
Highlights

SBcoyote: An Extensible Python-Based Reaction Editor and Viewer
Jin Xu,Gary Geng,Nhan D. Nguyen,Carmen Perena-Cortes,Claire Samuels,Herbert M. Sauro

• Research highlights item 1: SBcoyote is a fully Python-based biochemical reaction editor and viewer.

• Research highlights item 2: SBcoyote plugins support SBML level 3 with layout and render.

• Research highlights item 3: SBcoyote is extensible by a third party via its Python plugin API.



SBcoyote: An Extensible Python-Based Reaction Editor and Viewer
Jin Xua,1, Gary Gengb,1, Nhan D. Nguyenc, Carmen Perena-Cortesd, Claire Samuelsd and Herbert
M. Sauroa,<

aDepartment of Bioengineering, University of Washington, Seattle 98195, WA, USA
bDepartment of Computer Science, University of Washington, Seattle 98195, WA, USA
cDepartment of Chemistry and Biochemistry, Augustana University, Sioux Falls, 57197, SD, USA
dDepartment of Mathematics, University of Washington, Seattle 98195, WA, USA

A R T I C L E I N F O

Keywords:
visualization
software
computational modeling
systems biology

A B S T R A C T

SBcoyote is an open-source cross-platform biochemical reaction viewer and editor released under
the liberal MIT license. It is written in Python and uses wxPython to implement the GUI and the
drawing canvas. It supports the visualization and editing of compartments, species, and reactions. It
includes many options to stylize each of these components. For instance, species can be in di�erent
colors and shapes. Other core features include the ability to create alias nodes, alignment of groups
of nodes, network zooming, as well as an interactive bird-eye view of the network to allow easy
navigation on large networks. A unique feature of the tool is the extensive Python plugin API, where
third-party developers can include new functionality. To assist third-party plugin developers, we
provide a variety of sample plugins, including, random network generation, a simple auto layout
tool, export to Antimony, export SBML, import SBML, etc. Of particular interest are the export
and import SBML plugins since these support the SBML level 3 layout and render standard, which
is exchangeable with other software packages. Plugins are stored in a GitHub repository, and an
included plugin manager can retrieve and install new plugins from the repository on demand. Plugins
have version metadata associated with them to make it install plugin updates. Availability: https:

//github.com/sys-bio/SBcoyote.

1. Introduction
Python has become a very popular open-source language

for scientific computing and data science as it is easy to
learn and use. The systems biology community has shown
interest in using Python through the development of a va-
riety of simulation tools. For example, Tellurium (Choi
et al., 2018; Medley et al., 2018) provides an extensible
environment for modeling; PySCeS (Olivier et al., 2005)
focuses on simulation via di�erential equations, structural
analysis, and metabolic control analysis; SloppyCell (Myers
et al., 2007) focuses on model fitting and calculating the
resulting uncertainties; pySB (Lopez et al., 2013) focuses on
rule-based reaction models; and COBRApy (Lerman et al.,
2013) focuses on constraint-based modeling. However, other
than SBMLDiagrams (Xu et al., 2022), there are few tools
written in Python for visualizing reaction networks. SBML-
Diagrams is a command line tool for displaying biochemical
networks and uses the SBML layout and render extensions
to manage the visual information. In this article, we wish
to describe a new Python-based tool called SBcoyote. This
is an extensible, cross-platform SBML-compatible reaction
viewer and editor. It supports the visualization of compart-
ments, species, and reactions and includes many options to
stylize each of these components. SBcoyote’s primary pur-
pose is to enable users to add layout and render information
to an SBML model or to edit an existing SBML model with

<Corresponding author
hsauro@uw.edu (H.M. Sauro)

ORCID(s): 0000-0001-6738-9979 (J. Xu); 0000-0002-3659-6817 (H.M.
Sauro)

1Jin Xu and Gary Geng contributed equally.

layout and render. SBcoyote is extensible through the use
of user-written Python plugins. This makes it easy for third-
party users to add new functionality to SBcoyote. Certain
aspects of SBML, such as annotations, events, and the vari-
ous SBML rules, cannot be currently edited using SBcoyote.
However, it wouldn’t be di�cult to create plugins that could
support these features.

