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Abstract

We study a three-species cyclic game system where organisms face a contagious disease whose virulence may change by a pathogen
mutation. As a responsive defence strategy, organisms’ mobility is restricted to reduce disease dissemination in the system. The
impact of the collective self-preservation strategy on the disease infection risk is investigated by performing stochastic simulations
of the spatial version of the rock-paper-scissors game. Our outcomes show that the mobility control strategy induces plasticity in the
spatial patterns with groups of organisms of the same species inhabiting spatial domains whose characteristic length scales depend
on the level of dispersal restrictions. The spatial organisation plasticity allows the ecosystems to adapt to minimise the individuals’
disease contamination risk if an eventual pathogen alters the disease virulence. We discover that if a pathogen mutation makes
the disease more transmissible or less lethal, the organisms benefit more if the mobility is not strongly restricted, thus forming
large spatial domains. Conversely, the benefits of protecting against a pathogen causing a less contagious or deadlier disease are
maximised if the average size of groups of individuals of the same species is significantly limited, reducing the dimensions of
groups of organisms significantly. Our findings may help biologists understand the effects of dispersal control as a conservation
strategy in ecosystems affected by epidemic outbreaks.

1. Introduction

There is plenty of evidence that mobility plays a central
role in species persistence, determining pattern formation and
ecosystem stability [1–4]. Spatial interactions have been proved
responsible for competing species’ coexistence, as in the case
of Escherichia coli [5]. Experiments have shown that three
strains of bacteria, whose dominance is nonhierarchical, survive
because of a cyclic dominance, described by the rock-paper-
scissors game rules. However, it has been proved that cyclic
interactions are not sufficient to maintain biodiversity. This
means that selection interactions must occur locally, leading to
the formation of departed spatial domains [6, 7]. Other biologi-
cal systems, like Californian coral reef invertebrates and lizards
in the inner Coast Range of California, have also provided evi-
dence of the role of space in the maintenance of biodiversity in
cyclic game systems [8, 9]. In these systems, low mobility indi-
viduals interact with neighbours, producing a long-term coexis-
tence; for high mobility values, conversely, spatial organisms’
distribution tends to be homogeneous, resulting in biodiversity
loss.

Furthermore, behavioural ecology has demonstrated that mo-
bility plays an important role in the species adaptation to envi-
ronmental changes [10–12]. For example, the adaptive move-
ment has been observed as either a survival strategy in dan-
gerous situations or in foraging for search for prey or locations
where the probability of species perpetuation is more propitious
[13–17]. Many organisms can scan the environment and inter-
pret the signals captured from the neighbourhood to adjust their
movement. The understanding of behavioural mobility strate-

gies has helped the generation of sophisticated tools used by
engineers to improve robots that imitate the animal behaviour
[18].

Scientists have shown that behavioural strategies can min-
imise the individual risk of being contaminated by a viral dis-
ease transmitted person-to-person [19–23]. For example, social
distancing rules have been implemented worldwide, with in-
dividual and collective gains [24–26]. Furthermore, mobility
restrictions have been shown efficient in decreasing the num-
ber of infected organisms and, consequently, minimising the
social impact of epidemics on communities [27–30]. However,
to guarantee the maximum efficiency of these measures in pro-
tecting against disease contamination, they are subject to ad-
justments if mutation alters the predominant pathogen causing
the epidemics [31]. The spatial organisation plasticity resulting
from controlling the organisms’ dispersal may be fundamental
to the improve the efficiency of mitigation strategies against the
disease with changing transmissibility and mortality [32–36].

In this work, we investigate a three-species cyclic game,
where organisms cope with an epidemic of a deadly disease
transmitted by neighbour agents. We aim to address the fol-
lowing questions: i) how do organisms’ mobility restrictions
control the spatial pattern plasticity by changing the size of
departed spatial domains?; ii) what results does spatial pat-
tern plasticity provide to prevent organisms’ disease contami-
nation?; iii) how do changes in the disease virulence (transmis-
sion and mortality rates) interfere with the dispersal reduction
strategy? iv) how tight should organisms’ mobility be restricted
to maximise that protection against infection of a varying viru-
lence disease?
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Figure 1: Illustration of the spatial rock-paper-scissors model. Red, yellow,
and blue circles represent organisms of species 1, 2, and 3, respectively; dark
and light colours stand for healthy and sick individuals, respectively. The ar-
rows show the cyclic selection dominance.

