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Nonlinear modelling of renal vasoaction
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Abstract

The control of blood pressure is a complex mixture of neural, hormonal and intrinsic interactions at the level of the heart, kidney and blood

vessels. While experimental approaches to understanding these interactions are useful, it remains difficult to conduct experiments to quantify these

interactions as the number of parameters increases. Thus, modelling of such physiological systems can offer considerable assistance. Typical

mathematical models which describe the ability of the blood vessels to change their diameter (vasoconstriction) assume linearity of operation.

However, due to the interaction of multiple vasocontrictive and vasodilative effectors, there is a significant nonlinear response to the influence of

neural factors, particularly at higher levels of nerve activity (often seen in subjects with high blood pressure) which leads to low blood flow rates.

This paper proposes a number of nonlinear mathematical models for the relationship between neural influences (sympathetic nerve activity (SNA))

and renal blood flow, using a feedback path to model the predominantly nonlinear effect of local vasoactive modulators such as nitric oxide, which

oppose the action of SNA. The model structures are motivated by basic physiological principles, while the model parameters are determined using

numerical optimisation techniques using open-loop data collected from rabbits. The models were verified by demonstrating correlation between

experimental results and model outputs.
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1. Introduction

The regulation of blood pressure (BP) is critical in

maintaining nutrient and oxygen supply to the various perfused

organs. Blood pressure is determined according to the (Ohm’s

law) relationship:

MAP ¼ CO � TPR (1)

where MAP is the mean arterial pressure (measured in

mmHg), CO the cardiac output, evaluated as the product of

heart rate and stroke volume (in l/s), and TPR is the total

peripheral resistance as seen by the heart (in mmHg s/l).

This study focuses on those components which mediate the

resistance to blood flow (BF), while the heart is assumed to

have a relatively constant output. This assumption is acceptable

as the typical heart rate standard deviation is only about 1 beat/

min. BF is differentially regulated according to physiological

needs at any particular time via a variety of hormonal, neural

and intrinsic factors. In particular, the emphasis is on TPR and

how it mediates blood flow/pressure on a relatively short

timescale, i.e. seconds. Central to this timescale, with a time

delay between stimulation and response of 0.6 s [1], is the

neural control of blood pressure, with sympathetic innervation

of a number of major organs and areas of the vasculature,

allowing rapid control of resistance via the central nervous

system. Such sympathetic nerve activity (SNA) causes the

release of neurotransmitters, which cause the smooth muscle

surrounding small arteries and arterioles to constrict [2]. The

distribution of sympathetic innervation throughout the vascu-

lature determines the action that will take place at any particular

site. However, in addition to neural control, several other

mechanisms have significant effect on resistance, including:

� Hormones, which circulate throughout the system and can

effect both vasodilation or vasoconstriction, depending on the

particular hormone and the type of receptor it binds to

(typical hormones include epinephrine, antidiuretic hormone,

angiotensin II and cortisol [3,4]).
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� Intrinsic factors (myogenic autoregulation), which regulate

blood vessel compliance and can produce a vasoconstrictive

action in the smooth muscle in response to a distorting force

on the walls of blood vessels due to BP [5].

� Paracrines, which are local humoral substances and can

have both vasodilatory (e.g. prostacyclin, nitric oxide) and

vasoconstrictive effects (e.g. thromboxane, endothelin-1 [6]).

� Metabolic factors, which can elicit vasoaction in response to

local metabolic demands. Typical mediators include oxygen

(constriction).

Fig. 1 (adapted from [7]) attempts to summarise the various

factors involved in mediating vasoaction. The vasoactive

mechanisms can be loosely grouped into systemic effects (e.g.

SNA, hormones) and local effects (paracrines, tissue metabo-

lites). The vasoaction at any particular site is therefore likely to

be a combination of both factors. The study in this paper

examines the renal vasculature in particular and attempts to

build a mathematical model relating BF to SNA, with

hormones, paracrines, etc., as mediating factors.

Mathematical models can be used to develop an under-

standing of the system under study. In order to achieve

structural information, the emphasis should be on models

which attempt to exploit the physical system description, rather

than adopting a global black box modelling approach. While

the latter approach can give a very good model fit for specific

experimental data, it does little to reveal the generic structure of

the system under study. A popular approach for modelling real

systems, combining physical a priori knowledge of the system

for model structure development, and numerical methods for

parameter estimation is Gray Box modelling [8]. Once a model

structure is defined, a number of numerical methods can be used

for parameter optimisation. In [9] a number of optimisation

techniques were compared to identify which optimisation

method is mostly suited to the parameterisation of Model A

described in the current paper.