In addition to the core features, we provide a set of
sample plugins. These include plugins to generate random
networks, auto layout of networks, export models in the
form of Antimony (Smith et al., 2009), export and import
of SBML (Hucka et al., 2003), and a variety of other useful
functional plugins such as aligning nodes in a circular pat-
tern and carrying out the basic structural analysis of a net-
work (Vallabhajosyula et al., 2006). Of particular interest are
the SBML export and import plugins that support the SBML
level 3 layout and render standard (Deckard et al., 2007). A
critical issue in systems biology is ensuring the exchange
and reproducibility of models (Choi et al., 2018; Porubsky
et al., 2020). Over the past few years, the community has
developed a variety of standards to accurately capture mod-
els and simulation experiments. One popular standard is the
Systems Biology Markup Language (SBML) (Hucka et al.,
2003). SBML is used primarily to allow the exchange of
biochemical models between di�erent software tools. SBML
level 3 also includes an extension that allows diagrammatic
information to be stored in the form of layout and render
information. The layout component describes the positions
and sizes of di�erent graphical objects, including com-
partments, species, and reactions. The render component
describes color and shape information. There are currently
three tools (not including SBcoyote) that support the layout

J Xu et al.: Preprint submitted to Elsevier Page 1 of 5



SBcoyote

Figure 1: SBcoyote GUI example. There are two compart-
ments with different fill and border colors. Nodes can be in
different shapes and colors. The reactions are in bezier curves
with different colors. SBcoyote supports modifiers too. The
interactive bird-eye view of the network is at the down-right
corner. Users can modify node features in the right-hand form
after selecting a certain node.

and render information in SBML level 3 well. These include
SBMLDiagrams (Xu et al., 2022), COPASI (Hoops et al.,
2007) and MINERVA (Gawron et al., 2016).

A unique feature of SBcoyote is the extensible plugin
system. Third-party developers can include new functional-
ity via the SBcoyote plugin API. Most tools in systems biol-
ogy are not extensible. For example, network visualization
tools such as Escher (King et al., 2015a), Newt (Balci et al.,
2020), and VCell (Scha� et al., 1997) are not extensible.
MINERVA (Gawron et al., 2016), Cytoscape (Shannon et al.,
2003), PathwayDesigner (Bedaso et al., 2018) (https://www.
pathwaydesigner.org/), and CellDesigner (Funahashi et al.,
2006) do support the addition of plugins, but users require
high-level programming skills to develop them since they
need to be competent in Java, or Object Pascal. SBcoyote,
however, uses Python as the language for writing plugins,
and Python is a relatively easy language to learn.

2. Core Features
SBcoyote is a fully Python-based cross-platform, bio-

chemical reaction viewer and editor. It uses wxPython to
implement the GUI and the drawing canvas. Figure 1 shows
a screenshot of the SBcoyote GUI. Users can add, arrange
and modify compartments, species, and reactions. It can also
display regulatory edges, such as feedback loops between
species and reactions. It includes many options to stylize
each of these components. These include:

• Compartments can be visualized in di�erent positions,
sizes, and colors.

• Support is provided for floating and boundary species.
Species can be visualized in di�erent positions, sizes,
colors, and shapes as well as grouped for alignment
purposes.

• Species nodes can be duplicated to form alias species
to help visualize networks where a given species is
used in many reactions.

• SBcoyote supports complex species that use some
aspects from the Systems Biology Graphical Notation
(SBGN) (Novère et al., 2009).

• Reactions can be drawn either using bezier curves
or straight lines, and reactions can be displayed in
di�erent colors, thicknesses etc.

• SBcoyote supports zooming as an interactive bird-eye
view of a network to allow easy navigation of large
networks.

• SBcoyote can export and import models using SBML
and JSON formats.

Figure 2A and B illustrate two visualization examples
of the metabolic network from Jana Wolf’s work (Wolf
et al., 2001). Figure 2C shows a visualization example of
the large-scale Escherichia coli (ecoli) core metabolism net-
work (King et al., 2015b; Orth et al., 2010).