Our stochastic simulations are based on the May-Leonard
implementation of the rock-paper-scissors Model, where organ-
isms interact locally, but the number of individuals is not con-
served [37–47]. We assume a person-to-person disease trans-
mission, which may affect all healthy organisms, irrespective
of the species - no individual or species is immune to the viral
infection [48–52]. Once contaminated, individuals work as vi-
ral vectors, passing the disease to immediate neighbours before
dying or being cured of the illness; cured individuals may be
reinfected anytime.

The outline of this paper is as follows: the model is intro-
duced in Sec. 2, where the simulations are explained, and pa-
rameters are defined. We study spatial pattern plasticity and
quantify the spatial domain scales in Sec. 3. The interference
of variations in the disease virulence in the population dynam-
ics is investigated in Sec. 4. In Sec. 5, we study the adaptation
in the mobility restrictions to respond to viral mutations chang-
ing the disease virulence. Finally, we discuss the results and
present our conclusions in Sec. 6.

2. Our model

We study a three-species cyclic model where selection dom-
inance obeys the rock-paper-scissors model. In this popular
game, scissors cut paper, paper wraps rock, and rock crushes
scissors, as illustrated in Fig. 1. Accordingly, red, yellow, and
blue identify organisms of species 1, 2, and 3, respectively; dark
and light colours stand for healthy and sick individuals, respec-
tively. The arrows indicate the cyclic species dominance, with
organisms of species i eliminating individuals of species i + 1,
with i = i + 3α, where α is an integer.

We consider that a contagious disease, transmissible person-
to-person, spreads through the system, affecting organisms of
every species. We aim to understand how organisms’ mobil-
ity can transform the spatial organisation to reduce the risk of
disease contamination. We implement simulations where spa-
tial pattern plasticity is controlled by restricting the organisms’
mobility according to the disease virulence.

Our numerical implementation follows the May-Leonard
model, where the total number of organisms is not conserved
[53]. The simulations were performed in square lattices with

periodic boundary conditions: individuals interact on a torus
surface withN points. Each grid site contains at most one indi-
vidual - the maximum number of individuals is N . This

The initial conditions are random: we allocate an organism
of an aleatory species at each grid point. The initial number
of individuals is the same for every species: Ii ≈ N/3, with
i = 1, 2, 3. Initially, the proportion of sick individuals is 1%,
which is valid for every species.

To describe the stochastic interactions implemented in our
simulations, we first define the notation hi and si to identify
healthy and sick individuals of species i; the labelling i stands
for all individuals, irrespective of illness or health. The organ-
isms’ spatial distribution is altered by the implementation of
one of the following interactions:

• Selection: i j → i ⊗ , with j = i + 1, where ⊗ means an
empty space. A selection interaction results in an empty
space in the grid site previously occupied by the individual
of species i + 1.

• Reproduction: i ⊗ → i i . An offspring of species i is
produced to occupy the empty space.

• Mobility: i � → � i , where � means either an individual
of any species or an empty site. Mobility happens when
an individual of species i switches grid site with another
organism of any species or with an empty space.

• Infection: si h j → si s j , with i, j = 1, 2, 3. An ill individ-
ual of species i transmits the virus to a healthy individual,
irrespective of the species.

• Cure: si → hi . An ill organism of species i is cured of the
disease; once cured, the organism is vulnerable to being
reinfected.

• Death: si → ⊗ . A sick individual of species i dies because
of complications of the disease; its position becomes an
empty space.

In our stochastic simulations, the occurrence of a given inter-
action depends on the set of real parameters: S (selection rate),
R (reproduction rate), M (mobility rate), κ (infection rate), µ
(mortality rate), and ω (cure rate). In addition, we implement
the mobility restriction strategy by defining the slowness fac-
tor ν, a real parameter that defines the percentual reduction in
the mobility rate. This means that the effective mobility rate is
given by (1 − ν) m.

