the latter. 

For Criterion III, the analysis of AIC weights (Table 4) suggests the linear and 

extended S-System models are the two most viable candidate models compared to 

the standard S-System and Hill Function models. Nevertheless, the extended S-

System model is 60 times more likely to be the candidate model compared to the linear 

model given its larger AIC weight, 𝑤0$(AIC), which suggests the extended S-System 

in the most favoured model for Criterion III. 

For the last criterion, the analyses using Latin Hypercube Sampling and MRE 

(Table 5) indicate that the Hill Function model has the largest 𝑁$%G, suggesting this 

model is relatively robust against parameter uncertainty compared to the other three 

models. Interestingly, when analysing the histogram of the MRE distributions (Fig. S2) 

and the lower and upper bounds uncertainty plots (Figs. S3-S6), the width of the 



uncertainty bounds are smaller and similar across the linear and the two S-System 

based models. On the other hand, despite the Hill Function model having narrow 

uncertainty bounds across most of the genes in 9GRN, some genes (e.g., CHE and 

ORA59) have the widest uncertainty bound across all four models. This suggests that 

the large 𝑁$%G of the Hill Function model are attributed to the narrow bounds of most 

genes but at the expense of wide bounds on certain genes like CHE. 
 
Table 6 
Summary of the model performance across four criteria. For Criteria II to IV, the model is ranked in 

bracket with ‘1’ being the most favoured model and ‘4’ being the least favoured model according to the 

metric used in the comparison. The notation 𝐿, 𝐻𝐹, 𝑆𝑆, 𝐸𝑆, denote the linear, Hill Function, Standard S-

System and Extended S-System models, respectively. For Criterion II, the notation ‘Tra.’ and ‘Val.’ 

represent training and validation, respectively. The Total Rank Score (TRS) is the sum of the ranking 

number across Criteria II to IV given in the bracket. 
Criterion 𝐿 𝐻𝐹 𝑆𝑆 𝐸𝑆 

I Easy due to its 
general model 

structure 

Difficult due to extra steps 
required to determine 
the relevant function 

Easy due to its 
general model 

structure 

Easy due to its 
general model 

structure 
II Tra. WMSE = 0.00267 (2) 

Val. WMSE = 0.00543 (2) 
Tra. WMSE = 0.00601 (4) 
Val. WMSE = 0.00768 (4) 

Tra. WMSE = 0.00359 (3) 
Val. WMSE = 0.00606 (3) 

Tra. WMSE = 0.00256 (1) 
Val. WMSE = 0.00516 (1) 

III 𝑤!(AIC) = 0.0164 (2) 𝑤"#(AIC) ≈ 0 (2) 𝑤$$(AIC) ≈ 0 (2) 𝑤%$(AIC) = 0.9836 (1) 
IV 𝑁$&' = 2285 (2) 𝑁$&' = 9271 (1) 𝑁$&' = 1082 (3) 𝑁$&' = 731 (4) 

TRS 8 13 12 7 
 

Table 6 summarises the performance of all four models across the four criteria. 

For Criteria II to IV, we provide the associated ranking in each criterion with ‘1’ being 

the most favoured model and ‘4’ being the least favoured model based on the metrics 

used to compare them. We then calculated the Total Rank Score (TRS), which is the 

sum of the ranking number given in bracket with the smallest and largest scores 

represent the most and least favoured models, respectively. 

The extended S-System model scores the smallest TRS, followed closely by 

the linear model, while the Hill-Function model scores the largest TRS. While the linear 

model scores a lower TRS compared to the extended S-System model, the linear 

model performs consistently across all criteria with rankings of ‘2’ compared to the 

extended S-System model. Based on this consistency, we surmise that the linear 

model is a more viable candidate model for constructing this 9GRN using a data-driven 

modelling approach. 

The applicability of our analysis to other GRNs is demonstrated in three other 

GRNs. For the DREAM3 and DREAM4 GRNs, we obtain similar conclusion as the 



9GRN. For the plant circadian GRN, we demonstrated the robustness of the model 

against mis-identification of regulation types. 

The finding from our comparative analysis in principle agrees with the finding 

from (Wang et al., 2014), where in that study, the standard S-System model is found 

to be a more viable model compared to the Michaelis-Menten (Hill coefficient, 𝑛 is set 

to 1 in (Wang et al., 2014)) and mass-action model for describing plant flowering time 

regulatory network. Our analysis extends that finding by comparing two additional 

models, i.e., the linear and extended S-System models and explore a different plant 

regulatory network. More interestingly, between the standard and extended S-System 

models in our study, our analysis shows that the latter model outperforms the former 

model across the given criteria. This is expected given that the extended S-System 

model considers the external input as being a separate term instead of grouping them 

as part of the dependent variables. This thus provides more degree of freedom for the 

external input to influence the model dynamics, which could improve the accuracy of 

the model (Foo et al., 2020). 

Our finding that the least viable model being the Hill Function model may seem 

surprising given its wide usage in modelling GRN. In a review work by (Kim and Tyson, 

2020), it has been reported that the Michaelis-Menten rate law of the Hill Function has 

been often misused without ensuring the valid operating condition in many previous 

studies. The same review (and references therein) and our previous studies (Foo et 

al., 2018b, 2020) also highlighted issues pertaining to the identifiability of the Hill 

Function parameters. These two points accentuated the underlying challenge in using 

Hill Function model, which could possibly be the reason for its poor viability. One may 

potentially argue that the choice of network inference algorithm to obtain the Hill 

Function models (such as the one used in this study) may influence the analysis and 

the results. As such, we derive an alternate Hill Function model with the regulation 

type following the linear model and found that despite showing some improvement in 

Criteria II and III, the overall performance of the model is still ranked behind the linear 

and extended S-System model (see Tables S8 and S9). 

Returning to our main question posed for this study – “In using the data-driven 

modelling approach, what is the most viable model given the temporal data and 

knowledge about the 9GRN interaction?” While traditionally Hill Function model has 

been the model of choice due to its biological relevance and interpretability (see 

(Youseph et al., 2015)), our comparative analysis seems to tip the balance towards 



the linear model being the preferred choice of model for 9GRN suggesting the linear 

model used for genetic control design suggested in (Foo et al., 2018a) is a viable one. 

This analysis also advocates some of the previous works (see e.g., (Foo and Kim, 

2014; Foo et al., 2017)) on the use of linear models in designing controller for other 

plant gene regulatory networks. Our results also suggest that when considering data-

driven modelling approach, the extended S-System model can be a good alternative 

for modelling GRN as compared to the commonly used Hill Function model. We note 

that there is a need to ensure intelligibility and biological interpretability when using 

the extended S-System model. Nevertheless, our suggestion concurs with the findings 

made in (Vilela et al., 2008), where in that study, the authors concluded the increasing 

trend of using the S-System model structure in describing biological temporal data is 

attributed to the unique property of the S-System model structure being able to strike 

a balance between model intelligibility and interpretability. 
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