To date, a number of attempts have been made to model the

blood flow response to SNA. However, most techniques focus

on linear models, which fail to capture essential aspects of the

response. For example, the paper by Eppel et al. [10] considers

only broad magnitude changes in renal blood flow (RBF) in

response to SNA stimulation, while the paper by Leonard et al.

[11] fits an unparameterised frequency response to the RBF/

SNA relationship. Navakatikyan et al. [12] fit a first-order

(pole-only) model to the response, which only models the RBF

changes at low frequencies of stimulation, where the local

vasodilatory factors are not visibly active. Guild et al. [1] use a

frequency-domain approach to fit a linear fourth order (four

poles and two zeros plus delay) model to the data. While this

linear model gives a good fit at relatively low SNA amplitudes,

the response match deteriorates at higher SNA amplitudes, as

this higher stimulation level evokes reactionary responses in

(local) vasodilatory mechanisms. Previous work by our group

[9,13] describe nonlinear mathematical models relating RBF to

SNA. In [13] the model is only manually parameterised, while

in [9] numerical optimisation was performed using various

techniques and the resulting model fits were compared. Manual

optimisation, gradient method (quasi-Newton algorithm),

genetic algorithms (GAs) and a combination of GAs and the

quasi-Newton algorithm were included in the comparison. Best

results were obtained using a combination between GAs and the

quasi-Newton method. The current study compares some of our

previous work with a new model, comprising an improved

model structure and parameters for three different animals.

The remainder of the paper is organised as follows: Section 2

deals with the various model structures proposed in this study,

while available experimental data is presented in Section 3.

Section 4 presents the optimisation techniques used and the

results are outlined in Section 5. The conclusions and discussion

are laid out in Section 6.

2. Model development

Three different models have been developed in this work and

are presented in logical order, starting with the initial model

accounted for in [13]. Structural and parametric improvements

to this initial model are subsequently outlined.

The essential model structure is shown in Fig. 2. The neural

control of the renal vasculature is considered central to the

model for two reasons:

(1) It is the most significant (and ‘independent’) input to the

model, i.e. most other mechanisms are considered reac-

tionary on a more local level.

Fig. 1. Summary of vasoactive mechanisms. Fig. 2. Feedforward/feedback configuration.
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(2) The experimental data on which the model will be assessed

is ‘open-loop’ as far as neural control of the vasculature is

concerned. This is achieved via transection of the renal

sympathetic nerve.

2.1. Model structure A

In Fig. 2, the two feedback paths represent the effects that

both local and systemic blood pressure/flow control mechan-

isms have in response to SNA-based activation of RBF. Since

the renal vasculature is just one component which regulates

blood pressure, the response from systemic mechanisms is

unlikely to be nearly as significant as the response from

local mechanisms. Therefore, a single feedback block will be

employed in the structure as shown in Fig. 3. This single block

could incorporate systemic effects, but is configured to mainly

model local effects. Model structure A is based on the following

physiological premise. Above a certain (threshold) value of

(normal) BF, the response of BF to SNA is relatively linear.

However, when BF drops below a certain value, local factors

work progressively harder (as BF decreases) to maintain an

acceptable level of local BF. This response is captured by the

‘activation level’ block in Fig. 3. The ‘local dynamics’ block in

Fig. 3 captures the speed of response of these local reactionary

mechanisms. The ‘smooth muscle dynamics’ block represents

the dynamic response of the smooth muscle to a stimulus from

an appropriate receptor. Finally, a representation of the

relationship between the frequency of SNA stimulation and

steady-state BF response is added. This (mildly) nonlinear

characteristic is given in Fig. 3 by the ‘frequency’ transform

block.

Fig. 4 shows the typical type of response obtained from this

model. The initial response to a step activation in SNA is

roughly first-order exponential, but as soon as BF is reduced

below a certain level, local (opposite) effects temper the

response dramatically. Following release of the SNA activation,

the response returns rapidly to the original level (and even

overshoots it) assisted by the slowly dispersing local

vasodilators. From this description, some aspects of the model

can be clarified:

� The local vasodilatory response is not linear and has some

‘threshold’ of blood flow below which it is activated.

� The response of the local vasodilatory reaction is signifi-

cantly slower than that of the smooth muscle to the SNA

stimulus (i.e. tb > tf ).