3. Plugins
SBcoyote is extensible due to its Python plugin API,

where third-party developers can include new functionality.
A range of sample plugins is provided with the distribution.
A plugin manager is provided that gives version metadata for
installing or updating plugins. Plugins are stored in a GitHub
repository (https://github.com/sys-bio/SBcoyote-plugins),
and an included plugin manager can retrieve and install new
plugins from the repository on demand. Plugins have version
metadata associated with them to make it easy to install new
versions.

3.1. Supplied Plugin Examples
Plugins can be accessed by either selecting the plugins

button on the Navigation Bar or by selecting the Applications
Menu. In this section, we will describe some of the sample
plugins supplied in the distribution.

3.1.1. Random Network
This plugin creates random reaction networks, shown in

Figure 3A. Users can specify the size of the networks by
choosing the number of species and reactions. In addition,
the probability of each type of mass-action reaction, i.e.
UniUni, BiUni, UniBi, BiBi, can be adjusted as long as the
sum of the four numbers is one. It also allows users to assign
a random seed to generate the same random network multi-
ple times. This is useful for testing purposes. Orphan nodes
that are not connected to any reactions are automatically
removed.

3.1.2. Auto Layout
The auto layout plugin will automatically layout a net-

work. This is useful for laying out random networks or

J Xu et al.: Preprint submitted to Elsevier Page 2 of 5



SBcoyote

A B

C

Figure 2: Some visualization examples by SBcoyote. A. Using
SBcoyote to visualize a model of glycolysis (Wolf et al.,
2001). Alias nodes are indicated with dashed border lines,
and boundary nodes have an extra square outside compared
with floating nodes. B. Another visualization for the model of
glycolysis (Wolf et al., 2001) but with nodes in circles and texts
outside the nodes. C. Using SBcoyote to visualize the large-
scale Escherichia coli (ecoli) core metabolism network (King
et al., 2015b; Orth et al., 2010). The figure with a larger size is
also available on GitHub (https://github.com/sys-bio/SBcoyote).

loading SBML models which do not have information
on the layout of the model. The plugin uses the spring
algorithm (Fruchterman and Reingold, 1991) from Net-
workX (Hagberg et al., 2008), see Figure 3B. Users can
change the optimal distance between nodes, the scale of the
layout and also choose to arrange the reaction centroids or
not.

3.1.3. Export Antimony
The export Antimony plugin allows a network to be

exported as an Antimony string (Smith et al., 2009). Users
can also copy the Antimony string to the clipboard or save
it to a file. Antimony can be loaded into other tools such as
Tellurium (Choi et al., 2018; Medley et al., 2018).

3.1.4. Export SBML
The export SBML plugin allows users to export the

network to SBML (Hucka et al., 2003). Users can copy

A B

C D

Figure 3: Plugin samples. A. A reaction network is generated
by the random network plugin. B. The auto layout plugin
makes the reaction network easier to examine. C. The import
SBML plugin can import an SBML file back to SBcoyote
after generating the SBML file by the export SBML plugin.
D. The visualization by COPASI GUI of the SBML exported
from SBcoyote shows the reproducibility and exchangeability
of the network layout.

the SBML to the clipboard or save it to a file. The SBML
files are stored using SBML level 3 and include both layout
and render information as part of the SBML. The exported
SBML files from SBcoyote can be visualized by import
SBML plugin (Figure 3C) or other software tools such as
COPASI (Figure 3D).

3.1.5. Import SBML
The import SBML plugin lets a user import SBML.

Once loaded, the software will check for the SBML layout
information and, if found, will use it to visualize the network.
If no layout information is found, the species in the network
are randomly positioned on the canvas. A user can now use
the auto layout plugin or manually rearrange the network.
When exported to SBML, the new layout is stored in the
SBML. See Figure 3C.

3.1.6. Align Circle
The align circle plugin is a simple plugin that will align

all the selected nodes in a circular pattern with either the
default radius or a desired radius.

3.1.7. Structural Analysis
The structural analysis plugin can be used to visualize the

stoichiometry matrix and conservation matrix of the reaction
network on the canvas. It can compute the stoichiometry
matrix and the conservation matrix of the network, and can
also highlight a given conserved moiety using a selected
color and un-highlight the nodes afterward. See Figure 4.