The interactions were implemented by assuming the Moore
neighbourhood; thus, an organism may interact with one of its
eight immediate neighbours. The algorithm follows three steps:
i) randomly choosing an active individual; ii) raffling one in-
teraction to be executed; iii) drawing one of the eight nearest
neighbours to suffer the interaction. One time step is counted
either if one interaction is implemented or if an organism is
chosen to move but stays in its grid site because of the mobility
restrictions. Our time unit is defined as the necessary time for
N timesteps to occur.
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(a) (b) (c)

Figure 2: Typical spatial patterns of the rock-paper-scissors model with a disease spreading for various slowness factors. The snapshots were captured from lattices
with 3002 grid points, running until t = 5000. Figures a, b, and c show the snapshot at the end of the simulation for ν = 0.0, ν = 0.50, and ν = 1.0, respectively.
Each organism is depicted with the colours in the scheme in Fig. 1, with dark and light colours indicating healthy and sick individuals, respectively. Black dots show
empty spaces.
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Figure 3: The temporal dynamics of the fraction of the grid occupied by or-
ganisms of species 1 during the simulations shown in Fig. 2. Grey, orange, and
purple lines depict the cases ν = 0.0, ν = 0.50, and ν = 1.0, respectively.

The density of organisms of species i at time t is defined as

ρi(t) =
Ii(t)
N

, (1)

with i = 1, 2, 3, where Ii(t) stands to the total number of in-
dividuals of species i present in the lattice at time t. In addi-
tion, ρ0 represents the density of empty spaces. Because of the
cyclic symmetry, the average value of the density of species
is the same for all species; thus, we choose species 1 to cal-
culate the density of species ρ. We also define the densities
ρh(t) = Ih(t)/N and ρs(t) = Is(t)/N as the fraction of the grid
occupied by healthy and sick individuals of species 1, respec-
tively.

3. Spatial pattern plasticity

To understand how the organisms’ mobility restriction strat-
egy controls the spatial organisation plasticity during an epi-
demic, we first observe snapshots obtained from simulations for
ν = 0.0, ν = 0.50, and ν = 1.0. The simulations were performed
in lattices with 3002 grid sites until t = 5000; the final spatial
distributions were captured and shown in Figs. 2a (ν = 0.0),
2b (ν = 0.50), and 2c (ν = 1.0), respectively. The colours
follow the scheme in Fig. 1: dark red, yellow, and blue dots

0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25 30

C
(r
)

r

ν = 0.0
ν = 0.5
ν = 1.0

Figure 4: Spatial autocorrelation function for various levels of organisms’ mo-
bility restrictions. Grey, orange, and purple lines depict the cases ν = 0.0,
ν = 0.50, and ν = 1.0, respectively. The error bars indicate the standard devia-
tion in sets of 100 simulations.

show healthy individuals of species 1, 2, and 3, respectively -
light colours represent ill organisms of the respective species.
The simulations ran for the set of parameters: S = R = 1.0,
M = κ = 2.0, and C = µ = 0.2. The temporal change of the
density of species during the entire simulations is depicted in
Fig. 3. Grey, orange, and purple lines indicate the fraction of
the grid occupied by species 1 in the simulations for ν = 0.0,
ν = 0.50, and ν = 1.0, respectively.

After an initial transient pattern formation stage, healthy and
sick individuals of the same species segregate in departed spa-
tial domains. The cyclic selection dominance inherent in the
rock-paper-scissors game leads to the arising of spiral waves,
with individuals of the species occupying departed spatial do-
mains forming the spiral arms. The outcomes show that smaller
groups of organisms as ν grows, implying that the average
area of the single-species spatial domains decreases as mobil-
ity reduction accentuates - from Fig. 2a (ν = 0.0) to Fig. 2c
(ν = 1.0). This is in agreement with the random walks theory;
accordingly, the average area explored by individuals is propor-
tional to the mobility rate [38, 54]. Fig. 3, mobility restrictions
slow the dynamics of the species populations: as ν grows, the
amplitude and frequency of the species densities decrease be-
cause organisms are less exposed to being infected and elim-
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inated by an enemy in the cyclic game; thus, the individuals’
death risk drops.

3.1. Typical spatial domain’s characteristic length

The snapshots in Fig. 2 show that the spatial organisation
adapts to the organisms’ velocity decrease. We aim to compute
the changes in the scale of spatial domains occupied by each
species resulting from the mobility restrictions. In this sense,
we first compute the spatial autocorrelation function Ci(r), with
i = 1, 2, 3, in terms of radial coordinate r by introducing the
function φi(~r) that identifies the position ~r in the lattice occu-
pied by individuals of species i (healthy and ill individuals).
Employing the Fourier transform

ϕi(~K) = F {φi(~r) − 〈φi〉}, (2)

where 〈φi〉 is the mean value of φi(~r), we find the spectral den-
sities

S i(~K) =
∑

Kx,Ky

ϕi(~K). (3)