� The magnitude of the action (to SNA) and reaction (by the

local vasodilatory mechanism) is comparable, at least to an

order of magnitude.

2.2. Model structure B

Model B, which represents an alternative structure, as shown

in Fig. 5, employs the same blocks as Model A. However, in the

case of Model B, the smooth muscle dynamics are taken outside

of the feedback control loop. This structure represents the

reduction in BF due to the neural constrictory effectors being

counteracted by the increase in BF due to the local dilatory

effectors. The sympathetic input to the smooth muscle

dynamics block, however, is not affected by the output of

the local dynamics block, as it is in Model A. This modification

is justified since the smooth muscle response to SNA does not

change with the addition of local vasodilatory factors.

2.3. Stimulation/recovery models

A further necessary enhancement of the model accounts for

the different time constants during the stimulation and recovery

stages of the experiment. The differences are due to different

activation and dispersion rates, with the slower response during

the recovery from stimulation. This is perfectly reasonable,

since:

� Recovery from SNA activation is passive and the smooth

muscle may take longer to relax than contract under forced

activation and

� Hormones, paracrines, etc., may take much longer to disperse

than the rate at which they were formed.

Thus, the model structure may remain the same for the two

stages of the experiment, but the parameters need to be defined

separately for stimulation (180 s) and recovery (300 s) in order

Fig. 3. Block diagram of Model A.

Fig. 4. Typical large-signal response to SNA activation.

Fig. 5. Block diagram of Model B.
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to obtain a better representation of the real system. Considering

its better portrayal of the underlying physiology, Model B was

selected for separate numerical optimisation of stimulation and

recovery.

3. Data availability

Experiments were performed on six anaesthetized New

Zealand white rabbits [11]. A transit time flow probe (type 2SB;

Transonic Systems, Ithaca, NY, USA), connected to a

compatible flowmeter (T106, Transonic Systems) was used

to measure RBF, with arterial pressure being monitored using a

catheter inserted into the central ear artery and connected to a

pressure transducer (Cobe, Arvarda, CO). The measured

signals were sampled at 500 Hz, digitized and saved

continuously as 2 s averages of each variable. In addition,

heart rate (HR, beats/min) was derived from the arterial

pressure waveform.

For stimulation, the renal nerves were placed across a pair of

hooked stimulating electrodes and then sectioned proximal to

the electrodes. Stimulation sequences using frequency mod-

ulation (FM) were applied using a pulse width of 2 ms.

Frequencies of 1.5, 2.0, 3.0, 5.0 and 8.0 Hz were applied in

random order using a voltage equal to that required to produce a

maximal RBF response. The stimulation interval was 3 min,

with a 5 min recovery period.

4. Model parameterisation

In order to determine the best model parameters, an

objective function (Jtot) to be minimised was defined as the sum

of the errors (Jk) obtained for each frequency of stimulation

(n ¼ number of frequencies of stimulation used):

Jtot ¼
Xn

k¼1

Jk (2)

where Jk is defined in the form of the mean squared error (MSE)

as

Jk ¼
1

N

XN

i¼1

ðyi � ŷiÞ2 (3)

where ŷi is the blood flow data obtained from the model

simulations and yi is the actual blood flow data.

Normalised blood flow, representing the percentage change

in blood flow from the initial blood flow level of each animal,

was used for model development in this study. The normal-

isation was performed separately for each frequency of

stimulation. Thus, the initial blood flow values correspond to

0% change in blood flow, while blood flow level of 0 mmHg

corresponds to �100% change in blood flow. The intermediate

blood flow levels then correspond to values between 0% and

�100% change during stimulation (due to reduction in blood

flow) and can take on positive values as well during recovery

(due to overshoot in blood flow). For reference purposes, the

mean actual initial blood flow values for the three animals and

for each frequency is 27.5857 mmHg with a standard deviation

of 5.76 mmHg.

4.1. Manual parameterisation

Given the intuitive nature of the initial model and the strong

relationship with the underlying physiology, the first attempts

focussed on tuning the model parameters by trial and error.

There are four parameters in the dynamic blocks, as well as two

piecewise linear functions, to determine. The relationship

between SNA and blood flow is approximately linear above a

certain threshold level of RBF, hence the feedforward loop

dynamics are relatively easy to determine. However, below that

threshold level, local factors are activated to oppose the

reduction in BF, thus activating the feedback path in the model.