J Xu et al.: Preprint submitted to Elsevier Page 3 of 5



SBcoyote

A

B

Figure 4: Structural analysis plugin. A. Compute and show
the stoichiometry matrix. B. Compute the conservation matrix
and highlight the nodes of a conserved moiety.

3.2. SBML Compliance
The export and import SBML plugin supports SBML

level 3 but, most importantly, the layout and render ex-
tension. Layout describes the position and size of di�erent
graphical objects, while render describes the color, shape,
and line styles. Figure 3C shows an example of a SBML
model with layout and render being used to correctly display
the network. SBML layout and render is compatible with
other tools such as SBMLDiagrams (Xu et al., 2022), CO-
PASI (Hoops et al., 2007) and MINERVA (Gawron et al.,
2016). Figure 3D shows a visualization by COPASI GUI
of the SBML file exported from SBcoyote. The export and
import of SBML are also available under the File of the
Applications Menu with a single mouse click.

3.3. Developing Plugins
As a third party, creating new functionality via the SB-

coyote Python plugin API is straightforward. There are
two plugin types. Users can develop either a Command-
Plugin or a WindowedPlugin. CommandPlugins are those
with one single action and do not require a dialog dis-
play. WindowedPlugin allows for a more complex UI by
spawning a window. There are seven plugin categories, i.e.,
ANALYSIS, APPEARANCE, MATH, MODELS, UTILI-
TIES, VISUALIZATION, MISC. Developers can assign the
plugin category in the PluginMetadata object. All the plugin
categories are availble in the Applications Menu. The API
is well-documented at https://sys-bio.github.io/SBcoyote/
api.html. For example, in the random network plugin, adding
a random node to the canvas can be achieved using the
api.add_node() function with a random position assigned to
the parameter of position.

4. Conclusion and Discussion
SBcoyote was an experiment to see if we could write

a biochemical network editor in Python. On the whole, we

believe we have succeeded. The application may su�er some
slight sluggishness, though it is by no means severe; for
example, editing large networks (such as the ecoli model
shown in Figure 2C, which has 95 reactions and 72 species),
is possible. We hope to move eventually to Python 3.11,
which is reported to be 1.25x faster than previous Python
versions. Currently, some dependencies are not yet 3.11
compatible.

SBcoyote provides the systems biology community with
an extensible Python-based reaction network editor and
viewer. SBcoyote is cross-platform and available under the
liberal MIT license. The tool can visualize and modify
reaction networks with its core features. A unique feature
of the tool is the extensive Python plugin API, where third-
party developers can include their new functionality. The
SBML export and import plugins support the standard of
SBML level 3 layout and render, allowing models to be
exchangeable with other visualization tools through SBML.
See Table 1 for the summary of feature comparisons among
di�erent reaction network viewers and editors from the
perspectives of SBML level 3 with layout and render, and
plugin APIs.

There are limitations to SBcoyote due to the use of
wxPython and Python. Currently, loading large networks is
slow. For example, the ecoli model in Figure 2C takes 2
minutes to load on an Intel i9-9900XCPU 3.50 GHz, but
we are investigating ways to speed this up by optimizing the
Python code.

Table 1

Comparison of different reaction network viewers and editors
from the perspectives of SBML level 3 with layout and render
and plugin APIs.

Tools
SBML3

layout and render

Plugin APIs

(Language)

SBcoyote Yes Yes (Python)
SBMLDiagrams Yes No
COPASI Yes No
MINERVA Yes Yes (Java)
Escher No No
Newt Yes No
VCell No No
Cytoscape No Yes (Java)
CellDesigner No Yes (Java)

Availability
SBcoyote is publicly available and under the liberal

MIT open-source license. The source code has been de-
posited at GitHub (https://github.com/sys-bio/SBcoyote).
Sample plugins are also available on GitHub (https://
github.com/sys-bio/SBcoyote-plugins). The package is fully
documented at (https://sys-bio.github.io/SBcoyote).