Therefore,

Ci(~r′) =
F −1{S i(~K)}

C(0)
, (4)

can be rewritten as a function of the radial coordinate r:

Ci(r) =
∑
|~r′ |=x+y

Ci(~r′)
min

[
2N − (x + y + 1), (x + y + 1)

] . (5)

We calculate the mean autocorrelation function from a set of
100 simulations with different initial conditions. The realisa-
tions ran in lattices with 5002 grid sites, running until t = 5000.
We assumed the same set of parameters used in the results
shown in Figs. 2 and 3. Because of the symmetry of the rock-
paper-scissors game, the typical spatial domains occupied by
individuals of every species have the same average size, which
is valid if the interaction rates are the same for every species.
Therefore, we arbitrarily choose to compute the autocorrelation
function for species 1, defined as C(r). We then use the thresh-
old C(l) = 0.15 to determine the characteristic length scale of
the spatial domains, l.

First, we computed the spatial autocorrelation function C(r),
whose averaged results are depicted in Fig. 4; the error bars in-
dicate the standard deviation. Grey, orange, and purple lines
show the autocorrelation function for the cases shown in Figs.
2a (ν = 0.0), 2b (ν = 0.5), and 2c (ν = 1.0), respectively.
The dashed black line represents the threshold to calculate the
characteristic scale l. The outcomes reveal that as dispersal re-
strictions increases, the organisms of the same species are less
spatially correlated. This results from the arising of smaller
single-species spatial domains, as shown in Figs. 2a to 2c.

Using the threshold illustrated by the dashed black line in
Fig.4, we quantified the spatial organisation plasticity induced
by the individuals’ mobility limitation in terms of the mean
characteristic length scale l. Figure 5 shows the mean value
of l for ν = 0.0 to ν = 1.0, in intervals of δν = 0.05; the error
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Figure 5: Characteristic length scale of the typical single-species spatial do-
main as a function of the slowness factor. The outcomes were obtained by
averaging a set of 100 simulations running in lattices with 5002 grid sites; the
error bars show the standard deviation.

bars show the standard deviation. The results show that l non-
linearly decreases with ν. In the limit case, where organisms are
imposed to be static (ν = 1.0), the characteristic length scale of
the typical single-species domains decreases by approximately
42%.

4. Impact of disease virulence on population dynamics

We now investigate the effects of variations in disease viru-
lence caused by a virus mutation on population dynamics. For
this purpose, we consider the following characteristics of the
contagious disease:

• Disease transmission: we performed a series of simula-
tions for a wide range of infection rate, κ. If κ grows, the
virus mutation leads to a faster disease spreading.

• Disease mortality: we ran many simulations considering a
wide interval of mortality rate, µ. As µ grows, the mutation
generates a deadlier disease.

We introduce the individuals’ infection risk χi(t), as the prob-
ability of a healthy organism of species i being contaminated at
time t. The infection risk is implemented following the follow-
ing steps: i) the total number of healthy individuals of species
i when each unit time begins is saved; ii) the number of indi-
viduals of species i infected during the unit time is computed;
iii) the infection risk, χi, with i = 1, 2, 3 is found by the ratio
between the number of infected individuals and the initial num-
ber of healthy individuals. Throughout this work, χ stands for
the infection risk, valid for every species because of the cyclic
model symmetry - the calculation is made using the data from
species 1.

We performed a series of 100 simulations in grids with
50002, running until t = 5000. We avoid the high fluctuations
in the species densities inherent to the pattern formation pro-
cess (in the initial simulation stage) by computing the mean in-
fection risk and species densities using the outcomes from the
second simulation half. The simulations were performed for the
same sets of parameters as in the previous section, except for κ
and µ, which are specified in Figs. 6 and 7, respectively. The
slowness factor is assumed to be ν = 0.6.
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Figure 6: Relative change in organisms’ infection risk and species densities
as a function of the infection rate. Figure 6a shows how χ varies with κ while
Fig. 6b depict the consequences on the specie density (red line), and the frac-
tions of healthy (light purple line), sick (yellow line) organisms; the density of
empty spaces is depicted by the black line. The outcomes were averaged from
a set of 100 simulations, running in lattices with 5002 grid sites - the error bars
indicate the standard deviation.