This latter relationship is nonlinear, hence more challenging to

parameterise manually. Once the potential of the model was

ascertained by relatively good results, more advanced

numerical techniques were applied to the models, namely

genetic algorithms and gradient techniques.

4.2. Genetic algorithms and quasi-Newton method

Genetic algorithms were employed to find a good MSE

solution, as they are suitable for problems with irregular

problem surfaces, where a global minimum may be difficult to

find. GAs, however, do not guarantee to find the exact

minimum, as their solution space is represented by discrete

solution points. To overcome this problem and to find an exact

minimum in the vicinity of the overall solution obtained by the

GAs, a gradient technique can be employed. Gradient methods

are often unable to find a global minimum in an irregular

solution space, however they are suitable to finding exact local

minima. Thus, a quasi-Newton algorithm was selected to

determine the exact local minimum in the vicinity of the already

obtained GA solution. Most Newton gradient search algorithms

require calculations of the gradient and Hessian (second partial

derivative, representing the curvature). However, numerical

calculation of the Hessian can lead to loss of precision and even

divergence from the minimum, in some cases. The quasi-

Newton method differs from similar Hessian-based techniques,

in that the parameter approximations for the next step are

calculated using estimates of the Hessian, calculated in a

specific manner to reduce precision loss [14] and ensure

convergence.

5. Results

Numerous sets of results are presented in this section. For

each model, a table with the dynamic parameters and cost

function will be shown, as well as two figures containing the

piecewise linear functions. Results from the initial manual

parameterisation of Model A, used to assess the potential of the

model, are shown in Section 5.1. Next Models A and B were

optimised using GAs and a gradient technique. These two sets

of results are compared in Section 5.2 and represent data for a

single animal. Model B, which has a better data fit, is then
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optimised separately for the stimulation and recovery stages of

the experiment and the results for three animals are presented in

Section 5.3.

5.1. Manual parameterisation

The model parameter values and minimum cost obtained by

Model A’s manual optimisation are detailed in Table 1. All

parameters were determined by trial and error to fit all

frequencies of stimulation.

The two piecewise linear components in the model, namely

the frequency transform function and the local vasodilators

activation level, are shown in Figs. 7 and 8, respectively, and are

marked as ‘Manual’. A comparison of the model output and the

experimental data for Rabbit 1 are shown in Fig. 6. Clearly,

even with manual parameterisation, the model has captured the

essence of the response contained in the experimental data, with

the exception of the noise present in the physiological data.

Arguably a better comparison could be made if the experi-

mental data had been filtered prior to plotting, but the filter

would introduce dynamics of its own, which may interfere with

the parameter determination.

5.2. Models A and B comparison

The results for Model A and Model B, optimised with GAs

and the quasi-Newton method, are compared in this section.

The dynamic parameters, as well as the minimum cost (for

Rabbit 1) are presented in Table 2. The models were trained

with all frequencies of stimulation. The two piecewise linear

functions are again shown in Figs. 7 and 8. The functions are

marked as ‘Model A’ and ‘Model B’ on each of the figures. As

shown in Table 2, Model B yielded marginally better results,

thus it was selected for further enhancement, namely separate

numerical optimisation of the stimulation and recovery stages

of the model.

5.3. Structure B stimulation/recovery models

As previously outlined, the model structure yielding better

results, Model B, is parameterised separately in this section for

the stimulation and recovery stages of the experiment, thus

accounting for the different BF responses during stimulation

and relaxation. Again, GAs and quasi-Newton method were

used. In the GA optimisation, the average population size used

was 700 individuals. The starting values were randomly

determined by the algorithm. Convergence on the final results,

with a tolerance < 10�5 was reached on average after 57

iterations. In the case of the quasi-Newton method, the starting

values used were the final results of the genetic algorithm for

each individual animal. The quasi-Newton method provided

minor improvements to converge on the local minima in the

vicinity of the GA solutions in an average of 252 iterations.

The stimulation and recovery models, which have the same

structure, are parameterised for three different animals. First,

the models were optimised for Rabbit 1, the original data set

used for model structure development. Then the stimulation and

recovery models were parameterised to fit two other animal sets

Table 1

Dynamic block parameters for manual parameterisation

kf 1

kb 80

tf (s) 20

tb (s) 200

Jtot 234.59

Fig. 6. Comparison of model response with experimental data for Model A

(manually optimised parameters).