J Xu et al.: Preprint submitted to Elsevier Page 4 of 5



SBcoyote

Author Contributions
J.X. and G.G. contributed equally to this work. J.X. was

the main developer of the plugins, added the compliance
of SBML level 3 layout and render, helped with some
core features and documentation, and wrote the manuscript.
G.G. was the primary developer of the core features with
Docstrings written for the documentation. N.D.N. helped
develop the node shapes. C.P.-C. was the main developer
of the documentation and the auto layout plugin. C.S. de-
veloped some plugins, created the plugin version metadata,
and helped with the documentation. H.M.S. conceived the
idea, was responsible for the project administration and
funding acquisition, helped with coding some plugins and
core features, and wrote the manuscript.

Acknowledgement
This work was supported by the National Institutes of

Health [U24EB028887]. The content is solely the respon-
sibility of the authors and does not necessarily represent
the o�cial views of the National Institutes of Health or the
University of Washington. J.X. thanks Frank T. Bergmann
for his assistance in using python-libSBML. G.G. thanks
Renjie Zhou, who initiated the iodine.py before his adapta-
tion. We also thank Evan Yip, who implemented the align
circle plugin.

Declares of Interest
None.

References
Balci, H., Siper, M., Saleh, N., Safarli, I., Roy, L., Kilicarslan, M., Ozay-

din, R., Mazein, A., Au�ray, C., Babur, O., Demir, E., Dogrusoz, U.,
2020. Newt: a comprehensive web-based tool for viewing, constructing,
and analyzing biological maps. Bioinformatics (Oxford, England) 37.
doi:10.1093/bioinformatics/btaa850.

Bedaso, Y., Bergmann, F.T., Choi, K., Medley, K., Sauro, H.M., 2018. A
portable structural analysis library for reaction networks. Biosystems
169, 20–25.

Choi, K., Medley, J., König, M., Stocking, K., Smith, L., Gu, S., Sauro, H.,
2018. Tellurium: An extensible python-based modeling environment
for systems and synthetic biology. Biosystems 171. doi:10.1016/j.
biosystems.2018.07.006.

Deckard, A., Bergmann, F., Sauro, H., 2007. Supporting the sbml layout
extension. Bioinformatics (Oxford, England) 22, 2966–7. doi:10.1093/
bioinformatics/btl520.

Fruchterman, T.M.J., Reingold, E.M., 1991. Graph drawing by force-
directed placement. Softw. Pract. Exp. 21, 1129–1164. URL: http:

//dblp.uni-trier.de/db/journals/spe/spe21.html#FruchtermanR91.
Funahashi, A., Matsuoka, Y., Jouraku, A., Kitano, H., Kikuchi, N., 2006.

Celldesigner: A modeling tool for biochemical networks. WSC ’06:
Proceedings of the 38th conference on Winter simulation doi:10.1109/
WSC.2006.322946.

Gawron, P., Ostaszewski, M., Satagopam, V., Gebel, S., Mazein, A.,
Kuzma, M., Zorzan, S., Mcgee, F., Balling, R., Schneider, R., 2016. Min-
erva—a platform for visualization and curation of molecular interaction
networks. NPJ Systems Biology and Applications 2. doi:10.1038/npjsba.
2016.20.

Hagberg, A.A., Schult, D.A., Swart, P.J., 2008. Exploring network
structure, dynamics, and function using networkx, in: Varoquaux, G.,

Vaught, T., Millman, J. (Eds.), Proceedings of the 7th Python in Science
Conference, Pasadena, CA USA. pp. 11 – 15. URL: http://conference.
scipy.org/proceedings/SciPy2008/paper_2/.

Hoops, S., Sahle, S., Gauges, R., Lee, C., Pahle, J., Simus, N., Singhal, M.,
Xu, L., Mendes, P., Kummer, U., 2007. Copasi—a complex pathway
simulator. Bioinformatics (Oxford, England) 22, 3067–74. doi:10.1093/
bioinformatics/btl485.

Hucka, M., Finney, A., Sauro, H.M., Bolouri, H., Doyle, J.C., Kitano, H.,
Arkin, A.P., Bornstein, B.J., Bray, D., Cornish-Bowden, A., et al., 2003.
The systems biology markup language (sbml): a medium for representa-
tion and exchange of biochemical network models. Bioinformatics 19,
524–531.