The mean infection risk χ is depicted in Figs. 6a and 7a for
a wide range of infection and mortality probabilities, respec-
tively; the error bars indicate the standard deviation. Addition-
ally, we calculated the mean value of the densities of organ-
isms of a single species and empty spaces. The outcomes are
depicted by light purple (healthy individuals), yellow (sick in-
dividuals), red (healthy and sick individuals), and black lines
(empty spaces) in Fig. 6b and Fig. 7b as functions of the infec-
tion, and mortality probabilities, respectively.

4.1. Disease Transmission

As all simulations started with only 1% of organisms being
sick, the minimum infection rate that causes the disease dis-
semination throughout the lattice is κ = 0.8. This means that
for κ < 0.8, individuals of species i die only if eliminated by or-
ganisms of species i−1 in the spatial rock-paper-scissors game.
Therefore, the organisms’ death risk is minimum. In this case,
the average value of the species density is maximum since all
organisms are healthy (light purple line in Fig. 6b).

For κ ≥ 0.8, disease transmission is sustained, with the indi-
viduals’ infection risk growing approximately linearly in κ, as
depicted in Fig. 6a. This yields the species densities to decline
because of the increase in the proportion of sick individuals and
the consequent growth in the density of empty spaces (yellow
and black lines in Fig. 6b). As κ grows, the relative density of
healthy individuals decreases; therefore, the disease outbreak
affects fewer and fewer healthy individuals.
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Figure 7: Relative change in organisms’ infection risk and species densities as
a function of the mortality rate. Figure 7a shows how χ varies with µ. Fig. 7b
depict the variation in the specie density (red line); the purple and yellow lines
represent the densities of healthy and sick individuals, respectively, while the
black line depicts the density of empty spaces. The outcomes were averaged
from a set of 100 simulations, running in lattices with 5002 grid sites; the error
bars show the standard deviation.

4.2. Disease Mortality

The results reveal that if the disease does not provoke the
death of sick individuals (µ = 0), the proportion of ill organ-
isms is maximum; namely, ρs = 0.836 ρ. Because of this, the
infection risk is maximum, as depicted in Fig. 7a.

As µ increases, the number of organisms dying because of the
disease rises, reaching the maximum value for µ = 0.4. As de-
picted by the black line in Fig. 7b, the density of empty spaces
is maximum for µ = 0.4, with the density of species ρ = ρh +ρs

being minimal. For µ > 0.4, the increasing proportion of viral
vectors dying before transmitting becomes counterproductive
for the disease spreading. Thus, the disease transmission weak-
ens to higher mortality rates, being eradicated for µ = 0.72. The
results in Fig. 7b also show that the decrease in density of ill
organisms is approximately linear in µ.

5. Adaptation of the mobility restriction strategy

Finally, we aim to quantify the benefits of the spatial organi-
sation plasticity as a self-preservation strategy against disease
contamination. We assume that a pathogen mutation modi-
fies the disease virulence and triggers the organisms’ mobility
restrictions to adjust the size of the single-species spatial do-
mains. The goal is to maximise the relative decrease in individ-
uals’ disease contamination risk. For this purpose, we define
the optimum slowness factor ν? as the level of the mobility re-
strictions that minimises the infection risk for varying κ and µ.
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Figure 8: Relative change in organisms’ infection risk as a function of the
slowness factor for a variety of disease virulence. Figures 8a and 8b shows the
dependence of χ̃ in the infection and mortality rates, respectively. The results
were averaged from a set of 100 realisations, running in lattices with 5002 grid
sites; the error bars indicate the standard deviation. The inset figures show the
optimum slowness factor ν?, with the colours representing the respective κ and
µ.

We performed two experiments to vary the disease transmis-
sion and mortality and computed the relative change in the in-
fection risk: χ̃ = (χ − χ0)/χ0, where χ0 is the infection risk for
ν = 0. For each set of parameters, we ran 100 simulations in
lattices with 5002 grid points, starting from different initial con-
ditions and running until t = 5000. Except for κ and µ, whose
values are shown in Figs. 8a and 8b, all parameters are the same
as in the previous sections.

Figure 8a shows how the relative infection reduction, χ̃ de-
pends on ν for seven infection rates: κ = 1.0 (purple line),
κ = 1.5 (orange line), κ = 2.0 (green line), κ = 2.5 (pink line),
κ = 3.0 (blue line), κ = 3.5 (brown line), and κ = 4.0 (yel-
low line). The optimum slowness factor ν? depicted in the inset
figure represents the ideal mobility reduction for the respective
κ.