Table 2

Dynamic parameters for GAs and gradient techniques

Model kf kb tf (s) tb (s) Jtot

Model A 1.04 72.15 20.09 179.98 102.46

Model B 1.12 83.0974 17.86 150.45 97.19

Fig. 7. ‘Frequency’ transform function for the manually optimised Model A

(manual) and the computer optimised Models A and B.

V. Mangourova et al. / Biomedical Signal Processing and Control 2 (2007) 258–266262
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(Rabbits 2 and 3) to assess the quality of the model structure,

when used across a number of animals. All results are presented

in Table 3 and Figs. 9–11 . The models are trained on four

frequencies of stimulation, 1.5, 2, 5 and 8 Hz, and are tested

with the fifth frequency of 3 Hz, with Jtest being the MSE

obtained for the test frequency.

Table 3 shows the significant differences between the

dynamic parameters of the stimulation and recovery models,

with larger gains and time constants during recovery, as

expected. It is evident, from Table 3, that the stimulation

models perform consistently better than the recovery ones for

all three animals. In addition, Table 3 shows that Rabbits 2 and

3 are not as well represented by their models as the original data

set (Rabbit 1), for which the model structure was built. The test

results for 3 Hz are inferior to the training results. This,

however, is misleading as if we were to include the 3 Hz data in

the training data, the cost function for the 3 Hz set results in

very similar values. This confirms the generalisation capability

of the model and suggests that the 3 Hz data has some different

properties to the rest of the data sets.

Fig. 9 shows the ‘frequency’ transform function for all three

animals for the stimulation model. During recovery the model’s

input is zero, therefore this nonlinear block’s output is zero for

all frequencies of stimulation and does not require graphical

representation. Similar values to ours, for normalised BF

response to SNA stimulation frequencies of 1.5 and 2 Hz, were

reported by diBona and Sawin [15].

The ‘activation level’ nonlinearity for the stimulation model

of all three animals is shown in Fig. 10, while Fig. 11 shows the

same nonlinearity for the recovery models. One distinctive

feature of the models is the hysteresis effect which is returned in

the identified ‘activation level’ characteristics. These roughly

take the form shown in Fig. 12, which shows a classic hysteresis

shape, typical of systems (e.g. electro-magnetic systems) which

have ‘memory’ that takes some time to neutralise. In this case

Fig. 8. Local vasodilators ‘activation level’ for the manually optimised Model

A (manual) and the computer optimised Models A and B.

Table 3

Dynamic block parameters for the stimulation and recovery models

Animal set Model kf kb tf (s) tb (s) Jtot Jtest

Rabbit 1 Stimulation 1.0639 40.6486 15.5304 33.9248 19.888 31.8497

Rabbit 1 Recovery 0.3058 524.568 30.7281 100.2366 65.9301 87.8868

Rabbit 2 Stimulation 1.3246 39.3004 15.2996 32.8461 67.0168 25.3646

Rabbit 2 Recovery 3.8658 506.7437 30.48 229.3788 542.9053 356.5051

Rabbit 3 Stimulation 1.3824 40.5726 15.5118 33.8387 152.7622 46.2158

Rabbit 3 Recovery 0.2318 1105.89 43.7512 211.528 1003.01 242.4465

Fig. 9. ‘Frequency’ transform function for three animals.

Fig. 10. Local vasodilators ‘activation level’ for the stimulation model.
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the memory effect comes from the persistence of local

vasodilators which take some time to be dispersed by the

bloodstream.

A plot of results for Rabbit 1 is shown in Fig. 13, while the

results for Rabbit 2 are shown in Fig. 14. There is a noticeable

deterioration in the quality of the fit for the recovery stage of

Rabbit 2 compared to Rabbit 1. For brevity the model responses

for Rabbit 3 is not presented graphically, however from the

results in Table 3 it is evident that both the stimulation and

recovery models severely under perform in the case of Rabbit 3.

6. Discussion

This paper has presented a number of large-signal gray-box

models for neurally induced vasoaction in the renal vasculature.

The initially proposed model (Model A), even when manually

optimised, provided evidence that there is some merit in this

proposed model structure and gives some confidence that the

model maps well onto the underlying physiology. However, the

new alternative model (Model B) more accurately represents

the local effector activation since it better reflects the relative

spatial locations of systemic and local actions, leading to

improved numerical results.

An improvement from previous work introduces separate

optimisation of the model parameters for the stimulation and

recovery stages. This technique yields mixed results for Model

B. For Rabbit 1, noting that the cost (MSE) is a ‘per sample’

(mean) measure, the training MSE for the stimulation model is

19.9, while the recovery stage has a cost value of 65.9 (Table 3).