King, Z., Dräger, A., Sonnenschein, N., Lewis, N., Palsson, B., 2015a.
Escher: A web application for building, sharing, and embedding data-
rich visualizations of biological pathways. PLoS computational biology
11, e1004321. doi:10.1371/journal.pcbi.1004321.

King, Z., Lu, J., Dräger, A., Miller, P., Federowicz, S., Lerman, J., Palsson,
B., Lewis, N., 2015b. Bigg models: A platform for integrating, stan-
dardizing and sharing genome-scale models. Nucleic acids research 44.
doi:10.1093/nar/gkv1049.

Lerman, J., Palsson, B., Hyduke, D., 2013. Cobrapy: Constraints-based
reconstruction and analysis for python. BMC systems biology 7, 74.
doi:10.1186/1752-0509-7-74.

Lopez, C., Muhlich, J., Bachman, J., Sorger, P., 2013. Programming
biological models in python using pysb. Molecular systems biology 9,
646. doi:10.1038/msb.2013.1.

Medley, J., Choi, K., König, M., Smith, L., Gu, S., Hellerstein, J., Sealfon,
S., Sauro, H., 2018. Tellurium notebooks—an environment for repro-
ducible dynamical modeling in systems biology. PLOS Computational
Biology 14, e1006220. doi:10.1371/journal.pcbi.1006220.

Myers, C., Gutenkunst, R., Sethna, J., 2007. Python unleashed on systems
biology. Computing in Science and Engineering 9, 34–37. doi:10.1109/
MCSE.2007.60.

Novère, N.L., Hucka, M., Mi, H., Moodie, S., Schreiber, F., Sorokin, A.,
Demir, E., Wegner, K., Aladjem, M.I., Wimalaratne, S.M., et al., 2009.
The systems biology graphical notation. Nature biotechnology 27, 735–
741.

Olivier, B., Rohwer, J., Hofmeyr, J.H., 2005. Modelling cellular systems
with pysces. Bioinformatics (Oxford, England) 21, 560–1. doi:10.1093/
bioinformatics/bti046.

Orth, J.D., Fleming, R.M., Palsson, B.Ø., 2010. Reconstruction and use of
microbial metabolic networks: the core escherichia coli metabolic model
as an educational guide. EcoSal plus 4.

Porubsky, V.L., Goldberg, A.P., Rampadarath, A.K., Nickerson, D.P., Karr,
J.R., Sauro, H.M., 2020. Best practices for making reproducible bio-
chemical models. Cell systems 11, 109–120.

Scha�, J., Fink, C., Slepchenko, B., Carson, J., Loew, L., 1997. A general
computational framework for modeling cellular structure and function.
Biophysical journal 73, 1135–46. doi:10.1016/S0006-3495(97)78146-3.

Shannon, P., Markiel, A., Ozier, O., Baliga, N., Wang, J., Ramage, D.,
Amin, N., Schwikowski, B., Ideker, T., 2003. Cytoscape: A software
environment for integrated models of biomolecular interaction networks.
Genome research 13, 2498–504. doi:10.1101/gr.1239303.

Smith, L., Bergmann, F., Chandran, D., Sauro, H., 2009. Antimony: A
modular model definition language. Bioinformatics (Oxford, England)
25, 2452–4. doi:10.1093/bioinformatics/btp401.

Vallabhajosyula, R., Chickarmane, V., Sauro, H., 2006. Conservation anal-
ysis of large biochemical networks. Bioinformatics (Oxford, England)
22, 346–53. doi:10.1093/bioinformatics/bti800.

Wolf, J., Sohn, H.Y., Heinrich, R., Kuriyama, H., 2001. Mathematical
analysis of a mechanism for autonomous metabolic oscillations in con-
tinuous culture of saccharomyces cerevisiae. FEBS letters 499, 230–234.

Xu, J., Jiang, J., Sauro, H., 2022. Sbmldiagrams: a python package to
process and visualize sbml layout and render. Bioinformatics doi:10.
1093/bioinformatics/btac730.

J Xu et al.: Preprint submitted to Elsevier Page 5 of 5