We first observe that the efficiency of the dispersal reduction
tactic is more relevant for low κ. Furthermore, as less trans-
missible the disease becomes, the slower individuals should
move to maximise the gain in protection against infection. For
κ = 1.0, being static (ν? = 1.0) brings the most significant re-
duction in χ - as depicted by the purple dot in the inset figure.
In contrast, if the mutation makes the disease more transmis-
sible, it is more advantageous if the dispersal restrictions are
partially released. As indicated in the inset figure, for κ = 4.0,
the optimum slowness factor is ν? = 0.7.

Concerning the variation in the disease mortality, we com-
puted the relative variation in infection risk for seven cases:
ν = 0.20 (purple line), ν = 0.25 (orange line), ν = 0.30 (green

line), ν = 0.35 (pink line), ν = 0.40 (blue line), ν = 0.45 (brown
line), and ν = 0.50 (yellow line), as shown in Fig. 8b. The inset
figure shows ν? for each value of µ.

For a low mortality disease, the results indicate that ν? = 0.9
is the mobility restriction that makes the spatial organisation
plasticity to provide maximum protection against disease con-
tamination. However, once the disease mortality rises, the profit
in reduced infection risk is maximised if the dispersal limita-
tions accentuate. According to our results, for µ ≥ 0.30, the
best results are achieved for ν? = 1.0.

6. Discussion and Conclusions

We run simulations of the spatial version of the rock-paper-
scissors rules, where organisms face an infectious disease out-
break. Running stochastic simulations, we first investigated
how the individuals’ mobility restriction strategy induces plas-
ticity in the individuals’ spatial organisation. For this purpose,
we quantified how the characteristic length scale of the typical
single-species spatial domains decreases when individuals are
constrained to explore a smaller fraction of the grid per unit
time [38, 54].

To understand how changes in the disease virulence caused
by the pathogen mutation affect population dynamics, we sim-
ulate the spreading of less severe and more aggressive diseases.
The outcomes show that:

• If the new virus provokes a more transmissible disease,
the proportion of sick individuals increases; thus, the num-
ber of individuals transmitting the virus grows. However,
the situation is asymptotically stabilised because of the
many deaths of sick individuals that control the transmis-
sion rate.

• Infection risk drops as the mortality rate grows because
more deaths of sick organisms result in fewer virus vec-
tors. Furthermore, we found that the population decline
caused by the increasing number of fatalities is reverted if
the pathogen mutation generates a very high mortal dis-
ease. In this case, the initial extremely high number of
deaths brings a consequent drastic drop in the number of
individuals transmitting the disease.

Our findings show the benefits of the mobility restriction is
affected by alterations in disease virulence. Therefore, the in-
dividuals’ dispersal limitation strategy must adapt if pathogen
mutation changes disease transmission or mortality. This means
that if organisms are sensitive to changes in disease virulence,
adapting the mobility rhythm, the spatial organisation plasticity
ensures a maximum reduction in the infection risk.

The results revealed that the relative reduction in the infec-
tion risk decreases significantly if the disease becomes less
transmissible or deadlier. In this case, organisms gain more
protection if movement restrictions are tighter, creating spatial
domains with shorter characteristic length scales. On the con-
trary, faced with a more transmissible or less lethal illness, in-
dividuals’ dispersal restrictions must be released, allowing the
formation of larger groups of individuals of the same species.
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Although, in our model, a sick organism becomes suscep-
tible to being reinfected when recovered from the disease, all
conclusions hold if a temporary immunity is given to cured in-
dividuals. In this case, the disease transmission chain is weak-
ened since the virus finds obstacles to spread. This introduces a
time delay in the transmission process, thus decreasing the av-
erage infection risk. In this scenario, mobility restrictions also
work as an effective collective survival strategy, inducing spa-
tial organisation plasticity that reduces the individuals’ disease
contamination risk.

Our outcomes can be generalised to cyclic game systems
with an arbitrary odd number of species [45], where organisms
adapt their mobility rate to escape being infected or eliminated
by enemies [55, 56]. Furthermore, besides being interpreted
as an evolutionary behavioural strategy that organisms perform
to protect themselves from disease surges, our results can be
helpful to ecologists in creating ecosystem conservation strate-
gies aiming to protect biodiversity from epidemic outbreaks
[48, 49].
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