Additionally, the test MSE for stimulation is 31.8, while for

recovery is 87.9. These results suggest that the model structure

is more representative of the vasculature response during neural

stimulation and may need to be altered in order to better match

the recovery stage.

This study, is advantageous over previous work by

presenting model results for three different animals. Prior

work concentrated on Rabbit 1 only, while in the current study,

the stimulation and recovery models were optimised for two

additional data sets. Additionally, in our previous studies, the

models were trained on data for all five frequencies of

stimulation. Here we have improved this technique by training

the stimulation and recovery models on four frequencies of

stimulation and testing them using the remaining frequency. A

number of limitations of this study also need to be mentioned.

Fig. 11. Local vasodilators ‘activation level’ for the recovery model.

Fig. 12. Hysteresis effect.

Fig. 13. Comparison of model output and experimental results for Rabbit 1

(stimulation and recovery together).

Fig. 14. Comparison of model output and experimental results for Rabbit 2

(stimulation and recovery together).

V. Mangourova et al. / Biomedical Signal Processing and Control 2 (2007) 258–266264



Author's personal copy

As evident from the results, the selected model structure

performs better for Rabbits 1 and 2 than it does for Rabbit 3.

Also, the results for individual animals are relatively good, but

it has been difficult to obtain a true generic model. A number of

possible explanations exist:

(1) Different voltage levels were used for each animal, as seen

in Section 3.

(2) The various frequencies of stimulation were applied in

a random order for each animal, resulting in different

substances being active in each animal during the same

stimulation frequency, inadvertently leading to differential

response to the same input.

(3) There was no way to ensure that the same number of nerve

fibers were recruited for each animal during stimulation.

The models presented in this paper focus on the renal

vasculature only and caution must be exercised in any attempt

to extend their applicability to other vasculature components or,

indeed, to TPR in general. However, the renal vasculature is a

major component of innervated resistance (approximately

30%) and therefore the models have a significant relevance to

TPR. In conclusion, the proposed model provides a good

representation of the relationship between SNA and BF, and

gives a good basis for developing a truly generic model. To date

numerous research groups have focused on modelling the

relationship between blood pressure (BP) and renal blood flow,

where particular attention has been paid to autoregulation,

including myogenic mechanisms and tubuloglomerular feed-

back (TGF) mechanism [16,17]. In this paper we consider

the response of RBF to SNA stimulation. It is likely that

autoregulation has a contribution to the total blood flow

response here, however it is beyond the scope of this study to

identify specific components and the magnitude of their action.

Considering that blood pressure variations during one cycle of

stimulation and recovery were very small (typical variations

were 2–4 mmHg), it is conceivable that blood flow response

was mostly due to SNA mediators and flow-sensing blood flow

control mechanisms. It is also reasonable to suggest that the

feedback loop in our model represents a sum of the responses of

local vasodilatory and vasoconstrictory mechanisms.

A study on conscious animals [18], which focused on

modelling BF response to SNA and BP, demonstrated that using

both SNA and BP as inputs to the model leads to much better

results than modelling separately the relationships between

SNA and blood flow and that between BP and BF. Therefore,

future work could attempt to incorporate previously identified

models for renal blood flow response to blood pressure and

nerve activity. This would be an important step forward, as it is

suggested that 80% of the variation in renal blood flow can be

accounted for by changes in blood pressure and SNA [18].

The proposed model structures deliberately separate

dynamic and nonlinear elements (with a Hammerstein structure

[19] in the feedback path) in an effort to make the model as

transparent as possible and facilitate parameter tuning.

Development of such models is particularly important in order

to improve the understanding of the relationship between RBF

and SNA, as changes in SNA seems to have a large effect on

renal blood flow, as shown in this study, as well as in Ref. [18].

We also believe that a successful model can be helpful as part of

the modelling effort to investigate the origins of low-frequency

(circa 0.1 Hz in humans) oscillations in blood pressure. Current

models utilise a relatively simple linear first-order dynamic

element to represent the resistance component of the vascu-

lature [20] and while this representation is adequate for small-

signal situations, it is known that oscillations of a significant

amplitude can occur under certain physiological conditions,

e.g. haemorrhage [21]. Inclusion of the counteractive vasodi-

latory mechanism in the models presented in this paper is likely

to make a significant change to predictions of oscillation

amplitudes (particularly at higher amplitudes) compared to

current models utilising simple linear models.
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